EP3440170B1 - Laundry detergent composition - Google Patents

Laundry detergent composition Download PDF

Info

Publication number
EP3440170B1
EP3440170B1 EP17708995.0A EP17708995A EP3440170B1 EP 3440170 B1 EP3440170 B1 EP 3440170B1 EP 17708995 A EP17708995 A EP 17708995A EP 3440170 B1 EP3440170 B1 EP 3440170B1
Authority
EP
European Patent Office
Prior art keywords
laundry detergent
detergent composition
aqueous liquid
liquid laundry
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17708995.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3440170A1 (en
Inventor
Stephen Norman Batchelor
Jayne Michelle Bird
Matthew Lloyd Parry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever PLC
Unilever NV
Original Assignee
Unilever PLC
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever PLC, Unilever NV filed Critical Unilever PLC
Publication of EP3440170A1 publication Critical patent/EP3440170A1/en
Application granted granted Critical
Publication of EP3440170B1 publication Critical patent/EP3440170B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters or polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3723Polyamines or polyalkyleneimines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols

Definitions

  • the present invention provides an alkoxylated polyethylene imine polymer and surfactant formulation for use in domestic laundry.
  • WO2013/087286 discloses liquids formulations containing alkyl ether carboxylic acids, betaines, anionic surfactant, non-ionic surfactant for providing softening benefits.
  • WO2014/060235 discloses a laundry detergent composition comprising (a) nonionic surfactant, (b) anionic surfactant, (c) alkyl ether carboxylic acid or carboxylate salt thereof, and, (d) a polyglucosamine or a copolymer of glucosamine and N-acetylglucosamine; and to its use to soften fabrics.
  • WO2017/162378 discloses an aqueous liquid laundry detergent composition comprising i.a.:
  • an aqueous liquid laundry detergent composition comprising:
  • the present invention provides a domestic method of treating a textile, the method comprising the steps of:
  • the surfactant used is preferably as preferred for the composition aspects of the present invention.
  • Domestic methods are preferably conducted in a domestic washing machine or by hand washing.
  • the temperature of the wash is preferably from 285 to 313K.
  • the main wash time is preferably 5 to 45 minutes.
  • the textile is preferably an item of clothing, bedding or table cloth.
  • Preferred items of clothing are cotton containing shirts, skirts, dresses trousers, underwear and jumpers.
  • Linear alkyl benzene sulfonate Weights of Linear alkyl benzene sulfonate are calculated as the protonated form.
  • the linear alkyl benzene sulfonate has an alkyl chain length of C8 to C15, preferably C12 to C14.
  • Linear alkyl benzene sulphonate may be obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, such as those supplied by Sasol under the tradename IsochemĀ® or those supplied by Petresa under the tradename PetrelabĀ®, other suitable LAB include high 2-phenyl LAB, such as those supplied by Sasol under the tradename HybleneĀ®.
  • Another suitable route is alkyl benzene sulphonate that is obtained by DETAL catalyzed process, preferably having 8 to 15 carbon atoms. Other synthesis routes, such as HF, may also be suitable.
  • Weights of alkyl ether sulfate are calculated as the protonated form, R 1 -(OCH 2 CH 2 ) m -OSO 3 H.
  • R 1 is C10 to C22 saturate or unsaturated linear alkyl chain, more preferably a saturated C12 to C16 linear alkyl chain, most preferably C12 linear alkyl chain (lauryl).
  • the ratio (wt% alkyl ether sulfate)/(wt% linear alkyl benzene sulfonate) is from 0.5 to 2, more preferably 0.7 to 1.2.
  • Weights of alkyl ether carboxylic acid are calculated as the protonated form, R 2 -(OCH 2 CH 2 ) n -OCH 2 COOH. They may be used as salt version for example sodium salt, or amine salt.
  • the alkyl chain, R 2 may be linear or branched, preferably it is linear.
  • the alkyl chain, R 2 may be aliphatic or contain one cis or trans double bond.
  • Alkyl ether carboxylic acid are available from Kao (Akypo Ā®), Huntsman (EmpicolĀ®) and Clariant (Emulsogen Ā®).
  • the sodium salt of the alkyl ether carboxylate may be used.
  • Zwitterionic surfactants are preferably absent from the formulation.
  • Zwitterionic surfactants contain a charges group with a formal positive and a formal negative charge.
  • the aqueous liquid laundry detergent composition comprises less than 0.1 wt% of a zwitterionic surfactant; most preferably 0 wt% of a zwitterionic surfactant.
  • Typical examples of zwitterionic surfactants are carbobetaines and amine oxides.
  • the aqueous liquid laundry detergent may comprise Non-ionic surfactant, preferably an alkyl ethoxylated non-ionic surfactant.
  • Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, polyaryllphenols, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide.
  • the preferred nonionic detergent compounds are the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide.
  • the alkyl ethoxylated non-ionic surfactant is a C 12 to C 15 primary alcohol with a mole average ethoxylation of 7EO to 9EO units.
  • the weight fraction of alkyl ether sulphate/non-ionic surfactant is preferably greater than 3.
  • the aqueous liquid laundry detergent may comprises from 0 to 4 wt% of further surfactants, for example, those described in Anionic Surfactants: Organic Chemistry edited by Helmut W. Stache (Marcel Dekker 1996 ).
  • Suitable further anionic detergent compounds are; alkyl sulphates, especially those obtained by sulphating linear or branched C 8 to C 18 alcohols; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof. Soaps are particularly preferred in the aqueous liquid laundry detergent composition at levels of 0.5 to 1.5 wt%. Weights refer to protonated forms.
  • the alkoxylated polyethyelene imine comprises a polyethyleneimine (PEI) backbone wherein the modification of the polyethyleneimine backbone is intended to leave the polymer without quaternisation.
  • PEI polyethyleneimine
  • Such materials may be represented as PEI(X)YAO where X represents the molecular weight of the unmodified PEI and Y represents the average moles of alkoxylation (AO) per available NH in the unsubstituted polyethyleneimine backbone.
  • Y is preferably from 7 to 40 more preferably it is in the range from 16 to 26, most preferably 18 to 22.
  • X is selected to be from about 300 to about 10000 weight average molecular weight and is preferably from 500 to 800.
  • the alkoxylation is preferably selected from ethoxylation or propoxylation, or a combination of the two, Ethoxylation is most preferred.
  • the alkoxy chains may be capped with groups selected from: H; CH 3 ; SO 3 - ; CH 2 COO - ; PO 3 2- ; C 2 H 5 ; n-propyl, i-propyl; n-butyl; t-butyl; and, sulfosuccinate, most preferably H.
  • alkoxylated PEI is PEI(600)20EO.
  • PEI(600)10EO7PO PEI(1600)19EO
  • PEI80024EO16PO PEI(600)10EO7PO
  • PEI(1600)19EO PEI(1600)19EO
  • PEI80024EO16PO PEI(600)10EO7PO
  • PEI(1600)19EO PEI(1600)19EO
  • PEI80024EO16PO PEI(600)10EO7PO
  • PEI(1600)19EO PEI(1600)19EO
  • PEI80024EO16PO PEI80024EO16PO
  • a co-polymer obtainable by the polymerisation of an alkene bearing a substituent sulfonate group with an alkene bearing a polyoxyalkylene chain and an alkene bearing a carboxy substituents in a weight ratio of from 5:1 to 1:5 with the alkoxylated polyethyelene imine may be added.
  • the co-polymer is obtainable by polymerisation of 5-15wt% 3-allyloxy-2-hydroxypropane sulfonate with 30 to 45 wt% of 3-methylbut-3-en-1-ol which has been reacted with 20 to 40 moles of ethylene oxide; and 25 to 55% acrylic acid or salts thereof.
  • Such polymers are described in WO2016/045518 (Nippon Shokubai).
  • Terephthalate Polyester Soil Release Polymer comprise polymers of aromatic dicarboxylic acids and alkylene glycols (including polymers containing polyalkylene glycols), as described in WO2009/153184 , EP2692842 and WO2014/019903 .
  • Terephthalate Polyester Soil Release Polymer examples include the REPEL-O-TEXĀ® line of polymers supplied by Rhodia, including REPEL-O-TEXĀ® SRP6 and REPEL-O-TEXĀ® SF-2.
  • Other suitable soil release polymers include TexCareĀ® polymers, including TexCareĀ® SRA-100, TexCareĀ® SRA-300, TexCareĀ® SRN-100, TexCareĀ® SRN-170, TexCareĀ® SRN-240, TexCareĀ® SRN-300, and TexCareĀ® SRN-325, all supplied by Clariant.
  • Preferred structure are -[(Z) a -O-OC-Ar-CO-] b and (Z) a -O-OC-[Ar-CO-O-C 3 H 6 -O-OC] b -Ar-COO-(Z) a , where Ar is selected from 1,4 substituted phenylene and 1,3 substituted phenylene substituted in the 5 position with a sulphonates (SO 3 - ) group; Z is selected from ethoxy;propoxy; and mixtures of ethoxy and propoxy; a is from 5 to 100 and b from 2 to 40.
  • C 3 H 6 is i-propyl.
  • the alkoxy chains are capped with groups selected from H; CH 3 ; SO 3 - ; CH 2 COO - ; PO 3 2- ; C 2 H 5 ; n-propyl, i-propyl; n-butyl; t-butyl; and, sulfosuccinate.
  • the Terephthalate Polyester Soil Release Polymer is: wherein c is from 4 to 9; d is from 1 to 3; e is from 40 to 50.
  • the composition may comprise one or more further polymers.
  • suitable polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • Polymers present to prevent dye deposition may be present, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole).
  • Such polymers are preferably present at levels of less than 2 wt%.
  • a particularly preferred additional polymer is that obtained by the amination of the reaction product of a 2,2-bis-alkyl substituted 1,3 propanediol with 2 to 10 moles of an alkenyloxide, preferably selected from ethylene oxide, propylene oxide and mixtures thereof.
  • the amination of the alkoxylate 1,3-diol may be carried out with ammonia or reductive cyanoethylation.
  • Preferred 1,3-diol's are 2-butyl-2-ethyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol.
  • Such polyetheramines are described in WO2016/048674 (BASF).
  • composition is preferably devoid of silicone polymers and polymers bearing quaternised N groups.
  • the detergent compositions may also optionally contain relatively low levels of organic detergent builder or sequestrant material.
  • organic detergent builder or sequestrant material examples include the alkali metal, citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates.
  • Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, ethylene diamine tetra-acetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid, and citric acid.
  • DEQUESTTM organic phosphonate type sequestering agents sold by Monsanto and alkanehydroxy phosphonates.
  • suitable organic builders include the higher molecular weight polymers and copolymers known to have builder properties.
  • such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts, such as those sold by BASF under the name SOKALANTM.
  • the aqueous liquid laundry detergent formunation comprise from 0.1% to 2.0 wt% builder and sequesterant material. Citrate is most preferred.
  • Dyes are described in Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, (H Zollinger, Wiley VCH, Zurich, 2003 ) and, Industrial Dyes Chemistry, Properties Applications. (K Hunger (ed), Wiley-VCH Weinheim 2003 ).
  • Shading Dyes for use in laundry detergents preferably have an extinction coefficient at the maximum absorption in the visible range (400 to 700nm) of greater than 5000 L mol -1 cm -1 , preferably greater than 10000 L mol -1 cm -1 .
  • the dyes are blue or violet in colour.
  • Preferred shading dye chromophores are azo, azine, anthraquinone, and triphenylmethane.
  • Preferred mono-azo dyes contain a heterocyclic ring and are most preferably thiophene dyes.
  • Azine dye are preferably selected from sulphonated phenazine dyes and cationic phenazine dyes. Preferred examples are acid blue 98, acid violet 50, dye with CAS-No 72749-80-5, acid blue 59.
  • the shading dye is present in the composition in range from 0.0001 to 0.5 wt %, preferably 0.001 to 0.1 wt%. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class. As stated above the shading dye is a blue or violet shading dye.
  • a mixture of shading dyes may be used.
  • the shading dye is most preferably a reactive blue anthraquinone dye, such as C.I. reactive blue 49, covalently linked to an alkoxylated polyethyleneimine.
  • the alkoxylation is preferably selected from ethoxylation and propoxylation, most preferably propoxylation.
  • 80 to 95 mol% of the N-H groups in the polyethylene imine are replaced with iso-propyl alcohol groups by propoxylation.
  • the polyethylene imine before reaction with the dye and the propoxylation has a molecular weight of 600 to 1800.
  • the inventive aqueous liquid laundry detergent composition reduces the staining on neat contact of the composition with fabric.
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 subdivisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • proteases may be those described in WO92/175177 , WO01/016285 , WO02/026024 and WO02/016547 .
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO89/06270 , WO94/25583 and WO05/040372 , and the chymotrypsin proteases derived from Cellumonas described in WO05/052161 and WO05/052146 .
  • WO92/19729 WO96/034946 , WO98/201 15 , WO98/201 16 , WO99/01 1768 , WO01/44452 , WO03/006602 , WO04/03186 , WO04/041979 , WO07/006305 , WO1 1/036263 , WO1 1/036264 , especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 118, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering
  • subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, *36D, V68A, N76D, N87S,R, *97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).
  • protease is a subtilisins (EC 3.4.21.62).
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867 , and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in ( WO93/18140 ).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B.
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names AlcalaseĀ®, BlazeĀ®; DuralaseTm, DurazymTm, RelaseĀ®, RelaseĀ® Ultra, SavinaseĀ®, SavinaseĀ® Ultra, PrimaseĀ®, PolarzymeĀ®, KannaseĀ®, LiquanaseĀ®, LiquanaseĀ® Ultra, OvozymeĀ®, CoronaseĀ®, CoronaseĀ® Ultra, NeutraseĀ®, EverlaseĀ® and EsperaseĀ® all could be sold as UltraĀ® or EvityĀ® (Novozymes A/S).
  • MaxataseĀ® MaxacalĀ®, MaxapemĀ®, PurafectĀ®, Purafect PrimeĀ®, PreferenzTm, Purafect MAĀ®, Purafect OxĀ®, Purafect OxPĀ®, PuramaxĀ®, ProperaseĀ®, EffectenzTm, FN2Ā®, FN3Ā®, FN4Ā®, ExcellaseĀ®, OpticleanĀ® and OptimaseĀ® (Danisco/DuPont), AxapemTM (Gist-Brocases N.V.),
  • BLAP BLAP with S3T + V4I + V199M + V205I + L217D
  • BLAP X BLAP with S3T + V4I + V205I
  • BLAP F49 BLAP with S3T + V4I + A194P + V199M + V205I + L217D
  • One or more further enzymes are preferred present in a laundry composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt% to 0.1 wt% protein.
  • the further enzyme is selected from: alpha-amylases; lipases; and, cellulases, most preferably an alpha-amylase (EC number 3.2.1.1.).
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
  • lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , and WO 00/60063 .
  • LipolaseTM and Lipolase UltraTM LipexTM and LipocleanTM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • the method of the invention may be carried out in the presence of cutinase classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B . licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus , Pseudomonas , Humicola , Fusarium , Thielavia , Acremonium , e.g.
  • cellulases produced from Humicola insolens , Thielavia terrestris , Myceliophthora thermophila , and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
  • Commercially available cellulases include CelluzymeTM, CarezymeTM, CellucleanTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus , e.g. from C . cinereus , and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g., WO 92/19709 and WO 92/19708 .
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
  • Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
  • Pyrazoline compounds e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulphophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ā‡ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ā‡ stilbene-2-2' disulophonate, disodium 4,4'-bis ā‡ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ā‡ stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl.
  • the total amount of the fluorescent agent or agents used in the composition is preferably from 0.0001 to 0.5 wt %, more preferably 0.005 to 2 wt %, most preferably 0.05 to 0.25 wt %.
  • the aqueous solution used in the method has a fluorescer present.
  • the fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt %, more preferably 0.05 to 0.5 wt%, most preferably from 0.1 to 1 wt %.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; Pentanoic acid, 2-methyl-, ethyl ester; octanal; benzyl acetate; 1,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2-phenylethyl ester;amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl an
  • Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavor Ingredients, 1975, CRC Press ; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostr and; or Perfume and Flavor Chemicals by S. Arctander 1969, Montclair, N.J. (USA ).
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the Research Institute for Fragrance Materials provides a database of perfumes (fragrances) with safety information.
  • Perfume top note may be used to cue the whiteness and brightness benefit of the invention.
  • perfume components which it is advantageous to encapsulate include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0.
  • these materials have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d-carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate, cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethy
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.
  • perfumes with which the present invention can be applied are the so-called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium, Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • indefinite article ā€œaā€ or ā€œanā€ and its corresponding definite article ā€œtheā€ as used herein means at least one, or one or more, unless specified otherwise.
  • the pH of the aqueous liquid laundry detergent composition is preferably from 6.5 to 8.5, most preferably 6.8 to 7.5.
  • the pH may be obtained by the addition of an alkali, such as NaOH, trialkyl amine or an alkanolamine.
  • control base aqueous laundry detergent formulation was made: Ingredient Weight% Linear alkyl benzene sulfonate. 5.8 C12 alkyl ether sulfate with 3 mole equivalent of ethoxylation 4.4 SRP 1.0 EPEI 3.1 triethylamine 8.8 Sequesterant DequestTM 2010 1.5 Fatty acid (PrifacTM 5908) 0.9 Acrylic acid/acrylic ester co-polymer 0.7 Propylene glycol 2.0 perfume 0.4 Citric acid 1.0 preservative 0.2 Fluorescer (Tinopal 5BMG-X ex BASF) 0.2
  • the EPEI Ethoxylated PolyEthylene Imine
  • the EPEI was a PEI of 600 molecular weight with 20 moles of ethoxylate per NH on the base PEI; it is available as Sokalan HP20 ex BASF.
  • the SRP (Soil Removal Polymer) used was:
  • the SRP is as described in WO2014/019903 (Unilever).
  • the viscosity of the formulation were measured using a Paar Physica MCR300 is a commercial stress rheometer.
  • the non-ionic used was a C12-C15 linear alcohol alcohol with 7 moles of ethoxylation).
  • the oleyl ether carboxylate used has 10 moles of ethoxylation.
  • the lauryl ether carboxylate used had 10 moles of ethoxylation.
  • protease Coronase Ā® ex Novoymes, Bagsvaerd, Danmark
  • amylase Novalase Ā® ex Novoymes, Bagsvaerd, Danmark

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
EP17708995.0A 2016-04-08 2017-02-20 Laundry detergent composition Active EP3440170B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16164555 2016-04-08
PCT/EP2017/053800 WO2017174252A1 (en) 2016-04-08 2017-02-20 Laundry detergent composition

Publications (2)

Publication Number Publication Date
EP3440170A1 EP3440170A1 (en) 2019-02-13
EP3440170B1 true EP3440170B1 (en) 2020-04-08

Family

ID=55701864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17708995.0A Active EP3440170B1 (en) 2016-04-08 2017-02-20 Laundry detergent composition

Country Status (5)

Country Link
EP (1) EP3440170B1 (zh)
CN (1) CN109072131A (zh)
AR (1) AR108173A1 (zh)
BR (1) BR112018070472B1 (zh)
WO (1) WO2017174252A1 (zh)

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067075A1 (en) * 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions

Families Citing this family (6)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018206202A1 (en) * 2017-05-10 2018-11-15 Unilever Plc Laundry detergent composition
BR112021001856A2 (pt) 2018-08-10 2021-05-04 Unilever Ip Holdings B.V. composiĆ§Ć£o detergente lĆ­quida para lavanderia e mĆ©todo para lavagem de tecidos
US20220372400A1 (en) * 2019-06-28 2022-11-24 Conopco, Inc., D/B/A Unilever Detergent composition
EP3990599B1 (en) * 2019-06-28 2023-01-18 Unilever Global Ip Limited Detergent composition
WO2020260006A1 (en) * 2019-06-28 2020-12-30 Unilever Plc Detergent compositions
US20240018449A1 (en) 2020-09-24 2024-01-18 Conopco, lnc., d/b/a UNILEVER Composition

Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162378A1 (en) * 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition

Family Cites Families (5)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US5269960A (en) * 1988-09-25 1993-12-14 The Clorox Company Stable liquid aqueous enzyme detergent
GB2338242A (en) * 1998-06-10 1999-12-15 Reckitt & Colman Inc Germicidal laundry detergent
WO2013087287A1 (en) * 2011-12-12 2013-06-20 Unilever Plc Laundry compositions
EP2880074B1 (en) * 2012-07-31 2016-06-29 Unilever Plc. Alkaline liquid laundry detergent compositions comprising polyesters
ES2601135T3 (es) * 2012-10-17 2017-02-14 Unilever N.V. Composiciones para lavado de ropa

Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017162378A1 (en) * 2016-03-21 2017-09-28 Unilever Plc Laundry detergent composition

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067075A1 (en) * 2021-10-21 2023-04-27 Unilever Ip Holdings B.V. Detergent compositions

Also Published As

Publication number Publication date
CN109072131A (zh) 2018-12-21
WO2017174252A1 (en) 2017-10-12
AR108173A1 (es) 2018-07-25
EP3440170A1 (en) 2019-02-13
BR112018070472B1 (pt) 2023-04-18
BR112018070472A2 (pt) 2019-01-29

Similar Documents

Publication Publication Date Title
EP3440170B1 (en) Laundry detergent composition
EP3649222B1 (en) Whitening composition
EP3307861B1 (en) Laundry detergent composition
EP3433346B1 (en) Laundry detergent composition
EP3717616B1 (en) Detergent composition comprising protease
EP3440172B1 (en) Laundry detergent composition
EP3555255B1 (en) Laundry detergent composition
EP3417040B1 (en) Whitening composition
EP3313966B1 (en) Laundry detergent composition
EP3649221B1 (en) Laundry cleaning composition
EP3417039B1 (en) Whitening composition
EP3884023A1 (en) Detergent composition
EP3884022A1 (en) Detergent composition
WO2020104158A1 (en) Detergent composition
WO2020104157A1 (en) Detergent composition

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20190131

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017014406

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1254385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017014406

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017014406

Country of ref document: DE

Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB

Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210220

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220127 AND 20220202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230217

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 8

Ref country code: GB

Payment date: 20240219

Year of fee payment: 8