EP3406780A1 - Getemperter meltblown-vliesstoff mit hoher stauchhärte - Google Patents

Getemperter meltblown-vliesstoff mit hoher stauchhärte Download PDF

Info

Publication number
EP3406780A1
EP3406780A1 EP17172180.6A EP17172180A EP3406780A1 EP 3406780 A1 EP3406780 A1 EP 3406780A1 EP 17172180 A EP17172180 A EP 17172180A EP 3406780 A1 EP3406780 A1 EP 3406780A1
Authority
EP
European Patent Office
Prior art keywords
nonwoven fabric
meltblown nonwoven
filaments
meltblown
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17172180.6A
Other languages
English (en)
French (fr)
Other versions
EP3406780B1 (de
Inventor
Axel Nickel
Norbert Jording
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP17172180.6A priority Critical patent/EP3406780B1/de
Priority to CN201880049523.1A priority patent/CN111226001B/zh
Priority to US16/633,065 priority patent/US20200165759A1/en
Priority to PCT/EP2018/063287 priority patent/WO2018215402A1/de
Publication of EP3406780A1 publication Critical patent/EP3406780A1/de
Application granted granted Critical
Publication of EP3406780B1 publication Critical patent/EP3406780B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Definitions

  • the present invention relates to a tempered meltblown nonwoven fabric having high compressive strength and, more particularly, to a tempered bulk meltblown nonwoven fabric having high compressive strength. Furthermore, the present invention relates to a method for producing such a tempered meltblown nonwoven fabric.
  • a well-known aerodynamic process is the meltblown process according to the Exxon principle, as this example in the US 3,755,527 is described.
  • a low viscosity polymer is extruded through capillaries located at a nozzle tip.
  • the forming polymer droplets are then acted upon from two sides with a called air blast, having a high temperature and velocity, air flow, as a result of which the polymer droplets are drawn to a polymer free jet in the form of fine filaments.
  • meltblown nonwoven webs or meltblown nonwoven webs are used for a variety of applications, such as barrier functions in the hygiene area. For these applications, the filaments are deposited on the support as a flat, two-dimensional nonwoven fabric.
  • meltblown nonwovens which contain, in addition to the meltblown filaments, polyethylene terephthalate staple fibers incorporated therein. These nonwovens are characterized by an increased resilience, which is why the nonwoven fabric has a better relaxation. However, these nonwovens are composed of two incompatible polymers, which precludes recycling, which in turn leads to a major cost penalty.
  • a major disadvantage of the known meltblown nonwovens and in particular the known voluminous meltblown nonwovens is their relatively low stiffness and the resulting low compressive strength, especially at higher loads. Furthermore, these materials are usually limp, which means that they already deform under dead weight, but no specific Keep shape. For these reasons, these known meltblown nonwovens and in particular known voluminous meltblown nonwovens are difficult to permanently convert into a predetermined shape. Deformation usually results in addition to a compression of these nonwovens.
  • the object of the present invention is therefore to provide a meltblown nonwoven and in particular a voluminous meltblown nonwoven, which has an increased stiffness and in particular an increased compression hardness, especially at higher loads, and which is also easy to convert into a predetermined permanent shape.
  • this object is achieved by a tempered meltblown nonwoven obtainable by a process in which at least part of the meltblown nonwoven fabric is subsequently tempered at a temperature between the glass transition temperature and 0.1 ° C. below the melting temperature of the filaments of the meltblown nonwoven fabric.
  • meltblown nonwoven fabric according to the invention is also characterized by a significantly increased compression hardness, especially at higher loads, such as 40% or 60% compression from. Furthermore, the meltblown nonwoven fabric of the present invention is easily formed into a desired shape during annealing.
  • the degree of crystallization of the amorphous nonwoven filaments is increased by the annealing according to the invention.
  • the filament fineness as well as the nonwoven structure is not changed or at most negligible, so that the nonwoven fabric after tempering its other properties, such as in the case of a bulky nonwoven fabric, its thickness-specific acoustic properties, such as acoustic absorption, retains.
  • meltblown nonwoven fabric is understood to be a nonwoven fabric produced by one of the known meltblown processes, regardless of whether it is a flat 2-dimensional nonwoven fabric or a voluminous nonwoven fabric. Processes for producing such meltblown nonwoven fabrics are described, for example, in US Pat US 4,118,531 , in the US 4,375,446 , in the US 4,380,570 and in the DE 17 85 712 C3 described.
  • annealing generally means a heat treatment, ie heating the meltblown nonwoven fabric at the aforementioned temperature for a certain period of time.
  • the meltblown nonwoven fabric is subsequently tempered, at a temperature between the glass transition temperature and 0.1 ° C below the melting temperature of the filaments of the meltblown nonwoven fabric lies.
  • both the glass transition temperature and the melting temperature of the filaments of the meltblown nonwoven fabric refers to the corresponding temperatures of the present at this time meltblown nonwoven fabric.
  • the inventors have found that the melting temperature of the filaments of the meltblown nonwoven fabric may increase by about 10 to 20 ° C due to annealing depending on the conditions during annealing. Therefore, the temperature during annealing can be increased.
  • the annealing may be performed so that the meltblown nonwoven fabric first annealed at a temperature of 150 ° C, after a certain period of, for example 10 minutes, the temperature to 155 ° C (which is 2 ° C below the melting temperature, which the filaments of the meltblown nonwoven fabric at this time have) is increased, before after another period of, for example, another 10 minutes, the temperature is increased to 165 ° C (which is 2 ° C below the melting temperature that the filaments of the meltblown nonwoven fabric have at that time).
  • meltblown nonwoven fabric is annealed in sections or over the entire surface.
  • a certain subregion of the meltblown nonwoven fabric or several subregions of the meltblown nonwoven fabric can be tempered, whereas the remainder of the meltblown nonwoven fabric remains unannealed. It is also possible and particularly preferred according to the present invention, to anneal the entire meltblown nonwoven fabric.
  • the annealing is carried out at a temperature which is between 15 ° C below the melting temperature and 1 ° C below the melting temperature and most preferably between 10 ° C below the melting temperature and 2 ° C below the melting temperature, such as at about 5 ° C below the melting temperature (ie, for example, between 8 ° C below the melting temperature and 2 ° C below the melting temperature) of the filaments of meltblown nonwoven fabric is.
  • the duration of tempering depends on the temperature to which the meltblown nonwoven fabric is heated during tempering, where a lower tempering temperature tends to require a longer annealing time.
  • an annealing period of 1 minute to 10 days and in particular of 2 minutes to 24 hours has proven to be suitable.
  • the annealing time is 2 minutes to 2 hours, more preferably 2 to 60 minutes, and most preferably 2 to 10 minutes.
  • the meltblown nonwoven fabric is tempered for 2 minutes to 2 hours at a temperature which is between 20 ° C below the melting temperature and 1 ° C below the melting temperature of the filaments of meltblown nonwoven fabric. More preferably, the annealing of the meltblown nonwoven fabric is carried out for 2 to 60 minutes at a temperature which is between 15 ° C below the melting temperature and 2 ° C below the melting temperature of the filaments of the meltblown nonwoven fabric, and most preferably the annealing of the Meltblown nonwoven fabric for 2 to 10 minutes at a temperature which is about 5 ° C below the melting temperature, ie between 8 ° C below the melting temperature and 2 ° C below the melting temperature of the filaments of the meltblown nonwoven fabric.
  • the melting point of the meltblown nonwoven fabric during annealing may increase due to the increase in the degree of crystallinity.
  • the distance between the annealing temperature and the melting point of the meltblown nonwoven fabric during tempering would increase more and more and thus the required tempering time would be comparatively long.
  • annealing it is proposed to increase the temperature during the annealing to keep the annealing temperature always just below (for example, about 2 ° C or 5 ° C) below the melting point of the meltblown nonwoven fabric which increases during annealing , For example, if the melting temperature of the filaments of the meltblown nonwoven prior to annealing is 152 ° C, and the melt temperature of the filaments of the meltblown nonwoven fabric increases to 170 ° C during annealing, for example, annealing may be carried out as set forth above.
  • meltblown nonwoven fabric is first annealed at a temperature of 150 ° C, after a certain period of, for example 10 minutes, the temperature to 155 ° C (which is 2 ° C below the melting temperature, which the filaments of meltblown nonwoven fabric at this time). The temperature is increased to 165 ° C (which is 2 ° C below the melting temperature that the filaments of the meltblown nonwoven fabric at this time have) after another period of, for example, 10 minutes again.
  • the present invention is not limited in the way the meltblown nonwoven fabric is tempered.
  • annealing has proven to be not only simple, but particularly effective, in which the meltblown nonwoven fabric is exposed to hot air and / or superheated steam.
  • the hot air or overheated water vapor in this embodiment has a temperature which corresponds to that to which the meltblown nonwoven fabric is to be heated during the annealing.
  • the Meltblown nonwoven fabric in this embodiment with hot air or superheated steam applied by the hot melt or superheated steam flows around the meltblown nonwoven fabric or more preferably flows through.
  • the meltblown nonwoven fabric is preferably annealed in an oven having at least one blow box disposed so that the hot air or superheated steam can be blown into the meltblown nonwoven fabric. If only one or more subregions of the meltblown nonwoven fabric are to be tempered, the blower box is to be designed so that the hot air or superheated steam is blown only into or to the partial area (s) of the meltblown nonwoven fabric to be tempered.
  • the meltblown nonwoven fabric is bulky
  • the meltblown nonwoven fabric is annealed in an oven having at least one suction box, which is arranged so that the meltblown nonwoven fabric flowing air or superheated steam can be sucked off to ensure a safe flow.
  • a suction on both sides it is ensured that the nonwoven fabric with the hot air or the superheated steam is safely flowed through and also the nonwoven fabric does not collapse, but maintains its volume.
  • the meltblown nonwoven fabric is tempered in an oven having at least one blow box and at least one suction box, wherein the at least one blow box is arranged so that the hot air or superheated steam in the meltblown Nonwoven fabric can be blown, and, wherein the at least one suction box is arranged so that the air flowing through the meltblown nonwoven fabric or superheated steam can be sucked off.
  • the furnace comprises two blow boxes and one or two suction boxes, the suction box being located downstream of the first or second blow box in the case of a suction box, and the two suction boxes being downstream of the first and second blow boxes in the case of two suction boxes are arranged.
  • the present invention is not particularly limited in the basis weight of the meltblown nonwoven fabric.
  • the meltblown nonwoven fabric has a basis weight of from 30 to 600 g / m 2 , more preferably from 100 to 400 g / m 2, and most preferably from 250 to 350 g / m 2 , such as from 350 g / m 2 ,
  • the meltblown nonwoven fabric according to the invention may in particular be a voluminous meltblown nonwoven fabric.
  • the meltblown nonwoven fabric is a bulk meltblown nonwoven fabric having a density of from 5 to 50 kg / m 3 , preferably from 8 to 25 kg / m 3, and more preferably from 10 to 20 kg / m 3 .
  • the meltblown nonwoven fabric of the present invention is not particularly limited.
  • the filaments of the meltblown nonwoven fabric may consist of any polymer which has a melting point suitable for extrusion and a melt viscosity sufficiently low for the meltblown process, such as polyolefins, polyamides, polyesters, polyphenylene sulfides, polytetrafluoroethylene or a polyetheretherketone.
  • filaments have proven to be particularly suitable which are composed of a polymer selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polypropylene and polyethylene.
  • the filaments of the meltblown nonwoven fabric according to the present invention are composed of isotactic polypropylene since it has been found that For filaments made of isotactic polypropylene, the degree of crystallization during annealing is particularly well increased.
  • the meltblown nonwoven fabric in a shaped body in order to convert the meltblown nonwoven fabric during the tempering into a predetermined shape.
  • This can be achieved, for example, in that the shaped body in which the meltblown nonwoven fabric is tempered is at least partially designed as a sieve, so that the meltblown nonwoven fabric flows through the annealing with hot air or with superheated steam and / or flow around it can.
  • meltblown nonwoven fabric after heating, but before cooling into a shaped body and thus to convert it into a predetermined shape in order to reform it, wherein the meltblown nonwoven fabric is cooled in the mold to complete the annealing process ,
  • the meltblown nonwoven fabric can be formed by the annealing as a stamped part in a certain shape, such as in a hemisphere.
  • the tempered and shaped meltblown nonwoven fabric is significantly more dimensionally stable than the starting material and retains its shape as much as possible. Accordingly, the meltblown nonwoven fabric can take over after tempering forces, so that can be dispensed with after molding on additional stiffening structural elements in the meltblown nonwoven fabric.
  • meltblown nonwoven fabric in the meltblown nonwoven fabric at least one arranged in the thickness direction of the meltblown nonwoven fabric spacer is provided, which has a length which is greater than the thickness of the meltblown nonwoven fabric. This is advantageous, for example, when the meltblown nonwoven fabric is to be used as an acoustic absorber.
  • an intrinsically rigid molded article is obtained in which, due to the spacer (s) - when acting as an acoustic absorber in front of a reflective plane, such as the sheet metal wall an automobile, is mounted - a not insignificant air gap is formed between the absorber and the reflecting plane, wherein the thus created additional air volume acts as an integral part of the absorber structure.
  • a superior absorber effect with a significantly reduced cost of materials a molded part of meltblown nonwoven fabric.
  • the trapped between absorber and wall volume of air causes a significant improvement in the low-frequency behavior of the structure, which otherwise can only be achieved by correspondingly thick and therefore heavy and expensive materials.
  • the volume of air between absorber and wall described above can also be provided by a wall structure with a flat absorber or a structure of the wall and the absorber, wherein the inherent stiffness of the absorber for the permanent formation of the air volume is required.
  • the meltblown nonwoven fabric to be subjected to the tempering may be made by any of the known meltblown processes, such as those described in U.S. Pat US 4,118,531 , in the US 4,375,446 , in the US 4,380,570 or in the DE 17 85 712 C3 described method.
  • meltblown process nonwoven fabric is produced by externally impinging and drawing air flowing through a nozzle with molten air before the filaments formed thereby are deposited on a support and cooled become.
  • the support is preferably a double suction drum.
  • meltblown nonwoven fabric at least in sections and preferably over the entire surface measured according to DIN EN ISO 3386 compressive stress at 60% compression of at least 2 kPa, preferably of at least 8 kPa, more preferably of at least 12 kPa , most preferably at least 20 kPa and most preferably at least 30 kPa.
  • compressive strength at 60% compression is understood to mean the required compressive stress under which a material sample undergoes a reduction in thickness by 60% of the initial thickness.
  • the preload for determining the initial thickness of the material is reduced to 0.014 kPa to account for the very low compressive strength of the untempered material. Deviating compression levels or other test conditions may result in different compressive stresses with non-linear relationships to the stated values.
  • the annealing temperature is always at least 0.1 ° C below the current (ie, the present melt temperature) of the filaments of the meltblown nonwoven fabric.
  • the present invention makes it possible to increase the degree of crystallization of the filaments of meltblown nonwoven fabrics in sections or over the entire surface, thus increasing the stiffness of meltblown nonwovens in sections or over the entire surface.
  • the present invention can be used to anneal the meltblown nonwoven fabric over the entire surface and thus to increase the degree of crystallization in the meltblown nonwoven fabric over the entire surface.
  • inherently rigid, pressure-stable two-dimensional components can be produced.
  • the molded meltblown nonwoven fabric can be annealed only part of the surface and so the degree of crystallinity in the meltblown nonwoven fabric are raised only part of the area, so as to increase the rigidity only on component-specific areas or in the continuous grid of the component.
  • edge regions of the component can be tempered from the meltblown nonwoven fabric so as to make the edge regions of the component more rigid, for example in order to increase the stackability of the component from the meltblown nonwoven fabric.
  • a component can be formed by tempering from the meltblown nonwoven fabric and the degree of crystallization can be increased over its entire area in order to produce intrinsically stiff three-dimensional components.
  • locally compressed or consolidated areas can expand the functionality, for example, for the formation of contact surfaces at attachment points.
  • a further subject matter of the present invention is a tempered meltblown nonwoven whose filaments, at least in sections and preferably over the entire surface, have a crystallization degree of from 20 to 80%, preferably from 30 to 75%, more preferably from 40 to 75% and most preferably from 50 to 70%. exhibit.
  • the present invention relates to a meltblown nonwoven fabric with an at least in sections and preferably over the entire surface measured on the basis of DIN EN ISO 3386 compression hardness at 60% compression of at least 2 kPa.
  • the meltblown nonwoven fabric according to the invention has a compressive strength at 60% compression of at least 8 kPa, more preferably of at least 12 kPa, most preferably of at least 20 kPa and most preferably of at least 30 kPa.
  • the meltblown nonwoven fabric be annealed in step b) for 2 minutes to 2 hours at a temperature that is between 20 ° C below the melt temperature and 1 ° C below the melt temperature of the filaments of the meltblown nonwoven web ,
  • the Fig. 1 schematically shows a belt furnace 10 for producing a tempered meltblown nonwoven fabric according to an embodiment of the present invention.
  • the open 10 comprises on wheels 12 guided and driven air-permeable belts 14, 14 ', over which the meltblown nonwoven fabric 15 is guided into and through the oven 10.
  • the oven 10 are above and below the two bands 14, 14 ', seen in the conveying direction from right to left in this order, a first blow box 16, a suction box 18 and a second blow box 16' are arranged.
  • the meltblown nonwoven fabric 15 is passed through the oven 10 from right to left on the lower belt 14.
  • meltblown nonwoven fabric 15 when passing through the blow boxes 16, 16 ', hot air is flowed into and through the meltblown nonwoven fabric 15 to raise the filaments of the meltblown nonwoven fabric 15 to the desired tempering temperature. In the region of the suction box 18, the air flowing through the meltblown nonwoven fabric 15 is sucked off in order to ensure that the meltblown nonwoven fabric 15 is safely flowed through by the hot air and the meltblown nonwoven fabric 15 also does not collapse, but maintains its volume.
  • Fig. 1 schematically shows a mold 20 for simultaneously molding and annealing a meltblown nonwoven fabric 15 according to another embodiment of the present invention.
  • the meltblown nonwoven fabric 15 is held in the desired shape from both sides by appropriately shaped screens 22, 22 ', from which the mold 20 is assembled, and heated to the desired temperature by circulating or flowing hot air for annealing.
  • the nonwoven mat produced thereby maintains the embossed shape and is dimensionally stable.
  • meltblown nonwoven fabric having a basis weight of 300 g / m 2 and with a density of 15 kg / m 3 was prepared by the in the US 4,375,446 described meltblown method was performed. Subsequently, this meltblown nonwoven fabric was annealed in a convection oven for 10 minutes at 158 ° C. By inserting the cold nonwoven fabric and opening the oven door, the initial temperature was below the melting point of the filaments of the untempered nonwoven fabric.
  • the sound absorption coefficient of the tempered meltblown nonwoven fabric was measured as a function of the thickness-normalized frequency.
  • the results are in the Fig. 3 in curve A compared to the values obtained with the untempered meltblown nonwoven fabric prepared in the comparative example (curve B).
  • the unit of the abscissa is the measurement frequency x absorber thickness / 15 mm. The comparison of the results shows that the tempering according to the invention has no negative effects on the sound absorption properties of the nonwoven fabric.
  • a portion of the annealed meltblown nonwoven fabric was attached directly to a car body panel, while another portion of the tempered meltblown nonwoven fabric was attached to a vehicle body panel 10 mm apart and another portion of the tempered meltblown nonwoven fabric spaced apart of 40 mm was attached to a car body wall. Thereafter, the absorption coefficient was determined as a function of the frequency for the three structures.
  • the results are in the Fig. 4
  • the curve A shows the values for the meltblown nonwoven fabric attached directly to the vehicle body panel
  • the curve B shows the values for the meltblown nonwoven fabric attached to the vehicle body wall at a distance of 10 mm
  • the curve C the Shows values for the meltblown nonwoven fabric attached to the vehicle body wall at a distance of 40 mm.
  • a comparison of the values obtained shows that the volume of air trapped between the nonwoven fabric and the body wall achieves a significant improvement, in particular of the low-frequency absorption properties of the structure, which otherwise can only be achieved by correspondingly thick and thus also heavy and expensive materials.
  • a tempered meltblown nonwoven fabric was made according to the procedure described in Example 1, except that annealing was performed at 155 ° C for 10 minutes.
  • a tempered meltblown nonwoven fabric was prepared according to the procedure described in Example 1, except that annealing was performed at 155 ° C for 25 minutes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Herstellen eines getemperten Meltblown-Vliesstoffs, welches die nachfolgenden Schritte umfasst: a) Herstellen eines Meltblown-Vliesstoffs vorzugsweise indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden, sowie b) Tempern zumindest wenigstens eines Abschnittes des in dem Schritt a) hergestellten Meltblown-Vliesstoffs bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt. Ferner betrifft die vorliegende Erfindung ein mit diesem Verfahren hergestellten getemperten Meltblown-Vliesstoff, vorzugsweise einen getemperten voluminösen Meltblown-Vliesstoff. Dieser zeichnet sich im Vergleich zu einem ungetemperten Meltblown-Vliesstoff durch eine signifikant erhöhte Stauchhärte aus.

Description

  • Die vorliegende Erfindung betrifft einen getemperten Meltblown-Vliesstoff mit hoher Stauchhärte und insbesondere einen getemperten voluminösen Meltblown-Vliesstoff mit hoher Stauchhärte. Des Weiteren betrifft die vorliegende Erfindung ein Verfahren zum Herstellen eines solchen getemperten Meltblown-Vliesstoffs.
  • Üblicherweise erfolgt die Herstellung von Filzen und Vliesen aus Stapelfasern und/oder Endlosfilamenten mittels bekannter mechanischer oder aerodynamischer Verfahren. Ein bekanntes aerodynamisches Verfahren ist das Meltblown-Verfahren nach dem Exxon-Prinzip, wie dieses zum Beispiel in der US 3,755,527 beschrieben wird. Bei diesem Verfahren wird ein niedrigviskoses Polymer durch Kapillaren, die sich an einer Düsenspitze befinden, extrudiert. Die sich bildenden Polymertropfen werden dann von zwei Seiten mit einer als Blasluft bezeichneten, eine hohe Temperatur und Geschwindigkeit aufweisenden, Luftströmung beaufschlagt, infolge dessen die Polymertropfen zu einem Polymerfreistrahl in Form von feinen Filamenten ausgezogen werden. Durch die im spitzen Winkel auf die Polymertropfen aufeinandertreffenden Luftströmungen wird in dem Polymerfreistrahl zudem ein Schwingungsvorgang im dann vorliegenden Freistrahl induziert, infolge dessen es zu hochfrequenten Vorgängen kommt, welche die Polymerstränge über die Geschwindigkeit der Blasluft hinaus beschleunigen. Dadurch werden die Polymerstränge zusätzlich verstreckt, so dass die nach Ablegen der Filamente auf einem Träger und nach Abkühlen erhaltenen Filamente einen Durchmesser und eine Feinheit im einstelligen Mikrometerbereich oder sogar darunter aufweisen können. Die so hergestellten Meltblown-Vliesstoffe bzw. Schmelz-Blas-Vliesstoffe werden für unterschiedliche Anwendungen verwendet, wie zum Beispiel für Barrierefunktionen im Hygienebereich. Für diese Anwendungen werden die Filamente auf dem Träger als flacher, zweidimensionaler Vliesstoff abgelegt.
  • Ein weiteres bekanntes Meltblown-Verfahren ist von der Firma Biax Fiberfilm Corp. entwickelt worden und zum Beispiel in der US 4,380,570 beschrieben worden.
  • Es können auch voluminöse, dreidimensionale Meltblown-Vliesstoffe hergestellt werden, indem die gebildeten Filamente zwischen zwei Saugtrommeln bzw. Doppeltrommeln abgelegt werden, wie dies beispielsweise in der DE 17 85 712 C3 und in der US 4,375,446 beschrieben wird. Diese voluminösen Meltblown-Vliesstoffe können zum Beispiel als Ölabsorber oder als akustische Dämpfungsmaterialien eingesetzt werden. Allerdings weisen diese voluminösen Meltblown-Vliesstoffe den Nachteil auf, dass sie sehr duktil sind und sich durch eine schlechte Relaxation auszeichnen, was nach Druckbelastung zu einem Verlust an Volumen führt.
  • Aus der US 4,118,531 sind Meltblown-Vliesstoffe bekannt, die zusätzlich zu den Meltblown-Filamenten darin eingebrachte Stapelfasern aus Polyethylenterephthalat enthalten. Diese Vliesstoffe zeichnen sich durch eine erhöhte Sprungelastizität aus, weswegen der Vliesstoff eine bessere Relaxation aufweist. Allerdings sind diese Vliesstoffe aus zwei nicht miteinander kompatiblen Polymeren aufgebaut, was ein Recycling ausschließt, was wiederum zu einem großen Kostennachteil führt.
  • Ein wesentlicher Nachteil der bekannten Meltblown-Vliesstoffe und insbesondere der bekannten voluminösen Meltblown-Vliesstoffe ist deren vergleichsweise geringe Steifigkeit und deren daraus resultierende geringe Stauchhärte insbesondere bei größeren Belastungen. Ferner sind diese Materialien in der Regel biegeschlaff, was bedeutet, dass sie sich bereits unter Eigengewicht verformen, aber keine bestimmte Form behalten. Aus diesen Gründen sind diese bekannten Meltblown-Vliesstoffe und insbesondere bekannten voluminösen Meltblown-Vliesstoffe nur schwer dauerhaft in eine vorbestimmte Form zu überführen. Eine Verformung führt in der Regel zusätzlich zu einer Komprimierung dieser Vliesstoffe.
  • Aufgabe der vorliegenden Erfindung ist es daher, einen Meltblown-Vliesstoff und insbesondere einen voluminösen Meltblown-Vliesstoff bereitzustellen, welcher eine erhöhte Steifigkeit und insbesondere eine erhöhte Stauchhärte vor allem bei größeren Belastungen aufweist, und welcher zudem leicht in eine vorbestimmte dauerhafte Form zu überführen ist.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch einen getemperten Meltblown-Vliesstoff, der durch ein Verfahren erhältlich ist, bei dem zumindest ein Teil des Meltblown-Vliesstoffs nachträglich bei einer Temperatur getempert wird, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt.
  • Diese Lösung basiert auf der überraschenden Erkenntnis, dass ein nachträglich bei einer zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegenden Temperatur getemperter Meltblown-Vliesstoff im Vergleich zu dem entsprechenden ungetemperten Meltblown-Vliesstoff eine signifikant erhöhte Steifigkeit aufweist. Aufgrund dessen zeichnet sich der erfindungsgemäße Meltblown-Vliesstoff zudem durch eine signifikant erhöhte Stauchhärte vor allem bei größeren Belastungen, wie beispielsweise bei 40% oder 60% Kompression, aus. Des Weiteren lässt sich der erfindungsgemäße Meltblown-Vliesstoff während des Temperns leicht zu einer gewünschten Form formen. Ohne an eine Theorie gebunden sein zu wollen, wird vermutet, dass diese Vorteile zumindest teilweise darauf zurückzuführen sind, dass bei dem erfindungsgemäß nachträglich durchgeführten Tempern der Kristallisationsgrad der Vliesstofffilamente, welche zuvor überwiegend amorph sind, signifikant erhöht wird. Dies wird deshalb vermutet, weil die Erfinder festgestellt haben, dass sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs durch das Tempern in Abhängigkeit von den Bedingungen während des Temperns um etwa 10 bis 20°C erhöhen kann. Die von den Erfindern durchgeführten Experimente scheinen zu zeigen, dass durch die sehr hohen Abzugsgeschwindigkeiten bei der Herstellung der Filamente auf sehr dünne Feinheiten der Filamente, es trotz der heißen Blasluft zu einer rapiden Abkühlung der Polymerschmelze kommt, wodurch die amorphe Molekülstruktur der Schmelze gewissermaßen "eingefroren" wird. Wie dargelegt, wird durch das erfindungsgemäße Tempern der Kristallisationsgrad der amorphen Vliesstofffilamente erhöht. Vorteilhafterweise wird durch das Tempern die Filamentfeinheit sowie die Vliesstruktur nicht oder allenfalls unbeträchtlich verändert, so dass der Vliesstoff nach dem Tempern seine anderen Eigenschaften, wie beispielsweise im Falle eines voluminösen Vliesstoffs, seine dickenspezifischen akustischen Eigenschaften, wie akustischen Absorptionsgrad, beibehält.
  • Unter einem Meltblown-Vliesstoff wird im Sinne der vorliegenden Erfindung ein mit einem der bekannten Meltblown-Verfahren hergestellter Vliesstoff verstanden, unabhängig davon, ob es ein flächiger 2-dimensionaler Vliesstoff oder ein voluminöser Vliesstoff ist. Verfahren zur Herstellung solcher Meltblown-Vliesstoffe sind beispielsweise in der US 4,118,531 , in der US 4,375,446 , in der US 4,380,570 und in der DE 17 85 712 C3 beschrieben.
  • Zudem wird im Sinne der vorliegenden Erfindung unter Tempern allgemein eine Wärmebehandlung verstanden, also das Erhitzen des Meltblown-Vliesstoffs bei der vorgenannten Temperatur für eine gewisse Zeitspanne.
  • Erfindungsgemäß wird zumindest ein Teil des Meltblown-Vliesstoffs nachträglich getempert, und zwar bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt. Dabei bezieht sich sowohl die Glasübergangstemperatur als auch die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs auf die entsprechenden Temperaturen des zu diesem Zeitpunkt vorliegenden Meltblown-Vliesstoffs. Wie vorstehend dargelegt, haben die Erfinder festgestellt, dass sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs durch das Tempern in Abhängigkeit von den Bedingungen während des Temperns um etwa 10 bis 20°C erhöhen kann. Daher kann die Temperatur während des Temperns erhöht werden. Wenn beispielsweise die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs vor Beginn des Temperns 152°C beträgt und sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs während Temperns beispielsweise auf 170°C erhöht, kann das Tempern beispielsweise so durchgeführt werden, dass der Meltblown-Vliesstoff zunächst bei einer Temperatur von 150°C getempert wird, nach einer gewissen Zeitspanne von beispielswiese 10 Minuten die Temperatur auf 155°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente des Meltblown-Vliesstoffs zu diesem Zeitpunkt aufweisen) erhöht wird, bevor nach einer weiteren Zeitspanne von beispielswiese erneut 10 Minuten die Temperatur auf 165°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente des Meltblown-Vliesstoffs zu diesem Zeitpunkt aufweisen) erhöht wird.
  • Dabei wird der Meltblown-Vliesstoff abschnittsweise oder vollflächig getempert. Dabei kann ein bestimmter Teilbereich des Meltblown-Vliesstoffs oder können mehrere Teilbereiche des Meltblown-Vliesstoffs getempert werden, wohingegen der Rest des Meltblown-Vliesstoffs ungetempert bleibt. Ebenso ist es möglich und gemäß der vorliegenden Erfindung auch besonders bevorzugt, den gesamten Meltblown-Vliesstoff zu tempern.
  • Gute Ergebnisse sowohl im Hinblick auf die Formbarkeit als auch im Hinblick auf die Erhöhung der Steifigkeit und insbesondere der Stauchhärte des getemperten Meltblown-Vliesstoffs werden insbesondere erhalten, wenn der Meltblown-Vliesstoff bzw. der/die davon zu tempernden Teilbereich(e) bei einer Temperatur getempert wird/werden, die zwischen 20°C unterhalb der Schmelztemperatur und 1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt. Besonders bevorzugt wird das Tempern bei einer Temperatur durchgeführt, welche zwischen 15°C unterhalb der Schmelztemperatur und 1°C unterhalb der Schmelztemperatur und ganz besonders bevorzugt zwischen 10°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur, wie beispielsweise bei etwa 5°C unterhalb der Schmelztemperatur (also beispielsweise zwischen 8°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur) der Filamente des Meltblown-Vliesstoffs liegt.
  • Die Dauer des Temperns hängt von der Temperatur ab, auf welche der Meltblown-Vliesstoff während des Temperns erwärmt wird, wobei tendenziell eine tiefere Tempertemperatur eine längere Temperzeitspanne erfordert. Grundsätzlich hat sich eine Temperzeitspanne von 1 Minute bis 10 Tage und insbesondere von 2 Minuten bis 24 Stunden als geeignet erwiesen. Bevorzugt beträgt die Zeitspanne des Temperns 2 Minuten bis 2 Stunden, besonders bevorzugt 2 bis 60 Minuten und höchst bevorzugt 2 bis 10 Minuten.
  • Gute Ergebnisse werden insbesondere erzielt, wenn der Meltblown-Vliesstoff für 2 Minuten bis 2 Stunden bei einer Temperatur getempert wird, die zwischen 20°C unterhalb der Schmelztemperatur und 1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt. Besonders bevorzugt wird das Tempern des Meltblown-Vliesstoffs für 2 bis 60 Minuten bei einer Temperatur durchgeführt, welche zwischen 15°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt, und ganz besonders bevorzugt wird das Tempern des Meltblown-Vliesstoffs für 2 bis 10 Minuten bei einer Temperatur durchgeführt, welche etwa 5°C unterhalb der Schmelztemperatur, also zwischen 8°C unterhalb der Schmelztemperatur und 2°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt.
  • Wie vorstehend dargelegt, kann sich der Schmelzpunkt des Meltblown-Vliesstoffs während des Temperns durch die Zunahme des Kristallisationsgrades erhöhen. In diesem Fall würde sich bei einer konstanten Tempertemperatur der Abstand zwischen der Tempertemperatur und dem Schmelzpunkt des Meltblown-Vliesstoffs während des Temperns immer mehr erhöhen und so die erforderliche Temperzeit vergleichsweise lang sein. Daher wird es gemäß einer alternativen Ausführungsform der vorliegenden Erfindung vorgeschlagen, die Temperatur während des Temperns zu erhöhen, um die Tempertemperatur immer knapp (beispielsweise etwa 2°C oder 5°C) unterhalb des sich während des Temperns erhöhenden Schmelzpunktes des Meltblown-Vliesstoffs zu halten. Wenn beispielsweise die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs vor Beginn des Temperns 152°C beträgt und sich die Schmelztemperatur der Filamente des Meltblown-Vliesstoffs während Temperns beispielsweise auf 170°C erhöht, kann das Tempern, wie vorstehend dargelegt, beispielsweise so durchgeführt werden, dass der Meltblown-Vliesstoff zunächst bei einer Temperatur von 150°C getempert wird, nach einer gewissen Zeitspanne von beispielswiese 10 Minuten die Temperatur auf 155°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente der Meltblown-Vliesstoff zu diesem Zeitpunkt aufweisen) erhöht wird, bevor nach einer weiteren Zeitspanne von beispielswiese erneut 10 Minuten die Temperatur auf 165°C (die 2°C unterhalb der Schmelztemperatur liegt, welche die Filamente der Meltblown-Vliesstoff zu diesem Zeitpunkt aufweisen) erhöht wird.
  • Grundsätzlich ist die vorliegende Erfindung hinsichtlich der Art, wie der Meltblown-Vliesstoff getempert wird, nicht beschränkt. Als nicht nur einfach, sondern besonders wirksam hat sich im Rahmen der Erfindung ein Tempern erwiesen, bei dem der Meltblown-Vliesstoff mit heißer Luft und/oder mit überhitztem Wasserdampf beaufschlagt wird. Die heiße Luft bzw. der überhitzte Wasserdampf weist bei dieser Ausführungsform eine Temperatur auf, die der entspricht, auf die der Meltblown-Vliesstoff bei dem Tempern erwärmt werden soll. Vorzugsweise wird der Meltblown-Vliesstoff bei dieser Ausführungsform mit heißer Luft bzw. mit überhitztem Wasserdampf beaufschlagt, indem der Meltblown-Vliesstoff mit der heißen Luft bzw. mit überhitztem Wasserdampf umströmt oder weiter bevorzugt durchströmt wird.
  • Um dies zu realisieren, wird der Meltblown-Vliesstoff bevorzugt in einem Ofen getempert, der wenigstens einen Blaskasten aufweist, der so angeordnet ist, dass die heiße Luft bzw. der überhitzte Wasserdampf in den Meltblown-Vliesstoff eingeblasen werden kann. Sofern nur ein oder mehrere Teilbereiche des Meltblown-Vliesstoff getempert werden sollen, ist der Blaskasten so auszugestalten, dass die heiße Luft bzw. der überhitzte Wasserdampf nur in den bzw. die zu tempernden Teilbereich(e) des Meltblown-Vliesstoffs eingeblasen wird.
  • Insbesondere in dem Fall, dass der Meltblown-Vliesstoff voluminös ist, wird es in Weiterbildung des Erfindungsgedankens vorgeschlagen, dass der Meltblown-Vliesstoff in einem Ofen getempert wird, der wenigstens einen Saugkasten aufweist, der so angeordnet ist, dass den Meltblown-Vliesstoff durchströmende Luft bzw. überhitzter Wasserdampf abgesaugt werden kann, um ein sicheres Durchströmen zu gewährleisten. Durch ein beidseitiges Absaugen wird gewährleistet, dass der Vliesstoff mit der heißen Luft bzw. dem überhitzten Wasserdampf sicher durchströmt wird und der Vliesstoff zudem nicht kollabiert, sondern sein Volumen beibehält.
  • Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird der Meltblown-Vliesstoff in einem Ofen getempert, der wenigstens einen Blaskasten und wenigstens einen Saugkasten aufweist, wobei der wenigstens eine Blaskasten so angeordnet ist, dass die heiße Luft bzw. der überhitzt Wasserdampf in den Meltblown-Vliesstoff eingeblasen werden kann, und, wobei der wenigstens eine Saugkasten so angeordnet ist, dass die den Meltblown-Vliesstoff durchströmende Luft bzw. überhitzter Wasserdampf abgesaugt werden kann. Besonders bevorzugt weist der Ofen bei dieser Ausführungsform zwei Blaskästen und einen oder zwei Saugkästen auf, wobei der Saugkasten im Falle eines Saugkastens stromabwärts des ersten oder zweiten Blaskastens angeordnet ist, und, wobei die beiden Saugkästen im Falle von zwei Saugkästen stromabwärts des ersten und des zweiten Blaskastens angeordnet sind.
  • Grundsätzlich ist die vorliegende Erfindung bezüglich des Flächengewichts des Meltblown-Vliesstoffs nicht besonders limitiert. Vorzugsweise weist der Meltblown-Vliesstoff ein Flächengewicht von 30 bis 600 g/m2, besonders bevorzugt von 100 bis 400 g/m2 und ganz besonders bevorzugt von 250 bis 350 g/m2, wie etwa von 350 g/m2, auf.
  • Wie vorstehend dargelegt, kann es sich bei dem erfindungsgemäßen Meltblown-Vliesstoff insbesondere um einen voluminösen Meltblown-Vliesstoff handeln. Vorzugsweise ist der Meltblown-Vliesstoff ein voluminöser Meltblown-Vliesstoff mit einer Dichte von 5 bis 50 kg/m3, bevorzugt von 8 bis 25 kg/m3 und besonders bevorzugt von 10 bis 20 kg/m3.
  • Auch bezüglich der chemischen Natur der Filamente ist der erfindungsgemäße Meltblown-Vliesstoff nicht besonders limitiert. Grundsätzlich können die Filamente des Meltblown-Vliesstoffs aus jedem Polymer bestehen, welches einen zur Extrusion geeigneten Schmelzpunkt und eine im Schmelzzustand für das Meltblown-Verfahren hinreichend niedrige Viskosität aufweist, wie beispielsweise aus Polyolefinen, Polyamiden, Polyestern, Polyphenylensulfiden, Polytetrafluorethylen oder einem Polyetheretherketon. Besonders geeignet haben sich insbesondere Filamente erwiesen, welche aus einem aus der aus Polyethylenterephthalat, Polybutylenterephthalat, Polypropylen und Polyethylen bestehenden Gruppe ausgewähltem Polymer zusammengesetzt sind. Ganz besonders bevorzugt sind die Filamente des Meltblown-Vliesstoffs gemäß der vorliegenden Erfindung aus isotaktischem Polypropylen zusammengesetzt, da es sich herausgestellt hat, dass bei Filamenten aus isotaktischem Polypropylen der Kristallisationsgrad während des Temperns besonderes gut erhöht wird.
  • Bei Werkstoffen, die kein besonders gutes Kristallisationsverhalten zeigen, kann dieses durch die Zugabe von Kristallisationskeimen während des Extrusionsprozesses erhöht werden.
  • In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, den Meltblown-Vliesstoff in einem Formkörper zu tempern, um den Meltblown-Vliesstoff bei dem Tempern auch in eine vorgegebene Form zu überführen. Dies kann beispielsweise dadurch erreicht werden, dass der Formkörper, in welcher der Meltblown-Vliesstoff getempert wird, zumindest teilweise als Sieb ausgebildet ist, so dass der Meltblown-Vliesstoff bei dem Tempern mit heißer Luft bzw. mit überhitztem Wasserdampf durchströmt und/oder umströmt werden kann.
  • In einer alternativen Ausführung wird vorgeschlagen, den Meltblown-Vliesstoff nach dem Erwärmen, aber vor dem Abkühlen in einen Formkörper abzulegen und so in eine vorgegebene Form zu überführen, um diesen umzuformen, wobei der Meltblown-Vliesstoff in der Form gekühlt wird um den Temperprozess abzuschließen.
  • Auf diese Weise kann beispielsweise der Meltblown-Vliesstoff durch das Tempern als Stanzteil in eine bestimmte Form, wie zum Beispiel in eine Halbkugel, geformt werden. Der so getemperte und geformte Meltblown-Vliesstoff ist deutlich dimensionsstabiler als das Ausgangsmaterial und behält seine Form weitestgehend bei. Der Meltblown-Vliesstoff kann demnach nach dem Tempern Kräfte übernehmen, so dass bei nach Formung auf zusätzliche versteifende Strukturelemente in dem Meltblown-Vliesstoff verzichtet werden kann.
  • Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist es vorgesehen, dass in dem Meltblown-Vliesstoff wenigstens ein in Dickenrichtung des Meltblown-Vliesstoffs angeordneter Abstandshalter vorgesehen ist, der eine Länge aufweist, die größer als die Dicke des Meltblown-Vliesstoffs ist. Dies ist beispielsweise vorteilhaft, wenn der Meltblown-Vliesstoff als akustischer Absorber eingesetzt werden soll. Durch das Formen des bzw. der Abstandshalter(s) in den steifen Meltblown-Vliesstoff wird ein eigensteifes Formteil erhalten, bei dem aufgrund des bzw. der Abstandshalter(s) - wenn es als akustischer Absorber vor eine reflektierende Ebene, wie zum Beispiel die Blechwand eines Automobils, montiert ist - zwischen dem Absorber und der reflektierenden Ebene ein nicht unwesentlicher Luftspalt ausgebildet wird, wobei das so geschaffene zusätzliche Luftvolumen als integraler Bestandteil des Absorberaufbaus wirkt. Dadurch kann mit einem deutlich verringerten Materialaufwand ein Formteil aus Meltblown-Vliesstoff mit einer hervorragenden Absorberwirkung erreicht werden. Durch das zwischen Absorber und Wand eingeschlossene Luftvolumen wird eine deutliche Verbesserung des tieffrequenten Verhaltens des Aufbaues bewirkt, was sonst nur durch entsprechend dicke und somit auch schwere und teure Materialien zu erzielen ist. In einer weiteren erfindungsgemäßen Ausführungsform kann das oben beschriebene Luftvolumen zwischen Absorber und Wand auch durch eine Struktur der Wand bei planem Absorber oder eine Struktur der Wand und des Absorbers geschaffen werden, wobei die Eigensteifigkeit des Absorbers für die dauerhafte Bildung des Luftvolumens erforderlich ist.
  • Wie dargelegt, kann der dem Tempern zu unterziehende Meltblown-Vliesstoff mit jedem der bekannten Meltblown-Verfahren hergestellt werden, wie beispielsweise mit einem in der US 4,118,531 , in der US 4,375,446 , in der US 4,380,570 oder in der DE 17 85 712 C3 beschriebenen Verfahren. Grundsätzlich wird bei einem Meltblown-Verfahren Vliesstoff hergestellt, indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger abgelegt und abgekühlt werden. Im Falle der Ausbildung eines voluminösen Meltblown-Vliesstoffs ist der Träger bevorzugt eine Doppel-Saugtrommel.
  • Wie dargelegt, wird durch das Tempern der Kristallisationsgrad des Meltblown-Vliesstoffs erhöht. Vorzugsweise weisen die Filamente des getemperten Meltblown-Vliesstoffs zumindest abschnittsweise und bevorzugt vollflächig einen Kristallisationsgrad von 20 bis 80%, weiter bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% auf. Bei nur abschnittsweiser Temperung des Meltblown-Vliesstoffs weisen analog dazu bevorzugt die getemperten Bereiche des getemperten Meltblown-Vliesstoffs einen Kristallisationsgrad von 20 bis 80%, weiter bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% auf.
  • Ferner ist es bevorzugt, dass der Meltblown-Vliesstoff zumindest abschnittsweise und bevorzugt vollflächig eine in Anlehnung an die DIN EN ISO 3386 gemessene Stauchhärte (Druckspannung) bei 60% Kompression von mindestens 2 kPa, bevorzugt von mindestens 8 kPa, besonders bevorzugt von mindestens 12 kPa, ganz besonders bevorzugt von mindestens 20 kPa und höchst bevorzugt von mindestens 30 kPa aufweist. Als Stauchhärte bei 60% Kompression ist abweichend von der oben genannten Norm die erforderliche Druckspannung zu verstehen, unter der eine Materialprobe eine Dickenminderung um 60% der Ausgangsdicke erfährt. Weiterhin ist die Vorlast zur Bestimmung der Ausgangsdicke des Materials auf 0,014 kPa reduziert, um der sehr niedrigen Stauchhärte des ungetetemperten Materials Rechnung zu tragen. Bei hiervon abweichenden Kompressionsgraden oder anderen Prüfbedingungen können sich abweichende Druckspannungen mit nicht linearen Zusammenhängen zu den genannten Werten ergeben.
  • Um die Temperzeit zu verkürzen, wird es in Weiterbildung des Erfindungsgedankens vorgeschlagen, bei dem Tempern die Tempertemperatur kontinuierlich oder stufenweise anzuheben, und zwar vorzugsweise auch über die Schmelztemperatur der ungetemperten Filamente des Meltblown-Vliesstoffs hinaus, wobei die Tempertemperatur jedoch immer mindestens 0,1 °C unterhalb der aktuellen (d.h. der zu diesem Zeitpunkt vorliegenden Schmelztemperatur) der Filamente des Meltblown-Vliesstoffs beträgt.
  • Insgesamt ermöglicht es die vorliegende Erfindung, abschnittsweise oder vollflächig den Kristallisationsgrad der Filamente von Meltblown-Vliesstoffen und so abschnittsweise oder vollflächig die Steifigkeit von Meltblown-Vliesstoffen zu erhöhen. Insbesondere kann die vorliegende Erfindung eingesetzt werden, um den Meltblown-Vliesstoff vollflächig zu tempern und so den Kristallisationsgrad in dem Meltblown-Vliesstoff vollflächig anzuheben. Dadurch können eigensteife, druckstabile zweidimensionale Bauteile hergestellt werden. Alternativ dazu kann der geformte Meltblown-Vliesstoff auch nur teilflächig getempert werden und so der Kristallisationsgrad in dem Meltblown-Vliesstoff nur teilflächig angehoben werden, um so beispielsweise die Steifigkeit nur an bauteilspezifischen Bereichen oder im durchlaufenden Raster des Bauteils zu erhöhen. Beispielsweise können nur die Randbereiche des Bauteils aus dem Meltblown-Vliesstoff getempert werden, um so die Randbereiche des Bauteils steifer zu machen, um beispielsweise die Stapelbarkeit des Bauteils aus dem Meltblown-Vliesstoff zu erhöhen. Alternativ dazu kann durch das Tempern aus dem Meltblown-Vliesstoff ein Bauteil geformt und in diesem vollflächig der Kristallisationsgrad angehoben werden, um eigensteife dreidimensionale Bauteile herzustellen. Andererseits ist es auch möglich, durch das Tempern den Meltblown-Vliesstoff nur teilflächig zu verformen und nur in dieser Teilfläche den Kristallisationsgrad anzuheben, um beispielsweise dadurch in dem Meltblown-Vliesstoff ein oder mehrere Abstandshalter oder eine andere lokale Funktionsgeometrie auszubilden. Bei allen vorgenannten Anwendungsmöglichkeiten können lokal verdichtete bzw. konsolidierte Bereiche die Funktionalität erweitern, und zwar zum Beispiel zur Ausbildung von Anlageflächen an Befestigungspunkten.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein getemperter Meltblown-Vliesstoff, dessen Filamente zumindest abschnittsweise und bevorzugt vollflächig einen Kristallisationsgrad von 20 bis 80%, bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% aufweisen.
  • Ferner betrifft die vorliegende Erfindung einen Meltblown-Vliesstoff mit einer zumindest abschnittsweise und bevorzugt vollflächig eine in Anlehnung an die DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 2 kPa. Bevorzugt weist der erfindungsgemäße Meltblown-Vliesstoff eine Stauchhärte bei 60% Kompression von mindestens 8 kPa, besonders bevorzugt von mindestens 12 kPa, ganz besonders bevorzugt von mindestens 20 kPa und höchst bevorzugt von mindestens 30 kPa auf.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Herstellen eines getemperten Meltblown-Vliesstoffs umfassend die folgenden Schritte:
    1. a) Herstellen eines Meltblown-Vliesstoffs vorzugsweise indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden, sowie
    2. b) Tempern zumindest wenigstens eines Abschnittes des in dem Schritt a) hergestellten Meltblown-Vliesstoffs bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs liegt.
  • Die vorstehend für den erfindungsgemäßen Meltblown-Vliesstoff als bevorzugt beschriebenen Verfahrensschritte gelten auch für das erfindungsgemäße Verfahren.
  • Dementsprechend ist es besonders bevorzugt, dass der Meltblown-Vliesstoff in dem Schritt b) für 2 Minuten bis 2 Stunden bei einer Temperatur getempert wird, die zwischen 20°C unterhalb der Schmelztemperatur und 1°C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt.
  • Nachfolgend wird die vorliegende Erfindung unter Bezugnahme auf diese erläuternde, diese aber nicht einschränkenden Figuren beschrieben.
  • Dabei zeigen:
  • Fig. 1
    schematisch einen Ofen zur Herstellung eines getemperten Meltblown-Vliesstoffs gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
    Fig. 2
    schematisch eine Form zum gleichzeitigen Formen und Tempern eines Meltblown-Vliesstoffs gemäß einem anderen Ausführungsbeispiel der vorliegenden Erfindung.
    Fig. 3
    die Ergebnisse der Messung der Schallabsorption des in dem Beispiel 1 hergestellten getemperten Meltblown-Vliesstoffs gemäß der vorliegenden Erfindung (Kurve A) im Vergleich zu dem in dem Vergleichsbeispiel hergestellten ungetemperten Meltblown-Vliesstoff (Kurve B).
    Fig. 4
    die Ergebnisse der Messung des Absorptionskoeffizienten des in dem Beispiel 1 hergestellten getemperten Meltblown-Vliesstoffs direkt an eine Karosseriewand angebracht (Kurve A), in einem Abstand von 10 mm an eine Karosseriewand angebracht (Kurve B) und in einem Abstand von 40 mm an eine Karosseriewand angebracht (Kurve C).
  • Die Fig. 1 zeigt schematisch einen Bandofen 10 zur Herstellung eines getemperten Meltblown-Vliesstoffs gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der Offen 10 umfasst auf Rollen 12 geführte und angetriebene luftdurchlässige Bänder 14, 14', über welche der Meltblown-Vliesstoff 15 in und durch den Ofen 10 geführt wird. In dem Ofen 10 sind ober- und unterhalb der beiden Bänder 14, 14', in der Förderrichtung von rechts nach links gesehen in dieser Reihenfolge, ein erster Blaskasten 16, ein Saugkasten 18 und ein zweiter Blaskasten 16' angeordnet. Während des Betriebs des Ofens 10 wird der Meltblown-Vliesstoff 15 von rechts nach links auf dem unteren Band 14 durch den Ofen 10 geführt. Dabei wird bei dem Durchlaufen durch die Blaskästen 16, 16' heiße Luft in den Meltblown-Vliesstoff 15 und durch diesen hindurch geströmt, um die Filamente des Meltblown-Vliesstoffs 15 auf die gewünschte Tempertemperatur zu erhöhen. In dem Bereich des Saugkastens 18 wird den Meltblown-Vliesstoff 15 durchströmende Luft abgesaugt, um zu gewährleisten, dass der Meltblown-Vliesstoff 15 mit der heißen Luft sicher durchströmt wird und der Meltblown-Vliesstoff 15 zudem nicht kollabiert, sondern sein Volumen beibehält.
  • In der Fig. 2 ist schematisch eine Form 20 zum gleichzeitigen Formen und Tempern eines Meltblown-Vliesstoffs 15 gemäß einem anderen Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Der Meltblown-Vliesstoff 15 wird durch entsprechend geformte Siebe 22, 22', aus der die Form 20 zusammengesetzt ist, von beiden Seiten in der gewünschten Form gehalten und durch Um- oder Durchströmen heißer Luft zum Tempern auf die gewünschte Temperatur erwärmt. Die dadurch hergestellte Vliesstoffmatte behält die eingeprägte Form bei und ist dimensionsstabil.
  • Nachfolgend wird die vorliegende Erfindung anhand von diese erläuternde, diese aber nicht einschränkende Beispielen beschrieben.
  • Beispiel 1
  • Aus Filamenten aus isotaktischem Polypropylen mit einer Filamentfeinheit von im Mittel 5 µm wurde ein Meltblown-Vliesstoff mit einem Flächengewicht von 300 g/m2 und mit einer Dichte von 15 kg/m3 hergestellt, indem das in der US 4,375,446 beschriebene Meltblown-Verfahren durchgeführt wurde. Anschließend wurde dieser Meltblown-Vliesstoff in einem Umluftofen für 10 Minuten bei 158°C getempert. Durch das Einlegen des kalten Vliesstoffs und das Öffnen der Ofentür lag die Anfangstemperatur unter dem Schmelzpunkt der Filamente des ungetemperten Vliesstoffs. Durch die unmittelbar einsetzende Kristallisation mit einhergehender Erhöhung des Schmelzpunktes der Filament konnte für den Rest der 10 Minuten mit 158°C, also über der Schmelztemperatur der ungetemperten Filamente, aber unterhalb der aktuell zu diesem Zeitpunkt vorliegenden Schmelztemperatur der Filamente, weiter getempert werden und so die Temperdauer im Vergleich zu einem Tempern bei niedrigerer Temperatur verkürzt werden.
  • Danach wurde gemäß der DIN EN ISO 3386 die Stauchhärte bei 40% Kompression und die Stauchhärte bei 60% Kompression des getemperten Meltblown-Vliesstoffs gemessen. Die Ergebnisse sind in der untenstehenden Tabelle 1 zusammengefasst und zeigen, dass das erfindungsgemäße Tempern zu einer drastischen Zunahme der Stauchhärte führt.
  • Zudem wurde gemäß der DIN EN ISO 10534 der Schallabsorptionsgrad des getemperten Meltblown-Vliesstoffs in Abhängigkeit von der dickennormierten Frequenz gemessen. Die Ergebnisse sind in der Fig. 3 in Kurve A im Vergleich zu den Werten, die mit dem in dem Vergleichsbeispiel hergestellten ungetemperten Meltblown-Vliesstoff erzielt worden sind (Kurve B), dargestellt. Dabei ist die Einheit der Abszisse die Messfrequenz x Absorberdicke / 15 mm. Der Vergleich der Ergebnisse zeigt, dass die erfindungsgemäße Temperung keine negativen Auswirkungen auf die Schallabsorptionseigenschaften des Vliesstoffs ausübt.
  • Ein Teil des getemperten Meltblown-Vliesstoffs wurde direkt an eine KfZ-Karosseriewand angebracht, wohingegen ein weiterer Teil des getemperten Meltblown-Vliesstoffs mit einem Abstand von 10 mm an eine KfZ-Karosseriewand angebracht wurde und ein weiterer Teil des getemperten Meltblown-Vliesstoffs mit einem Abstand von 40 mm an eine KfZ-Karosseriewand angebracht wurde. Danach wurde für die drei Aufbauten der Absorptionskoeffizient in Abhängigkeit von der Frequenz bestimmt. Die Ergebnisse sind in der Fig. 4 gezeigt, wobei die Kurve A die Werte für den direkt an die KfZ-Karosseriewand angebrachten Meltblown-Vliesstoff zeigt, die Kurve B die Werte für den mit einem Abstand von 10 mm an die KfZ-Karosseriewand angebrachten Meltblown-Vliesstoff zeigt und die Kurve C die Werte für den mit einem Abstand von 40 mm an die KfZ-Karosseriewand angebrachten Meltblown-Vliesstoff zeigt. Ein Vergleich der erhaltenen Werte zeigt, dass durch das zwischen Vliesstoff und Karosseriewand eingeschlossene Luftvolumen eine deutliche Verbesserung insbesondere der tieffrequenten Absorptionseigenschaften des Aufbaues erreicht wird, was sonst nur durch entsprechend dicke und somit auch schwere und teure Materialien zu erzielen ist.
  • Beispiel 2
  • Es wurde ein getemperter Meltblown-Vliesstoff gemäß dem in dem Beispiel 1 beschriebenen Verfahren hergestellt, ausgenommen, dass das Tempern bei 155°C für 10 Minuten durchgeführt worden ist.
  • Beispiel 3
  • Es wurde ein getemperter Meltblown-Vliesstoff gemäß dem in dem Beispiel 1 beschriebenen Verfahren hergestellt, ausgenommen, dass das Tempern bei 155°C für 25 Minuten durchgeführt worden ist.
  • Vergleichsbeispiel
  • Es wurde ein ungetemperter Meltblown-Vliesstoff gemäß dem in dem Beispiel 1 beschriebenen ersten Verfahrensschritt hergestellt, der im Unterschied zu dem in dem Beispiel 1 beschriebenen nicht getempert wurde. Tabelle 1
    Beispiel Tempertemperatur (°C) Temperdauer (Min.) Stauchhärtefaktor bei 60% Kompression Stauchhärtefaktor bei 60% Kompression
    1 158 10 18,5 14
    2 155 10 9,5 7
    3 155 25 12 9
    Vergleichsbeispiel 1 - - 1 1
    • Stauchhärtefaktor: Verhältnis der Stauchhärte des getemperten Vliesstoffs des Beispiels geteilt durch die Stauchhärte des ungetemperten Vliesstoffs des Vergleichsbeispiels
  • Ein Vergleich der Ergebnisse zeigt, dass das erfindungsgemäße nachträgliche Tempern des Meltblown-Vliesstoffs zu einer drastischen Zunahme der Stauchhärte des Meltblown-Vliesstoffs führt.
  • Bezugszeichenliste
  • 10
    (Band)ofen
    12
    Rollen
    14, 14'
    Luftdurchlässiges Band
    15
    Meltblown-Vliesstoff
    16, 16'
    Blaskasten
    18
    Saugkasten
    20
    Form
    22, 22'
    Sieb

Claims (15)

  1. Getemperter Meltblown-Vliesstoff erhältlich durch ein Verfahren, bei dem zumindest ein Teil des Meltblown-Vliesstoffs (15) nachträglich bei einer Temperatur getempert wird, die zwischen der Glasübergangstemperatur und 0,1°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15) beträgt.
  2. Meltblown-Vliesstoff nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) bei einer Temperatur getempert wird, die zwischen 20°C und 1°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15), bevorzugt zwischen 15°C und 1°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15) und besonders bevorzugt zwischen 10°C und 2°C unterhalb der aktuellen Schmelztemperatur der Filamente des Meltblown-Vliesstoffs (15) beträgt.
  3. Meltblown-Vliesstoff nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) für 1 Minute bis 10 Tage, bevorzugt für 2 Minuten bis 24 Stunden, besonders bevorzugt für 2 Minuten bis 2 Stunden, ganz besonders bevorzugt für 2 bis 60 Minuten und höchst bevorzugt für 2 bis 10 Minuten bei der Temperatur getempert wird.
  4. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) getempert wird, indem er mit heißer Luft und/oder mit überhitztem Wasserdampf beaufschlagt wird.
  5. Meltblown-Vliesstoff nach Anspruch 4,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) in einem Ofen (10) getempert wird, der wenigstens einen Blaskasten (16, 16') und wenigstens einen Saugkasten (18), bevorzugt zwei Blaskästen (16, 16') und einen oder zwei Saugkästen (18), aufweist, wobei der wenigstens eine Blaskasten (16, 16') so angeordnet ist, dass die heiße Luft in den Meltblown-Vliesstoff (15) eingeblasen werden kann, und, wobei der wenigstens eine Saugkasten (18) so angeordnet ist, dass den Meltblown-Vliesstoff (15) durchströmende Luft abgesaugt werden kann.
  6. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) ein Flächengewicht von 30 bis 600 g/m2, bevorzugt von 100 bis 400 g/m2 und besonders bevorzugt von 250 bis 350 g/m2 aufweist.
  7. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) ein voluminöser Meltblown-Vliesstoff (15) mit einer Dichte von 5 bis 50 kg/m3, bevorzugt von 8 bis 25 kg/m3 und besonders bevorzugt von 10 bis 20 kg/m3 ist.
  8. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) aus Filamenten zusammengesetzt ist, welche aus einem aus der aus Polyethylenterephthalat, Polybutylenterephthalat, Polyphenylensulfid, Polytetraflourethylen, Polyetheretherketon, Polypropylen und Polyethylen bestehenden Gruppe ausgewähltem Polymer und bevorzugt aus isotaktischem Polypropylen zusammengesetzt sind.
  9. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    i) der Meltblown-Vliesstoff (15) in einer Form (20) getempert wird, um diesen bei dem Tempern umzuformen, wobei die Form (20) vorzugsweise zumindest teilweise als Sieb (22, 22') ausgebildet ist, so dass der Meltblown-Vliesstoff(15) bei dem Tempern mit heißer Luft bzw. mit überhitztem Wasserdampf durchströmt und/oder umströmt werden kann und/oder ii) der Meltblown-Vliesstoff (15) nach dem Erwärmen in eine Form (20) überführt wird, um diesen umzuformen, wobei der Meltblown-Vliesstoff(15) in der Form gekühlt wird, um den Temperprozess abzuschließen.
  10. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in dem Meltblown-Vliesstoff (15) wenigstens ein in Dickenrichtung des Meltblown-Vliesstoffs (15) angeordneter Abstandshalter vorgesehen ist, der durch bleibende Ausformung eine Länge aufweist, die größer als die Dicke des Meltblown-Vliesstoffs (15) ist.
  11. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15), der nachträglich getempert wird, hergestellt worden ist, indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden.
  12. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Filamente des Meltblown-Vliesstoffs (15) einen Kristallisationsgrad von 20 bis 80%, bevorzugt von 30 bis 75%, besonders bevorzugt von 40 bis 75% und höchst bevorzugt von 50 bis 70% aufweisen.
  13. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Meltblown-Vliesstoff (15) eine gemäß DIN EN ISO 3386 gemessene Stauchhärte bei 60% Kompression von mindestens 2 kPa, bevorzugt von mindestens 8 kPa, besonders bevorzugt von mindestens 12 kPa, ganz besonders bevorzugt von mindestens 20 kPa und höchst bevorzugt von mindestens 30 kPa aufweist.
  14. Meltblown-Vliesstoff nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    bei dem Tempern die Tempertemperatur kontinuierlich oder stufenweise angehoben wird, und zwar vorzugsweise auch über die Schmelztemperatur der ungetemperten Filamente des Meltblown-Vliesstoffs hinaus, wobei die Tempertemperatur jedoch immer mindestens 0,1 °C unterhalb der aktuellen zu diesem Zeitpunkt vorliegenden Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt.
  15. Verfahren zum Herstellen eines getemperten Meltblown-Vliesstoffs umfassend die folgenden Schritte:
    a) Herstellen eines Meltblown-Vliesstoffs (15) vorzugsweise indem durch eine Düse extrudierte Polymerschmelze außenseitig mit strömender Luft beaufschlagt und verstreckt wird, bevor die dadurch ausgebildeten Filamente auf einem Träger, welcher bevorzugt eine Doppel-Saugtrommel ist, abgelegt und abgekühlt werden, sowie
    b) Tempern zumindest wenigstens eines Abschnittes des in dem Schritt a) hergestellten Meltblown-Vliesstoffs bei einer Temperatur, die zwischen der Glasübergangstemperatur und 0,1 °C unterhalb der Schmelztemperatur der Filamente des Meltblown-Vliesstoffs beträgt.
EP17172180.6A 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte Active EP3406780B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17172180.6A EP3406780B1 (de) 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte
CN201880049523.1A CN111226001B (zh) 2017-05-22 2018-05-22 具有高压缩硬度的经回火的熔喷非纺织物
US16/633,065 US20200165759A1 (en) 2017-05-22 2018-05-22 Tempered Melt-Blown Nonwoven Having a High Compression Hardness
PCT/EP2018/063287 WO2018215402A1 (de) 2017-05-22 2018-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17172180.6A EP3406780B1 (de) 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte

Publications (2)

Publication Number Publication Date
EP3406780A1 true EP3406780A1 (de) 2018-11-28
EP3406780B1 EP3406780B1 (de) 2020-01-08

Family

ID=58772401

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17172180.6A Active EP3406780B1 (de) 2017-05-22 2017-05-22 Getemperter meltblown-vliesstoff mit hoher stauchhärte

Country Status (4)

Country Link
US (1) US20200165759A1 (de)
EP (1) EP3406780B1 (de)
CN (1) CN111226001B (de)
WO (1) WO2018215402A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3425099A1 (de) * 2017-07-03 2019-01-09 Axel Nickel Meltblown-vliesstoff mit verbesserter stapelbarkeit und lagerbarkeit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3755527A (en) 1969-10-09 1973-08-28 Exxon Research Engineering Co Process for producing melt blown nonwoven synthetic polymer mat having high tear resistance
US4118531A (en) 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
DE1785712C3 (de) 1967-09-29 1979-01-11 Celanese Corp., New York, N.Y. (V.St.A.) Fülliger Vliesstoff und seine Verwendung
US4375446A (en) 1978-05-01 1983-03-01 Toa Nenryo Kogyo Kabushiki Kaisha Process for the production of a nonwoven fabric
US4380570A (en) 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
EP0813623A2 (de) * 1995-12-11 1997-12-29 Pall Corporation Schmelzblasverfahren für polyarylensulfid und gegenstände
EP1019174A1 (de) * 1997-10-01 2000-07-19 Minnesota Mining And Manufacturing Company Methode zur herstellung von elektretartikelen und filter mit erhöhter ölnebelresistenz
US20010055631A1 (en) * 1998-03-24 2001-12-27 3M Innovative Properties Company Apparatus for making dimensionally stable nonwoven fibrous webs
US20020041045A1 (en) * 1997-10-01 2002-04-11 3M Innovative Properties Company Method of making electret fibers
EP1570121A1 (de) * 2002-11-15 2005-09-07 3M Innovative Properties Company Verbesserte vliesstoffe
US20160298266A1 (en) * 2013-11-26 2016-10-13 3M Innovative Properties Company Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702652A (en) * 1990-05-31 1997-12-30 Crain Industries, Inc. Controlled cooling of porous materials
CA2101833A1 (en) * 1992-12-14 1994-06-15 Kimberly-Clark Worldwide, Inc. Stretchable meltblown fabric with barrier properties
US6238466B1 (en) * 1997-10-01 2001-05-29 3M Innovative Properties Company Electret articles and filters with increased oily mist resistance
US9770058B2 (en) * 2006-07-17 2017-09-26 3M Innovative Properties Company Flat-fold respirator with monocomponent filtration/stiffening monolayer
US8802002B2 (en) * 2006-12-28 2014-08-12 3M Innovative Properties Company Dimensionally stable bonded nonwoven fibrous webs
US10161063B2 (en) * 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
JP5477123B2 (ja) * 2010-04-02 2014-04-23 Jnc株式会社 熱風処理不織布加工装置および加工方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1785712C3 (de) 1967-09-29 1979-01-11 Celanese Corp., New York, N.Y. (V.St.A.) Fülliger Vliesstoff und seine Verwendung
US3755527A (en) 1969-10-09 1973-08-28 Exxon Research Engineering Co Process for producing melt blown nonwoven synthetic polymer mat having high tear resistance
US4118531A (en) 1976-08-02 1978-10-03 Minnesota Mining And Manufacturing Company Web of blended microfibers and crimped bulking fibers
US4375446A (en) 1978-05-01 1983-03-01 Toa Nenryo Kogyo Kabushiki Kaisha Process for the production of a nonwoven fabric
US4380570A (en) 1980-04-08 1983-04-19 Schwarz Eckhard C A Apparatus and process for melt-blowing a fiberforming thermoplastic polymer and product produced thereby
EP0813623A2 (de) * 1995-12-11 1997-12-29 Pall Corporation Schmelzblasverfahren für polyarylensulfid und gegenstände
EP1019174A1 (de) * 1997-10-01 2000-07-19 Minnesota Mining And Manufacturing Company Methode zur herstellung von elektretartikelen und filter mit erhöhter ölnebelresistenz
US20020041045A1 (en) * 1997-10-01 2002-04-11 3M Innovative Properties Company Method of making electret fibers
US20010055631A1 (en) * 1998-03-24 2001-12-27 3M Innovative Properties Company Apparatus for making dimensionally stable nonwoven fibrous webs
EP1570121A1 (de) * 2002-11-15 2005-09-07 3M Innovative Properties Company Verbesserte vliesstoffe
US20160298266A1 (en) * 2013-11-26 2016-10-13 3M Innovative Properties Company Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same

Also Published As

Publication number Publication date
CN111226001B (zh) 2022-12-30
CN111226001A (zh) 2020-06-02
US20200165759A1 (en) 2020-05-28
WO2018215402A1 (de) 2018-11-29
EP3406780B1 (de) 2020-01-08

Similar Documents

Publication Publication Date Title
EP2182822B1 (de) Verfahren zum herstellen eines schuhoberteils
DE102012016075B4 (de) Verfahren und Vorrichtung zur Herstellung eines Metallbauteils
EP3192910B1 (de) Verfahren zur herstellung eines laminates und laminat
DE10016182A1 (de) Verfahren zur Herstellung eines plissierfähigen Filtermaterials aus einem Vliesstoff
DE60315230T2 (de) Verfahren zum Biegen einer Glasplatte zu einer komplizierten Form und Vorrichtug
DE60036994T2 (de) Faservliesstoff aus Polypropylenfaser und Verfahren zu dessen Herstellung
DE19839576A1 (de) Luftfilter und Verfahren zur seiner Herstellung
WO2008046924A1 (de) Geformter artikel, vliesstoff sowie deren herstellung und verwendung
DE102012207365A1 (de) Mehrschichtiges Bauteil und Verfahren zur Herstellung desselben
EP0498276B1 (de) Verfahren und Vorrichtung zum Herstellen von Mineralfaserplatten sowie danach hergestellte Mineralfaserplatten
EP3771761B1 (de) Spunbond-vliesstoff aus endlosfilamenten und vorrichtung zur erzeugung des spunbond-vliesstoffes
EP3406780B1 (de) Getemperter meltblown-vliesstoff mit hoher stauchhärte
DE102009016213A1 (de) Verfahen zur Herstellung eines mehrschichtigen Faser-Thermoplast-Schichtverbundwerkstoffes sowie damit hergestellter Schichtverbundwerkstoff und Verfahren zur Herstellung eines Bauteils aus dem Schichtverbundwerkstoff
EP2573243B1 (de) Vliesstoff mit einer Elementarfilamente enthaltenden Matrix
EP3679187B1 (de) Vlies zur abschirmung von terahertz frequenzen
DE10259883A1 (de) Verfahren zur Herstellung eines Verbundwerkstoffes, Verfahren zur Herstellung eines drei-dimensionalen Bauteils aus einem Verbundwerkstoff, Verbundwerkstoff und Vorrichtung zur Halterung des Verbundwerkstoffes
EP2742198A1 (de) Scharnierelement, hergestellt auf basis mindestens eines flächengebildes und verfahren zur herstellung eines scharnierelements auf basis mindestens eines flächengebildes
EP0453877A1 (de) Verfahren zum Herstellen von multifunktionalen Verkleidungsteilen
DE4135623C2 (de) Verfahren und Vorrichtung zum Herstellen von Mineralfaserplatten sowie danach hergestellte Mineralfaserplatten
EP1428919B1 (de) Verfahren zur Herstellung eines Flächengebildes aus zumindest teilweise gesplitteten Garnen, Fasern oder Filamenten
WO2006002684A1 (de) Verfahren zur herstellung einer spinnvliesfaser und spinnvliesfaser
EP4036297A1 (de) Spinnvlieslaminat und verfahren zur herstellung eines spinnvlieslaminates
WO2005042823A2 (de) Fur dachbahnen oder dichtungsbahnen geeignete dimensionsstabile einlage
DE102021133730B3 (de) Akustisch wirksames und dimensionsstabiles Formteil
EP2167716B1 (de) Verfahren und vorrichtung zur herstellung eines mineralwolleproduktes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190507

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190723

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017003417

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1222832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017003417

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200522

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1222832

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230519

Year of fee payment: 7