EP3449111B1 - Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne - Google Patents

Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne Download PDF

Info

Publication number
EP3449111B1
EP3449111B1 EP17711568.0A EP17711568A EP3449111B1 EP 3449111 B1 EP3449111 B1 EP 3449111B1 EP 17711568 A EP17711568 A EP 17711568A EP 3449111 B1 EP3449111 B1 EP 3449111B1
Authority
EP
European Patent Office
Prior art keywords
pressure
internal combustion
engine
combustion engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17711568.0A
Other languages
German (de)
English (en)
Other versions
EP3449111A1 (fr
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP3449111A1 publication Critical patent/EP3449111A1/fr
Application granted granted Critical
Publication of EP3449111B1 publication Critical patent/EP3449111B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • F02D41/3872Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves characterised by leakage flow in injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Definitions

  • a method for operating an internal combustion engine with an engine having a number of cylinders and an injection system with high-pressure components, in particular an injection system having a common rail with a number of injectors assigned to the cylinders, in particular with one injector being assigned an individual memory that is used to hold fuel is formed from the common rail for the injector.
  • the concept of an injector with an individual accumulator in the context of a common rail injection system is described by way of example.
  • the individual accumulator is supplied with fuel under pressure from the pressure connection via a fuel supply duct and is in direct flow connection with the high pressure duct for the fuel under high pressure in the common rail.
  • the volume of the individual reservoir is large compared to the volume of the high pressure channel and the nozzle antechamber in the injector. Due to the arrangement of the injector decoupled from the common rail via a throttle element - there is enough space in the individual reservoir in the housing of the fuel injector to hold fuel for at least an entire injection quantity for one working cycle of a cylinder, but in any case for a partial injection within the working cycle.
  • DE 10 2009 002 793 B4 discloses an individual accumulator or a high-pressure component such as a common rail with a pressure measuring device which is in the form of a strain sensor, the strain sensor being in the form of a strain gauge and being arranged on the outside of a wall of the individual accumulator and a hydraulic resistance directly to the individual accumulator is arranged upstream or downstream for integration into the high pressure duct.
  • the high pressure When starting the engine, it must be ensured on the one hand that the high pressure has a maximum value of z. B. does not exceed 600 bar, as the Otherwise the pump can be damaged due to the excessive counter pressure.
  • the high pressure when starting the engine should be as high as possible in order to ensure good acceleration behavior and low emissions.
  • the suction throttle is initially not supplied with current after the engine has been started, a maximum increase in the high pressure up to a specifiable high pressure threshold value is achieved.
  • This enables the engine to be started quickly and reliably, since, on the one hand, injections in common rail systems are only possible when the opening pressure of the injection nozzles has been reached. This is usually 350 ... 400 bar.
  • the engine can be accelerated faster at higher high pressures, since the fuel is burned better in this case, which results in a higher degree of efficiency.
  • the invention is based on the consideration that the high pressure in the injection system of an internal combustion engine should ideally be reduced to just below the target high pressure before starting.
  • the target high pressure must be specified in such a way that the maximum permissible high pressure is not exceeded when the engine is started. If the engine is started, the high pressure control should be activated as soon as possible in order to avoid a significant overshoot of the high pressure above the setpoint.
  • the object is preferably achieved in that the high pressure is reduced by activating a so-called "blank shot” function after the engine has been switched off.
  • the injectors are energized when the engine is not running, which creates a leak, but no injection takes place.
  • This "blank shot” function is activated until the high pressure is reduced to a value just below the target high pressure.
  • a significant overshoot of the high pressure after the engine is started is prevented according to the invention in that the high pressure regulation is activated as soon as the calculated high pressure gradient exceeds a predeterminable limit value.
  • the concept preferably provides the basis for an internal combustion engine that is operated in an improved manner.
  • the invention makes it possible to start the engine at the highest possible rail pressure without exceeding the maximum permissible rail pressure and thus without damaging the engine by a rail pressure that is too high. Starting at high rail pressure thus enables good acceleration behavior with low emissions.
  • Starting at high Rail pressure in the range of the maximum permissible rail pressure is achieved by lowering the rail pressure to a value just below the maximum pressure after the engine has been switched off with the help of the blank shot function and by activating the rail pressure control at an early stage when the engine is started by checking, whether the mean high pressure gradient exceeds a specifiable limit.
  • This method thus also makes it possible that the intake throttle does not have to be energized when the engine is not running, which extends its service life.
  • the method provides that when the internal combustion engine is started, the high-pressure control for regulating the fuel pressure is activated while the engine is at a standstill, as soon as a mean high-pressure gradient reaches or exceeds a defined limit value.
  • this includes, in particular, the activation of the high-pressure regulation for regulating the fuel pressure at a point in time at which, due to an engine speed that is still too low, there is still a state indicative of an engine standstill.
  • a suction throttle influencing the fuel supply is actuated in the closing direction by activating the high-pressure control, which leads to the fuel pressure remaining below a maximum value when the internal combustion engine is started.
  • a continuous signal for controlling a suction throttle is increased when the high-pressure regulation is activated, which results in a closing movement of the suction throttle.
  • the high pressure gradient is formed from a first and a second fuel pressure value, the first and the second fuel pressure value following one another at a predetermined time interval.
  • This procedure has the advantage that, instead of the absolute fuel pressure value, the high pressure gradient, that is to say its rate of increase, can be used as a criterion for activating the high pressure regulation. In this way, before the absolute maximum of the fuel pressure is reached, the point in time at which the increase in the fuel pressure value reaches a predetermined limit value can be determined.
  • a further preferred development provides that a mean high pressure gradient is formed from a finite amount of successive high pressure gradients by averaging.
  • This procedure has the advantage that by averaging high pressure gradients, a corresponding degree of reliability is achieved in the assessment. For example, short-term outliers in the measured fuel pressure values can be smoothed using such a mean value formation.
  • an engine is recognized as being in operation or running at an engine speed of 50-120 min -1.
  • the specified high pressure limit value is 560-600 bar.
  • the high pressure gradient is determined for a predetermined period of time as a mean high pressure gradient from a number (k) of certain high pressure gradients, the number (k) as a quotient from the predetermined period of time and a sampling time is formed.
  • Fig. 1 shows a device according to the prior art.
  • An internal combustion engine 1 has an injection system 3.
  • the injection system 3 is preferably designed as a common rail injection system. It has a low-pressure pump 5 for delivering fuel from a fuel reservoir 7, an adjustable, low-pressure-side suction throttle 9 for influencing a volume flow of fuel flowing to a high-pressure pump 11, the high-pressure pump 11 for delivering the fuel under increased pressure into a high-pressure accumulator 13, the high-pressure accumulator 13 for storing the fuel, and preferably a plurality of injectors 15 for injecting the fuel into combustion chambers 16 of the internal combustion engine 1.
  • the injection system 3 is also designed with individual stores, in which case, for example, an individual store 17 is integrated into the injector 15 as an additional buffer volume.
  • a particularly electrically controllable pressure control valve 19 is provided, via which the high-pressure accumulator 13 is fluidly connected to the fuel reservoir 7.
  • a fuel volume flow, which is diverted from the high-pressure accumulator 13 into the fuel reservoir 7, is defined via the position of the pressure regulating valve 19.
  • This fuel volume flow is shown in Fig. 1 as well as in the following text with VDRV and represents a high pressure disturbance of the injection system 3.
  • the injection system 3 does not have a mechanical pressure relief valve, since its function is taken over by the pressure regulating valve 19.
  • the mode of operation of the internal combustion engine 1 is determined by an electronic control unit 21, which is preferably designed as an engine control unit of the internal combustion engine 1, namely as a so-called engine control unit (ECU).
  • the electronic control unit 21 includes the usual components of a Microcomputer systems, for example a microprocessor, I / O modules, buffer and memory modules (EEPROM, RAM).
  • the operating data relevant to the operation of the internal combustion engine 1 are applied in characteristic diagrams / characteristic curves in the memory modules.
  • the electronic control unit 21 uses this to calculate output variables from input variables. In Fig.
  • a measured, still unfiltered high pressure p which prevails in the high pressure accumulator 13 and is measured by means of a pressure sensor 23, a current engine speed n 1 , a signal FP for the output specification by an operator of the internal combustion engine 1, and an input variable E. Further sensor signals are preferably combined under input variable E, for example a charge air pressure of an exhaust gas turbocharger.
  • an individual accumulator pressure p E is preferably an additional input variable of control unit 21.
  • the output variables of the electronic control unit 21 include, for example, a signal PWMSDR for controlling the suction throttle 9 as the first pressure actuator, a signal ve for controlling the injectors 15 - which in particular specifies a start and / or an end of injection or also an injection duration - a signal PWMDRV for control of the pressure control valve 19 and thus the high pressure disturbance variable VDRV is defined.
  • the output variable A is representative of further actuating signals for controlling and / or regulating the internal combustion engine 1, for example for an actuating signal for activating a second exhaust gas turbocharger during register charging.
  • Fig. 2 shows the block diagram of a high pressure control circuit according to the prior art.
  • the input variable of the high pressure control loop is the set high pressure P set of the common rail system, which is compared with the measured high pressure p mess . The difference between the two high pressures results in the high pressure control deviation e p .
  • This control deviation e p of the high pressure is the input variable of the high pressure regulator, which is preferably implemented as a PI (DT 1 ) algorithm.
  • Other input variables of the high pressure regulator include the proportional coefficient kp SDR .
  • the output variable of the high-pressure regulator is the fuel volume flow V PI ( DT1 ) SDR , which is added to the target fuel consumption V stör SDR .
  • the target fuel consumption V disturb SDR is calculated from the measured engine speed n mess and the target injection quantity Q Soll and represents a disturbance variable of the high pressure control loop .
  • V PI DTI
  • V disturb SDR disurbance variable injection
  • the limited target fuel volume flow V Soll SDR is the input variable of the pump characteristic.
  • the pump characteristic converts the limited target fuel volume flow V Soll SDR into the suction throttle target current I Soll SDR .
  • the suction throttle setpoint current I Soll SDR is the input variable of the suction throttle flow controller, which has the task of regulating the suction throttle current. Another input variable of the suction throttle current regulator is the measured suction throttle current I mess SDR.
  • the output variable of the suction throttle current regulator is the suction throttle setpoint voltage U Soll SDR , which is then converted into the PWM duty cycle PWM SDR as a specification for the suction throttle.
  • the controlled system of the high pressure control loop consists of the suction throttle, the high pressure pump and the fuel rail.
  • the controlled variable of the subordinate suction throttle current control circuit is the suction throttle current, the raw values I raw SDR still being passed through a filter which z. B. a PT 1 filter can be filtered.
  • the output variable of this filter is the measured suction throttle current I mess SDR .
  • the controlled variable of the high pressure control loop is the fuel rail pressure (high pressure).
  • the raw values of the fuel rail pressure p raw are filtered by a high pressure filter, which has the measured fuel rail pressure p mess as its output variable.
  • This filter can e.g. B. be implemented by a PT 1 algorithm.
  • Figures 3A and 3B represent a particularly advantageous calculation of the high pressure gradient Figure 3A
  • the time diagram shown shows the high pressure in the form of a solid curve as a function of time.
  • the current high pressure gradient (gradient Current HD (t 1 )) at time t 1 is corresponding Figure 3B calculated by subtracting the measured fuel pressure (p mess (t 1 - ⁇ t degrees HD )) that was past the time span ( ⁇ t degrees HD ) from the current fuel pressure (p mess (t 1 )) and dividing the difference by the time span ( ⁇ t degree HD ) is divided.
  • the high-pressure gradient at the time (t 1 - (k - 1) * Ta) is calculated by the by the time interval (t 1 - (k-1) * Ta - .DELTA.t degree HD) past measured fuel pressure ( p mess (t 1 - (k - 1) ⁇ Ta - ⁇ t degrees HD )) subtracted from the fuel pressure (p mess (t 1 - (k - 1) ⁇ Ta)) and subtract the difference by the time span ( ⁇ t degrees HD ) is divided.
  • FIG. 4A The connected figures Figures 4A, 4B, 4C , Figures 4D, 4E, 4F, 4G and 4H illustrate the invention in the form of several timing diagrams Figure 4A
  • the time diagram shown shows the measured engine speed (nmess).
  • the engine is switched off, which is shown in the timing diagram of Figure 4E
  • the "Motor Stop" signal shown changes from the value 0 to the value 1.
  • the motor speed (nmess) changes, starting from the value 1000 1 / min, to the value 0 1 / min.
  • the motor standstill is recognized, which is shown in the timing diagram of Figure 4F
  • the signal shown (“Motor stopped”) changes from the value 0 to the value 1.
  • the target high pressure (p target ) is shown as a solid, light curve.
  • the target high pressure is calculated as the output variable of a three-dimensional map with the input variables engine speed (nmess) and target torque (M Soll ). If the engine is switched off, the target torque is immediately reduced to the value 0 Nm, the engine speed drops to the value 0 1 / min with a time delay.
  • a falling target high pressure (P Soll ), represented by a solid, light curve with the initial value 1200 bar and the final value 600 bar, which is reached at time (t 2 ), results in this case becomes.
  • the fuel pressure (p mess 1 ) is shown in the timing diagram of Figure 4B represented by a dark solid curve. Since, in the event of an engine stop, there is no longer any injection and newer common rail systems have no or only very little system leakage, the fuel pressure (p mess 1 ) remains constant at the original target value of 1200 bar until time (t 2). Correspondingly, is shown in the timing diagram of Figure 4C , a mean high pressure gradient (gradient mean HD ) of 0 bar / s is calculated.
  • the timing diagram of the Figure 4D shows the duty cycle (PWM SDR ) of the PWM signal of the suction throttle. Until the point in time (t 1 ), with the engine running, this assumes the value 15%.
  • a greater duty cycle (PWM SDR ) of the PWM signal is calculated, ie the suction throttle is moved in the closing direction.
  • the time diagram shown increases the duty cycle (PWM SDR ) of the PWM signal to its maximum value of 25% and remains at this value until the point in time (t 2 ).
  • the duty cycle of the PWM signal is a calculated signal accordingly Fig. 2 , this is shown in the timing diagram of the Figure 4G indicated by the fact that the control mode assumes the value 0 up to time (t 2).
  • the engine is started at time (t 3).
  • the engine speed (nmess) increases and reaches the value 80 1 / min at time (t 5).
  • the signal "Motor Stall" changes from value 1 to value 0.
  • the switch-on duration (PWM SDR ) of the PWM signal is only calculated from this point in time and so that the fuel pressure is regulated, ie up to the point in time (t 5 ) the duty cycle (PWM SDR ) of the PWM signal is set to the value 0% and the fuel pressure is thus controlled.
  • control mode 1 is identical to the value 1 up to the point in time (t 5 ), ie the high pressure control is deactivated up to this point in time, so that the duty cycle of the PWM signal (PWM SDR ) is specified . Only at time (t 5 ) does the control mode (control mode 1 ) change to the value 0, so that the fuel pressure (p mess 1 ) is subsequently regulated.
  • FIG. 4C The diagram shown shows that the high pressure gradient (gradient mean HD ) from time (t 3 ) onwards corresponding to the increasing fuel pressure according to the in Figure 4B
  • the diagram shown increases and at time (t 4 ) the limit value (Limit HDGradient Start ) is reached.
  • the high pressure regulation is activated when this limit value is reached and thus at time (t 4 ).
  • the corresponding line is shown dotted and labeled (control mode 2 ).
  • the PWM signal rises corresponding to that in FIG Figure 4D
  • the PWM signal according to the invention is again shown dotted and designated (PWM SDR 2 ).
  • the high-pressure regulation which starts earlier according to the invention, means that the fuel pressure now remains below the maximum value (p max ) when the engine is started and settles at its setpoint (p setpoint ) earlier, already at time (t 8). This protects the engine when it starts.
  • the course of the fuel pressure resulting in this case is shown in the diagram of Figure 4B again shown dotted.
  • the fuel pressure is denoted by (pmess).
  • Fig. 5 represents the method according to the invention in the form of a flowchart.
  • step (S1) the mean gradient (gradient mean HD ) is correspondingly here Fig. 3 calculated.
  • step (S2) it is queried whether the engine is stationary. Is this the one If so, the process continues with step (S3).
  • step (S3) a flag, which is initialized with the value 0, is queried. If this flag is set, the process continues with step (S7). If the flag is not set, the process continues with step (S4).
  • step (S4) it is checked whether the gradient (gradient mean HD ) is greater than or equal to the limit value (limit HDGradient Start ). If this is the case, the process continues with step (S5).
  • step (S5) the flag is set to the value 1 and the control mode is set to the value 0.
  • step (S7) If the query result in step (S4) is negative, ie if the mean gradient (Gradient Mittel HD ) is less than the limit value (Limit HDGradient Start ), the control mode is set to the value 1 in step (S6). The process then continues with step (S7). The control mode is queried in step (S7). If the control mode is set, the duty cycle (PWM SDR ) of the PWM signal is set to the value 0 in step (S8).
  • PWM SDR duty cycle of the PWM signal
  • step (S9) the duty cycle (PWM SDR ) of the PWM signal is calculated in step (S9) as a function of the suction throttle target voltage (U Soll SDR ), the battery voltage (U Batt ) and the diode forward voltage (U Diode ). In both cases, this ends the program sequence.
  • step (S10) the flag and the control mode are reset to the value 0.
  • the duty cycle (PWM SDR ) of the PWM signal is calculated as a function of the suction throttle target voltage (U Soll SDR ), the battery voltage (U Batt ) and the diode forward voltage (U Diode ). The program sequence is thus also ended in this case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (12)

  1. Procédé pour faire fonctionner un moteur à combustion interne avec un moteur ayant un certain nombre de cylindres et un système d'injection à rampe commune avec un certain nombre d'injecteurs et des composants haute pression similaires affectés aux cylindres, le procédé comprenant les étapes consistant à :
    - démarrer le moteur à combustion interne,
    - faire fonctionner le moteur à combustion interne,
    - arrêter le moteur à combustion interne, dans lequel
    - un état indiquant un arrêt du moteur est reconnu,
    - une valeur limite de haute pression est définie et une haute pression cible est spécifiée,
    - une fuite est générée dans la rampe commune sans injection,
    - au moyen de la fuite, une pression de carburant dans la rampe commune est développée à la valeur limite de haute pression définie en dessous de la haute pression cible,
    caractérisé en ce que
    au démarrage du moteur à combustion interne, la régulation haute pression de régulation de la pression de carburant est toujours activée pendant l'état qui caractérise l'arrêt du moteur, dès qu'un gradient haute pression moyen atteint ou dépasse une valeur limite définie.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un injecteur se voit attribuer un stockage individuel qui est destinée à contenir le carburant de la rampe commune pour l'injecteur.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'état caractérisant un arrêt moteur est reconnu après l'arrêt du moteur thermique.
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'un papillon d'aspiration influençant l'alimentation en carburant est actionné dans le sens de la fermeture en activant la commande haute pression, ce qui conduit à ce que la pression de carburant reste inférieure à une valeur maximale lorsque le moteur à combustion interne démarre.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le gradient haute pression est formé à partir d'une première et d'une seconde valeur de pression de carburant, la première et la seconde valeur de pression de carburant se succédant à un intervalle de temps prédéterminé (ΔtGradHD).
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un gradient moyen haute pression est formé à partir d'une quantité finie de gradients haute pression successifs par moyennage.
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le moteur est reconnu comme en fonctionnement à un régime moteur de 50-120 min-1.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur limite haute pression spécifiée est de 560 à 600 bars.
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le gradient haute pression pendant une durée prédéterminée (ΔtMitteIHD) est déterminé comme un gradient haute pression moyen à partir d'un nombre (k) de certains gradients haute pression, le nombre (k) étant formé en tant que quotient de la période de temps prédéterminée (ΔtMitteIHD) et d'un temps d'échantillonnage (Ta).
  10. Dispositif de commande et/ou de régulation d'un moteur à combustion interne, avec un contrôleur de moteur et un module de calcul d'injection, qui sont conçus pour mettre en œuvre un procédé selon l'une des revendications 1 à 9.
  11. Système d'injection à rampe commune pour moteur à combustion interne avec un moteur ayant un certain nombre de cylindres et avec un certain nombre d'injecteurs affectés aux cylindres, un injecteur se voyant affecté un stockage individuel qui est conçu pour contenir le carburant de la rampe commune pour l'injection dans le cylindre et avec un dispositif selon la revendication 10 pour la commande et/ou la régulation d'un moteur à combustion interne.
  12. Moteur à combustion interne avec un moteur à plusieurs cylindres et un système d'injection avec une rampe commune et un certain nombre d'injecteurs et autres composants haute pression similaires et avec un dispositif de commande et/ou de régulation selon la revendication 10, en particulier avec un système d'injection selon la revendication 11.
EP17711568.0A 2016-04-28 2017-03-13 Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne Active EP3449111B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016207297.8A DE102016207297B3 (de) 2016-04-28 2016-04-28 Verfahren zum Betrieb einer Brennkraftmaschine, Einrichtung zum Steuern und/oder Regeln einer Brennkraftmaschine, Einspritzsystem und Brennkraftmaschine
PCT/EP2017/000324 WO2017186326A1 (fr) 2016-04-28 2017-03-13 Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne

Publications (2)

Publication Number Publication Date
EP3449111A1 EP3449111A1 (fr) 2019-03-06
EP3449111B1 true EP3449111B1 (fr) 2021-04-28

Family

ID=58358540

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17711568.0A Active EP3449111B1 (fr) 2016-04-28 2017-03-13 Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne

Country Status (5)

Country Link
US (1) US10641199B2 (fr)
EP (1) EP3449111B1 (fr)
CN (1) CN109072795B (fr)
DE (1) DE102016207297B3 (fr)
WO (1) WO2017186326A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109630301A (zh) * 2018-12-11 2019-04-16 潍柴动力股份有限公司 一种无泄漏喷油器空喷射的控制方法和装置
CN110185546B (zh) * 2019-05-20 2021-12-14 苏州国方汽车电子有限公司 一种无静态回油发动机共轨燃油系统的轨压释放方法及装置
CN113047975B (zh) * 2021-03-23 2023-06-09 无锡威孚高科技集团股份有限公司 一种柴油机燃油系统中电控泄压阀的控制方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4445586A1 (de) * 1994-12-20 1996-06-27 Bosch Gmbh Robert Verfahren zur Reduzierung des Kraftstoffdruckes in einer Kraftstoffeinspritzeinrichtung
JP3317202B2 (ja) * 1997-08-04 2002-08-26 トヨタ自動車株式会社 蓄圧式エンジンの燃料噴射制御装置
GB2332241B (en) * 1997-12-11 2001-12-19 Denso Corp Accumulator fuel injection system for diesel engine of automotive vehicles
DE19935519C2 (de) * 1999-07-28 2002-05-08 Mtu Friedrichshafen Gmbh Kraftstoffinjektor für eine Brennkraftmaschine
DE10156637C1 (de) * 2001-11-17 2003-05-28 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung des Startbetriebs einer Brennkraftmaschine
DE10343758B4 (de) * 2003-09-22 2015-02-19 Robert Bosch Gmbh Verfahren zur Begrenzung des Druckanstieges in einem Hochdruck-Kraftstoffsystem nach Abstellen eines Verbrennungsmotors
DE10360332A1 (de) * 2003-12-20 2005-07-21 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen eines Förderintervalls einer Hochdruckpumpe
JP4075856B2 (ja) 2004-05-24 2008-04-16 トヨタ自動車株式会社 燃料供給装置及び内燃機関
DE102004039311B4 (de) * 2004-08-13 2014-05-22 Robert Bosch Gmbh Verfahren und Steuergerät zur Steuerung eines Enspritzdruckaufbaus bei einem Start eines Verbrennungsmotors
DE602005003427T2 (de) * 2004-09-24 2008-09-18 Denso Corporation, Kariya Durchflussregelventil
JP4114654B2 (ja) * 2004-09-29 2008-07-09 株式会社デンソー コモンレール式燃料噴射装置
JP4428201B2 (ja) * 2004-11-01 2010-03-10 株式会社デンソー 蓄圧式燃料噴射装置
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
US7441546B2 (en) * 2005-07-28 2008-10-28 Denso Corporation Valve apparatus
JP4609271B2 (ja) * 2005-10-12 2011-01-12 株式会社デンソー 燃料噴射弁
ATE403080T1 (de) * 2005-12-28 2008-08-15 Magneti Marelli Powertrain Spa Steuerungsverfahren für ein common rail einspritzsystem für die direkteinspritzung von kraftstoff in eine verbrennungskraftmaschine
JP4600369B2 (ja) * 2006-09-05 2010-12-15 株式会社デンソー 減圧弁遅延補償装置、及びプログラム
JP2009079514A (ja) * 2007-09-26 2009-04-16 Denso Corp 筒内噴射式内燃機関の燃圧制御装置
JP4976318B2 (ja) * 2008-01-30 2012-07-18 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射装置
US8539934B2 (en) * 2008-04-10 2013-09-24 Bosch Corporation Injection abnormality detection method and common rail fuel injection control system
DE102008036299B3 (de) * 2008-08-04 2009-12-03 Mtu Friedrichshafen Gmbh Verfahren zur Druckregelung
DE102009002793B4 (de) * 2009-05-04 2011-07-07 MTU Friedrichshafen GmbH, 88045 Common-Rail-Kraftstoffeinspritzsystem sowie Brennkraftmaschine, Elektronische Einrichtung und Verfahren zur Steuerung und/oder Regelung einer Brennkraftmaschine
DE102009031529B3 (de) * 2009-07-02 2010-11-11 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011100187B3 (de) * 2011-05-02 2012-11-08 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
KR101294072B1 (ko) * 2011-11-03 2013-08-07 현대자동차주식회사 연소압센서 이상상태 판단 시스템 및 방법
US8965667B2 (en) * 2012-06-27 2015-02-24 GM Global Technology Operations LLC Engine startup method
US9359963B2 (en) * 2012-09-20 2016-06-07 Ford Global Technologies, Llc Gaseous fuel rail depressurization during inactive injector conditions
US9903306B2 (en) * 2013-02-08 2018-02-27 Cummins Inc. System and method for acquiring pressure data from a fuel accumulator of an internal combustion engine
US9482165B2 (en) * 2013-04-19 2016-11-01 Caterpillar Inc. Dual fuel common rail depressurization during engine shutdown and machine using same
DE102013214831A1 (de) 2013-07-30 2015-02-05 Robert Bosch Gmbh Verfahren zum Vorbereiten eines Startens einer Brennkraftmaschine
DE102013017446A1 (de) * 2013-10-22 2015-04-23 Man Diesel & Turbo Se Motorsteuergerät
KR101519258B1 (ko) * 2013-12-13 2015-05-11 현대자동차주식회사 디젤커먼레일시스템의 릴리프밸브 제어방법
DE102014213648B3 (de) 2014-07-14 2015-10-08 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine
US10378500B2 (en) * 2016-09-27 2019-08-13 Caterpillar Inc. Protection device for limiting pump cavitation in common rail system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN109072795B (zh) 2021-07-27
CN109072795A (zh) 2018-12-21
EP3449111A1 (fr) 2019-03-06
DE102016207297B3 (de) 2017-10-19
WO2017186326A1 (fr) 2017-11-02
US20190136788A1 (en) 2019-05-09
US10641199B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE102009050467B4 (de) Verfahren zur Steuerung und Regelung einer Brennkraftmaschine
DE102011052138B4 (de) Steuervorrichtung für Druckreduzierungsventile
EP1086307B1 (fr) Systeme d'injection par accumulation de pression, comportant une pompe haute pression regulee servant de deuxieme organe de regulation de pression
EP1582709B1 (fr) Méthode de régénération d'un filtre à particule ainsi qu'un système d'échappement avec un filtre à particule
DE102008044144B4 (de) Kraftstoffeinspritzsteuerungsvorrichtung sowie Verfahren zur Steuerung einer Einspritzeigenschaft eines Kraftstoffeinspritzventils
EP3169887B1 (fr) Procédé permettant de faire fonctionner un moteur à combustion interne, système d'injection pour moteur à combustion interne et moteur à combustion interne
EP3298260B1 (fr) Système d'injection pour moteur à combustion interne et moteur à combustion interne équipé de ce système d'injection
DE102008055747B4 (de) Verfahren und Vorrichtung zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine
DE19913477B4 (de) Verfahren zum Betreiben einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP3449111B1 (fr) Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne
EP3289205B1 (fr) Procédé de détection d'une injection continue lors du fonctionnement d'un moteur à combustion interne, système d'injection pour un moteur à combustion interne et moteur à combustion interne
DE19726756A1 (de) System zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19731995A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP0963514B1 (fr) Procede pour reguler une grandeur avec une intervention limitee du regulateur
DE19833086A1 (de) Verfahren und Vorrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
DE10311141B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE10303573B4 (de) Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
EP3665377B1 (fr) Procédé permettant de faire fonctionner un moteur à combustion interne comprenant un système d'injection, système d'injection conçu pour la mise en uvre d'un tel procédé et moteur à combustion interne comprenant un tel système d'injection
EP1278949B1 (fr) Procede d'utilisation d'un systeme d'alimentation de carburant destine a un moteur a combustion interne d'un vehicule en particulier
EP1439293B1 (fr) Contrôle d'un moteur à combustion interne avec servofrein
WO2017186325A1 (fr) Procédé pour faire fonctionner un moteur à combustion interne, dispositif de commande et/ou de régulation d'un moteur à combustion interne, système d'injection et moteur à combustion interne
EP1618296B1 (fr) Procede pour determiner l'energie requise par l'actionneur d'un moteur a combustion interne pour les differents types d'injection
DE102019202004A1 (de) Verfahren zum Betreiben eines Einspritzsystems einer Brennkraftmaschine, Einspritzsystem für eine Brennkraftmaschine sowie Brennkraftmaschine mit einem solchen Einspritzsystem
DE102010004215A1 (de) Vorrichtung zur Verhinderung des Absterbens des Motors bei einem mit einem Dieseleinspritzsystem ausgestatteten Fahrzeug

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201203

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1387320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010202

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210728

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210830

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017010202

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017010202

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210828

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1387320

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220313

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 8

Ref country code: GB

Payment date: 20240320

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210428