EP3322780B1 - Korrosionsinhibitoren für kraftstoffe - Google Patents

Korrosionsinhibitoren für kraftstoffe Download PDF

Info

Publication number
EP3322780B1
EP3322780B1 EP16736891.9A EP16736891A EP3322780B1 EP 3322780 B1 EP3322780 B1 EP 3322780B1 EP 16736891 A EP16736891 A EP 16736891A EP 3322780 B1 EP3322780 B1 EP 3322780B1
Authority
EP
European Patent Office
Prior art keywords
acid
use according
esters
carbon atoms
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16736891.9A
Other languages
English (en)
French (fr)
Other versions
EP3322780A1 (de
Inventor
Jochen Mezger
Maxim Peretolchin
Ivette Garcia Castro
Klaus Muehlbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP3322780A1 publication Critical patent/EP3322780A1/de
Application granted granted Critical
Publication of EP3322780B1 publication Critical patent/EP3322780B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/16Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • C10L1/1883Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/232Organic compounds containing nitrogen containing nitrogen in a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/086Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/022Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/026Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrile group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition

Definitions

  • the present invention relates to new uses of corrosion inhibitors in fuels.
  • Corrosion inhibitors are common additives in fuels and lubricants, often based on acid group-containing structures, e.g. Dimer fatty acids.
  • a disadvantage of these corrosion inhibitors is that they tend to precipitate, especially in the presence of calcium ions, thereby reducing their corrosion-inhibiting effect.
  • the deposits formed by these precipitations may also affect the operation of engines, engine components or parts of the fuel system, in particular the injection system, especially the injection pumps or nozzles.
  • injection system is understood to mean the part of the fuel system in motor vehicles from the fuel pump through the injector outlet.
  • fuel system is understood to mean the components of motor vehicles that are in contact with the respective fuel, preferably the area from the tank up to and including the injector outlet.
  • the compounds of the invention against deposits not only act in the injection system, but also in the rest of the fuel system, in particular against deposits in fuel filters and pumps. It was therefore an object to provide corrosion inhibitors are available, which show an increased compatibility with calcium ions and thereby retain their effect as a corrosion inhibitor.
  • US 3382056 teaches the use of low molecular weight copolymers containing olefins and succinic acid and their derivatives in copolymerized form as anti-rust additives in refined fuel compositions.
  • JP 55-085679 teaches the use of hydrolytically opened copolymers of molecular weight Mw from 2,000 to 30,000 of ⁇ -olefins having from 20 to 60 carbon atoms and maleic anhydride as oil-soluble rust inhibitors in mineral oil or lubricants.
  • WO 96/28486 are copolymers of monoethylenically unsaturated C4 to C12 dicarboxylic acids or their anhydrides with 1-olefins having 3 to 14 carbon atoms known. Their reaction with amines leads to corrosion inhibitors, an effect of the copolymer alone against corrosion is not described.
  • JP 2007-077216 describes oils containing partial esters of copolymers of maleic anhydride and ⁇ -olefins with alkylene glycols. An effect of the copolymer alone against corrosion is not described.
  • the copolymers described have a particular advantage in fuels or lubricants, especially in fuels having a content of alkali and / or alkaline earth metals and / or zinc of at least 0.1 ppm by weight, more preferably at least 0.2 ppm by weight and very particularly preferably at least 0.3 ppm by weight and in particular at least 0.5 ppm by weight. Also conceivable is a content of alkali metals and / or alkaline earth metals and / or zinc of at least 1 ppm by weight, preferably at least 2 and more preferably at least 3 ppm by weight.
  • alkali metals and / or alkaline earth metals show their corrosion-inhibiting activity even in the presence of alkali and / or alkaline earth metals and / or zinc, preferably in the presence of alkaline earth metals.
  • the content of alkali metals and / or alkaline earth metals in fuels is obtained, for example, by mixing with alkali and / or alkaline earth metal-containing lubricants, for example in the fuel pump.
  • alkali metals and / or alkaline earth metals can originate from insufficient or insufficiently desalted fuel additives. for example, carrier oils.
  • a source of zinc for example, anti-wear additives.
  • alkali metals are sodium and potassium, in particular sodium.
  • alkaline earth metals are particularly magnesium and calcium, especially calcium.
  • the copolymers described are still active in the presence of calcium and show no precipitation.
  • alkali and / or alkaline earth metals and / or zinc in each case relate to individual metal species.
  • the monomer (A) is at least one, preferably one to three, more preferably one or two and most preferably exactly one ethylenically unsaturated, preferably ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid or derivatives thereof, preferably a dicarboxylic acid or their derivatives.
  • the derivatives are preferably anhydrides in monomeric form or di-C 1 -C 4 -alkyl esters, more preferably anhydrides in monomeric form.
  • C 1 -C 4 -alkyl is understood to mean methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, sec-butyl and tert-butyl, preferably methyl and ethyl, particularly preferably methyl.
  • the ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid are those mono- or dicarboxylic acids or derivatives thereof in which the carboxyl group or, in the case of dicarboxylic acids, at least one carboxyl group, preferably both carboxyl groups, are conjugated with the ethylenically unsaturated double bond.
  • Examples of ethylenically unsaturated mono- or dicarboxylic acid which are not ⁇ , ⁇ -ethylenically unsaturated are cis-5-norbornene-endo-2,3-dicarboxylic anhydride, exo-3,6-epoxy-1,2,3,6- tetrahydrophthalic anhydride and cis-4-cyclohexene-1,2-dicarboxylic acid anhydride.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids are acrylic acid, methacrylic acid, crotonic acid and ethylacrylic acid, preferably acrylic acid and methacrylic acid, referred to in this document as (meth) acrylic acid, and particularly preferably acrylic acid.
  • Particularly preferred derivatives of ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids are methyl acrylate, ethyl acrylate, n-butyl acrylate and methyl methacrylate.
  • dicarboxylic acids examples include maleic acid, fumaric acid, itaconic acid (2-methylenebutanedioic acid), citraconic acid (2-methylmaleic acid), glutaconic acid (pent-2-ene-1,5-dicarboxylic acid), 2,3-dimethylmaleic acid, 2-methylfumaric acid, 2,3 Dimethyl fumaric acid, methylenemalonic acid and tetrahydrophthalic acid, preferably maleic acid and fumaric acid, and more preferably maleic acid and its derivatives.
  • the monomer (A) is maleic anhydride.
  • the monomer (B) is at least one, preferably one to four, more preferably one to three, most preferably one or two and especially exactly one ⁇ -olefin having from at least 12 up to and including 30 carbon atoms.
  • the ⁇ -olefins (B) preferably have at least 14, more preferably at least 16, and most preferably at least 18 carbon atoms.
  • the alpha-olefins (B) have up to and including 28, more preferably up to and including 26, and most preferably up to and including 24 carbon atoms.
  • the ⁇ -olefins may preferably be linear or branched, preferably linear 1-alkenes.
  • Examples of these are 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonodecene, 1-eicosene, 1-docoses, 1-tetracoses, 1-hexacoses of which 1-octadecene, 1-eicosene, 1-docoses and 1-tetracoses, as well as mixtures thereof, are preferred.
  • ⁇ -olefin (B) are those olefins which are oligomers or polymers of C 2 to C 12 olefins, preferably C 3 to C 10 olefins, more preferably C 4 to C 6 olefins.
  • examples of these are ethene, propene, 1-butene, 2-butene, isobutene, pentene isomers and hexene isomers; preference is given to ethene, propene, 1-butene, 2-butene and isobutene.
  • ⁇ -olefins (B) may be mentioned oligomers and polymers of propene, 1-butene, 2-butene, isobutene, and mixtures thereof, especially oligomers and polymers of propene or isobutene or mixtures of 1-butene and 2-butene.
  • the oligomers the trimers, tetramers, pentamers and hexamers and mixtures thereof are preferred.
  • the other than (B) is copolymerized in the copolymer of the invention.
  • the olefins (C) may be olefins with terminal ( ⁇ -) double bond or those with non-terminal double bond, preferably with ⁇ -double bond.
  • the olefin (C) is olefins having 4 to less than 12 or more than 30 carbon atoms.
  • this olefin (C) does not have an ⁇ -double bond.
  • aliphatic olefins examples include 1-butene, 2-butene, isobutene, pentene isomers, hexene isomers, heptene isomers, octene isomers, nonene isomers, decene isomers, undecene isomers and mixtures thereof ,
  • cycloaliphatic olefins are cyclopentene, cyclohexene, cyclooctene, cyclodecene, cyclododecene, ⁇ - or ⁇ -pinene and mixtures thereof, limonene and norbornene.
  • olefins (C) are polymers of propene, 1-butene, 2-butene or isobutene containing more than 30 carbon atoms or olefin mixtures containing such, preferably isobutene or olefin mixtures containing such, particularly preferably having an average molecular weight Mw in the range of 500 to 5000 g / mol, preferably 650 to 3000, particularly preferably 800 to 1500 g / mol.
  • the isobutene in polymerized form containing oligomers or polymers have a high content of terminal ethylenic double bonds ( ⁇ -double bonds), for example at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol% and most preferably at least 80 mole%.
  • ⁇ -double bonds terminal ethylenic double bonds
  • C4 raffinates in particular "raffinate 1"
  • C4 cuts from isobutane are suitable as isobutene source for the preparation of such isobutene in polymerized form containing oligomers or polymers
  • Dehydrogenation C4 cuts from steam crackers and fluid catalysed cracking (FCC) crackers provided that they are substantially freed from 1,3-butadiene contained therein.
  • FCC fluid catalysed cracking
  • Suitable isobutene-containing C4 hydrocarbon streams are, for example, the product stream of a propylene-isobutane co-oxidation or the product stream from a metathesis unit, which are generally used after customary purification and / or concentration.
  • Suitable C4 hydrocarbon streams typically contain less than 500 ppm, preferably less than 200 ppm, butadiene. The presence of 1-butene and of cis and trans-2-butene is largely uncritical.
  • the isobutene concentration in said C4 hydrocarbon streams is in the range of 40 to 60 weight percent.
  • raffinate 1 generally consists essentially of 30 to 50% by weight of isobutene, 10 to 50% by weight of 1-butene, 10 to 40% by weight of cis- and trans-2-butene and 2 to 35% by weight butanes;
  • the unsubstituted butenes in the raffinate 1 are generally virtually inert and only the isobutene is polymerized.
  • the monomer used for the polymerization is a technical C 4 -hydrocarbon stream having an isobutene content of from 1 to 100% by weight, in particular from 1 to 99% by weight, especially from 1 to 90% by weight. , more preferably from 30 to 60% by weight, in particular a raffinate 1 stream, a b / b stream from an FCC refinery unit, a product stream of a propylene-isobutane co-oxidation or a product stream from a metathesis unit.
  • Said isobutene-containing monomer mixture may contain small amounts of contaminants such as water, carboxylic acids or mineral acids, without resulting in critical yield or selectivity losses. It is expedient to avoid an accumulation of these impurities by removing such pollutants from the isobutene-containing monomer mixture, for example by adsorption on solid adsorbents such as activated carbon, molecular sieves or ion exchangers.
  • monomer mixtures of isobutene or of the isobutene-containing hydrocarbon mixture can also be reacted with olefinically unsaturated monomers which are copolymerizable with isobutene.
  • the monomer mixture preferably contains at least 5% by weight, particularly preferably at least 10% by weight and in particular at least 20% by weight of isobutene, and preferably at most 95% by weight preferably at most 90% by weight and in particular at most 80% by weight of comonomers.
  • the substance mixture of the olefins (B) and optionally (C) averaged to their substance amounts at least 12 carbon atoms, preferably at least 14, more preferably at least 16 and most preferably at least 17 carbon atoms.
  • the upper limit is less relevant and is usually not more than 60 carbon atoms, preferably not more than 55, more preferably not more than 50, most preferably not more than 45 and especially not more than 40 carbon atoms.
  • vinyl esters (Da) are vinyl esters of C 2 -C 12 -carboxylic acids, preferably vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pentanoate, vinyl hexanoate, vinyl octanoate, vinyl 2-ethylhexanoate, vinyl decanoate, as well as vinyl esters of Versatic acids 5 to 10, preferably vinyl esters of 2,2-dimethylpropionic acid (pivalic acid, versatic acid 5), 2,2-dimethylbutyric acid (neohexanoic acid, versatic acid 6), 2,2-dimethylpentanoic acid (neoheptanoic acid, versatic acid 7), 2,2-dimethylhexanoic acid (neo-octanoic acid, Versatic acid 8), 2,2-dimethylheptanoic acid (neononanoic acid, Versatic acid 9) or 2,2-dimethyloctanoic acid (neodecanoic acid
  • vinyl ethers (Db) are vinyl ethers of C 1 to C 12 -alkanols, preferably vinyl ethers of methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n-hexanol , n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol) or 2-ethylhexanol.
  • Preferred (meth) acrylic esters (Dc) are (meth) acrylic esters of C5 to C12 alkanols, preferably of n-pentanol, n-hexanol, n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol), 2-ethylhexanol or 2-propylheptanol.
  • Particularly preferred are acrylic acid pentyl esters, 2-ethylhexyl acrylate, 2-propylheptyl acrylate.
  • Examples of monomers (Dd) are allyl alcohols and allyl ethers of C 2 - to C 12 -alkanols, preferably allyl ethers of methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, n Hexanol, n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol) or 2-ethylhexanol.
  • Examples of vinyl compounds (De) of heterocycles containing at least one nitrogen atom are N-vinylpyridine, N-vinylimidazole and N-vinylmorpholine.
  • Preferred compounds (De) are N-vinylamides or N-vinyllactams: Examples of N-vinylamides or N-vinyllactams (De) are N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone and N-vinylcaprolactam.
  • ethylenically unsaturated aromatics are styrene and ⁇ -methylstyrene.
  • Examples of ⁇ , ⁇ -ethylenically unsaturated nitriles (Dg) are acrylonitrile and methacrylonitrile.
  • Examples of (meth) acrylic acid amides (Dh) are acrylamide and methacrylamide.
  • allylamines (di) are allylamine, dialkylallylamine and trialkylallylammonium halides.
  • Preferred monomers (D) are (Da), (Db), (Dc), (De) and / or (Df), particularly preferably (Da), (Db) and / or (Dc), very particularly preferably (Da) and / or (Dc) and in particular (Dc).
  • the incorporation ratio of the monomers (A) and (B) and optionally (C) and optionally (D) in the polymer obtained from the reaction step (I) is usually as follows:
  • the molar ratio of (A) / ((B) and (C)) (in total) is generally from 10: 1 to 1:10, preferably 8: 1 to 1: 8, particularly preferably 5: 1 to 1 : 5, most preferably 3: 1 to 1: 3, especially 2: 1 to 1: 2 and especially 1.5: 1 to 1: 1.5.
  • the molar incorporation ratio of maleic anhydride to monomers ((B) and (C)) (in total) is about 1: 1.
  • maleic anhydride in a slight excess over the ⁇ -olefin, for example 1.01-1.5: 1, preferably 1.02-1.4 : 1, more preferably 1.05-1.3: 1, most preferably 1.07-1.2: 1 and especially 1.1-1.15: 1.
  • the molar ratio of the obligate monomer (B) to the monomer (C), as far as it is present, is generally from 1: 0.05 to 10, preferably from 1: 0.1 to 6, particularly preferably from 1: 0, 2 to 4, most preferably from 1: 0.3 to 2.5 and especially 1: 0.5 to 1.5.
  • no optional monomer (C) is present in addition to monomer (B).
  • the proportion of one or more of the monomers (D), if present, based on the amount of the monomers (A), (B) and optionally (C) (in total) is generally 5 to 200 mol%, preferably 10 to 150 mol%, particularly preferably 15 to 100 mol%, very particularly preferably 20 to 50 mol% and in particular 0 to 25 mol%.
  • no optional monomer (D) is present.
  • the copolymer consists of the monomers (A) and (B).
  • reaction step (II) the anhydride or carboxylic ester functionalities contained in the copolymer obtained from (I) can be partially hydrolyzed and / or saponified.
  • reaction step (II) anhydride functionalities are hydrolyzed and carboxylic acid ester functionalities are left substantially intact.
  • reaction step (II) more than 90% of the anhydride and carboxylic acid ester functionalities present remain intact after reaction step (II), preferably at least 92%, more preferably at least 94%, even more preferably at least 95%, especially at least 97% and especially at least 98%.
  • reaction step (II) it is possible that up to 99.9% of the anhydride and carboxylic acid ester functionalities present remain intact after reaction step (II), preferably up to 99.8%, more preferably up to 99.7%, most preferably up to 99, 5% and in particular up to 99%.
  • reaction step (II) is not carried out so that 100% of the anhydride and carboxylic acid ester functionalities contained in the copolymer obtained from reaction step (I) remain intact.
  • reaction step (II) Hydrolysis in reaction step (II) is then carried out when an anhydride, preferably the anhydride of a dicarboxylic acid, is used as the derivative of the monomer (A), whereas saponification or hydrolysis can be carried out when an ester is used as the monomer (A).
  • an anhydride preferably the anhydride of a dicarboxylic acid
  • the amount of water is added which corresponds to the desired degree of hydrolysis and which heats the copolymer obtained from (I) in the presence of the added water.
  • a temperature of preferably 20 to 150 ° C. is sufficient for this, preferably 60 to 100 ° C.
  • the reaction can be carried out under pressure to prevent the escape of water.
  • the anhydride functionalities in the copolymer are usually selectively reacted, whereas any carboxylic acid ester functionalities present in the copolymer do not react or at least react only in a subordinate manner.
  • the copolymer is reacted with an amount of a strong base in the presence of water, which corresponds to the desired degree of saponification.
  • Preferred strong bases are hydroxides, oxides, carbonates or bicarbonates of alkali metals or alkaline earth metals.
  • the copolymer obtained from (I) is then heated in the presence of the added water and strong base.
  • a temperature of preferably 20 to 130 ° C. is sufficient for this, preferably 50 to 110 ° C. If necessary, the reaction can be carried out under pressure.
  • acids are mineral, carbon, sulfone or phosphorus-containing acids having a pKa of not more than 5, more preferably not more than 4.
  • acetic acid formic acid, oxalic acid, salicylic acid, substituted succinic acids, aromatic or unsubstituted benzenesulfonic acids, sulfuric acid, nitric acid, hydrochloric acid or phosphoric acid, the use of acidic ion exchange resins is also conceivable.
  • the copolymer obtained from (I) is then heated in the presence of the added water and the acid.
  • a temperature of preferably 40 to 200 ° C. is sufficient for this, preferably 80 to 150 ° C. If necessary, the reaction can be carried out under pressure.
  • the copolymers obtained from step (II) still contain residues of acid anions, it may be preferable to remove these acid anions from the copolymer with the aid of an ion exchanger and to exchange them preferably for hydroxide ions or carboxylate ions, more preferably hydroxide ions. This is particularly the case when the acid anions contained in the copolymer are halides, sulfur-containing or nitrogen-containing.
  • the copolymer obtained from reaction step (II) generally has a weight-average molecular weight Mw of from 0.5 to 20 kDa, preferably from 0.6 to 15, more preferably from 0.7 to 7, very particularly preferably from 1 to 7 and in particular 1, 5 to 4 kDa (determined by gel permeation chromatography with tetrahydrofuran and polystyrene as standard).
  • the number average molecular weight Mn is usually from 0.5 to 10 kDa, preferably from 0.6 to 5, particularly preferably from 0.7 to 4, very particularly preferably from 0.8 to 3 and in particular from 1 to 2 kDa (determined by gel permeation chromatography with tetrahydrofuran and polystyrene as standard).
  • the polydispersity is generally from 1 to 10, preferably from 1.1 to 8, particularly preferably from 1.2 to 7, very particularly preferably from 1.3 to 5 and in particular from 1.5 to 3.
  • the content of free acid groups in the copolymer after passing through the reaction step (II) is preferably less than 5 mmol / g copolymer, more preferably less than 3, most preferably less than 2 mmol / g copolymer and especially less than 1 mmol / g copolymer.
  • the copolymers contain a high proportion of adjacent carboxylic acid groups as determined by an adjuacy measurement.
  • a sample of the copolymer is tempered for 30 minutes at a temperature of 290 ° C between two Teflon films and recorded at a bubble-free FTIR spectrum. From the spectra obtained, the IR spectrum of Teflon is subtracted, determines the layer thickness and determines the content of cyclic anhydride.
  • the adjacency is at least 10%, preferably at least 15%, particularly preferably at least 20%, very particularly preferably at least 25% and in particular at least 30%.
  • the use according to the invention relates to the inhibition of the corrosion of iron, steel and / or non-ferrous metal surfaces.
  • non-ferrous metals copper and its alloys are preferred.
  • the corrosion of steel surfaces is inhibited.
  • the copolymers described are generally added to fuels having the above-specified content of alkali metals and / or alkaline earth metals and / or zinc in amounts of from 1 to 60, preferably from 4 to 50, ppm by weight and more preferably from 10 to 40 ppm by weight.
  • the copolymers described are used in the form of fuel additive mixtures, together with customary additives:
  • these are primarily conventional detergent additives, carrier oils, cold flow improvers, lubricity improvers, corrosion inhibitors other than the copolymers described, demulsifiers, dehazers, defoamers, cetane improvers, combustion improvers, antioxidants or stabilizers, antistatic agents, metallocenes, metal deactivators , Dyes and / or solvents.
  • the hydrophobic hydrocarbon residue in the above detergent additives which provides sufficient solubility in the fuel has a number average molecular weight (M n ) of from 85 to 20,000, preferably from 113 to 10,000, more preferably from 300 to 5,000, more preferably from 300 to 3,000, even more preferably from 500 to 2,500 and in particular from 700 to 2,500, especially from 800 to 1500.
  • M n number average molecular weight
  • hydrophobic hydrocarbon radical in particular in conjunction with the polar in particular polypropenyl, polybutenyl and polyisobutenyl radicals having a number average molecular weight M n of preferably in each case 300 to 5,000, particularly preferably 300 to 3,000, more preferably 500 to 2,500, even more preferably 700 to 2,500 and in particular 800 to 1,500 into consideration.
  • Such additives based on highly reactive polyisobutene which from the polyisobutene, up to 20 wt .-% may contain n-butene units, by hydroformylation and reductive amination with ammonia, monoamines or polyamines such as dimethyl-aminopropylamine, ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine can be prepared, in particular from EP-A 244 616 known.
  • monoamino (Da) -containing additives are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in US Pat DE-A 196 20 262 are described.
  • Carboxyl groups or their alkali metal or alkaline earth metal salts (Dd) containing additives are preferably copolymers of C 2 - to C 40 olefins with maleic anhydride having a total molecular weight of 500 to 20,000, the carboxyl groups wholly or partly to the alkali metal or alkaline earth metal salts and a remaining group of the carboxyl groups are reacted with alcohols or amines.
  • Such additives are in particular from the EP-A 307 815 known.
  • Such additives are primarily for preventing valve seat wear and can, as in the WO-A 87/01126 described, be used with advantage in combination with conventional fuel detergents such as poly (iso) -butene amines or polyetheramines.
  • Sulfonic acid groups or their alkali metal or alkaline earth metal salts (De) containing additives are preferably alkali metal or alkaline earth metal salts of a Sulfobernsteinklakylesters, as described in particular in EP-A 639 632 is described.
  • Such additives are primarily for preventing valve seat wear and can be used to advantage in combination with conventional fuel detergents such as poly (iso) buteneamines or polyetheramines.
  • Polyoxy-C 2 -C 4 -alkylene (Df) containing additives are preferably polyether or polyetheramines which by reaction of C 2 - to C 60 -alkanols, C 6 - to C 30 -alkanediols, mono- or di-C 2 - alkylamines -C 30, C 1 - to C 30 -Alkylcyclo-hexanols or C 1 to C 30 alkyl phenols having 1 to 30 mol ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case of the polyetheramines, are obtainable by subsequent reductive amination with ammonia, monoamines or polyamines.
  • Such products are used in particular in the EP-A 310 875 .
  • polyethers such products also meet carrier oil properties. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • Carboxylic ester groups (Dg) containing additives are preferably esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, in particular those having a minimum viscosity of 2 mm 2 / s at 100 ° C, as in particular in DE-A 38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 C atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of iso-octanol, iso-nonanol, isoDecanol and iso-tridecanol. Such products also meet carrier oil properties.
  • the moieties having hydroxy and / or amino and / or amido and / or imido groups they are, for example, carboxylic acid groups, acid amides of monoamines, acid amides of diamines or polyamines which, in addition to the amide function, still have free amine groups, succinic acid derivatives having an acid and an amide function, carboximides with monoamines, carboximides with diamines or polyamines, in addition to the imide function still have free amine groups, or diimides formed by the reaction of di- or polyamines with two succinic acid derivatives.
  • Such fuel additives are well known and described, for example, in documents (1) and (2).
  • reaction products of alkyl- or alkenyl-substituted succinic acids or derivatives thereof with amines and particularly preferably to the reaction products of polyisobutenyl-substituted succinic acids or derivatives thereof with amines.
  • reaction products with aliphatic polyamines polyalkyleneimines
  • ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and hexaethyleneheptamine which have an imide structure.
  • Mannich reaction of substituted phenols with aldehydes and mono- or polyamines generated moieties containing (Di) additives are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetra-ethylenepentamine or dimethyl-aminopropylamine ,
  • Such "polyisobutene-Mannich bases" are particularly in the EP-A 831 141 described.
  • One or more of said detergent additives may be added to the fuel in such an amount that the metering rate of these detergent additives is preferably from 25 to 2500 ppm by weight, in particular from 75 to 1500 ppm by weight, especially from 150 to 1000% by weight . ppm. B2) carrier oils
  • Co-used carrier oils may be mineral or synthetic.
  • Suitable mineral carrier oils are fractions obtained in petroleum processing, such as bright stock or base oils having viscosities such as from class SN 500 to 2000, but also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. It is also useful as a "hydrocrack oil” known and obtained in the refining of mineral oil fraction (Vakuumdestillatites with a boiling range of about 360 to 500 ° C, available from high pressure catalytically hydrogenated and isomerized and dewaxed natural mineral oil). Also suitable are mixtures of the abovementioned mineral carrier oils.
  • suitable synthetic carrier oils are polyolefins (polyalphaolefins or polyinternalolefins), (poly) esters, poly) alkoxylates, polyethers, aliphatic polyetheramines, alkylphenol-initiated polyethers, alkylphenol-initiated polyetheramines and carboxylic acid esters of long-chain alkanols.
  • suitable polyethers or polyetheramines are preferably compounds containing polyoxy-C 2 - to C 4 -alkylene groups which are prepared by reacting C 2 - to C 60 -alkanols, C 6 - to C 30 -alkanediols, mono- or di-C 2 - to C 30 -alkylamines, C 1 - to C 30 -alkyl-cyclohexanols or C 1 - to C 30 -alkylphenols with 1 to 30 mol of ethylene oxide and / or propylene oxide and / or butylene oxide per hydroxyl group or amino group and, in the case the polyetheramines, by subsequent reductive amination with ammonia, monoamines or polyamines are available.
  • EP-A 310 875 Such products are used in particular in the EP-A 310 875 .
  • EP-A 356 725 EP-A 700 985 and the US-A 4,877,416 described.
  • poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof can be used as polyetheramines. Typical examples of these are tridecanol or Isotridecanolbutoxylate, Isononylphenolbutoxylate and Polyisobutenolbutoxylate and propoxylates and the corresponding reaction products with ammonia.
  • carboxylic acid esters of long-chain alkanols are, in particular, esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as are described in particular in US Pat DE-A 38 38 918 are described.
  • mono-, di- or tricarboxylic acids it is possible to use aliphatic or aromatic acids, especially suitable ester alcohols or polyols are long-chain representatives having, for example, 6 to 24 carbon atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and of isotridecanol, eg. B. di- (n- or isotridecyl) phthalate.
  • particularly suitable synthetic carrier oils are alcohol-started polyethers having about 5 to 35, preferably about 5 to 30, particularly preferably 10 to 30 and in particular 15 to 30 C 3 - to C 6 -alkylene oxide units, for.
  • suitable starter alcohols are long-chain alkanols or long-chain alkyl-substituted phenols, where the long-chain alkyl radical is in particular a straight-chain or branched C 6 -C 18 -alkyl radical.
  • Specific examples include tridecanol and nonylphenol.
  • Particularly preferred alcohol-started polyethers are the reaction products (polyetherification products) of monohydric aliphatic C 6 - to C 18 -alcohols with C 3 - to C 6 -alkylene oxides.
  • monohydric aliphatic C 6 -C 18 -alcohols are hexanol, heptanol, octanol, 2-ethylhexanol, nonyl alcohol, decanol, 3-propylheptanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, octadecanol and their constitutional and positional isomers.
  • the alcohols can be used both in the form of pure isomers and in the form of technical mixtures.
  • a particularly preferred alcohol is tridecanol.
  • Examples of C 3 - to C 6 -alkylene oxides are propylene oxide, such as 1,2-propylene oxide, butylene oxide, such as 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide or tetrahydrofuran, pentylene oxide and hexylene oxide.
  • C 3 -C 4 -alkylene oxides, ie propylene oxide are particularly preferred among these 1,2-propylene oxide and butylene oxide such as 1,2-butylene oxide, 2,3-butylene oxide and isobutylene oxide. Specifically, butylene oxide is used.
  • Suitable synthetic carrier oils are alkoxylated alkylphenols, as described in the DE-A 10 102 913 are described.
  • Particular carrier oils are synthetic carrier oils, the alcohol-initiated polyethers described above being particularly preferred.
  • the carrier oil or the mixture of different carrier oils is added to the fuel in an amount of preferably from 1 to 1000 ppm by weight, more preferably from 10 to 500 ppm by weight and in particular from 20 to 100 ppm by weight.
  • Suitable cold flow improvers are in principle all organic compounds which are able to improve the flow behavior of middle distillate fuels or diesel fuels in the cold. Conveniently, they must have sufficient oil solubility.
  • middle distillates of fossil origin ie for conventional mineral diesel fuels
  • used cold flow improvers (“middle distillate flow improvers", "MDFI") come into consideration.
  • MDFI middle distillate flow improvers
  • WASA wax anti-settling additive
  • Suitable C 2 to C 40 olefin monomers for the copolymers of class (K1) are, for example, those having 2 to 20, in particular 2 to 10, carbon atoms and having 1 to 3, preferably 1 or 2, in particular having a carbon-carbon Dop-pelitati. In the latter In this case, the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally.
  • ⁇ -olefins more preferably ⁇ -olefins having 2 to 6 carbon atoms, for example propene, 1-butene, 1-pentene, 1-hexene and especially ethylene.
  • the at least one further ethylenically unsaturated monomer is preferably selected from carboxylic alkenyl esters, (meth) acrylic esters and further olefins.
  • olefins are polymerized in, these are preferably higher molecular weight than the abovementioned C 2 to C 40 olefin base monomers. If, for example, ethylene or propene is used as the olefin base monomer, C 10 - to C 40 - ⁇ -olefins are particularly suitable as further olefins. Other olefins are polymerized in most cases only when monomers with carboxylic acid ester functions are used.
  • Suitable (meth) acrylic esters are, for example, esters of (meth) acrylic acid with C 1 - to C 20 -alkanols, in particular C 1 - to C 10 -alkanols, especially with methanol, ethanol, propanol, isopropanol, n-butanol, sec. Butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol, octanol, 2-ethylhexanol, nonanol and decanol and structural isomers thereof.
  • Suitable carboxylic alkenyl esters are, for example, C 2 -C 14 -alkenyl esters, for example the vinyl and propenyl esters, of carboxylic acids having 2 to 21 carbon atoms, whose hydrocarbon radical may be linear or branched. Preferred among these are the vinyl esters.
  • carboxylic acids with a branched hydrocarbon radical preference is given to those whose branching is in the ⁇ -position to the carboxyl group, the ⁇ -carbon atom being particularly preferably tertiary, ie the carboxylic acid being a so-called neocarboxylic acid.
  • the hydrocarbon radical of the carboxylic acid is linear.
  • carboxylic alkenyl esters examples include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononanoate, vinyl neodecanoate and the corresponding propenyl esters, with vinyl esters being preferred.
  • a particularly preferred carboxylic acid alkenyl ester is vinyl acetate; typical resulting copolymers of group (K1) are the most commonly used ethylene-vinyl acetate copolymers ("EVA").
  • copolymers of class (K1) are those which contain two or more different carboxylic acid alkenyl esters in copolymerized form, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the carboxylic acid alkenyl ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • terpolymers of a C 2 - to C 40 - ⁇ -olefin, a C 1 - to C 20 alkyl esters of an ethylenically unsaturated monocarboxylic acid having 3 to 15 carbon atoms and a C 2 - to C 14 alkenyl esters of a saturated monocarboxylic acid having 2 to 21 Carbon atoms are suitable as copolymers of class (K1).
  • Such terpolymers are in the WO 2005/054314 described.
  • a typical such terpolymer is composed of ethylene, 2-ethylhexyl acrylate and vinyl acetate.
  • the at least one or the other ethylenically unsaturated monomers are present in the copolymers of class (K1) in an amount of preferably from 1 to 50% by weight, in particular from 10 to 45% by weight and especially from 20 to 40% by weight. %, based on the total copolymer, copolymerized.
  • the majority by weight of the monomer units in the copolymers of class (K1) is thus usually derived from the C 2 to C 40 based olefins.
  • the copolymers of class (K1) preferably have a number average molecular weight M n of from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 8000.
  • Typical comb polymers of component (K2) are, for example, by the copolymerization of maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with an ⁇ -olefin or an unsaturated ester such as vinyl acetate, and subsequent esterification of the anhydride or acid function with an alcohol having at least 10 carbon atoms available.
  • Further suitable comb polymers are copolymers of ⁇ -olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid.
  • Suitable comb polymers may also be polyfumarates or polymaleinates.
  • homopolymers and copolymers of vinyl ethers are suitable comb polymers.
  • suitable comb polymers are, for example, those which are described in the WO 2004/035715 and in " Comb-like polymers. Structure and Properties ", NA Plate and VP Shibaev, J. Poly. Sci. Macromolecular Revs., 8, pp. 117-253 (1974 Also mixtures of comb polymers are suitable.
  • suitable polyoxyalkylenes are, for example, polyoxyalkylene esters, polyoxyalkylene ethers, mixed polyoxyalkylene ester ethers, and mixtures thereof.
  • these polyoxyalkylene contain at least one, preferably at least two linear alkyl groups each having 10 to 30 carbon atoms and a polyoxyalkylene group having a number average molecular weight of up to 5000.
  • Such polyoxyalkylene compounds are for example in the EP-A 061 895 as well as in the U.S. 4,491,455 described.
  • Particular polyoxyalkylene compounds are based on polyethylene glycols and polypropylene glycols having a number average molecular weight of 100 to 5000.
  • polyoxyalkylene mono- and diesters of fatty acids having 10 to 30 carbon atoms such as stearic acid or behenic acid are suitable.
  • Polar nitrogen compounds suitable as a component of class (K4) may be of both ionic and nonionic nature, and preferably have at least one, especially at least two, tertiary nitrogen substituent of the general formula> NR 7 wherein R 7 is C 8 - to C 40 hydrocarbon residue stands.
  • the nitrogen substituents may also be quaternized, that is in cationic form. Examples of such nitrogen compounds are ammonium salts and / or amides obtainable by reacting at least one amine substituted with at least one hydrocarbyl radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines preferably contain at least one linear C 8 - to C 40 -alkyl radical.
  • suitable primary amines for the preparation of said polar nitrogen compounds are octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues
  • suitable secondary amines are, for example, dioctadecylamine and methylbehenylamine.
  • amine mixtures in particular industrially available amine mixtures such as fatty amines or hydrogenated tallamines, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, in the chapter "Amines, aliphatic".
  • Suitable acids for the reaction are, for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted by long-chain hydrocarbon radicals.
  • the component of class (K4) is an oil-soluble reaction product of at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) with primary or secondary amines.
  • the poly (C 2 - to C 20 -carboxylic acids) which have at least one tertiary amino group and are based on this reaction product preferably contain at least 3 carboxyl groups, in particular 3 to 12, especially 3 to 5 carboxyl groups.
  • the carboxylic acid units in the polycarboxylic acids preferably have 2 to 10 carbon atoms, in particular they are acetic acid units.
  • the carboxylic acid units are suitably linked to the polycarboxylic acids, usually via one or more carbon and / or nitrogen atoms. Preferably, they are attached to tertiary nitrogen atoms, which are connected in the case of several nitrogen atoms via hydrocarbon chains.
  • the component of class (K4) is an oil-soluble reaction product based on at least one tertiary amino group-containing poly (C 2 - to C 20 -carboxylic acids) of the general formula IIa or IIb in which the variable A is a straight-chain or branched C 2 - to C 6 -alkylene group or the grouping of the formula III and the variable B denotes a C 1 - to C 19 -alkylene group.
  • the compounds of the general formula IIa and IIb have in particular the properties of a WASA.
  • the preferred oil-soluble reaction product of component (K4) in particular that of general formula IIa or IIb, is an amide, an amide ammonium salt or an ammonium salt in which no, one or more carboxylic acid groups are converted into amide groups.
  • Straight-chain or branched C 2 -C 6 -alkylene groups of the variable A are, for example, 1,1-ethylene, 1,2-propylene, 1,3-propylene, 1,2-butylene, 1,3-butylene, 1,4- Bu-tylene, 2-methyl-1,3-propylene, 1,5-pentylene, 2-methyl-1,4-butylene, 2,2-dimethyl-1,3-propylene, 1,6-hexylene ( Hexamethylene) and in particular 1,2-ethylene.
  • the variable A comprises 2 to 4, in particular 2 or 3 carbon atoms.
  • C 1 - to C 19 -alkylene groups of the variables B are, for example, 1,2-ethylene, 1,3-propylene, 1,4-butylene, hexamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, hexadecamethylene, octadecamethylene, nonadecamethylene and in particular methylene ,
  • the variable B comprises 1 to 10, in particular 1 to 4, carbon atoms.
  • the primary and secondary amines as reaction partners for the polycarboxylic acids to form the component (K4) are usually monoamines, in particular aliphatic monoamines. These primary and secondary amines may be selected from a variety of amines bearing hydrocarbon radicals, optionally linked together.
  • these amines are secondary amines on which the oil-soluble reaction products of component (K4) are based and have the general formula HN (R 8 ) 2 , in which the two variables R 8 are each independently straight-chain or branched C 10 - to C 30 -alkyl radicals, in particular C 14 - to C 24 -alkyl radicals.
  • These longer-chain alkyl radicals are preferably straight-chain or only slightly branched.
  • the abovementioned secondary amines are derived, with regard to their longer-chain alkyl radicals, from naturally occurring fatty acids or from their derivatives.
  • the two radicals R 8 are the same.
  • the abovementioned secondary amines can be bound to the polycarboxylic acids by means of amide structures or in the form of the ammonium salts, and only one part can be present as amide structures and another part as ammonium salts. Preferably, there are few or none free acid groups.
  • the oil-soluble reaction products of component (K4) are completely in the form of the amide structures.
  • Typical examples of such components (K4) are reaction products of nitrilotriacetic acid, ethylenediaminetetraacetic acid or propylene-1,2-diaminetetraacetic acid with in each case 0.5 to 1.5 mol per carboxyl group, in particular 0.8 to 1.2 mol per carboxyl group , Dioleylamine, Dipalmitinamin, Dikokosfettamin, distearylamine, dibehenylamine or especially Ditalgfettamin.
  • a particularly preferred component (K4) is the reaction product of 1 mole of ethylenediaminetetraacetic acid and 4 moles of hydrogenated ditallow fatty amine.
  • component (K4) include the N, N-dialkylammonium salts of 2-N ', N'-dialkylamidobenzoates, for example the reaction product of 1 mole of phthalic anhydride and 2 moles of ditallow fatty amine, the latter being hydrogenated or unhydrogenated , and the reaction product of 1 mole of an alkenyl spiro-bis-lactone with 2 moles of a dialkylamine, for example, ditallow fatty amine and / or tallow fatty amine, the latter two of which may be hydrogenated or unhydrogenated.
  • component of class (K4) are cyclic compounds with tertiary amino groups or condensates of long-chain primary or secondary amines with carboxylic acid-containing polymers, as described in US Pat WO 93/18115 are described.
  • Sulfocarboxylic acids, sulfonic acids or their derivatives which are suitable as cold flow improvers of the component of class (K5) are, for example, the oil-soluble carboxamides and carboxylic acid esters of ortho-sulfobenzoic acid in which the sulfonic acid function is present as sulfonate with alkyl-substituted ammonium cations, as described in US Pat EP-A 261 957 to be discribed.
  • suitable poly (meth) acrylic acid esters are both homo- and copolymers of acrylic and methacrylic acid esters.
  • Preferred are copolymers of at least two mutually different (meth) acrylic acid esters, which differ with respect to the fused alcohol.
  • the copolymer contains a further, different of which olefinically unsaturated monomer copolymerized.
  • the weight-average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C 14 and C 15 alcohols wherein the acid groups are neutralized with hydrogenated tallamine.
  • Suitable poly (meth) acrylic esters are, for example, in WO 00/44857 described.
  • the middle distillate fuel or diesel fuel is the cold flow improver or the mixture of various cold flow improvers in a total amount of preferably 10 to 5000 ppm by weight, more preferably from 20 to 2000 ppm by weight, more preferably from 50 to 1000 ppm by weight and in particular from 100 to 700 ppm by weight, for example from 200 to 500 ppm by weight.
  • Suitable lubricity improvers are usually based on fatty acids or fatty acid esters. Typical examples are tall oil fatty acid, such as in the WO 98/004656 described, and glycerol monooleate. Also in the US Pat. No. 6,743,266 B2 described reaction products of natural or synthetic oils, such as triglycerides, and alkanolamines are suitable as such lubricity improvers.
  • Suitable corrosion inhibitors are e.g. Succinic esters, especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids, substituted ethanolamines and products sold under the trade name RC 4801 (Rhein Chemie Mannheim, Germany), Irgacor® L12 (BASF SE) or HiTEC 536 (Ethyl Corporation).
  • Succinic esters especially with polyols, fatty acid derivatives, e.g. Oleic acid esters, oligomerized fatty acids, substituted ethanolamines and products sold under the trade name RC 4801 (Rhein Chemie Mannheim, Germany), Irgacor® L12 (BASF SE) or HiTEC 536 (Ethyl Corporation).
  • Suitable demulsifiers are e.g. the alkali or alkaline earth salts of alkyl-substituted phenol and naphthalene sulfonates and the alkali or alkaline earth salts of fatty acids, as well as neutral compounds such as alcohol alkoxylates, e.g. Alcohol ethoxylates, phenol alkoxylates, e.g. tert-butylphenol ethoxylate or tert-pentylphenol ethoxylate, fatty acids, alkylphenols, condensation products of ethylene oxide (EO) and propylene oxide (PO), e.g. also in the form of EO / PO block copolymers, polyethyleneimines or polysiloxanes.
  • EO ethylene oxide
  • PO propylene oxide
  • Suitable dehazers are e.g. alkoxylated phenol-formaldehyde condensates such as the NALCO 7D07 (Nalco) and TOLAD 2683 (Petrolite) products available under the tradename.
  • Suitable antifoams are e.g. Polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the tradename.
  • Polyether-modified polysiloxanes such as the TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) and RHODOSIL (Rhone Poulenc) products available under the tradename.
  • Suitable cetane number improvers are, for example, aliphatic nitrates such as 2-ethylhexyl nitrate and cyclohexyl nitrate and peroxides such as di-tert-butyl peroxide.
  • Suitable antioxidants are e.g. substituted phenols such as 2,6-di-tert-butylphenol and 6-di-tert-butyl-3-methylphenol and phenylenediamines such as N, N'-di-sec-butyl-p-phenylenediamine.
  • Suitable metal deactivators are e.g. Salicylic acid derivatives such as N, N'-disalicylidene-1,2-propanediamine.
  • Suitable ones are e.g. nonpolar organic solvents such as aromatic and aliphatic hydrocarbons, for example, toluene, xylenes, white spirit, and products sold under the trade name SHELLSOL (Royal Dutch / Shell Group) and EXXSOL (ExxonMobil), as well as polar organic solvents, for example, alcohols such as 2-ethylhexanol, decanol and isotridecanol.
  • solvents usually arrive together with the aforementioned additives and co-additives which they are intended to dissolve or dilute for better handling into the diesel fuel.
  • the use according to the invention relates in principle to any fuels, preferably diesel and gasoline fuels.
  • Middle distillate fuels such as diesel fuels or fuel oils
  • mineral middle distillate mineral fuels or diesel fuels available through refining
  • those produced by coal gasification or gas liquefaction [GTL] or by biomass to liquid (BTL) fuels are also included. are available, suitable. Also suitable are mixtures of the abovementioned middle distillate fuels or diesel fuels with regenerative fuels, such as biodiesel or bioethanol.
  • middle distillate fuels of fossil, vegetable or animal origin which are essentially hydrocarbon mixtures
  • biofuel oils biodiesel
  • middle distillate fuel Such mixtures are encompassed by the term "middle distillate fuel”. They are commercially available and usually contain the biofuel oils in minor amounts, typically in amounts of 1 to 30 wt .-%, in particular from 3 to 10 wt .-%, based on the total amount of middle distillate of fossil, vegetable or animal origin and biofuel.
  • Biofuel oils are generally based on fatty acid esters, preferably substantially on alkyl esters of fatty acids derived from vegetable and / or animal oils and / or fats.
  • Alkyl esters are usually lower alkyl esters, in particular C 1 - to C 4 -alkyl esters, understood by transesterification of occurring in vegetable and / or animal oils and / or fats glycerides, especially triglycerides, by means of lower alcohols, for example ethanol or especially methanol (“ FAME ”) are available.
  • Typical lower alkyl esters based on vegetable and / or animal oils and / or fats which are used as biofuel oil or components thereof include, for example, sunflower methyl ester, palm oil methyl ester (“PME”), soybean oil methyl ester (“SME”) and in particular rapeseed oil methyl ester (“RME”).
  • PME palm oil methyl ester
  • SME soybean oil methyl ester
  • RME rapeseed oil methyl ester
  • the middle distillate fuels or diesel fuels are particularly preferably those with a low sulfur content, ie with a sulfur content of less than 0.05% by weight, preferably less than 0.02% by weight, in particular less as 0.005 wt .-% and especially less than 0.001 wt .-% sulfur.
  • gasoline fuels are all commercially available gasoline fuel compositions into consideration.
  • a typical representative here is the market-standard basic fuel of Eurosuper according to EN 228.
  • petrol fuel compositions of the specification are also according to WO 00/47698 Possible fields of use for the present invention.
  • the weight average Mw and number average molecular weight Mn of the polymers were measured by gel permeation chromatography (GPC). GPC separation was carried out via two PLge Mixed B columns (Agilent) in tetrahydrofuran at 35 ° C. The calibration was carried out by means of a narrowly distributed polystyrene standard (PSS, Germany) with molecular weight 162-50400 Da. Hexylbenzene was used as a low molecular weight marker.
  • the olefin or the mixture of olefins with or without solvent was initially charged in a reactor with an anchor stirrer. The mixture was heated under nitrogen flow with stirring to the indicated temperature. To this was added the specified radical initiator (optionally diluted in the same solvent) and molten maleic anhydride (1 equivalent based on olefin monomer). The reaction mixture was stirred at the same temperature for the specified reaction time and then cooled.
  • the product from Synthesis Example 1 was added at a temperature of 95 ° C, water (19.9 g) within 3 h and then further stirred for 11 h.
  • the acid number was 104 mg KOH / g
  • FIG. 1 shows the copolymer of Synthesis Example 1 (40% in Solvent Naphtha) offset, clear oil right. Dimer fatty acid (dimeric oleic acid, CAS: 61788-89-4, 20% in Solvent Naphtha) was used in the middle beaker. One recognizes a clearly visible turbidity.
  • the fuel used was commercially available commercial fuel E0 CEC RF-12-09 from Garrmann and additized with an additive package of polyisobutenamine and carrier oil as indicated above.
  • To formulate the corrosion inhibitors indicated in the following table (each 40% in Solvent Naphtha) were added and subjected to a corrosion test according to ASTM D 665 B.
  • dimer fatty acid was used as a corrosion inhibitor (dimeric oleic acid, CAS: 61788-89-4, 40% strength in solvent naphtha).
  • formulation Dosage [mg / kg] corrosion protection NACE Rating Garrmann E0 CEC RF-12-09 Unadditized fuel - D
  • Formulation 1 500 10 mg / kg dimer fatty acid
  • Formulation 2 500 10 mg / kg Synthesis Example 2
  • B ++ Formulation 3 500 10 mg / kg Synthesis Example 1 B +
  • the anticorrosion agent of formulation 5 is a comparison of 2- (8-heptadecen-1-yl) -4,5-dihydro-1H-imidazole-1-ethanol, CAS-No. 95-38-5, active ingredient 90 - 100%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Combustion & Propulsion (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

  • Die vorliegende Erfindung betrifft neue Verwendungen von Korrosionsinhibitoren in Kraftstoffen.
  • Korrosionsinhibitoren sind gängige Additive in Kraft- und Schmierstoffen, die oftmals auf säuregruppenhaltigen Strukturen beruhen, z.B. Dimerfettsäuren.
  • Nachteilig an diesen Korrosionsinhibitoren ist, daß sie insbesondere in Gegenwart von Calcium-Ionen zu Ausfällungen neigen und dadurch ihre korrosionsinhibierende Wirkung vermindert wird. Die durch diese Ausfällungen gebildeten Ablagerungen können darüber hinaus die Funktionsweise von Motoren, Motorbestandteilen oder Teilen des Kraftstoffsystems, insbesondere dem Einspritzsystem, speziell den Einspritzpumpen oder -düsen, beeinträchtigen.
  • Unter dem "Einspritzsystem" wird dabei der Teil des Kraftstoffsystems in Kraftfahrzeugen von Kraftstoffpumpe bis einschließlich Injektorauslass verstanden. Als "Kraftstoffsystem" werden dabei die Bauteile von Kraftfahrzeugen verstanden, die mit dem jeweiligen Kraftstoff in Kontakt stehen, bevorzugt der Bereich von Tank bis einschließlich Injektorauslass.
  • Es stelle eine Ausführungsform der vorliegenden Erfindung dar, daß die erfindungsgemäßen Verbindungen gegen Ablagerungen nicht nur im Einspritzsystem wirken, sondern auch im übrigen Kraftstoffsystem, hier insbesondere gegen Ablagerungen in Kraftstofffiltern und -pumpen. Es bestand daher die Aufgabe, Korrosionsinhibitoren zur Verfügung zu stellen, die eine erhöhte Verträglichkeit gegen Calcium-Ionen zeigen und dabei ihre Wirkung als Korrosionsinhibitor behalten.
  • Die Aufgabe wird gelöst durch die anspruchsgemäße Verwendung.
  • US 3382056 lehrt die Verwendung von niedrigmolekularen Copolymeren enthaltend Olefine und Bernsteinsäure und deren Derivate in einpolymeriserter Form als Antirostadditive in raffinierten Kraftstoffzusammensetzungen.
  • JP 55-085679 lehrt die Verwendung von hydrolytisch geöffneten Copolymeren des Molgewichts Mw von 2000 bis 30000 aus α-Olefinen mit 20 bis 60 Kohlenstoffatomen und Maleinsäureanhydrid als öllösliche Rostinhibitoren in Mineralöl oder Schmierstoffen.
  • Aus US 5080686 und EP 299120 ist bekannt, daß Alkyl- und Alkenybernsteinsäuren und deren Derivate sowie Copolymere enthaltend Olefine und Bernsteinsäure und deren Derivate in einpolymeriserter Form als Korrosionsinhibitoren in oxygenierten Kraftstoffsystemen fungieren.
  • Aus keiner dieser Schriften geht hervor, daß die erfindungsgemäßen Korrosionsinhibitoren eine erhöhte Verträglichkeit gegen Calcium-Ionen aufweisen.
  • Aus US 5766273 ist es bekannt, Polymergemische, die als eine Komponente Copolymere aus Maleinsäureanhydrid und α-Olefinen enthalten, als Additive für Mineralölmitteldestillate zur Verbesserung der Fließeigenschaften, insbesondere des Cloud Point (CP) und des cold filter plugging point (CFPP) einzusetzen. Hinweise auf den Einsatz als Korrosionsinhibitor werden nicht gegeben.
  • Aus WO 2011/1153178 ist bekannt, aromatische Amine an carbonsäuregruppenhaltige Copolymere zu binden, die so erhaltenen Amide fungieren als Schmierstoffadditive. Eine Wirkung des carbonsäuregruppenhaltigen Copolymers gegen Korrosion wird nicht beschrieben.
  • Aus WO 96/28486 sind Copolymere aus monoethylenisch ungesattigten C4- bis C12-Dicarbonsäuren oder deren Anhydriden mit 1-Olefinen mit 3 bis 14 C-Atomen bekannt. Deren Umsetzung mit Aminen führt zu Korrosionsinhibitoren, eine Wirkung des Copolymers allein gegen Korrosion wird nicht beschrieben.
  • US 5,670,462 beschreibt Copolymere aus Maleinsäureanhydrid und C4- bis C30-Olefinen. Die Verwendung gegen Korrosion wird nicht beschrieben.
  • JP 2007-077216 beschreibt Öle, enthaltend Partialester von Copolymeren aus Maleinsäureanhydrid und α-Olefinen mit Alkylenglykolen. Eine Wirkung des Copolymers allein gegen Korrosion wird nicht beschrieben.
  • Aus der Internationalen Patentanmeldung mit dem Aktenzeichen PCT/EP2015/051752 und dem Anmeldedatum 29. Januar 2015 ist es bekannt, teilweise oder vollständig hydrolysierte Copolymere aus Maleinsäureanhydrid und α-Olefinen als Korrosionsinhibitoren einzusetzen. Der Hydrolysegrad muß dabei mindestens 10% betragen.
  • Demgemäß ist Gegenstand der Erfindung die Verwendung von Copolymeren, erhältlich durch - in einem ersten Reaktionsschritt (I) Copolymerisation von
    • (A) mindestens einer ethylenisch ungesättigten Mono- oder Dicarbonsäure oder deren Derivate, bevorzugt einer Dicarbonsäure oder deren Derivate, besonders bevorzugt dem Anhydrid einer Dicarbonsäure,
    • (B) mindestens einem α-Olefin mit von mindestens 12 bis zu einschließlich 30 Kohlenstoffatomen,
    • (C) optional mindestens einem weiteren, mindestens 4 Kohlenstoffatome aufweisenden, aliphatischen oder cycloaliphatischen Olefin, das ein anderes als (B) ist und
    • (D) optional eines oder mehrerer weiterer copolymerisierbarer Monomere, die verschieden von den Monomeren (A), (B) und (C) sind, ausgewählt aus der Gruppe bestehend aus
    • (Da) Vinylestern,
    • (Db) Vinylethern,
    • (Dc) (Meth)acrylsäureestern von Alkoholen, die mindestens 5 Kohlenstoffatome aufweisen,
    • (Dd) Allylalkoholen oder deren Ether,
    • (De) N-Vinylverbindungen, ausgewählt aus der Gruppe bestehend aus Vinylverbindungen von mindestens ein Stickstoffatom enthaltenden Heterocyclen, N-Vinylamide oder N-Vinyllactame,
    • (Df) ethylenisch ungesättigte Aromaten
    • (Dg) α,β-ethylenisch ungesättigte Nitrilen,
    • (Dh) (Meth)acrylsäureamiden und
    • (Di) Allylaminen,
    gefolgt von
    • in einem zweiten optionalen Reaktionsschritt (II) teilweise Hydrolyse der im aus (I) erhaltenen Copolymer enthaltenen Anhydridfunktionalitäten und/oder teilweise Verseifung von im aus (I) erhaltenen Copolymer enthaltenen Carbonsäureesterfunktionalitäten, mit der Maßgabe, daß mehr als 90% der enthaltenen Anhydrid- und Carbonsäureesterfunktionalitäten nach dem Reaktionsschritt (II) intakt bleiben.
    als Korrosionsinhibitoren in Kraftstoffen, die einen Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 0,1 Gew.ppm aufweisen.
  • Die beschriebenen Copolymere zeigen einen besonderen Vorteil in Kraft- oder Schmierstoffen, besonders in Kraftstoffen, die einen Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 0,1 Gew.ppm aufweisen, besonders bevorzugt mindestens 0,2 Gew.ppm und ganz besonders bevorzugt mindestens 0,3 Gew.ppm und insbesondere mindestens 0,5 Gew.ppm. Denkbar ist auch ein Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 1 Gew.ppm, bevorzugt mindestens 2 und besonders bevorzugt mindestens 3 Gew.ppm.
  • Es stellt einen Vorteil der beschriebenen Copolymere dar, daß sie ihre korrosionsinhibierende Wirkung auch in Gegenwart von Alkali- und/oder Erdalkalimetallen und/oder Zink zeigen, bevorzugt auch in Gegenwart von Erdalkalimetallen. Der Gehalt an Alkali- und/oder Erdalkalimetallen in Kraftstoffen rührt beispielsweise her durch Vermischung mit Alkali- und/oder Erdalkalimetallen-haltigen Schmierstoffen, beispielsweise in der Kraftstoffpumpe. Ferner können Alkali- und/oder Erdalkalimetalle aus nicht oder unzureichend entsalzten Kraftstoffadditiven stammen. beispielsweise Trägerölen. Durch das Einschleppen von Alkali- und/oder Erdalkalimetallen in die Kraftstoffe können die oben genannten Nachteile hervorgerufen werden. Eine Quelle für Zink sind beispielsweise anti-wear Additive.
  • Als Alkalimetalle zu nennen sind besonders Natrium und Kalium, insbesondere Natrium.
  • Als Erdalkalimetalle zu nennen sind besonders Magnesium und Calcium, insbesondere Calcium.
  • Ferner ist Zink hervorzuheben
  • Mit besonderem Vorteil sind die beschriebenen Copolymere auch in Gegenwart von Calcium noch aktiv und zeigen keine Ausfällungen.
  • Die angegebenen Mengen an Alkali- und/oder Erdalkalimetallen und/oder Zink beziehen sich dabei jeweils auf einzelne Metallespezies.
  • Beschreibung des Copolymers
  • Bei dem Monomer (A) handelt es sich um mindestens eine, bevorzugt ein bis drei, besonders bevorzugt ein oder zwei und ganz besonders bevorzugt genau eine ethylenisch ungesättigte, bevorzugt α,β-ethylenisch ungesättigte Mono- oder Dicarbonsäure oder deren Derivate, bevorzugt einer Dicarbonsäure oder deren Derivate.
  • Unter Derivaten werden dabei verstanden
    • die betreffenden Anhydride in monomerer oder auch polymerer Form,
    • Mono- oder Dialkylester, bevorzugt Mono- oder Di-C1-C4-alkylester, besonders bevorzugt Mono- oder Dimethylester oder die entsprechenden Mono- oder Diethylester, sowie
    • gemischte Ester, bevorzugt gemischte Ester mit unterschiedlichen C1-C4-Alkylkomponenten, besonders bevorzugt gemischte Methylethylester.
  • Bevorzugt handelt es sich bei den Derivaten um Anhydride in monomerer Form oder Di-C1-C4-alkylester, besonders bevorzugt um Anhydride in monomerer Form.
  • Unter C1-C4-Alkyl wird im Rahmen dieser Schrift Methyl, Ethyl, iso-Propyl, n-Propyl, n-Butyl, iso-Butyl, sek-Butyl und tert-Butyl verstanden, bevorzugt Methyl und Ethyl, besonders bevorzugt Methyl.
  • Bei der α,β-ethylenisch ungesättigten Mono- oder Dicarbonsäure handelt es sich um solche Mono- oder Dicarbonsäuren bzw. deren Derivate, bei denen die Carboxylgruppe oder im Fall von Dicarbonsäuren mindestens eine Carboxylgruppe, bevorzugt beide Carboxylgruppen mit der ethylenisch ungesättigten Doppelbindung konjugiert sind.
  • Beispiele für ethylenisch ungesättigte Mono- oder Dicarbonsäure, die nicht α,β-ethylenisch ungesättigt sind, sind cis-5-Norbornen-endo-2,3-dicarbonsäureanhydrid, exo-3,6-Epoxy-1,2,3,6-tetrahydrophthalsäureanhydrid und cis-4-Cyclohexen-1,2-dicarbonsäure anhydrid.
  • Beispiele für α,β-ethylenisch ungesättigten Monocarbonsäuren sind Acrylsäure, Methacrylsäure, Crotonsäure und Ethylacrylsäure, bevorzugt Acrylsäure und Methacrylsäure, in dieser Schrift kurz als (Meth)acrylsäure bezeichnet, und besonders bevorzugt Acrylsäure.
  • Besonders bevorzugte Derivate von α,β-ethylenisch ungesättigten Monocarbonsäuren sind Acrylsäuremethylester, Acrylsäureethylester, Acrylsäure-n-butylester und Methacrylsäuremethylester.
  • Beispiele für Dicarbonsäuren sind Maleinsäure, Fumarsäure, Itaconsäure (2-Methylenbutandisäure), Citraconsäure (2-Methylmaleinsäure), Glutaconsäure (Pent-2-en-1,5-dicarbonsäure), 2,3-Dimethylmaleinsäure, 2-Methylfumarsäure, 2,3-Dimethylfumarsäure, Methylenmalonsäure und Tetrahydrophthalsäure, bevorzugt um Maleinsäure und Fumarsäure und besonders bevorzugt um Maleinsäure und deren Derivate.
  • Insbesondere handelt es sich bei dem Monomer (A) um Maleinsäureanhydrid.
  • Bei dem Monomer (B) handelt es sich um mindestens ein, bevorzugt ein bis vier, besonders bevorzugt ein bis drei, ganz besonders bevorzugt ein oder zwei und insbesondere genau ein α-Olefin mit von mindestens 12 bis zu einschließlich 30 Kohlenstoffatomen. Die α-Olefine (B) weisen bevorzugt mindestens 14, besonders bevorzugt mindestens 16 und ganz besonders bevorzugt mindestens 18 Kohlenstoffatome auf. Bevorzugt weisen die α-Olefine (B) bis einschließlich 28, besonders bevorzugt bis einschließlich 26 und ganz besonders bevorzugt bis einschließlich 24 Kohlenstoffatome auf.
  • Bevorzugt kann es sich bei den α-Olefinen um lineare oder verzweigte, bevorzugt lineare 1-Alkene handeln.
  • Beispiele dafür sind 1-Dodecen, 1-Tridecen, 1-Tetradecen, 1-Pentadecen, 1-Hexadecen, 1-Heptadecen, 1- Octadecen, 1-Nonodecen, 1-Eicosen, 1-Docosen, 1-Tetracosen, 1-Hexacosen, wovon 1- Octadecen, 1-Eicosen, 1-Docosen und 1-Tetracosen, sowie deren Gemische bevorzugt werden.
  • Weitere Beispiele für α-Olefin (B) sind solche Olefine, bei denen es sich um Oligomere oder Polymere von C2- bis C12-Olefinen handelt, bevorzugt von C3- bis C10-Olefinen, besonders bevorzugt von C4- bis C6-Olefinen. Beispiele dafür sind Ethen, Propen, 1-Buten, 2-Buten, iso-Buten, Penten-Isomere sowie Hexen-Isomere, bevorzugt sind Ethen, Propen, 1-Buten, 2-Buten und iso-Buten.
  • Namentlich als α-Olefine (B) genannt seien Oligomere und Polymere von Propen, 1-Buten, 2-Buten, iso-Buten, sowie deren Mischungen, besonders Oligomere und Polymere von Propen oder iso-Buten oder von Mischungen aus 1-Buten und 2-Buten. Unter den Oligomeren sind die Trimere, Tetramere, Pentamere und Hexamere sowie deren Gemische bevorzugt.
  • Zusätzlich zu dem Olefin (B) kann optional mindestens ein, bevorzugt ein bis vier, besonders bevorzugt ein bis drei, ganz besonders bevorzugt ein oder zwei und insbesondere genau ein weiteres, mindestens 4 Kohlenstoffatome aufweisendes, aliphatisches oder cycloaliphatisches Olefin (C), das ein anderes als (B) ist, in das erfindungsgemäße Copolymer einpolymerisiert werden.
  • Bei den Olefinen (C) kann es sich um Olefine mit endständiger (α-) Doppelbindung handeln oder solche mit nicht-endständiger Doppelbindung, bevorzugt mit α-Doppelbindung. Bevorzugt handelt es sich bei dem Olefin (C) um Olefine mit 4 bis weniger als 12 oder mehr als 30 Kohlenstoffatomen. Sofern es sich bei dem Olefin (C) um ein Olefin mit 12 bis 30 Kohlenstoffatomen handelt, so weist dieses Olefin (C) keine α-ständige Doppelbindung auf.
  • Beispiele für aliphatische Olefine (C) sind 1-Buten, 2-Buten, iso-Buten, Penten-Isomere, Hexen-Isomere, Hepten-Isomere, Octen-Isomere, Nonen-Isomere, Decen-Isomere, Undecen-Isomere sowie deren Gemische.
  • Beispiele für cycloaliphatische Olefine (C) sind Cyclopenten, Cyclohexen, Cycloocten, Cyclodecen, Cyclododecen, α- oder β-Pinen und deren Gemische, Limonen und Norbornen.
  • Weitere Beispiele für Olefine (C) sind mehr als 30 Kohlenstoffatome aufweisende Polymere von Propen, 1-Buten, 2-Buten oder iso-Buten oder solche enthaltende Olefingemische, bevorzugt von iso-Buten oder solches enthaltende Olefingemische, besonders bevorzugt mit einem mittleren Molekulargewicht Mw im Bereich von 500 bis 5000 g/mol, bevorzugt 650 bis 3000, besonders bevorzugt 800 bis 1500 g/mol.
  • Bevorzugt weisen die iso-Buten in einpolymerisierter Form enthaltenden Oligomere oder Polymere einen hohen Gehalt an terminal angeordneten ethylenischen Doppelbindungen (α-Doppelbindungen) auf, beispielsweise wenigstens 50 Mol-%, bevorzugt wenigstens 60 Mol-%, besonders bevorzugt wenigstens 70 Mol-% und ganz besonders bevorzugt wenigstens 80 Mol-%.
  • Für die Herstellung solcher iso-Buten in einpolymerisierter Form enthaltender Oligomere oder Polymere eignen sich als Isobuten-Quelle sowohl Rein-Isobuten als auch Isobuten-haltige C4-Kohlenwasserstoffströme, beispielsweise C4-Raffinate, insbesondere "Raffinat 1", C4-Schnitte aus der Isobutan-Dehydrierung, C4-Schnitte aus Steamcrackern und aus FCC-Crackern (fluid catalysed cracking), sofern sie weitgehend von darin enthaltenem 1,3-Butadien befreit sind. Ein C4-Kohlenwasserstoffstrom aus einer FCC-Raffinerieeinheit ist auch als "b/b"-Strom bekannt. Weitere geeignete Isobuten-haltige C4-Kohlenwasserstoffströme sind beispielsweise der Produktstrom einer Propylen-Isobutan-Cooxidation oder der Produktstrom aus einer Metathese-Einheit, welche in der Regel nach üblicher Aufreinigung und/oder Aufkonzentrierung eingesetzt werden. Geeignete C4-Kohlenwasserstoffströme enthalten in der Regel weniger als 500 ppm, vorzugsweise weniger als 200 ppm, Butadien. Die Anwesenheit von 1-Buten sowie von cis- und trans-2-Buten ist weitgehend unkritisch. Typischerweise liegt die Isobutenkonzentration in den genannten C4-Kohlenwasserstoffströmen im Bereich von 40 bis 60 Gew.-%. So besteht Raffinat 1 in der Regel im wesentlichen aus 30 bis 50 Gew.-% Isobuten, 10 bis 50 Gew.-% 1-Buten, 10 bis 40 Gew.-% cis- und trans-2-Buten sowie 2 bis 35 Gew.-% Butanen; beim erfindungsgemäßen Polymerisationsverfahren verhalten sich die unverzeigten Butene im Raffinat 1 in der Regel praktisch inert und nur das Isobuten wird polymerisiert.
  • In einer bevorzugten Ausführungsform setzt man als Monomerquelle für die Polymerisation einen technischen C4-Kohlenwasserstoffstrom mit einem Isobuten-Gehalt von 1 bis 100 Gew.-%, insbesondere von 1 bis 99 Gew.-%, vor allem von 1 bis 90 Gew.-%, besonders bevorzugt von 30 bis 60 Gew.-%, insbesondere einen Raffinat 1-Strom, einen b/b-Strom aus einer FCC-Raffinerieeinheit, einen Produktstrom einer Propylen-Isobutan-Cooxidation oder einen Produktstrom aus einer Metathese-Einheit ein.
  • Insbesondere bei Verwendung eines Raffinat 1-Stromes als Isobutenquelle hat sich die Verwendung von Wasser als alleinigem oder als weiterem Initiator bewährt, vor allem wenn man bei Temperaturen von -20°C bis +30°C, insbesondere von 0°C bis +20°C, polymerisiert. Bei Temperaturen von -20°C bis +30°C, insbesondere von 0°C bis +20°C, kann man bei Verwendung eines Raffinat 1-Stromes als Isobutenquelle jedoch auch auf den Einsatz eines Initiators verzichten.
  • Das genannte Isobuten-haltige Monomerengemisch kann geringe Mengen an Kontaminanten wie Wasser, Carbonsäuren oder Mineralsäuren enthalten, ohne dass es zu kritischen Ausbeute- oder Selektivitätseinbußen kommt. Es ist zweckdienlich, eine Anreicherung dieser Verunreinigungen zu vermeiden, indem man solche Schadstoffe beispielsweise durch Adsorption an feste Adsorbentien wie Aktivkohle, Molekularsiebe oder Ionenaustauscher, aus dem Isobuten-haltigen Monomerengemisch entfernt.
  • Es können, wenn auch weniger bevorzugt, auch Monomermischungen von Isobuten beziehungsweise des Isobuten-haltigen Kohlenwasserstoffgemischs mit olefinisch ungesättigten Monomeren, welche mit Isobuten copolymerisierbar sind, umgesetzt werden. Sofern Monomermischungen des Isobutens mit geeigneten Comonomeren copolymerisiert werden sollen, enthält die Monomermischung vorzugsweise wenigstens 5 Gew.-%, besonders bevorzugt wenigstens 10 Gew.-% und insbesondere wenigstens 20 Gew.-% Isobuten, und vorzugsweise höchstens 95 Gew.-%, besonders bevorzugt höchstens 90 Gew.-% und insbesondere höchstens 80 Gew.-% Comonomere.
  • In einer bevorzugten Ausführungsform weist das Stoffgemisch der Olefine (B) und optional (C) gemittelt auf ihre Stoffmengen mindestens 12 Kohlenstoffatome auf, bevorzugt mindestens 14, besonders bevorzugt mindestens 16 und ganz besonders bevorzugt mindestens 17 Kohlenstoffatome auf.
  • So weist beispielsweise ein 2:3-Gemisch aus Docosen und Tetradecen einen gemittelten Wert für die Kohlenstoffatome von 0,4 x 22 + 0,6 x 14 = 17,2 auf.
  • Die Obergrenze ist weniger relevant und beträgt in der Regel nicht mehr als 60 Kohlenstoffatome, bevorzugt nicht mehr als 55, besonders bevorzugt nicht mehr als 50, ganz besonders bevorzugt nicht mehr als 45 und insbesondere nicht mehr als 40 Kohlenstoffatome.
  • Das optionale Monomer (D) ist mindestens ein Monomer, bevorzugt ein bis drei, besonders bevorzugt ein oder zwei und ganz besonders bevorzugt genau ein Monomer ausgewählt aus der Gruppe bestehend aus
    • (Da) Vinylestern,
    • (Db) Vinylethern,
    • (Dc) (Meth)acrylsäureestern von Alkoholen, die mindestens 5 Kohlenstoffatome aufweisen,
    • (Dd) Allylalkoholen oder deren Ether,
    • (De) N-Vinylverbindungen, ausgewählt aus der Gruppe bestehend aus Vinylverbindungen von mindestens ein Stickstoffatom enthaltenden Heterocyclen, N-Vinylamide oder N-Vinyllactame,
    • (Df) ethylenisch ungesättigte Aromaten und
    • (Dg) α,β-ethylenisch ungesättigte Nitrilen
    • (Dh) (Meth)acrylsäureamiden und
    • (Di) Allylaminen.
  • Beispiele für Vinylester (Da) sind Vinylester von C2- bis C12-Carbonsäuren, bevorzugt Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylpentanoat, Vinylhexanoat, Vinyloctanoat, Vinyl-2-ethylhexanoat, Vinyldecanoat, sowie Vinylester der Versatic-Säuren 5 bis 10, bevorzugt Vinylester von 2,2-Dimethylpropionsäure (Pivalinsäure, Versatic-Säure 5), 2,2-Dimethylbuttersäure (Neohexansäure, Versatic-Säure 6), 2,2-Dimethylpentansäure (Neoheptansäure, Versatic-Säure 7), 2,2-Dimethylhexansäure (Neooctansäure, Versatic-Säure 8), 2,2-Dimethylheptansäure (Neononansäure, Versatic-Säure 9) oder 2,2-Dimethyloctansäure (Neodecansäure, Versatic-Säure 10).
  • Beispiele für Vinylether (Db) sind Vinylether von C1- bis C12-Alkanolen, bevorzugt Vinylether von Methanol, Ethanol, iso-Propanol, n-Propanol, n-Butanol, iso-Butanol, sek-Butanol, tert-Butanol, n-Hexanol, n-Heptanol, n-Octanol, n-Decanol, n-Dodecanol (Laurylalkohol) oder 2-Ethylhexanol.
  • Bevorzugte (Meth)acrylsäureester (Dc) sind (Meth)acrylsäureester von C5- bis C12-Alkanolen, bevorzugt von n-Pentanol, n-Hexanol, n-Heptanol, n-Octanol, n-Decanol, n-Dodecanol (Laurylalkohol), 2-Ethylhexanol oder 2-Propylheptanol. Besonders bevorzugt sind Acrylsäurepentylester, Acrylsäure-2-ethylhexylester, Acrylsäure-2-propylheptylester.
  • Beispiele für Monomere (Dd) sind Allylalkohole und Allylether von C2- bis C12-Alkanolen, bevorzugt Allylether von Methanol, Ethanol, iso-Propanol, n-Propanol, n-Butanol, iso-Butanol, sek-Butanol, tert-Butanol, n-Hexanol, n-Heptanol, n-Octanol, n-Decanol, n-Dodecanol (Laurylalkohol) oder 2-Ethylhexanol.
  • Beispiele für Vinylverbindungen (De) von mindestens ein Stickstoffatom enthaltenden Heterocyclen sind N-Vinylpyridin, N-Vinylimidazol und N-Vinylmorpholin.
  • Bevorzugte Verbindungen (De) sind N-Vinylamide oder N-Vinyllactame:
    Beispiele für N-Vinylamide oder N-Vinyllactame (De) sind N-Vinylformamid, N-Vinylacetamid, N-Vinylpyrrolidon und N-Vinylcaprolactam.
  • Beispiele für ethylenisch ungesättigte Aromaten (Df) sind Styrol und α-Methylstyrol.
  • Beispiele für α,β-ethylenisch ungesättigte Nitrile (Dg) sind Acrylnitril und Methacrylnitril.
  • Beispiele für (Meth)acrylsäureamide (Dh) sind Acrylamid und Methacrylamid.
  • Beispiele für Allylamine (Di) sind Allylamin, Dialkylallylamin und Trialkyl allylammonium halogenide.
  • Bevorzugte Monomere (D) sind (Da), (Db), (Dc), (De) und/oder (Df), besonders bevorzugt (Da), (Db) und/oder (Dc), ganz besonders bevorzugt (Da) und/oder (Dc) und insbesondere (Dc).
  • Das Einbauverhältnis der Monomere (A) und (B) sowie optional (C) sowie optional (D) im aus dem Reaktionsschritt (I) erhaltenen Polymer ist in der Regel wie folgt:
    Das molare Verhältnis von (A) / ((B) und (C)) (in Summe) beträgt in der Regel von 10:1 bis 1:10, bevorzugt 8:1 bis 1:8, besonders bevorzugt 5:1 bis 1:5, ganz besonders bevorzugt 3:1 bis 1:3, insbesondere 2:1 bis 1:2 und speziell 1,5:1 bis 1:1,5. Für den besonderen Fall von Maleinsäureanhydrid als Monomer (A) beträgt das molare Einbauverhältnis von Maleinsäureanhydrid zu Monomeren ((B) und (C)) (in Summe) etwa 1:1. Um einen vollständigen Umsatz des α-Olefins (B) zu erzielen kann es dennoch sinnvoll sein, Maleinsäureanhydrid in einem leichten Überschuß gegenüber dem α-Olefin einzusetzen, beispielsweise 1,01 - 1,5:1, bevorzugt 1,02 - 1,4:1, besonders bevorzugt 1,05 - 1,3:1, ganz besonders bevorzugt 1,07 - 1,2:1 und insbesondere 1,1 - 1,15:1.
  • Das molare Verhältnis vom obligaten Monomer (B) zum Monomer (C), soweit es anwesend ist, beträgt in der Regel von 1 : 0,05 bis 10, bevorzugt von 1 : 0,1 bis 6, besonders bevorzugt von 1 : 0,2 bis 4, ganz besonders bevorzugt von 1 : 0,3 bis 2,5 und speziell 1 : 0,5 bis 1,5. In einer bevorzugten Ausführungsform ist zusätzlich zu Monomer (B) kein optionales Monomer (C) anwesend.
  • Der Anteil an einem oder mehreren der Monomere (D), soweit vorhanden, bezogen auf die Menge der Monomere (A), (B) sowie optional (C) (in Summe) beträgt in der Regel 5 bis 200 mol%, bevorzugt 10 bis 150 mol%, besonders bevorzugt 15 bis 100 mol%, ganz besonders bevorzugt 20 bis 50 mol% und insbesondere 0 bis 25 mol%.
  • In einer bevorzugten Ausführungsform ist kein optionales Monomer (D) anwesend.
  • In einer besonders bevorzugten Ausführungsform besteht das Copolymer aus den Monomeren (A) und (B).
  • In einem zweiten optionalen Reaktionsschritt (II) können die im aus (I) erhaltenen Copolymer enthaltenen Anhydrid- oder Carbonsäureesterfunktionalitäten teilweise hydrolysiert und/oder verseift werden. Bevorzugt werden im Reaktionsschritt (II) Anhydridfunktionalitäten hydrolysiert und Carbonsäureesterfunktionalitäten im wesentlichen intakt gelassen.
  • Erfindungsgemäß bleiben mehr als 90% der enthaltenen Anhydrid- und Carbonsäureesterfunktionalitäten nach dem Reaktionsschritt (II) intakt, bevorzugt mindestens 92%, besonders bevorzugt mindestens 94%, ganz besonders bevorzugt mindestens 95%, insbesondere mindestens 97% und speziell mindestens 98%.
  • Es ist möglich, daß bis zu 99,9% der enthaltenen Anhydrid- und Carbonsäureesterfunktionalitäten nach dem Reaktionsschritt (II) intakt bleiben, bevorzugt bis zu 99,8%, besonders bevorzugt bis zu 99,7%, ganz besonders bevorzugt bis zu 99,5% und insbesondere bis zu 99%.
  • In einer bevorzugten Ausführungsform wird der Reaktionsschritt (II) nicht durchlaufen, so daß 100% der im aus Reaktionsschritt (I) erhaltenen Copolymer enthaltenen Anhydrid- und Carbonsäureesterfunktionalitäten intakt bleiben.
  • Eine Hydrolyse in Reaktionsschritt (II) wird dann durchlaufen, wenn als Derivat des Monomers (A) ein Anhydrid, bevorzugt das Anhydrid einer Dicarbonsäure eingesetzt wird, wohingegen bei Einsatz eines Esters als Monomer (A) eine Verseifung bzw. Hydrolyse durchlaufen werden kann.
  • Für eine Hydrolyse wird bezogen auf die enthaltenen Anhydridfunktionalitäten die Menge Wasser hinzugegeben, die dem gewünschten Hydrolysegrad entspricht und das aus (I) erhaltene Copolymer in Gegenwart des zugegebenen Wassers erwärmt. In der Regel ist dafür eine Temperatur von vorzugsweise 20 bis 150°C ausreichend, bevorzugt 60 bis 100°C. Falls erforderlich kann die Reaktion unter Druck durchgeführt werden, um das Entweichen von Wasser zu verhindern. Unter diesen Reaktionsbedingungen werden in der Regel selektiv die Anhydridfunktionalitäten im Copolymer umgesetzt, wohingegen etwaige im Copolymer enthaltene Carbonsäureesterfunktionalitäten nicht oder zumindest nur untergeordnet reagieren.
  • Für eine Verseifung wird das Copolymer mit einer Menge einer starken Base in Gegenwart von Wasser umgesetzt, die dem gewünschten Verseifungsgrad entspricht.
  • Als starke Basen können bevorzugt Hydroxide, Oxide, Carbonate oder Hydrogencarbonate von Alkali- oder Erdalkalimetallen eingesetzt werden.
  • Das aus (I) erhaltene Copolymer wird dann in Gegenwart des zugegebenen Wassers und der starken Base erwärmt. In der Regel ist dafür eine Temperatur von vorzugsweise 20 bis 130°C ausreichend, bevorzugt 50 bis 110°C. Falls erforderlich kann die Reaktion unter Druck durchgeführt werden.
  • Es ist auch möglich, die Carbonsäureesterfunktionalitäten mit Wasser in Gegenwart einer Säure zu hydrolysieren. Als Säuren werden dabei bevorzugt Mineral-, Carbon-, Sulfon- oder phosphorhaltige Säuren mit einem pKs-Wert von nicht mehr als 5, besonders bevorzugt nicht mehr als 4 eingesetzt.
  • Beispiele sind Essigsäure, Ameisensäure, Oxalsäure, Salicylsäure, substituierte Bernsteinsäuren, am Aromaten substituierte oder unsubstituierte Benzolsulfonsäuren, Schwefelsäure, Salpetersäure, Salzsäure oder Phosphorsäure, denkbar ist auch der Einsatz von sauren lonentauscherharzen.
  • Das aus (I) erhaltene Copolymer wird dann in Gegenwart des zugegebenen Wassers und der Säure erwärmt. In der Regel ist dafür eine Temperatur von vorzugsweise 40 bis 200°C ausreichend, bevorzugt 80 bis 150°C. Falls erforderlich kann die Reaktion unter Druck durchgeführt werden.
  • Sollten die aus Schritt (II) erhaltenen Copolymere noch Reste von Säureanionen enthalten, so kann es bevorzugt sein, diese Säureanionen mit Hilfe eines lonentauschers aus dem Copolymer zu entfernen und bevorzugt gegen Hydroxidionen oder Carboxylationen, besonders bevorzugt Hydroxidionen auszutauschen. Dies ist insbesondere dann der Fall, wenn die im Copolymer enthaltenen Säureanionen Halogenide, schwefelhaltig oder stickstoffhaltig sind.
  • Das aus Reaktionsschritt (II) erhaltene Copolymer weist in der Regel ein gewichtsmittleres Molekulargewicht Mw von 0,5 bis 20 kDa auf, bevorzugt 0,6 bis 15, besonders bevorzugt 0,7 bis 7, ganz besonders bevorzugt 1 bis 7 und insbesondere 1,5 bis 4 kDa auf (bestimmt durch Gelpermeationschromatographie mit Tetrahydrofuran und Polystyrol als Standard).
  • Das zahlenmittlere Molekulargewicht Mn beträgt zumeist von 0,5 bis 10 kDa, bevorzugt 0,6 bis 5, besonders bevorzugt 0,7 bis 4, ganz besonders bevorzugt 0,8 bis 3 und insbesondere 1 bis 2 kDa auf (bestimmt durch Gelpermeationschromatographie mit Tetrahydrofuran und Polystyrol als Standard).
  • Die Polydispersität beträgt in der Regel von 1 bis 10, bevorzugt von 1,1 bis 8, besonders bevorzugt von 1,2 bis 7, ganz besonders bevorzugt von 1,3 bis 5 und insbesondere von 1,5 bis 3.
  • Der Gehalt an freien Säuregruppen im Copolymer nach Durchlaufen des Reaktionsschrittes (II) beträgt bevorzugt weniger als 5 mmol/g Copolymer, besonders bevorzugt weniger als 3, ganz besonders bevorzugt weniger als 2 mmol/g Copolymer und insbesondere weniger als 1 mmol/g Copolymer.
  • In einer bevorzugten Ausführungsform enthalten die Copolymere einen hohen Anteil an benachbarten Carbonsäuregruppen, was durch eine Messung der Adjazenz (engl. Adjacency) bestimmt wird. Dazu wird eine Probe des Copolymers für eine Dauer von 30 Minuten bei einer Temperatur von 290 °C zwischen zwei Teflonfolien getempert und an einer blasenfreien Stelle ein FTIR Spektrum aufgenommen. Von den erhaltenen Spektren wird das IR-Spektrum von Teflon subtrahiert, die Schichtdicke bestimmt und der Gehalt an cyclischem Anhydrid bestimmt.
  • In einer bevorzugten Ausführungsform beträgt die Adjazenz mindestens 10 %, bevorzugt mindestens 15%, besonders bevorzugt mindestens 20%, ganz besonders bevorzugt mindestens 25% und insbesondere mindestens 30%.
  • Verwendung
  • Die erfindungsgemäße Verwendung betrifft die Inhibierung der Korrosion von Eisen-, Stahl- und/oder Buntmetalloberflächen.
  • Unter den Buntmetallen sind dabei Kupfer und dessen Legierungen bevorzugt.
  • Besonders bevorzugt wird die Korrosion von Stahloberflächen inhibiert.
  • Die beschriebenen Copolymere werden Kraftstoffen mit dem oben spezifizierten Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink in der Regel in Mengen von 1 bis 60, bevorzugt 4 bis 50 Gew. ppm und besonders bevorzugt von 10 bis 40 Gew. ppm zugesetzt.
  • Häufig werden die beschriebenen Copolymere in Form von Kraftstoffadditivgemischen eingesetzt, zusammen mit üblichen Additiven:
    Im Falle von Dieselkraftstoffen sind dies in erster Linie übliche Detergenz-Additive, Trägeröle, Kaltfließverbesserer, Schmierfähigkeitsverbesserer (Lubricity Improver), andere Korrosionsinhibitoren als die beschriebenen Copolymere, Demulgatoren, Dehazer, Antischaummittel, Cetanzahlverbesserer, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel.
  • Im Falle von Ottokraftstoffen sind dies vor allem Schmierfähigkeitsverbesserer (Friction Modifier), andere Korrosionsinhibitoren als die beschriebenen Copolymere, Demulgatoren, Dehazer, Antischaummittel, Verbrennungsverbesserer, Antioxidantien oder Stabilisatoren, Antistatika, Metallocene, Metalldeaktivatoren, Farbstoffe und/oder Lösungsmittel.
  • Typische Beispiele geeigneter Co-Additive sind im folgenden Abschnitt aufgeführt:
    • B1) Detergenz-Additive
  • Vorzugsweise handelt es sich bei den üblichen Detergenz-Additiven um amphiphile Substanzen, die mindestens einen hydrophoben Kohlenwasserstoffrest mit einem zahlengemittelten Molekulargewicht (Mn) von 85 bis 20.000 und mindestens eine polare Gruppierung besitzen, die ausgewählt ist unter:
    • (Da) Mono- oder Polyaminogruppen mit bis zu 6 Stickstoffatomen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
    • (Db) Nitrogruppen, gegebenenfalls in Kombination mit Hydroxylgruppen;
    • (Dc) Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat;
    • (Dd) Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
    • (De) Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalzen;
    • (Df) Polyoxy-C2- bis C4-alkylengruppierungen, die durch Hydroxylgruppen, Mono-oder Polyaminogruppen, wobei mindestens ein Stickstoffatom basische Eigenschaften hat, oder durch Carbamatgruppen terminiert sind;
    • (Dg) Carbonsäureestergruppen;
    • (Dh) aus Bernsteinsäureanhydrid abgeleiteten Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen; und/oder
    • (Di) durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mo-no- oder Polyaminen erzeugten Gruppierungen.
  • Der hydrophobe Kohlenwasserstoffrest in den obigen Detergenz-Additiven, welcher für die ausreichende Löslichkeit im Kraftstoff sorgt, hat ein zahlengemitteltes Molekulargewicht (Mn) von 85 bis 20.000, vorzugsweise von 113 bis 10.000, besonders bevorzugt von 300 bis 5.000, stärker bevorzugt von 300 bis 3.000, noch stärker bevorzugt von 500 bis 2.500 und insbesondere von 700 bis 2.500, vor allem von 800 bis 1500. Als typischer hydrophober Kohlenwasserstoffrest, insbesondere in Verbindung mit den polaren insbesondere Polypropenyl-, Polybutenyl- und Polyisobutenylreste mit einem zahlenmittleren Molekulargewicht Mn von vorzugsweise jeweils 300 bis 5.000, besonders bevorzugt 300 bis 3.000, stärker bevorzugt 500 bis 2.500 noch stärker bevorzugt 700 bis 2.500 und insbesondere 800 bis 1.500 in Betracht.
  • Als Beispiele für obige Gruppen von Detergenz-Additiven seien die folgenden genannt:
    Mono- oder Polyaminogruppen (Da) enthaltende Additive sind vorzugsweise Polyalkenmono- oder Polyalkenpolyamine auf Basis von Polypropen oder von hochreaktivem (d.h. mit überwiegend endständigen Doppelbindungen) oder konventionellem (d.h. mit überwiegend mittenständigen Doppelbindungen) Polybuten oder Polyisobuten mit Mn = 300 bis 5000, besonders bevorzugt 500 bis 2500 und insbesondere 700 bis 2500. Derartige Additive auf Basis von hochreaktivem Polyisobuten, welche aus dem Polyisobuten, das bis zu 20 Gew.-% n-Buten-Einheiten enthalten kann, durch Hydroformylierung und reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen wie Dimethyl-aminopropylamin, Ethylendiamin, Diethylentriamin, Triethylentetramin oder Tetraethylenpentamin hergestellt werden können, sind insbesondere aus der EP-A 244 616 bekannt. Geht man bei der Herstellung der Additive von Polybuten oder Polyisobuten mit überwiegend mittenständigen Doppelbindungen (meist in der β- und γ-Position) aus, bietet sich der Herstellweg durch Chlorierung und anschließende Aminierung oder durch Oxidation der Doppelbindung mit Luft oder Ozon zur Carbonyl- oder Carboxylverbindung und anschließende Aminierung unter reduktiven (hydrierenden) Bedingungen an. Zur Aminierung können hier Amine, wie z. B. Ammoniak, Monoamine oder die oben genannten Polyamine, eingesetzt werden. Entsprechende Additive auf Basis von Polypropen sind insbesondere in der WO-A 94/24231 beschrieben.
  • Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die Hydrierungsprodukte der Umsetzungsprodukte aus Polyisobutenen mit einem mittleren Polymerisationsgrad P = 5 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A 97/03946 beschrieben sind.
  • Weitere besondere Monoaminogruppen (Da) enthaltende Additive sind die aus Polyisobutenepoxiden durch Umsetzung mit Aminen und nachfolgender Dehydratisierung und Reduktion der Aminoalkohole erhältlichen Verbindungen, wie sie insbesondere in der DE-A 196 20 262 beschrieben sind.
  • Nitrogruppen (Db), gegebenenfalls in Kombination mit Hydroxylgruppen, enthaltende Additive sind vorzugsweise Umsetzungsprodukte aus Polyisobutenen des mittleren Polymerisationsgrades P = 5 bis 100 oder 10 bis 100 mit Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff, wie sie insbesondere in der WO-A96/03367 und in der WO-A 96/03479 beschrieben sind. Diese Umsetzungsprodukte stellen in der Regel Mischungen aus reinen Nitropolyisobutenen (z. B. α,β-Dinitropolyisobuten) und gemischten Hydroxynitropolyisobutenen (z. B. α-Nitro-β-hydroxypolyisobuten) dar.
  • Hydroxylgruppen in Kombination mit Mono- oder Polyaminogruppen (Dc) enthaltende Additive sind insbesondere Umsetzungsprodukte von Polyisobutenepoxiden, erhältlich aus vorzugsweise überwiegend endständige Doppelbindungen aufweisendem Polyisobuten mit Mn = 300 bis 5000 mit Ammoniak, Mono- oder Polyaminen, wie sie insbeson-dere in der EP-A 476 485 beschrieben sind.
  • Carboxylgruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (Dd) enthaltende Additive sind vorzugsweise Copolymere von C2- bis C40-Olefinen mit Maleinsäureanhydrid mit einer Gesamt-Molmasse von 500 bis 20.000, deren Carboxylgruppen ganz oder teilweise zu den Alkalimetall- oder Erdalkalimetallsalzen und ein verbleibender Rest der Carboxylgruppen mit Alkoholen oder Aminen umgesetzt sind. Solche Additive sind insbesondere aus der EP-A 307 815 bekannt. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können, wie in der WO-A 87/01126 beschrieben, mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)-butenaminen oder Polyetheraminen eingesetzt werden.
  • Sulfonsäuregruppen oder deren Alkalimetall- oder Erdalkalimetallsalze (De) enthaltende Additive sind vorzugsweise Alkalimetall- oder Erdalkalimetallsalze eines Sulfobernsteinsäurealkylesters, wie er insbesondere in der EP-A 639 632 beschrieben ist. Derartige Additive dienen hauptsächlich zur Verhinderung von Ventilsitzverschleiß und können mit Vorteil in Kombination mit üblichen Kraftstoffdetergenzien wie Poly(iso)buten-aminen oder Polyetheraminen eingesetzt werden.
  • Polyoxy-C2-C4-alkylengruppierungen (Df) enthaltende Additive sind vorzugsweise Polyether oder Polyetheramine, welche durch Umsetzung von C2- bis C60-Alkanolen, C6- bis C30-Alkandiolen, Mono- oder Di-C2- bis C30-alkylaminen, C1- bis C30-Alkylcyclo-hexanolen oder C1-bis C30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Aminogruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875 , EP-A 356 725 , EP-A 700 985 und US-A 4 877 416 beschrieben. Im Falle von Polyethern erfüllen solche Produkte auch Trägeröleigenschaften. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
  • Carbonsäureestergruppen (Dg) enthaltende Additive sind vorzugsweise Ester aus Mo-no-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, insbesondere solche mit einer Mindestviskosität von 2 mm2/s bei 100 °C, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 C-Atomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des iso-Octanols, iso-Nonanols, isoDecanols und des iso-Tridecanols. Derartige Produkte erfüllen auch Trägeröleigenschaften.
  • Aus Bernsteinsäureanhydrid abgeleitete Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder insbesondere Imidogruppen (Dh) enthaltende Additive sind vorzugsweise entsprechende Derivate von Alkyl- oder Alkenyl-substituiertem Bernsteinsäureanhydrid und insbesondere die entsprechenden Derivate von Polyisobutenylbernsteinsäureanhydrid, welche durch Umsetzung von konventionellem oder hochreaktivem Polyisobuten mit Mn = vorzugsweise 300 bis 5000, besonders bevorzugt 300 bis 3000, stärker bevorzugt 500 bis 2500, noch stärker bevorzugt 700 bis 2500 und insbesondere 800 bis 1500, mit Maleinsäureanhydrid auf thermischem Weg in einer En-Reaktion oder über das chlorierte Polyisobuten erhältlich sind. Bei den Gruppierungen mit Hydroxy- und/oder Amino- und/oder Amido- und/oder Imidogruppen handelt es sich beispielsweise um Carbonsäuregruppen, Säureamide von Monoaminen, Säure-amide von Di- oder Polyaminen, die neben der Amidfunktion noch freie Amingruppen aufweisen, Bernsteinsäurederivate mit einer Säure- und einer Amidfunktion, Carbonsäureimide mit Monoaminen, Carbonsäureimide mit Di- oder Polyaminen, die neben der Imidfunktion noch freie Amingruppen aufweisen, oder Diimide, die durch die Umsetzung von Di- oder Polyaminen mit zwei Bernsteinsäurederivaten gebildet werden. Derartige Kraftstoffadditive sind allgemein bekannt und beispielsweise in den Dokumenten (1) und (2) beschrieben. Bevorzugt handelt es sich um die Umsetzungsprodukte von Alkyl- oder Alkenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen und besonders bevorzugt um die Umsetzungsprodukte von Polyisobutenyl-substituierten Bernsteinsäuren oder Derivaten davon mit Aminen. Von besonderem Interesse sind hierbei Umsetzungsprodukte mit aliphatischen Polyaminen (Polyalkylenimine) wie insbesondere Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Pentaethylenhexamin und Hexaethylenheptamin, welche eine Imidstruktur aufweisen.
  • Durch Mannich-Umsetzung von substituierten Phenolen mit Aldehyden und Mono- oder Polyaminen erzeugte Gruppierungen (Di) enthaltende Additive sind vorzugsweise Umsetzungsprodukte von Polyisobuten-substituierten Phenolen mit Formaldehyd und Mono- oder Polyaminen wie Ethylendiamin, Diethylentriamin, Triethylentetramin, Tetra-ethylenpentamin oder Dimethyl-aminopropylamin. Die Polyisobutenyl-substituierten Phenole können aus konventionellem oder hochreaktivem Polyisobuten mit Mn = 300 bis 5000 stammen. Derartige "Polyisobuten-Mannichbasen" sind insbesondere in der EP-A 831 141 beschrieben.
  • Dem Kraftstoff können ein oder mehrere der genannten Detergenz-Additive in solch einer Menge zugegeben werden, dass die Dosierrate an diesen Detergenz-Additiven vozugsweise 25 bis 2500 Gew.-ppm, insbesondere 75 bis 1500 Gew.-ppm, vor allem 150 bis 1000 Gew.-ppm, beträgt. B2) Trägeröle
  • Mitverwendete Trägeröle können mineralischer oder synthetischer Natur sein. Geeignete mineralische Trägeröle sind bei der Erdölverarbeitung anfallende Fraktionen, wie Brightstock oder Grundöle mit Viskositäten wie beispielsweise aus der Klasse SN 500 bis 2000, aber auch aromatische Kohlenwasserstoffe, paraffinische Kohlenwasserstoffe und Alkoxyalkanole. Brauchbar ist ebenfalls eine als "hydrocrack oil" bekannte und bei der Raffination von Mineralöl anfallende Fraktion (Vakuumdestillatschnitt mit einem Siedebereich von etwa 360 bis 500 °C, erhältlich aus unter Hochdruck katalytisch hydriertem und isomerisiertem sowie entparaffiniertem natürlichen Mineralöl). Ebenfalls geeignet sind Mischungen oben genannter mineralischer Trägeröle.
  • Beispiele für geeignete synthetische Trägeröle sind Polyolefine (Polyalphaolefine oder Polyinternalolefine), (Poly)ester, Poly)alkoxylate, Polyether, aliphatische Polyetheramine, alkylphenolgestartete Polyether, alkylphenolgestartete Polyetheramine und Carbonsäureester langkettiger Alkanole.
  • Beispiele für geeignete Polyolefine sind Olefinpolymerisate mit Mn = 400 bis 1800, vor allem auf Polybuten- oder Polyisobuten-Basis (hydriert oder nicht hydriert).
  • Beispiele für geeignete Polyether oder Polyetheramine sind vorzugsweise Polyoxy-C2- bis C4-alkylengruppierungen enthaltende Verbindungen, welche durch Umsetzung von C2- bis C60-Alkanolen, C6- bis C30-Alkandiolen, Mono- oder Di-C2- bis C30-alkylaminen, C1- bis C30-Alkyl-cyclohexanolen oder C1- bis C30-Alkylphenolen mit 1 bis 30 mol Ethylenoxid und/ oder Propylenoxid und/oder Butylenoxid pro Hydroxylgruppe oder Amino-gruppe und, im Falle der Polyetheramine, durch anschließende reduktive Aminierung mit Ammoniak, Monoaminen oder Polyaminen erhältlich sind. Derartige Produkte werden insbesondere in der EP-A 310 875 , EP-A 356 725 , EP-A 700 985 und der US-A 4,877,416 beschrieben. Beispielsweise können als Polyetheramine Poly-C2- bis C6-Alkylenoxidamine oder funktionelle Derivate davon verwendet werden. Typische Beispiele hierfür sind Tridecanol- oder Isotridecanolbutoxylate, Isononylphenolbutoxylate sowie Polyisobutenolbutoxylate und -propoxylate sowie die entsprechenden Umsetzungsprodukte mit Ammoniak.
  • Beispiele für Carbonsäureester langkettiger Alkanole sind insbesondere Ester aus Mono-, Di- oder Tricarbonsäuren mit langkettigen Alkanolen oder Polyolen, wie sie insbesondere in der DE-A 38 38 918 beschrieben sind. Als Mono-, Di- oder Tricarbonsäuren können aliphatische oder aromatische Säuren eingesetzt werden, als Esteralkohole bzw. -polyole eignen sich vor allem langkettige Vertreter mit beispielsweise 6 bis 24 Kohlenstoffatomen. Typische Vertreter der Ester sind Adipate, Phthalate, iso-Phthalate, Terephthalate und Trimellitate des Isooctanols, Isononanols, Isodecanols und des Iso-tridecanols, z. B. Di-(n- oder Isotridecyl)phthalat.
  • Weitere geeignete Trägerölsysteme sind beispielsweise in der DE-A 38 26 608 , DE-A 41 42 241 , DE-A 43 09 074 , EP-A 452 328 und der EP-A 548 617 beschrieben.
  • Beispiele für besonders geeignete synthetische Trägeröle sind alkoholgestartete Polyether mit etwa 5 bis 35, vorzugsweise etwa 5 bis 30, besonders bevorzugt 10 bis 30 und insbesondere 15 bis 30 C3- bis C6-Alkylenoxideinheiten, z. B. Propylenoxid-, n-Butylenoxid- und Isobutylenoxid-Einheiten oder Gemischen davon, pro Alkoholmolekül. Nichtlimitierende Beispiele für geeignete Starteralkohole sind langkettige Alkanole oder mit langkettigem Alkyl-substituierte Phenole, wobei der langkettige Alkylrest insbesondere für einen geradkettigen oder verzweigten C6-bis C18-Alkylrest steht. Als besondere Beispiele sind zu nennen Tridecanol und Nonylphenol. Besonders bevorzugte alkoholgestartete Polyether sind die Umsetzungsprodukte (Polyveretherungsprodukte) von einwertigen aliphatischen C6- bis C18-Alkoholen mit C3- bis C6-Alkylenoxiden. Beispiele für einwertige aliphatische C6-C18-Alkohole sind Hexanol, Heptanol, Octanol, 2-Ethyl-hexanol, Nonylalkohol, Decanol, 3-Propylheptanol, Undecanol, Dodecanol, Tridecanol, Tetradecanol, Pentadecanol, Hexadecanol, Octadecanol und deren Konstitutions- und Stellungsisomere. Die Alkohole können sowohl in Form der reinen Isomere als auch in Form technischer Gemische eingesetzt werden. Ein besonders bevorzugter Alkohol ist Tridecanol. Beispiele für C3- bis C6-Alkylenoxide sind Propylenoxid, wie 1,2-Propylen-oxid, Butylenoxid, wie 1,2-Butylenoxid, 2,3-Butylenoxid, Isobutylenoxid oder Tetrahydrofuran, Pentylenoxid und Hexylenoxid. Besonders bevorzugt sind hierunter C3- bis C4-Alkylenoxide, d.h. Propylenoxid wie 1,2-Propylenoxid und Butylenoxid wie 1,2-Buty-lenoxid, 2,3-Butylenoxid und Isobutylenoxid. Speziell verwendet man Butylenoxid.
  • Weitere geeignete synthetische Trägeröle sind alkoxylierte Alkylphenole, wie sie in der DE-A 10 102 913 beschrieben sind.
  • Besondere Trägeröle sind synthetische Trägeröle, wobei die zuvor beschriebenen alkoholgestarteten Polyether besonders bevorzugt sind.
  • Das Trägeröl bzw. das Gemisch verschiedener Trägeröle wird dem Kraftstoff in einer Menge von vorzugsweise 1 bis 1000 Gew.-ppm, besonders bevorzugt von 10 bis 500 Gew.-ppm und insbesondere von 20 bis 100 Gew.-ppm zugesetzt.
  • B3) Kaltfließverbesserer
  • Geeignete Kaltfließverbesserer sind im Prinzip alle organischen Verbindungen, welche in der Lage sind, das Fließverhalten von Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen in der Kälte zu verbessern. Zweckmäßigerweise müssen sie eine ausreichende Öllöslichkeit aufweisen. Insbesondere kommen hierfür die üblicherweise bei Mitteldestillaten aus fossilem Ursprung, also bei üblichen mineralischen Dieselkraftstoffen, eingesetzten Kaltfließverbesserer ("middle distillate flow improvers", "MDFI") in Betracht. Jedoch können auch organische Verbindungen verwendet werden, die beim Einsatz in üblichen Dieselkraftstoffen zum Teil oder überwiegend die Eigenschaften eines Wax Anti-Settling Additivs ("WASA") aufweisen. Auch können sie zum Teil oder überwiegend als Nukleatoren wirken. Es können aber auch Mischungen aus als MDFI wirksamen und/oder als WASA wirksamen und/oder als Nukleatoren wirksamen organischen Verbindungen eingesetzt werden.
  • Typischerweise wird der Kaltfließverbesserer ausgewählt aus:
    • (K1) Copolymeren eines C2- bis C40-Olefins mit wenigstens einem weiteren ethylenisch ungesättigten Monomer;
    • (K2) Kammpolymeren;
    • (K3) Polyoxyalkylenen;
    • (K4) polaren Stickstoffverbindungen;
    • (K5) Sulfocarbonsäuren oder Sulfonsäuren oder deren Derivaten; und
    • (K6) Poly(meth)acrylsäureestern.
  • Es können sowohl Mischungen verschiedener Vertreter aus einer der jeweiligen Klassen (K1) bis (K6) als auch Mischungen von Vertretern aus verschiedenen Klassen (K1) bis (K6) eingesetzt werden.
  • Geeignete C2- bis C40-Olefin-Monomere für die Copolymeren der Klasse (K1) sind beispielsweise solche mit 2 bis 20, insbesondere 2 bis10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer Kohlenstoff-Kohlenstoff-Dop-pelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (α-Olefine) als auch intern angeordnet sein kann. Bevorzugt sind jedoch α-Olefine, besonders bevorzugt α-Olefine mit 2 bis 6 Kohlenstoffatomen, beispielsweise Propen, 1-Buten, 1-Penten, 1-Hexen und vor allem Ethylen.
  • Bei den Copolymeren der Klasse (K1) ist das wenigstens eine weitere ethylenisch ungesättigte Monomer vorzugsweise ausgewählt unter Carbonsäurealkenylestern, (Meth)Acrylsäureestern und weiteren Olefinen.
  • Werden weitere Olefine mit einpolymerisiert, sind dies vorzugsweise höhermolekulare als das oben genannte C2- bis C40-Olefin-Basismonomere. Setzt man beispielsweise als Olefin-Basismonomer Ethylen oder Propen ein, eignen sich als weitere Olefine insbesondere C10- bis C40-α-0lefine. Weitere Olefine werden in den meisten Fällen nur dann mit einpolymerisiert, wenn auch Monomere mit Carbonsäureester-Funktionen eingesetzt werden.
  • Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit C1- bis C20-Alkanolen, insbesondere C1- bis C10-Alkanolen, vor allem mit Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, sec.-Butanol, Isobutanol, tert.-Butanol, Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, Nonanol und Decanol sowie Strukturisomeren hiervon.
  • Geeignete Carbonsäurealkenylester sind beispielsweise C2- bis C14-Alkenylester, z.B. die Vinyl- und Propenylester, von Carbonsäuren mit 2 bis 21 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der α-Position zur Carboxylgruppe befindet, wobei das α-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear.
  • Beispiele für geeignete Carbonsäurealkenylester sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäurevinylester, Neodecansäurevinylester und die entsprechenden Propenyl-ester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Carbonsäurealkenylester ist Vinylacetat; typische hieraus resultierende Copolymere der Gruppe (K1) sind die mit am häufigsten eingesetzten Ethylen-Vinylacetat-Copolymere ("EVA").
  • Besonders vorteilhaft einsetzbare Ethylen-Vinylacetat-Copolymere und ihre Herstellung sind in der WO 99/29748 beschrieben.
  • Als Copolymere der Klasse (K1) sind auch solche geeignet, die zwei oder mehrere voneinander verschiedene Carbonsäurealkenylester einpolymerisiert enthalten, wobei diese sich in der Alkenylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Carbonsäurealkenylester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten.
  • Auch Terpolymere aus einem C2- bis C40-α-0lefin, einem C1- bis C20-Alkylester einer ethylenisch ungesättigten Monocarbonsäure mit 3 bis 15 Kohlenstoffatomen und einem C2- bis C14-Alkenylester einer gesättigten Monocarbonsäure mit 2 bis 21 Kohlenstoffatomen sind als Copolymere der Klasse (K1) geeignet. Derartige Terpolymere sind in der WO 2005/054314 beschrieben. Ein typisches derartiges Terpolymer ist aus Ethylen, Acrylsäure-2-ethylhexylester und Vinylacetat aufgebaut.
  • Das wenigstens eine oder die weiteren ethylenisch ungesättigten Monomeren sind in den Copolymeren der Klasse (K1) in einer Menge von vorzugsweise 1 bis 50 Gew.-%, insbesondere von 10 bis 45 Gew.-% und vor allem von 20 bis 40 Gew.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert. Der gewichtsmäßige Hauptanteil der Monomereinheiten in den Copolymeren der Klasse (K1) stammt somit in der Regel aus den C2- bis C40-Basis-Olefinen.
  • Die Copolymere der Klasse (K1) weisen vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20.000, besonders bevorzugt von 1000 bis 10.000 und insbesondere von 1000 bis 8000 auf.
  • Typische Kammpolymere der Komponente (K2) sind beispielsweise durch die Copolymerisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem α-Olefin oder einem ungesättigten Ester wie Vinylacetat, und anschließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere geeignete Kammpolymere sind Copolymere von α-Olefinen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Geeignete Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethern geeignete Kammpolymere. Als Komponente der Klasse (K2) geeignete Kammpolymere sind beispielsweise auch solche, die in der WO 2004/035715 und in "Comb-Like Polymers. Structure and Properties", N. A. Plate und V. P. Shibaev, J. Poly. Sci. Macromolecular Revs. 8, Seiten 117 bis 253 (1974)" beschrieben sind. Auch Gemische von Kammpolymeren sind geeignet.
  • Als Komponente der Klasse (K3) geeignete Polyoxyalkylene sind beispielsweise Polyoxyalkylenester, Polyoxyalkylenether, gemischte Polyoxyalkylenesterether und Gemische davon. Bevorzugt enthalten diese Polyoxyalkylenverbindungen wenigstens eine, vorzugsweise wenigstens zwei lineare Alkylgruppen mit jeweils 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylengruppe mit einem zahlenmittleren Molekulargewicht von bis zu 5000. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP-A 061 895 sowie in der US 4 491 455 beschrieben. Besondere Polyoxyalkylenverbindungen basieren auf Polyethylenglykolen und Polypropylenglykolen mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Weiterhin sind Polyoxyalkylenmono- und -diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen wie Stearinsäure oder Behensäure geeignet.
  • Als Komponente der Klasse (K4) geeignete polare Stickstoffverbindungen können sowohl ionischer als auch nicht ionischer Natur sein und besitzen vorzugsweise wenigstens einen, insbesondere wenigstens zwei Substituenten in Form eines tertiären Stickstoffatoms der allgemeinen Formel >NR7, worin R7 für einen C8- bis C40-Kohlenwas-serstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Beispiele für solche Stickstoffverbindungen sind Ammoniumsalze und/oder Amide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgruppen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen C8- bis C40-Alkylrest. Zur Herstellung der genannten polaren Stickstoffverbindungen geeignete primäre Amine sind beispielsweise Octylamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetradecylamin und die höheren linearen Homologen, hierzu geeignete sekundäre Amine sind beispielsweise Dioctadecylamin und Methylbehenylamin. Geeignet sind hierzu auch Amingemische, insbesondere großtechnisch zugängliche Amingemische wie Fettamine oder hydrierte Tallamine, wie sie beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6. Auflage, im Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1,2-dicarbonsäure, Cyclohexen-1,2-dicarbonsäure, Cyclopentan-1,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Terephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
  • Insbesondere ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt aus mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20-Carbonsäuren) mit primären oder sekundären Aminen. Die diesem Umsetzungsprodukt zugrundeliegenden mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20-Carbonsäuren) enthalten vorzugsweise mindestens 3 Carboxylgruppen, insbesondere 3 bis 12, vor allem 3 bis 5 Carboxylgruppen. Die Carbonsäure-Einheiten in den Polycarbonsäuren weisen vorzugsweise 2 bis 10 Kohlenstoffatome auf, insbesondere sind es Essigsäure-Einheiten. Die Carbonsäure-Einheiten sind in geeigneter Weise zu den Polycarbonsäuren verknüpft, meist über ein oder mehrere Kohlenstoff- und/oder Stickstoffatome. Vorzugsweise sind sie an tertiäre Stickstoffatome angebunden, die im Falle mehrerer Stickstoffatome über Kohlenwasserstoffketten verbunden sind.
  • Vorzugsweise ist die Komponente der Klasse (K4) ein öllösliches Umsetzungsprodukt auf Basis von mindestens eine tertiäre Aminogruppe aufweisenden Poly(C2- bis C20-Carbonsäuren) der allgemeinen Formel IIa oder IIb
    Figure imgb0001
    Figure imgb0002
    in denen die Variable A eine geradkettige oder verzweigte C2- bis C6-Alkylengruppe oder die Gruppierung der Formel III
    Figure imgb0003
    darstellt und die Variable B eine C1- bis C19-Alkylengruppe bezeichnet. Die Verbindungen der allgemeinen Formel IIa und IIb weisen insbesondere die Eigenschaften eines WASA auf.
  • Weiterhin ist das bevorzugte öllösliche Umsetzungsprodukt der Komponente (K4), insbesondere das der allgemeinen Formel IIa oder IIb, ein Amid, ein Amidammoniumsalz oder ein Ammoniumsalz, in dem keine, eine oder mehrere Carbonsäuregruppen in Amidgruppen übergeführt sind.
  • Geradkettige oder verzweigte C2- bis C6-Alkylengruppen der Variablen A sind beispielsweise 1,1-Ethylen, 1,2-Propylen, 1,3-Propylen, 1,2-Butylen, 1,3-Butylen, 1,4-Bu-tylen, 2-Methyl-1,3-propylen, 1,5-Pentylen, 2-Methyl-1,4-butylen, 2,2-Dimethyl-1,3-pro-pylen, 1,6-Hexylen (Hexamethylen) und insbesondere 1,2-Ethylen. Vorzugsweise umfasst die Variable A 2 bis 4, insbesondere 2 oder 3 Kohlenstoffatome.
  • C1- bis C19-Alkylengruppen der Variablen B sind vor beispielsweise 1,2-Ethylen, 1,3-Propylen, 1,4-Butylen, Hexamethylen, Octamethylen, Decamethylen, Dodecamethylen, Tetradecamethylen, Hexadecamethylen, Octadecamethylen, Nonadecamethylen und insbesondere Methylen. Vorzugsweise umfasst die Variable B 1 bis 10, insbesondere 1 bis 4 Kohlenstoffatome.
  • Die primären und sekundären Amine als Umsetzungspartner für die Polycarbonsäuren zur Bildung der Komponente (K4) sind üblicherweise Monoamine, insbesondere aliphatische Monoamine. Diese primären und sekundären Amine können aus einer Vielzahl von Aminen ausgewählt sein, die - gegebenenfalls miteinander verbundene - Kohlenwasserstoffreste tragen.
  • Meist sind diese den öllöslichen Umsetzungsprodukten der Komponente (K4) zugrundeliegenden Amine sekundären Amine und weisen die allgemeine Formel HN(R8)2 auf, in der die beiden Variablen R8 unabhängig voneinander jeweils geradkettige oder verzweigte C10- bis C30-Alkylreste, insbesondere C14- bis C24-Alkylreste bedeuten. Diese längerkettigen Alkylreste sind vorzugsweise geradkettig oder nur in geringem Grade verzweigt. In der Regel leiten sich die genannten sekundären Amine hinsichtlich ihrer längerkettigen Alkylreste von natürlich vorkommenden Fettsäuren bzw. von deren Derivaten ab. Vorzugsweise sind die beiden Reste R8 gleich.
  • Die genannten sekundären Amine können mittels Amidstrukturen oder in Form der Ammoniumsalze an die Polycarbonsäuren gebunden sein, auch kann nur ein Teil als Amidstrukturen und ein anderer Teil als Ammoniumsalze vorliegen. Vorzugsweise liegen nur wenige oder keine freien Säuregruppen vor. Vorzugsweise liegen die öllöslichen Umsetzungsprodukte der Komponente (K4) vollständig in Form der Amidstrukturen vor.
  • Typische Beispiele für derartige Komponenten (K4) sind Umsetzungsprodukte der Nitrilotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1,2-diamintetra-essigsäure mit jeweils 0,5 bis 1,5 Mol pro Carboxylgruppe, insbesondere 0,8 bis 1,2 Mol pro Carboxylgruppe, Dioleylamin, Dipalmitinamin, Dikokosfettamin, Distearylamin, Dibehenylamin oder insbesondere Ditalgfettamin. Eine besonders bevorzugte Komponente (K4) ist das Umsetzungsprodukt aus 1 Mol Ethylendiamintetraessigsäure und 4 Mol hydriertem Ditalgfettamin.
  • Als weitere typische Beispiele für die Komponente (K4) seien die N,N-Dialkylammoni-umsalze von 2-N',N'-Dialkylamidobenzoaten, beispielsweise das Reaktionsprodukt aus 1 Mol Phthalsäureanhydrid und 2 Mol Ditalgfettamin, wobei letzteres hydriert oder nicht hydriert sein kann, und das Reaktionsprodukt von 1 Mol eines Alkenylspirobislactons mit 2 Mol eines Dialkylamins, beispielsweise Ditalgfettamin und/oder Talgfettamin, wobei die beiden letzteren hydriert oder nicht hydriert sein können, genannt.
  • Weitere typische Strukturtypen für die Komponente der Klasse (K4) sind cyclische Verbindungen mit tertiären Aminogruppen oder Kondensate langkettiger primärer oder sekundärer Amine mit carbonsäurehaltigen Polymeren, wie sie in der WO 93/18115 beschrieben sind.
  • Als Kaltfließverbesserer der Komponente der Klasse (K5) geeignete Sulfocarbonsäuren, Sulfonsäuren oder deren Derivate sind beispielsweise die öllöslichen Carbonsäureamide und Carbonsäureester von ortho-Sulfobenzoesäure, in denen die Sulfonsäurefunktion als Sulfonat mit alkylsubstituierten Ammoniumkationen vorliegt, wie sie in der EP-A 261 957 beschrieben werden.
  • Als Kaltfließverbesserer der Komponente der Klasse (K6) geeignete Poly(meth)acryl-säureester sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäure-estern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestern, die sich bezüglich des einkondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50.000 bis 500.000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäureestern von gesättigten C14- und C15-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben.
  • Dem Mitteldestillat-Kraftstoff bzw. Dieselkraftstoff wird der Kaltfließverbesserer bzw. das Gemisch verschiedener Kaltfließverbesserer in einer Gesamtmenge von vorzugsweise 10 bis 5000 Gew.-ppm, besonders bevorzugt von 20 bis 2000 Gew.-ppm, stärker bevorzugt von 50 bis 1000 Gew.-ppm und insbesondere von 100 bis 700 Gew.-ppm, z.B. von 200 bis 500 Gew.-ppm, zugegeben.
  • B4) Schmierfähigkeitsverbesserer
  • Geeignete Schmierfähigkeitsverbesserer (Lubricity Improver bzw. Friction Modifier) basieren üblicherweise auf Fettsäuren oder Fettsäureestern. Typische Beispiele sind Tallölfettsäure, wie beispielsweise in der WO 98/004656 beschrieben, und Glycerinmonooleat. Auch die in der US 6 743 266 B2 beschriebenen Reaktionsprodukte aus natürlichen oder synthetischen Ölen, beispielsweise Triglyceriden, und Alkanolaminen sind als solche Schmierfähigkeitsverbesserer geeignet.
  • B5) Andere Korrosionsinhibitoren als das beschriebene Copolymer
  • Geeignete Korrosionsinhibitoren sind z.B. Bernsteinsäureester, vor allem mit Polyolen, Fettsäurederivate, z.B. Ölsäureester, oligomerisierte Fettsäuren, substituierte Ethanol-amine und Produkte, die unter dem Handelsnamen RC 4801 (Rhein Chemie Mannheim, Deutschland), Irgacor® L12 (BASF SE) oder HiTEC 536 (Ethyl Corporation) vertrieben werden.
  • B6) Demulgatoren
  • Geeignete Demulgatoren sind z.B. die Alkali- oder Erdalkalisalze von Alkyl-substituier-ten Phenol- und Naphthalinsulfonaten und die Alkali- oder Erdalkalisalze von Fettsäuren, außerdem neutrale Verbindungen wie Alkoholalkoxylate, z.B. Alkoholethoxylate, Phenolalkoxylate, z.B. tert-Butylphenolethoxylat oder tert-Pentylphenolethoxylat, Fettsäuren, Alkylphenole, Kondensationsprodunkte von Ethylenoxid (EO) und Propylenoxid (PO), z.B. auch in Form von EO/PO-Blockcopolymeren, Polyethylenimine oder auch Polysiloxane.
  • B7) Dehazer
  • Geeignete Dehazer sind z.B. alkoxylierte Phenol-Formaldehyd-Kondensate, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte NALCO 7D07 (Nalco) und TOLAD 2683 (Petrolite).
  • B8) Antischaummittel
  • Geeignete Antischaummittel sind z.B. Polyether-modifizierte Polysiloxane, wie beispielsweise die unter dem Handelsnamen erhältlichen Produkte TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) und RHODOSIL (Rhone Poulenc).
  • B9) Cetanzahlverbesserer
  • Geeignete Cetanzahlverbesserer sind z.B. aliphatische Nitrate wie 2-Ethylhexylnitrat und Cyclohexylnitrat sowie Peroxide wie Di-tert-butylperoxid.
  • B10) Antioxidantien
  • Geeignete Antioxidantien sind z.B. substituierte Phenole, wie 2,6-Di-tert.-butylphenol und 6-Di-tert.-butyl-3-methylphenol sowie Phenylendiamine wie N,N'-Di-sec.-butyl-p-phenylendiamin.
  • B11) Metalldeaktivatoren
  • Geeignete Metalldeaktivatoren sind z.B. Salicylsäurederivate wie N,N'-Disalicyliden-1,2-propandiamin.
  • B12) Lösungsmittel
  • Geeignete sind z.B. unpolare organische Lösungsmittel wie aromatische und aliphatische Kohlenwasserstoffe, beispielsweise Toluol, Xylole, "white spirit" und Produkte, die unter dem Handelsnamen SHELLSOL (Royal Dutch/Shell Group) und EXXSOL (ExxonMobil) vertrieben werden, sowie polare organische Lösungsmittel, bei-spielsweise Alkohole wie 2-Ethylhexanol, Decanol und Isotridecanol. Derartige Lösungsmittel gelangen meist zusammen mit den vorgenannten Additiven und Co-Additi-ven, die sie zur besseren Handhabung lösen oder verdünnen sollen, in den Dieselkraftstoff.
  • C) Kraftstoffe
  • Die erfindungsgemäße Verwendung betrifft im Prinzip jegliche Kraftstoffe, bevorzugt Diesel- und Ottokraftstoffe.
  • Bei Mitteldestillat-Kraftstoffen wie Dieselkraftstoffen oder Heizölen handelt es sich vorzugsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400°C haben. Dies sind meist Destillate mit einem 95%-Punkt bis zu 360°C oder auch darüber hinaus. Dies können aber auch so genannte "Ultra Low Sulfur Diesel" oder "City Diesel" sein, gekennzeichnet durch einen 95%-Punkt von beispielsweise maximal 345°C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von beispielsweise 285°C und einem Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen mineralischen Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen sind auch solche, die durch Kohlevergasung oder Gasverflüssigung ["gas to liquid" (GTL)-Kraftstoffe] oder durch Biomasse-Verflüssigung ["biomass to liquid" (BTL)-Kraftstoffe] erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Mitteldestillat-Kraftstoffe bzw. Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Biodiesel oder Bioethanol.
  • Die Qualitäten der Heizöle und Dieselkraftstoffe sind beispielsweise in DIN 51603 und EN 590 näher festgelegt (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Band A12, S. 617 ff.).
  • Die erfindungsgemäße Verwendung in Mitteldestillat-Kraftstoffen aus fossilem, pflanzlichem oder tierischem Ursprung, die im wesentlichen Kohlenwasserstoffmischungen darstellen, betrifft auch Mischungen aus solchen Mitteldestillaten mit Biobrennstoffölen (Biodiesel). Derartige Mischungen werden von dem Begriff "Mitteldestillat-Kraftstoff" umfasst. Sie sind handelsüblich und enthalten meist die Biobrennstofföle in untergeordneten Mengen, typischerweise in Mengen von 1 bis 30 Gew.-% insbesondere von 3 bis 10 Gew.-%, bezogen auf die Gesamtmenge aus Mitteldestillat fossilen, pflanzlichem oder tierischen Ursprungs und Biobrennstofföl.
  • Biobrennstofföle basieren in der Regel auf Fettsäureestern, vorzugsweise im wesentlichen auf Alkylester von Fettsäuren, die sich von pflanzlichen und/oder tierischen Ölen und/oder Fetten ableiten. Unter Alkylestern werden üblicherweise Niedrigalkylester, insbesondere C1- bis C4-Alkylester, verstanden, die durch Umesterung der in pflanzlichen und/oder tierischen Ölen und/oder Fetten vorkommenden Glyceride, insbesondere Triglyceride, mittels Niedrigalkoholen, beispielsweise Ethanol oder vor allem Methanol ("FAME"), erhältlich sind. Typische Niedrigalkylester auf Basis von pflanzlichen und/oder tierischen Ölen und/oder Fetten, die als Biobrennstofföl oder Komponenten hierfür Verwendung finden, sind beispielsweise Sonnenblumenmethylester, Palmölmethylester ("PME"), Sojaölmethylester ("SME") und insbesondere Rapsölmethylester ("RME").
  • Besonders bevorzugt handelt es sich bei den Mitteldestillat-Kraftstoffen bzw. Dieselkraftstoffen um solche mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel.
  • Als Ottokraftstoffe kommen alle handelsüblichen Ottokraftstoffzusammensetzungen in Betracht. Als typischer Vertreter soll hier der marktübliche Eurosuper Grundkraftstoff gemäß EN 228 genannt werden. Weiterhin sind auch Ottokraftstoffzusammensetzungen der Spezifikation gemäß WO 00/47698 mögliche Einsatzgebiete für die vorliegende Erfindung.
  • Die nachfolgenden Beispiele sollen die vorliegende Erfindung erläutern, ohne sie zu beschränken.
  • Beispiele GPC-Analytik
  • Wenn nicht anders angegeben wurde das massenmittlere Mw und zahlenmittlere Molekulargewicht Mn der Polymere mittels Gel-Permeations-Chromatographie gemessen (GPC). GPC-Trennung erfolgte über zwei PLge Mixed B-Säulen (Agilent) in Tetrahydrofuran bei 35 °C. Die Kalibrierung erfolgte mittels eines engverteilten Polystyrolstandards (Firma PSS, Deutschland) mit Molekulargewicht 162-50400 Da. Hexylbenzol wurde als Marker für niedriges Molekulargewicht verwendet.
  • Herstellungsbeispiele Allgemeine Arbeitsvorschrift
  • In einem Reaktor mit Ankerrührer wurde das Olefin oder die Mischung aus Olefinen mit oder ohne Lösungsmittel (als Massepolymerisation) vorgelegt. Die Mischung wurde unter einem Stickstoffstrom und unter Rühren auf die angegebene Temperatur erhitzt. Hierzu gab man den angegebenen Radikalstarter (optional im gleichen Lösungsmittel verdünnt) und geschmolzenes Maleinsäureanhydrid (1 Äquivalent bezogen auf Olefinmonomer). Der Reaktionsansatz wurde bei gleicher Temperatur für die angegebene Reaktionszeit gerührt und dann abgekühlt.
  • Falls eine Hydrolyse erwünscht ist, wurde anschließend in der angegebenen Menge Wasser zugegeben und entweder bei 95°C, 10-14 h oder unter Druck bei 110°C 3 h gerührt.
  • Synthesebeispiel 1
  • In einem 2 L Glasreaktor mit Ankerrührer wurden eine Mischung aus C20-C24 Olefinen (363,2 g, Durchschnittmolmasse 296 g/mol) und Solvesso 150 (231,5 g, DHC Solvent Chemie GmbH, Speldorf) vorgelegt. Die Mischung wurde im Stickstoffstrom und unter Rühren auf 160 °C erhitzt. Hierzu gab man innerhalb 5 h eine Lösung von di-tertButylperoxid (29,6 g, Fa. Akzo Nobel) in Solvesso 150 (260,5 g) und geschmolzenes Maleinsäureanhydrid (120,3 g). Der Reaktionsansatz wurde 1 h bei 160 °C gerührt und dann abgekühlt. Der Wirkstoffgehalt betrug etwa 40%.
  • Das GPC (in THF) ergab für das Copolymer ein Mn = 1210 g/mol, Mw = 2330 g/mol, was einer Dispersität von 1,9 entspricht.
  • Synthesebeispiel 2 (Vergleich)
  • Dem Produkt aus Synthesebeispiel 1 wurde bei einer Temperatur von 95 °C Wasser (19,9 g) innerhalb 3 h zugegeben und anschliessend 11 h weiter gerührt. Die Säurezahl betrug 104 mg KOH/g
  • Anwendungsbeispiele 1) Calciumverträglichkeitstest:
  • 100 ml Motorenöl (Shell Helix®, Figur 1, Becherglas ganz links, mit einem Ca-Gehalt von 1500 ppm, Mg-Gehalt 1100 ppm und Zn-Gehalt 1300 ppm) wurden im Becherglas auf 70°C erhitzt und anschließend 1 ml Korrosionsinhibitor zugesetzt (Figur 1 oben). Sollte die Lösung noch klar sein, gibt man weitere 1 ml Inhibitor zu (Figur 1 unten). Wenn sich die Lösung trübt, gilt der Test als nicht bestanden (z.B. Figur 1, mittleres Becherglas). Figur 1 zeigt das mit Copolymer gemäß Synthesebeispiel 1 (40%ig in Solvent Naphtha) versetzte, klar bleibende Öl rechts. Im mittleren Becherglas wurde Dimerfettsäure (dimere Ölsäure; CAS: 61788-89-4, 20%ig in Solvent Naphtha) eingesetzt. Man erkennt eine deutlich sichtbare Trübung.
  • Aus den obigen Synthesebeispielen wurden durch Vermischen mit Polyisobutenamin (Molmasse 1000), Polypropylenglykol als Trägeröl und Lösungsmittel und Dehazer die folgenden Additivformulierungen hergestellt und in die Anwendungsbeispiele eingesetzt (Zusammensetzungen in Gewichtsteilen):
    Angaben in mg/kg Polyisobutenamin Trägeröl Lösungsmittel/Dehazer Korrosionsschutz
    Formulierung 1 (Vergleich) 248 195 47 10 (Dimerfettsäure)
    Formulierung 2 (Vergleich) 248 195 47 10 (Synthesebeispiel 2)
    Formulierung 3 248 195 47 10 (Synthesebeispiel 1)
  • 2) Stahlkorrosionstest nach ASTM D 665 B (Benzin)
  • Als Kraftstoff wurde handelsüblicher Ottokraftstoff E0 CEC RF-12-09 der Firma Haltermann eingesetzt und mit einem Additivpaket aus Polyisobutenamin und Trägeröl additiviert wie oben angegeben. Zur Formulierung wurden die in der folgenden Tabelle angegebenen Korrosionsinhibitoren (jeweils 40%ig in Solvent Naphtha) zugesetzt und einem Korrosionstest nach ASTM D 665 B unterworfen.
  • Als Vergleich wurde Dimerfettsäure als Korrosionsinhibitor (dimere Ölsäure; CAS: 61788-89-4, 40%ig in Solvent Naphtha) eingesetzt.
    Formulierung Dosierung [mg/kg] Korrosionsschutz NACE-Rating
    Haltermann E0 CEC RF-12-09 unadditivierter Kraftstoff - D
    Formulierung 1 (Vergleich) 500 10 mg/kg Dimerfettsäure B++
    Formulierung 2 (Vergleich) 500 10 mg/kg Synthesebeispiel 2 B++
    Formulierung 3 500 10 mg/kg Synthesebeispiel 1 B+
  • Die Bewertung erfolgte folgendermaßen:
    • A 100% rostfrei
    • B++ 0,1 % oder weniger der gesamten Oberfläche verrostet
    • B+ 0,1 % bis 5% der gesamten Oberfläche verrostet
    • B 5 % bis 25% der gesamten Oberfläche verrostet
    • C 25 % bis 50% der gesamten Oberfläche verrostet
    • D 50 % bis 75% der gesamten Oberfläche verrostet
    • E 75 % bis 100% der gesamten Oberfläche verrostet
  • Man sieht, daß mit dem erfindungsgemäßen Copolymer ähnlich gute Ergebnisse erzielt werden, wie mit den Vergleichsverbindungen.
  • 3) Stahlkorrosionstest nach ASTM D 665 B (Diesel)
  • Als Kraftstoff wurde handelsüblicher Dieselkraftstoff aus Südamerika eingesetzt und mit einem Additivpaket versetzt wie folgt:
    Angaben in mg/kg Detergenz/ Anti-Schaummittel/ Lösungsmittel/Dehazer Korrosionsschutz
    Formulierung 5 (Vergleich) 96 5 (Vergleich)
    Formulierung 6 96 12,5 (Synthesebeispiel 1)
  • Bei dem Korrosionsschutzmittel aus Formulierung 5 handelt es sich als Vergleich um 2-(8-Heptadecen-1-yl)-4,5-dihydro-1H-Imidazol-1-ethanol, CAS-Nr. 95-38-5, Wirkstoffgehalt 90 - 100%.
  • In der erfindungsgemäßen Formulierung 6 wurde das Produkt aus Synthesebeispiel 1 (40% in Solvesso 150) eingesetzt.
  • Die in der folgenden Tabelle angegebenen Formulierungen wurden einem Korrosionstest nach ASTM D 665 B unterworfen.
    Formulierung Dosierung [mg/kg] Korrosionsschutz NACE-Rating
    Formulierung 4 unadditivierter Testkraftstoff aus Südamerika - E
    Formulierung 5 (Vergleich) 101 2-(8-Heptadecen-1-yl)-4,5-dihydro-1H-Imidazol-1-ethanol C
    Formulierung 6 108,5 Synthesebeispiel 1 C
  • Man sieht, daß mit dem erfindungsgemäßen Copolymer ähnlich gute Ergebnisse erzielt werden, wie mit der Vergleichsverbindung.

Claims (15)

  1. Verwendung von Copolymeren, erhältlich durch
    - in einem ersten Reaktionsschritt (I) Copolymerisation von
    (A)mindestens einer ethylenisch ungesättigten Mono- oder Dicarbonsäure oder deren Derivate, ausgewählt aus der Gruppe bestehend aus
    - Anhydride in monomerer oder polymerer Form,
    - Mono-oder Dialkylestern, sowie
    - gemischten Estern,
    (B)mindestens einem α-Olefin mit von mindestens 12 bis zu einschließlich 30 Kohlenstoffatomen,
    (C)optional mindestens einem weiteren, mindestens 4 Kohlenstoffatome aufweisenden, aliphatischen oder cycloaliphatischen Olefin, das ein anderes als (B) ist und
    (D)optional eines oder mehrerer weiterer copolymerisierbarer Monomere, die verschieden von den Monomeren (A), (B) und (C) sind, ausgewählt aus der Gruppe bestehend aus
    (Da) Vinylestern,
    (Db) Vinylethern,
    (Dc) (Meth)acrylsäureestern von Alkoholen, die mindestens 5 Kohlenstoffatome aufweisen,
    (Dd) Allylalkoholen oder deren Ether,
    (De) N-Vinylverbindungen, ausgewählt aus der Gruppe bestehend aus Vinylverbindungen von mindestens ein Stickstoffatom enthaltenden Heterocyclen, N-Vinylamide oder N-Vinyllactame,
    (Df) ethylenisch ungesättigte Aromaten
    (Dg) α,β-ethylenisch ungesättigte Nitrilen,
    (Dh) (Meth)acrylsäureamiden und
    (Di) Allylaminen,
    gefolgt von
    - in einem zweiten optionalen Reaktionsschritt (II) teilweiser Hydrolyse der im aus (I) erhaltenen Copolymer enthaltenen Anhydridfunktionalitäten und/oder teilweiser Verseifung von im aus (I) erhaltenen Copolymer enthaltenen Carbonsäureesterfunktionalitäten, mit der Maßgabe, daß mehr als 90% der enthaltenen Anhydrid- und Carbonsäureesterfunktionalitäten nach dem Reaktionsschritt (II) intakt bleiben,
    als Korrosionsinhibitoren in Kraftstoffen, die einen Gehalt an Alkali- und/oder Erdalkalimetallen und/oder Zink von mindestens 0,1 Gew.ppm aufweisen.
  2. Verwendung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Alkali- und/oder Erdalkalimetalle und/oder Zink ausgewählt aus der Gruppe bestehend aus Natrium, Zink, Magnesium und Calcium.
  3. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Monomer (A) ausgewählt ist aus der Gruppe bestehend aus Acrylsäure, Methacrylsäure, Acrylsäuremethylester, Acrylsäureethylester, Acrylsäure-n-butylester, Methacrylsäuremethylester und Maleinsäureanhydrid, bevorzugt Maleinsäureanhydrid.
  4. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei Monomer (B) um ein α-Olefin mit mindestens 14 bis einschließlich 26 Kohlenstoffatomen handelt.
  5. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei Olefin (C) um ein mehr als 30 Kohlenstoffatome aufweisendes Polymer von Propen, 1-Buten, 2-Buten oder iso-Buten oder solche enthaltende Olefingemische, bevorzugt von iso-Buten oder solches enthaltende Olefingemische mit einem mittleren Molekulargewicht Mw im Bereich von 500 bis 5000 g/mol handelt.
  6. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Stoffgemisch der Olefine (B) und (C) gemittelt auf ihre Stoffmengen mindestens 12 Kohlenstoffatome aufweist.
  7. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß Monomere (D) ausgewählt ist aus der Gruppe bestehend aus (Da), (Db), (Dc), (De) und (Df).
  8. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das molare Verhältnis von (A) / ((B) und (C)) (in Summe) von 10:1 bis 1:10 beträgt.
  9. Verwendung gemäß Anspruch 8, dadurch gekennzeichnet, daß molare Verhältnis von Monomer (B) zum Monomer (C) von 1 : 0,05 bis 10 beträgt.
  10. Verwendung gemäß Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Anteil an einem oder mehreren der Monomere (D) bezogen auf die Menge der Monomere (A), (B) sowie optional (C) (in Summe) 5 bis 200 mol% beträgt.
  11. Verwendung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Komponente (A) Maleinsäureanhydrid eingesetzt wird und der optionale Reaktionsschritt (II) nicht durchlaufen wird.
  12. Verwendung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als Komponente (A) Maleinsäureanhydrid eingesetzt wird und im Reaktionsschritt (II) mehr als 90% und bis zu 99,9% der Anhydridfunktionalitäten intakt bleiben.
  13. Verwendung gemäß einem der vorstehenden Ansprüche zur Inhibierung der Korrosion von Eisen-, Stahl- und/oder Buntmetalloberflächen.
  14. Verwendung gemäß einem der Ansprüche 1 bis 12 zur Inhibierung der Korrosion von Kupfer und kupferhaltigen Legierungen.
  15. Verwendung gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Kraftstoff um einen Diesel- oder Ottokraftstoff handelt.
EP16736891.9A 2015-07-16 2016-07-12 Korrosionsinhibitoren für kraftstoffe Active EP3322780B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15177085 2015-07-16
PCT/EP2016/066466 WO2017009306A1 (de) 2015-07-16 2016-07-12 Korrosionsinhibitoren für kraft- und schmierstoffe

Publications (2)

Publication Number Publication Date
EP3322780A1 EP3322780A1 (de) 2018-05-23
EP3322780B1 true EP3322780B1 (de) 2019-09-18

Family

ID=53783571

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16736891.9A Active EP3322780B1 (de) 2015-07-16 2016-07-12 Korrosionsinhibitoren für kraftstoffe

Country Status (9)

Country Link
US (1) US20180201863A1 (de)
EP (1) EP3322780B1 (de)
CN (1) CN107849478A (de)
BR (1) BR112018000797A2 (de)
ES (1) ES2762999T3 (de)
RU (1) RU2018105762A (de)
SG (1) SG11201800399TA (de)
WO (1) WO2017009306A1 (de)
ZA (1) ZA201800858B (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3099720B1 (de) 2014-01-29 2018-07-04 Basf Se Verwendung von polycarbonsäure-basierten additiven für kraftstoffe
US11085001B2 (en) 2015-07-16 2021-08-10 Basf Se Copolymers as additives for fuels and lubricants
US11078418B2 (en) 2016-07-05 2021-08-03 Basf Se Corrosion inhibitors for fuels and lubricants
EP3555244B1 (de) 2016-12-15 2023-05-31 Basf Se Polymere als dieselkraftstoffadditive für direkteinspritzende dieselmotoren
MY193114A (en) 2016-12-20 2022-09-26 Basf Se Use of a mixture of a complex ester with a monocarboxylic acid to reduce friction
BR112022011826A2 (pt) * 2019-12-18 2022-08-30 Lubrizol Corp Composto de tensoativo polimérico
ES2964845T3 (es) * 2020-07-14 2024-04-09 Basf Se Inhibidores de corrosión para combustibles y lubricantes
WO2022106301A1 (en) * 2020-11-20 2022-05-27 Basf Se Mixtures for improving or boosting the separation of water from fuels

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3382056A (en) * 1966-06-03 1968-05-07 Chevron Res Maleic anhydride copolymers as rust inhibitors
US3909215A (en) * 1973-03-27 1975-09-30 Chevron Res Rust inhibitors for hydrocarbon fuels
JPS5922791B2 (ja) * 1978-12-25 1984-05-29 三菱化学株式会社 防錆剤
JPS59100196A (ja) * 1982-11-30 1984-06-09 Mitsubishi Chem Ind Ltd 水性潤滑剤
DE3411531A1 (de) * 1984-03-29 1985-10-10 Basf Ag, 6700 Ludwigshafen Verfahren zur umsetzung von olefinen mit maleinsaeureanhydrid und verwendung der erhaltenen bernsteinsaeureanhydride zur herstellung von korrosionsschutzmitteln und mineraloelhilfsmitteln
JPH0668111B2 (ja) * 1986-11-17 1994-08-31 出光興産株式会社 含水潤滑剤
DE3730885A1 (de) * 1987-09-15 1989-03-23 Basf Ag Kraftstoffe fuer ottomotoren
DE3733172A1 (de) * 1987-10-01 1989-04-20 Basf Ag Kraftstoffe fuer ottomotoren
US5422023A (en) * 1993-10-12 1995-06-06 Exxon Research And Engineering Company Corrosion inhibitor for aviation turbine oils (PNE-628)
US8058493B2 (en) * 2003-05-21 2011-11-15 Baker Hughes Incorporated Removing amines from hydrocarbon streams
US8067347B2 (en) * 2006-10-27 2011-11-29 Chevron Oronite Company Llc Lubricating oil additive composition and method of making the same
WO2011161149A1 (de) * 2010-06-25 2011-12-29 Basf Se Quaternisiertes copolymerisat
US8911516B2 (en) * 2010-06-25 2014-12-16 Basf Se Quaternized copolymer
CN103384718A (zh) * 2010-12-21 2013-11-06 路博润公司 官能化共聚物及其润滑组合物
CA2860488A1 (en) * 2011-12-30 2013-07-04 Butamax Advanced Biofuels Llc Corrosion inhibitor compositions for oxygenated gasolines
US20150240183A1 (en) * 2012-09-24 2015-08-27 The Lubrizol Corporation Lubricant comprising a mixture of an olefin-ester copolymer with an ethylene alpha-olefin copolymer
US20140113847A1 (en) * 2012-10-24 2014-04-24 Exxonmobil Research And Engineering Company High viscosity index lubricating oil base stock and viscosity modifier combinations, and lubricating oils derived therefrom
US20140187457A1 (en) * 2013-01-03 2014-07-03 Exxonmobil Research And Engineering Company Lubricating compositions having improved shear stability
CN106459811B (zh) * 2014-01-29 2020-02-18 巴斯夫欧洲公司 用于燃料和润滑剂的缓蚀剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ZA201800858B (en) 2019-06-26
WO2017009306A1 (de) 2017-01-19
RU2018105762A (ru) 2019-08-16
RU2018105762A3 (de) 2019-10-16
ES2762999T3 (es) 2020-05-26
EP3322780A1 (de) 2018-05-23
CN107849478A (zh) 2018-03-27
BR112018000797A2 (pt) 2018-09-04
SG11201800399TA (en) 2018-02-27
US20180201863A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
EP3099768B1 (de) Korrosionsinhibitoren für kraftstoffe
EP3322780B1 (de) Korrosionsinhibitoren für kraftstoffe
EP3481921B1 (de) Copolymere als additive für kraft- und schmierstoffe
EP3555244B1 (de) Polymere als dieselkraftstoffadditive für direkteinspritzende dieselmotoren
EP3481920B1 (de) Verwendung von korrosionsinhibitoren für kraft- und schmierstoffe
EP3322775B1 (de) Verwendung von copolymeren in direkteinspritzenden verbrennungsmotoren
EP3481922B1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
EP3555242B1 (de) Additive zur verbesserung der thermischen stabilität von kraftstoffen
WO2018007486A1 (de) Polymere als additive für kraft und schmierstoffe
EP3609990B1 (de) Polymere als additive für kraft- und schmierstoffe
DE212016000150U1 (de) Korrosionsinhibitoren für Kraft- und Schmierstoffe
EP3940043B1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe
DE212015000271U1 (de) Korrosionsinhibitoren für Kraft- und Schmierstoffe
WO2018007445A1 (de) Korrosionsinhibitoren für kraft- und schmierstoffe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 10/04 20060101ALI20190218BHEP

Ipc: C10L 1/198 20060101ALI20190218BHEP

Ipc: C10L 1/196 20060101ALI20190218BHEP

Ipc: C10M 145/16 20060101ALI20190218BHEP

Ipc: C10N 30/12 20060101ALI20190218BHEP

Ipc: C10N 60/00 20060101ALI20190218BHEP

Ipc: C10L 1/16 20060101ALI20190218BHEP

Ipc: C10N 20/04 20060101ALI20190218BHEP

Ipc: C10L 1/232 20060101ALI20190218BHEP

Ipc: C10M 145/12 20060101AFI20190218BHEP

Ipc: C10L 1/14 20060101ALI20190218BHEP

Ipc: C10M 145/14 20060101ALI20190218BHEP

Ipc: C10L 1/2383 20060101ALI20190218BHEP

Ipc: C10L 1/188 20060101ALI20190218BHEP

INTG Intention to grant announced

Effective date: 20190319

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006697

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1181313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191218

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200120

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2762999

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006697

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200119

26N No opposition filed

Effective date: 20200619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200712

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200712

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200712

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190918

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1181313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220527

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220727

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016006697

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201