EP3402956B1 - Espaceur pour vitrage isolant - Google Patents

Espaceur pour vitrage isolant Download PDF

Info

Publication number
EP3402956B1
EP3402956B1 EP16829301.7A EP16829301A EP3402956B1 EP 3402956 B1 EP3402956 B1 EP 3402956B1 EP 16829301 A EP16829301 A EP 16829301A EP 3402956 B1 EP3402956 B1 EP 3402956B1
Authority
EP
European Patent Office
Prior art keywords
spacer
profile
tubular portion
housing
insulating glazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16829301.7A
Other languages
German (de)
English (en)
Other versions
EP3402956A1 (fr
Inventor
Sébastien HERVIEUX
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP3402956A1 publication Critical patent/EP3402956A1/fr
Application granted granted Critical
Publication of EP3402956B1 publication Critical patent/EP3402956B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66314Section members positioned at the edges of the glazing unit of tubular shape
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66366Section members positioned at the edges of the glazing unit specially adapted for units comprising more than two panes or for attaching intermediate sheets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67304Preparing rigid spacer members before assembly
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67304Preparing rigid spacer members before assembly
    • E06B3/67317Filling of hollow spacer elements with absorbants; Closing off the spacers thereafter
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B2003/6638Section members positioned at the edges of the glazing unit with coatings
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66361Section members positioned at the edges of the glazing unit with special structural provisions for holding drying agents, e.g. packed in special containers

Definitions

  • the present invention relates to a spacer for insulating glazing and to an insulating glazing comprising a spacer frame formed by assembling several spacers.
  • the invention also relates to a method of manufacturing a spacer for insulating glazing.
  • insulating glazing can be obtained by joining a rigid spacer frame to the periphery of two sheets of glass using sealing cords and by applying an external sealing barrier around the entire outer circumference of the spacer frame between the two glass sheets, so as to maintain the glass sheets between them and on the spacer frame.
  • the spacer frame comprises a desiccant material in its interior volume, in order to ensure dehydration of the or each cavity formed between the sheets of glass of the insulating glazing.
  • the spacer frame is conventionally manufactured either by successive bending of a straight section of ductile material such as aluminum, or by angular assembly at their ends of four straight sections, so as to obtain a rectangular frame.
  • the filling of the spacer frame with the desiccant material is generally carried out just before the closing of the frame, in particular at the level of a last open corner of the frame, in order to prevent any leakage of the desiccant material.
  • the assembly of the spacer frame is not carried out directly on the insulating glazing manufacturing line, but on an independent island. Filling with desiccant material when it takes place at the time of closing the spacer frame cannot therefore be integrated in line.
  • filling with desiccant material when the spacer frame is closed is not suitable when the spacer frame is assembled around at least one central sheet of glass, as is the case for glazing multiple with spacers as described in US 2012/0141699 A1 . Indeed, there is then a risk of damage to the central sheet of glass by the filling device with desiccant material.
  • the filling of the cavity of an insulating glazing with gas is conventionally done through a through orifice formed in the spacer frame.
  • the installation of such a through hole in the spacer frame generates a risk of leakage of desiccant material and pollution of the insulating glazing with the desiccant material when filling the cavity of the insulating glazing with gas through the orifice crossing.
  • US 4,407,105A discloses another spacer frame for insulating glass.
  • the invention more particularly intends to remedy by proposing a spacer for insulating glazing, the manufacture of which, including the filling with desiccant material, can be carried out in line, this spacer being compatible with an assembly of the spacer frame around at least one central sheet of glass and making it possible to simplify the method of filling the cavity of an insulating glazing unit with gas comprising the spacer, without the risk of leakage of desiccant material or of pollution of the insulating glazing unit with the desiccant material .
  • the subject of the invention is a spacer for insulating glazing, comprising a profile which comprises at least one tubular part defining a housing for receiving desiccant material, where the housing opens out at two ends of the tubular part, the housing being closed near each end of the tubular part by means of a plug and comprising a desiccant material between the two plugs, at least one of the plugs being offset longitudinally inside the housing with respect to the corresponding end of the tubular part, where the tubular part comprises a through hole, intended for the passage of gas between a cavity of the insulating glazing and the exterior of the insulating glazing for filling and/or evacuating gas from the cavity, which is provided in a section of the tubular part between an offset plug and the corresponding end of the tubular part, where the through orifice opens into two walls of the part tubular intended to extend transversely relative to the glass sheets of the insulating glazing, with a wall intended to be directed towards the cavity of the insulating glazing and a wall intended to
  • a profile is a piece of straight volume, that is to say generated by straight lines.
  • the invention is concerned with straight rigid spacers, intended to be assembled angularly at their ends with other similar spacers to form an insulating glazing spacer frame, as opposed in particular to flexible spacer cords which can be extruded directly onto a glass sheet of insulating glazing with a change in direction of the extrusion head in the corners.
  • the invention takes advantage of the fact that the section between an offset stopper and the corresponding end of the tubular part is empty, without desiccant material in its interior volume, in order to provide there a through orifice for filling and/or evacuation of gas from a cavity of the insulating glazing.
  • the arrangement of the through hole in a section between an offset plug and the corresponding end of the tubular part makes it possible, when drilling the profile of the spacer, to avoid any risk of leakage of the desiccant material through the through hole.
  • this arrangement allows the cavity of the insulating glazing to be filled with gas through the through-hole without the risk of pollution of the insulating glazing with the desiccant material, since the desiccant material is confined to the rear of the cap delimiting the section. This results in a simplification of the process for filling the cavity of the insulating glazing with gas comprising a spacer according to the invention, and therefore a reduction in manufacturing costs.
  • each cavity of the insulating glass between the sheets of glass can be filled with air.
  • each cavity of the insulating glazing comprises a layer of insulating gas, which replaces the air between the sheets of glass.
  • gases used to form the layer of insulating gas in each cavity of the insulating glazing include, in particular, argon (Ar), krypton (Kr), xenon (Xe).
  • the layer of insulating gas in each cavity of the insulating glazing comprises at least 85% of a gas having a lower thermal conductivity than that of air. Suitable gases are preferably colorless, non-toxic, non-corrosive, non-flammable, insensitive to exposure to ultraviolet radiation.
  • the steps for manufacturing the spacer can be carried out in line, on an insulating glazing production line.
  • a spacer according to the invention which is filled with desiccant material prior to its assembly with other similar spacers, can be easily manipulated by an operator or a robot to form a spacer frame, without risk of the material leaking. desiccant since it is confined between two plugs inside each tubular part.
  • the fact that the spacer is pre-filled with desiccant material also allows its use for assembling a spacer frame around at least one central sheet of glass, as may be required for the manufacture of multiple glazings having at least at least three sheets of glass, avoiding the need to fill the frame with desiccant material after its assembly around the central sheet of glass.
  • the spacer pre-filled with desiccant material according to the invention can advantageously be manufactured just before its implementation in insulating glazing, which limits the prior absorption of humidity by the desiccant material and improves the quality of the insulating glazing.
  • the or each tubular part of the spacer comprises two side walls, which are each intended to be adjacent to a sheet of glass of the insulating glazing, and two transverse walls, which are intended to extend transversely with respect to the glass sheets of the insulating glazing being one directed towards a cavity of the insulating glazing and the other directed towards the exterior of the insulating glazing.
  • the housing for receiving desiccant material is delimited by the side and transverse walls.
  • the transverse wall which is directed towards the cavity of the insulating glazing is provided with a plurality of perforations on its part between the two closing plugs of the housing, so as to put in communicating the desiccant material with the air or gas inside the cavity.
  • the desiccant material can thus absorb the humidity contained in the cavity and prevent the formation of mist between the glass sheets of the insulating glazing.
  • the through hole is provided with a shutter allowing the injection of gas into the cavity of the insulating glazing from the outside, using a gas injection element which passes through the shutter from the outside, such as a nozzle or a syringe, the obturator being moreover designed to prevent the exit of the gas from the cavity once the cavity is filled.
  • a gas injection element which passes through the shutter from the outside, such as a nozzle or a syringe
  • the obturator being moreover designed to prevent the exit of the gas from the cavity once the cavity is filled.
  • Such a shutter forming a gas filling valve may for example have a structure comprising a valve and a seat, where the valve is moved away from the seat when the gas injection element is introduced into the shutter, for example by deformation of one or the other of the damper or the seat, which allows the filling of the cavity of the insulating glazing with gas from the outside, while a gastight cooperation is established between the seat and the damper when the gas injection element is withdrawn, which makes it possible to prevent the exit of the gas from the cavity once the cavity is filled.
  • the member among the valve or the seat which is deformed when the gas injection element is introduced into the shutter can in particular be made of a shape memory material. Examples of shape-memory materials include in particular shape-memory alloys such as nickel-titanium alloys, or shape-memory polymers such as polyurethanes.
  • such a shutter forming a gas filling valve can comprise at least one part based on a self-healing material, which allows the passage of the gas injection element through the shutter for the gas filling of the cavity of the insulating glazing from the outside, and which heals when the gas injection element is removed, which prevents the exit of the gas from the cavity of the insulating glazing once the cavity is filled.
  • self-healing material is meant a material capable of self-repairing after having been damaged by perforation, in particular by regaining all of its gas-tightness properties.
  • a self-healing material regains its original configuration identically before drilling, through a physico-chemical process guaranteeing tightness even under high pressure differences.
  • the self-healing is quasi-instantaneous in order to achieve a very rapid obturation after the removal of the gas injection element.
  • the self-healing material can in particular be chosen from multifunctional fatty acids, monomers or acrylic polymers, polyurethanes and copolymers based on polyethers, preferably di-block polymers based on polyethers for which the mobility of the polymer chains allows rapid self-healing even at low temperatures.
  • the shutter of each through hole of the spacer is chosen with a color of its visible parts on the surface of the spacer which is substantially identical to the color of the profile of the spacer, so as to give the spacer the most aesthetic visual aspect possible.
  • the or each section of the tubular part between an offset stopper and the corresponding end of the tubular part has a length of the order of 2 cm to 5 cm.
  • a length of the order of 2 cm to 5 cm is available.
  • the distance between the offset plug and the through hole is of the order of 0.5 cm to 1.5 cm.
  • the through hole has a diameter of less than or equal to 1 cm, preferably of the order of 5 mm.
  • the profile of the spacer comprises at least two tubular parts and a groove delimited between the two tubular parts, the groove being intended to receive an edge of a central sheet of glass, each tubular part defining a housing for receiving desiccant material which opens at the level of two ends of the tubular part, the housing of each tubular part being closed in the vicinity of each end of the tubular part by means of a stopper and comprising a desiccant material between the two plugs, at least one of the plugs of each tubular part being offset longitudinally inside the housing relative to the corresponding end of the tubular part.
  • Such a spacer structure with at least two tubular parts allows the manufacture of multiple glazings having at least three sheets of glass.
  • a spacer profile with two tubular parts and a groove is suitable for the manufacture of triple glazing, where two external glass sheets are positioned on either side of the spacer, while a sheet of central glass is received in the groove of the spacer.
  • a spacer profile with three tubular parts and two grooves is suitable for the manufacture of a four-sheet insulating glass unit, where two outer glass sheets are positioned on either side of the spacer, while two central glass sheets are each received in a respective groove of the spacer.
  • Similar configurations of insulating glazing with more than four sheets of glass can of course be obtained by increasing the number of tubular parts and therefore of grooves capable of receiving a central sheet of glass.
  • the plugs of the two tubular parts are both offset longitudinally inside the housing with respect to the corresponding end of the tubular part. It is then possible, in the vicinity of this end of the profile of the spacer where the plugs are both offset, to provide two through holes each intended for the passage of gas between a cavity of the insulating glazing and the outside of the insulating glazing to the filling and/or the evacuation of the cavity, each through-orifice being provided in one of the two tubular parts, at the level of the section which is comprised between the offset stopper and the corresponding end of the tubular part.
  • the two through holes are juxtaposed, so that they can be created by means of the same piercing device, which comprises either a piercing member movable between the positions of the two through holes, or two juxtaposed piercing members .
  • the two through holes allow gas to be filled and/or evacuated from the two cavities of the insulating glazing located on either side of the central sheet of glass.
  • each of the two through holes of the spacer is provided with a shutter allowing the injection of gas into the corresponding cavity of the insulating glazing from the outside, using a gas injection element which passes into the obturator from the outside, such as a nozzle or a syringe, the obturator being moreover designed to prevent the exit of the gas from the cavity once the cavity is filled.
  • the spacer comprises a gasket positioned in the groove to receive the edge of the central sheet of glass.
  • the groove may have a width greater than the thickness of the central sheet of glass.
  • the gasket serves to fix the central sheet of glass in the groove, while making it possible to compensate for any variations in thermal expansion of the central sheet of glass. A stress-free fixing of the central glass sheet in the groove is thus ensured.
  • the reduction of the stresses applied to the central sheet of glass makes it possible to reduce the thickness and the weight of this sheet of glass, compared to those used in insulating glazing where the central sheet of glass is fixed on the periphery. of the spacer instead of being received in a groove.
  • the set up of a gasket in the groove also makes it possible to adapt the spacer to different possible thicknesses of the central glass sheet. It is thus possible to use the same model of spacer to manufacture insulating glazing units having central glass sheets of different thicknesses, without requiring the production of spacers with a range of different groove widths, which is advantageous in terms of production costs.
  • the gasket is configured to allow balancing by gas circulation between the cavities of the insulating glazing located on either side of the central sheet of glass.
  • the gasket positioned in the groove of each spacer acts as a mechanical and acoustic damper, in particular during the insertion of the edges of the central sheet of glass into the grooves of the spacers to form a spacer frame around of the central sheet of glass.
  • the packing can be supplied continuously along the length of the groove or discontinuously.
  • the lining is based on an elastomeric material, in particular ethylene-propylene-diene rubber (EPDM).
  • EPDM ethylene-propylene-diene rubber
  • the trim can be obtained in one piece with the spacer profile by coextrusion.
  • the assembly comprising the profile of the spacer and the gasket positioned in the groove can be obtained in a single piece by injection molding of two polymer materials.
  • the profile of the spacer according to the invention can be made of metal and/or of polymer material.
  • metallic materials suitable for the spacer profile include, in particular, aluminum or stainless steel.
  • suitable polymeric materials for the spacer profile include, but are not limited to, polyethylene (PE), polycarbonate (PC), polypropylene (PP), polystyrene, polybutadiene, polyesters, polyurethanes, polymethyl methacrylate , polyacrylates, polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), styrene-acrylonitrile copolymer (SAN).
  • PE polyethylene
  • PC polycarbonate
  • PP polypropylene
  • polystyrene polybutadiene
  • polyesters polyurethanes
  • polymethyl methacrylate polyacrylates
  • polyamides poly
  • the profile of the spacer can be based on polypropylene comprising a reinforcement consisting of a stainless steel film.
  • the profile of the spacer is advantageously reinforced with fibres, in particular glass or carbon fibres.
  • the profile of the spacer comprises a heat insulating coating on its surface intended to be directed towards the outside of the insulating glazing.
  • It may be, in particular, a multilayer coating comprising at least one polymer layer as well as a metallic layer or a ceramic layer.
  • the thickness of the or each polymer layer is then preferably between 5 ⁇ m and 80 ⁇ m, while the thickness of the metallic layers and/or of the ceramic layers is between 10 nm and 200 nm.
  • This insulating coating reduces the transfer of heat through the spacer profile to the cavities of the insulating glazing.
  • each plug of the spacer is formed by injecting a polymer material into the housing of the tubular part.
  • each stopper is made of an elastic and resistant polymer material such as polyisobutylene, also called butyl, or thermofusible butyl, also called hotmelt butyl.
  • polyisobutylene also called butyl
  • thermofusible butyl also called hotmelt butyl.
  • stoppers made of butyl or butyl hotmelt also exhibit good water vapor and gas tightness.
  • the desiccant material may be any material capable of ensuring dehydration of the air or of the layer of gas present in the cavities of the insulating glazing between the sheets of glass, chosen in particular from molecular sieve, silica gel, CaCl 2 , Na 2 S0 4 , activated carbon, zeolites, and/or a mixture thereof.
  • the desiccant material is molecular sieve or silica gel.
  • the absorption capacity of these desiccant materials is greater than 20% of their weight.
  • the use of a desiccant material in fluid form, in particular in powder form or in granular form allows the filling of the housing of each tubular part of the spacer by flow by gravity of the desiccant material in the housing.
  • each end of the profile of the spacer is bevelled, so that the spacer is capable of being assembled angularly with a similar spacer.
  • any bevel angle of the ends of the sections is possible, in particular a bevel angle of 45° corresponding to a mitred assembly, but also any other bevel angle.
  • the invention also relates to a spacer frame for insulating glazing comprising four spacers which are assembled angularly at their ends, at least one of the spacers being as described above.
  • the spacer frame comprises four spacers as described above.
  • the spacer frame comprises a first spacer and a second spacer which are assembled angularly at their ends, where each of the first and second spacers comprises a through orifice made in a section of the tubular part between a offset cap and the corresponding end of the tubular part, such that, in at least one configuration where the plane of the spacer frame is substantially vertical, the through hole of the first spacer is in the low position while the through hole of the second spacer is in the up position.
  • Such an arrangement of two through-holes in the spacer frame is advantageous for filling each cavity of the insulating glazing with an insulating gas denser than air, by injecting the insulating gas into the cavity through the through-hole located in position low and evacuation of the air present in the cavity through the through hole located in the high position.
  • the invention also relates to an insulating glazing comprising a spacer frame positioned between two outer sheets of glass, where the spacer frame is formed from four spacers which are assembled angularly at their ends, at least one of the spacers being such that described above.
  • the spacer frame is formed from four spacers as described above.
  • the spacer frame is conventionally secured to the periphery of the two outer sheets of glass using a peripheral seal, in the form of a bead of mastic generally based on polyisobutylene, or butyl, which is particularly efficient in terms of water vapor and gas tightness.
  • a peripheral seal in the form of a bead of mastic generally based on polyisobutylene, or butyl, which is particularly efficient in terms of water vapor and gas tightness.
  • Maintaining the glass sheets together and on the spacer frame is provided by an outer sealing barrier, which is applied over the entire outer periphery of the spacer frame between the two outer glass sheets.
  • the outer sealing barrier can be formed, in particular, from a resin chosen from polysulphides, polyurethanes, silicones, thermofusible butyls, or hotmelt butyls, and combinations or mixtures thereof.
  • the profile of the spacer is pierced, in particular by means of a drill, so as to create a through orifice for the passage of gas in a section of the tubular part intended to be between an offset plug and the corresponding end of the tubular part, where the through hole opens into two walls of the tubular part provided to extend transversely between the two outer glass sheets of the insulating glazing.
  • this step of piercing the profile of the spacer can take place before or after the step of closing off using a plug of the housing in the vicinity of the corresponding end of the tubular part.
  • the housing of each tubular part is closed in the vicinity of the first end of the profile using a first offset plug and the profile of the spacer is pierced so as to create a through hole for the passage of gas in the section of each tubular part intended to be between the first offset plug and the corresponding end of the tubular part, individually for each profile, the order of the sealing and drilling steps being arbitrary; then the desiccant material is inserted into the housing of each tubular part of the profile from the second end of the profile and the housing of each tubular part is closed in the vicinity of the second end of the profile using the second plug, collectively to several profiles.
  • a shutter is positioned in the through hole, before filling the insulating glazing with gas, allowing gas to be injected into the corresponding cavity of the insulating glazing from the outside, using a damper element.
  • the profile of the spacer is obtained by cutting an initial profile to the desired length of the spacer, using a tool such as a cutter.
  • each end of the profile of the spacer is shaped according to a beveled shape with the same tool as that used to cut the profile to the desired length of the spacer.
  • each stopper is put in place by injecting a polymer material into the housing of the tubular part.
  • each stopper is made of an elastic and resistant polymer material, such as butyl or butyl hotmelt, having sufficient stability not to flow in an uncontrolled manner into the housing of the tubular part.
  • the insertion of the desiccant material into the housing from the second end of the profile of the spacer is advantageously carried out by flow by gravity of the desiccant material in the housing.
  • the invention also relates to a method for manufacturing an insulating glazing comprising steps for manufacturing a spacer as described above.
  • the manufacturing steps of each spacer of the insulating glazing are carried out in line, on an insulating glazing production line.
  • each spacer of the insulating glazing is manufactured just before its implementation in the manufacture of the insulating glazing, which limits the prior absorption of humidity by the desiccant material and improves the quality of the insulating glazing. .
  • this installation for manufacturing spacers is integrated into an insulating glazing production line.
  • the spacer 1 is formed by a profile 2 comprising a single tubular part 4, which defines a housing 5 for receiving desiccant material 6.
  • the housing 5 opens out at the level of the two ends 4A and 4B of the tubular part 4, which correspond at the ends 2A and 2B of profile 2.
  • profile 2 is made of styrene-acrylonitrile (SAN) copolymer, reinforced with approximately 35% glass fibers.
  • SAN styrene-acrylonitrile
  • the spacer 1 of this first embodiment can be implemented in an insulating glazing 10 of the double glazing type, as shown in the picture 2 , comprising two outer glass sheets 12 and 14 secured at their periphery with a spacer frame formed by assembling several spacers 1.
  • the tubular part 4 of the spacer 1 comprises two side walls 43 and 45 which, in the insulating glazing 10, are adjacent respectively to the sheet of glass 12 and to the sheet of glass 14, and two transverse walls 44 and 46 which , in the insulating glazing 10, extend transversely relative to the glass sheets 12 and 14, with the wall 44 directed towards the internal cavity 17 of the insulating glazing and the wall 46 directed towards the outside of the insulating glazing.
  • the profile 2 is provided with a heat insulating coating 22 on the outer surface of the transverse wall 46 intended to be directed outwards.
  • the connection between each sheet of glass 12 or 14 and the adjacent wall 43 or 45 of the spacer 1 is ensured by a respective sealing bead 13 or 15 made of butyl.
  • the insulating glazing 10 also comprises an outer sealing barrier 18 made of polysulphide resin, which is applied over the entire outer periphery of the spacer frame between the two sheets of glass 12 and 14, so as to hold the sheets of glass 12 and 14 together. and on the spacer frame.
  • the spacer housing 5 is delimited by the lateral 43, 45 and transverse 44, 46 walls of the tubular part 4.
  • the desiccant material 6, which in this example is molecular sieve, is received in a central part of the housing 5 , between two plugs 7 and 8 closing the housing 5. More specifically, the housing 5 is closed in the vicinity of the end 4A of the tubular part using a plug 7 and in the vicinity of the end 4B of the tubular part using a plug 8.
  • Each of the two plugs 7 and 8 is offset longitudinally inside the housing 5 relative to the corresponding end 4A or 4B, as shown by the distance d on the figure 1 .
  • each of the two plugs 7 and 8 is obtained by injecting butyl hotmelt into the housing 5 from the end 4A or 4B closest to the tubular part 4, using an injection nozzle.
  • the transverse wall 44 of the tubular part 4, which is intended to be directed towards the cavity 17 of the insulating glazing, is provided with a plurality of perforations 49 on its part between the two plugs 7 and 8, so that the material desiccant 6 is capable of absorbing the humidity contained in the cavity 17, which makes it possible to prevent the formation of mist between the glass sheets 12 and 14.
  • the tubular part 4 comprises two end sections 47 and 48 which do not include any desiccant material in their interior volume.
  • a through orifice 9 for passing gas is made in the end section 48 between the plug 8 and the end 4B of the tubular part. The drilling of this through hole 9 in the profile 2 can take place either before or after the filling of the profile 2 with the desiccant material 6.
  • the arrangement of the through hole 9 in the empty section 48 makes it possible, if the drilling of the profile 2 takes place after filling with desiccant material, to avoid any risk of leakage of the desiccant material 6 through the through hole 9.
  • the end sections 47 and 48 each have a length d of the order of 40 mm.
  • the through hole 9 has a diameter of the order of 5 mm.
  • the distance between the central axis of the through hole 9 and the plug 8 is of the order of 10 mm.
  • the through hole 9 opens into the transverse walls 44 and 46 of the tubular part 4.
  • the through hole 9 can be used to fill the cavity 17 with an insulating gas, or to evacuate air from the cavity 17, without risk of pollution of the insulating glazing with the desiccant material 6 since the latter is confined to the rear of the cap 8.
  • the through hole 9 can be provided with a shutter 29 forming a gas filling valve, that is to say allowing the injection of insulating gas into the cavity 17 of the insulating glazing from the outside.
  • a gas injection element which passes into the obturator 29 from the outside, such as a nozzle or a syringe, the obturator 29 being further designed to prevent the escape of insulating gas out of the cavity 17 once it is filled.
  • the shutter 29 may for example have a structure comprising a valve and a seat, with one or the other among the valve or the seat which is made of a shape memory material, or else the shutter 29 may comprise at least one part based on a self-healing material.
  • the shutter 29 is chosen with a color of its visible parts substantially identical to the color of the profile 2 of the spacer, so as to give the spacer 1 a good visual appearance.
  • the spacer 1 differs from that of the first embodiment in that the section 2 comprises two tubular parts 4.1 and 4.2 juxtaposed.
  • Each tubular part 4.1 or 4.2 defines a housing 5.1 or 5.2 for receiving desiccant material 6, which opens out at the two ends 4.1A, 4.1B or 4.2A, 4.2B of the tubular part.
  • the ends 4.1A and 4.2A are juxtaposed at the level of the end 2A of the section 2, while the ends 4.1B and 4.2B are juxtaposed at the level of the end 2B of the section 2.
  • the profile 2 is made of styrene-acrylonitrile (SAN) copolymer, reinforced with approximately 35% glass fibres.
  • SAN styrene-acrylonitrile
  • the spacer 1 of the second embodiment can be implemented in an insulating glazing 10 of the triple glazing type, as shown in the figure 4 , comprising two outer glass sheets 12 and 14 positioned on either side of the spacer 1 and a central glass sheet 16 received in the groove 3 of the spacer.
  • an insulating glazing 10 of the triple glazing type as shown in the figure 4 , comprising two outer glass sheets 12 and 14 positioned on either side of the spacer 1 and a central glass sheet 16 received in the groove 3 of the spacer.
  • Each tubular part 4.1 or 4.2 of the spacer comprises two side walls, respectively 43, 40.1 and 40.2, 45.
  • the walls 40.1 and 40.2 laterally delimit the groove 3 for receiving the central sheet of glass 16, while the walls 43 and 45 are intended, in the insulating glazing 10, to be adjacent respectively to the outer glass sheet 12 and to the outer glass sheet 14.
  • Each tubular part 4.1 or 4.2 of the spacer also comprises two transverse walls, respectively 44.1, 46.1 and 44.2, 46.2 which, in the insulating glazing 10, extend transversely relative to the glass sheets 12, 14, 16, with the wall 44.1 or 44.2 directed towards an internal cavity 17 or 19 of the insulating glazing and the wall 46.1 or 46.2 directed towards the exterior of the insulating glazing.
  • the walls 46.1 and 46.2 are parts of a transverse wall 46 of the profile which also defines the bottom of the groove 3.
  • the profile 2 comprises a heat insulating coating 22 on the outer surface of the transverse wall 46 intended to be directed towards the outside of the insulating glazing.
  • a butyl sealing bead 13 or 15 ensures the connection between each outer glass sheet 12 or 14 and the adjacent wall 43 or 45 of the spacer 1.
  • the maintenance of the outer glass sheets 12 and 14 between them and on the spacer frame is provided by an outer sealing barrier 18 made of polysulphide resin, which is applied over the entire outer periphery of the spacer frame between the two sheets of glass 12 and 14.
  • the spacer 1 comprises a gasket 11 positioned in the groove 3 to receive the edge of the central sheet of glass 16.
  • This gasket 11 is made of EPDM and makes it possible to ensure a fixing without constraint of the central sheet of glass 16 in the groove 3.
  • the gasket 11 also acts as a mechanical and acoustic damper, in particular when inserting the edges of the central glass sheet 16 into the grooves of the spacers 1 to form a spacer frame around the glass sheet central.
  • the housing 5.1 or 5.2 for receiving desiccant material is delimited by the side and transverse walls of the corresponding tubular part 4.1 or 4.2 of the spacer.
  • the desiccant material 6 is molecular sieve, which is received in a central part of the housing 5.1 or 5.2, between two plugs 7.1, 8.1 or 7.2, 8.2 closing off the housing. More specifically, the housing 5.1 is sealed near the end 4.1A of the tubular part 4.1 using a plug 7.1 and near the end 4.1B of the tubular part 4.1 using a cap 8.1.
  • the housing 5.2 is sealed near the end 4.2A of the tubular part 4.2 using a plug 7.2 and near the end 4.2B of the tubular part 4.2 using a plug 8.2 .
  • each of the two plugs 7.1, 8.1 or 7.2, 8.2 is offset longitudinally inside the housing 5.1 or 5.2 relative to the corresponding end of the tubular part, as shown by the distance d on the picture 3 .
  • each of the two plugs 7.1, 8.1 or 7.2, 8.2 is obtained by injection of butyl hotmelt into the housing 5.1 or 5.2 from the end closest to the tubular part 4.1 or 4.2 , using an injection nozzle.
  • Each transverse wall 44.1 and 44.2 intended to be directed towards the cavity 17 or 19 of the insulating glazing, is provided with a plurality of perforations 49.1 or 49.2 on its part between the two plugs, so that the desiccant material 6 is suitable to absorb the humidity contained in each cavity 17 and 19, which makes it possible to prevent the formation of mist between the sheets of glass 12 and 16 and between the sheets of glass 14 and 16.
  • each tubular part 4.1 or 4.2 comprises two end sections 47.1, 48.1 or 47.2, 48.2 which do not include desiccant material in their interior volume.
  • Two through holes 9.1 and 9.2 for passing gas are provided near the end 2B of the profile 2, namely the through hole 9.1 in the end section 48.1 between the plug 8.1 and the end 4.1B of the tubular part 4.1 and the through hole 9.2 in the end section 48.2 between the plug 8.2 and the end 4.2B of the tubular part 4.2.
  • the drilling of these through holes 9.1 and 9.2 in the profile 2 can take place either before or after the filling of the housings 5.1 and 5.2 with the desiccant material 6.
  • the arrangement of the two through holes 9.1 and 9.2 in the empty sections 48.1 and 48.2 makes it possible, if the drilling of the profile 2 takes place after the filling with the desiccant material 6, to avoid any risk of leakage of the desiccant material 6 through these orifices.
  • the end sections 47.1, 48.1 and 47.2, 48.2 each have a length d of the order of 40 mm.
  • Each of the through holes 9.1 and 9.2 has a diameter of the order of 5 mm.
  • the distance between the central axis of the through hole 9.1 or 9.2 and the corresponding plug 8.1 or 8.2 is of the order of 10 mm.
  • Each through hole 9.1 or 9.2 opens into the transverse walls 44.1, 46.1 or 44.2, 46.2 of the tubular part 4.1 or 4.2.
  • the through hole 9.1 can be used to fill the cavity 17 with an insulating gas, or to evacuate air from the cavity 17, while the through hole 9.2 can be used to fill the cavity 19 with an insulating gas, or to evacuate air from the cavity 19, without the risk of polluting the insulating glazing with the desiccant material 6 since the latter is confined in each housing 5.1 or 5.2 at the rear of the plug 8.1 or 8.2.
  • each of the two through-orifices 9.1 and 9.2 can be provided with a shutter 29.1 or 29.2 forming a gas filling valve, that is to say allowing the injection of insulating gas into the cavity 17 or 19 of the insulating glazing from the outside, using a gas injection element which passes into the shutter from the outside, such as a nozzle or a syringe, the the shutter 29.1 or 29.2 being also designed to prevent the escape of the insulating gas from the cavity 17 or 19 once the latter is filled.
  • Each shutter 29.1 or 29.2 can by example present a structure comprising a valve and a seat, with one or the other among the valve or the seat which is made of a material with shape memory, or it can comprise at least a part based on a self-healing material.
  • each shutter 29.1 or 29.2 is chosen with a color of its visible parts substantially identical to the color of the profile 2 of the spacer, so as to give the spacer 1 a good visual appearance.
  • each of the two ends 2A and 2B of the profile 2 is bevelled at an angle of the order of 45°, so that the spacer 1 can be assembled according to a mitred assembly with d other similar spacers 1 to form a spacer frame 20, as seen in the figure 5 .
  • the assembly between the ends of the spacers 1 at each corner of the spacer frame 20 can be obtained, in particular, using assembly brackets or by welding, in particular by ultrasonic welding.
  • the spacer frame 20 comprises at least two spacers 1 provided with through holes such that, in at least one substantially vertical configuration of the spacer frame 20 as shown in the figure 5 , the through hole(s) of a spacer 1 are in the low position while the through hole(s) of the other spacer 1 are in the high position.
  • Such an arrangement is advantageous for carrying out the filling of each cavity of the insulating glazing with an insulating gas denser than air, by injecting the insulating gas into the cavity through the through hole 9 located in the low position according to the arrow F of the figure 5 and evacuation of the air present in the cavity through the through hole 9 located in the high position according to the arrow E of the figure 5 .
  • the figure 6 , 7 and 8 illustrate an installation for manufacturing spacers 1 with two tubular parts in accordance with the second embodiment shown in the figures 3 and 4 , intended to be used for the production of triple glazing.
  • this installation is easily adaptable for the manufacture of spacers 1 with a single tubular part according to the first embodiment shown in the figures 1 and 2 , intended to be used for the production of double glazing, or for the manufacture of spacers with more than two tubular parts, intended to be used for the production of multiple glazing with more than three sheets of glass.
  • the spacer manufacturing installation comprises a station for preparing spacer profiles 2 before filling them with desiccant material, called “preparation station”, and a station for filling spacer profiles with desiccant material, called “filling station”.
  • the figure 6 shows the preparation station, which comprises a cutting and shaping device 30, a drilling device 50, and a device 60 for sealing the two tubular parts of the profile 2 at one end.
  • An initial section 2i of great length transits in a direction X.
  • the initial section 2i is cut using a cutter 31 of the cutting device 30 at its front end 2B, the cutter 31 performing at the same time shaping this end 2B according to a 45° bevel.
  • the end 2B of the profile 2i is then drilled using at least one drill bit 51 of the drilling device 50, to provide the two through holes 9.1 and 9.2 in their respective sections 48.1 and 48.2.
  • the drilling device 50 can comprise either a drill 51 movable between the positions of the two through-holes 9.1 and 9.2, or two drills 51 juxtaposed.
  • the two tubular parts 4.1 and 4.2 of the profile 2i are then closed simultaneously near the end 2B of the profile 2i, by injecting two plugs 8.1 and 8.2 in butyl hotmelt into each housing 5.1 and 5.2, from the end 4.1B or 4.2B of the tubular part.
  • This sealing step is carried out using two injection nozzles 62 and 64 of the sealing device 60, each connected to a reservoir 61 or 63 of butyl hotmelt.
  • the step of drilling the profile 2i can take place after the step of closing the housings 5.1 and 5.2.
  • the shutter device 60 is mounted to move on the chassis of the preparation station in the X direction and in a Y direction transverse to the X direction.
  • the mobility in the X direction allows each injection nozzle 62 and 64 to penetrate sufficiently into the housing 5.1 and 5.2 to be able to inject the stopper 8.1 or 8.2 at the correct distance d with respect to the corresponding end of the tubular part.
  • Mobility along the Y direction allows the device 60 to free up space so that the profile 2i, once prepared at its end 2B, can advance in the direction X, then be cut to the desired length of the profile 2 at its end 2A.
  • the cutting of the section 2i at its end 2A is carried out using the cutter 31 of the cutting device 30, the cutter 31 performing at the same time the shaping of the end 2A according to a bevel at 45°.
  • the filling station comprises a mobile arm 70 for supporting the profile 2, a device 80 for filling the two housings 5.1 and 5.2 of the profile 2 with the desiccant material 6, and a device 90 for sealing the two tubular parts of the profile 2 at end 2A left open in the preparation station.
  • the figure 7 shows the filling station in a configuration for inserting the desiccant material 6 into the housing 5.1 or 5.2 of each tubular part of the section 2.
  • the arm 70 maintains the section 2 in an inclined position with respect to the horizontal at an angle ⁇ of the order of 45°, with its end 2B previously closed in the preparation station directed downwards and its end 2A left open directed upwards.
  • the arm 70 is movable in translation in the direction of the double arrow F 1 of the figure 7 , so that he can position the open end 2A of the section 2 under the filling device 80.
  • Two nozzles 82 and 84 for filling with desiccant material 6, which are connected to a reservoir 81 of desiccant material, are thus each positioned in one of the housings 5.1 and 5.2, on the side of the open end 2A of the profile 2, so that the desiccant material 6, which in this example is molecular sieve, can be inserted into the housings 5.1 and 5.2 by flow by gravity.
  • the filling device 80 can comprise means for measuring the degree of filling of each housing 5.1 and 5.2 with desiccant material 6.
  • the figure 8 shows the filling station in a configuration for closing the housing 5.1 or 5.2 of each tubular part of the profile 2.
  • the arm 70 has moved in the direction F 1 to move away from the filling device 80, so that the shutter device 90, which is movable in translation in the direction of the double arrow F 2 of the figure 8 , can come opposite the end 2A of the profile 2.
  • Two injection nozzles 92 and 94 which are each connected to a reservoir 91 or 93 of butyl hotmelt, are thus each positioned in one of the housings 5.1 and 5.2 , on the side of the open end 2A of the profile 2.
  • the two tubular parts 4.1 and 4.2 of the profile 2 are then closed simultaneously in the vicinity of the end 2A of the profile 2, by injection of two plugs 7.1 and 7.2 in butyl hotmelt in each housing 5.1 and 5.2.
  • the mobility of the arm 70 in the direction of the arrow F 1 allows each injection nozzle 92 and 94 to penetrate sufficiently into the housing 5.1 and 5.2 to be able to inject the stopper 7.1 or 7.2 at the correct distance d by relative to the corresponding end of the tubular part.
  • the closure device 90 may comprise means for blowing desiccant material in order to release a volume in each housing 5.1 and 5.2 for the admission of the butyl hotmelt which forms the plugs.
  • the filling station has been described for the processing of a single spacer profile 2 at a time, but it is understood that the arm 70, the filling device 80 and the closing device 90 can be adapted to allow the treatment of several profiles 2 at a time, in particular four spacer profiles intended to be assembled to form the frame of an insulating glazing.
  • the steps for manufacturing a spacer 1 as described above are carried out online, on an insulating glazing production line, and preferably just before the implementation of the spacer 1 in the manufacturing insulating glazing.
  • the invention provides a spacer for insulating glazing, the filling of which with desiccant material can be carried out in line, without risk of leakage of the material.
  • desiccant and which can be used for a spacer frame assembly around at least one central sheet of glass, in the context of the manufacture of multiple glazing with at least three sheets of glass.
  • a spacer according to the invention also offers the possibility of providing through holes in a section of the spacer which is insulated from the desiccant material, which allows the or each cavity of the insulating glazing to be filled with gas without risk of contamination of the insulating glazing with the desiccant material. This results in a simplification of the process for filling the cavity with gas and a reduction in the manufacturing costs of the insulating glazing.
  • the number of tubular parts of a spacer according to the invention can be greater than two, with a groove defined by each pair of adjacent tubular parts, which allows the manufacture of insulating glazing comprising more than three glass sheets.
  • a spacer according to the invention can be filled with any type of desiccant material suitable for use in insulating glazing, including a desiccant material not in fluid form, which can then be inserted into the profile of spacer by a technique other than gravity flow.
  • the method for manufacturing the spacer described above has been given by way of non-limiting example and can be adapted according to the geometry of the spacer profile, the nature of the desiccant material, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Description

  • La présente invention a trait à un espaceur pour vitrage isolant et à un vitrage isolant comprenant un cadre espaceur formé par assemblage de plusieurs espaceurs. L'invention a également trait à un procédé de fabrication d'un espaceur pour vitrage isolant.
  • De manière connue, un vitrage isolant peut être obtenu en solidarisant un cadre espaceur rigide à la périphérie de deux feuilles de verre à l'aide de cordons d'étanchéité et en appliquant une barrière extérieure de scellement sur tout le pourtour extérieur du cadre espaceur entre les deux feuilles de verre, de manière à assurer le maintien des feuilles de verre entre elles et sur le cadre espaceur. Le cadre espaceur comporte un matériau dessicant dans son volume intérieur, afin d'assurer une déshydratation de la ou chaque cavité formée entre les feuilles de verre du vitrage isolant. Le cadre espaceur est classiquement fabriqué soit par pliages successifs d'un profilé droit en matériau ductile tel que l'aluminium, soit par assemblage angulaire à leurs extrémités de quatre profilés droits, de manière à obtenir un cadre rectangulaire.
  • Le remplissage du cadre espaceur avec le matériau dessicant est généralement effectué juste avant la fermeture du cadre, notamment au niveau d'un dernier angle ouvert du cadre, afin d'éviter toute fuite du matériau dessicant. Or, l'assemblage du cadre espaceur n'est pas réalisé directement sur la ligne de fabrication de vitrages isolants, mais sur un îlot indépendant. Le remplissage en matériau dessicant lorsqu'il a lieu au moment de la fermeture du cadre espaceur ne peut donc pas être intégré en ligne. De plus, le remplissage en matériau dessicant au moment de la fermeture du cadre espaceur n'est pas adapté lorsque l'assemblage du cadre espaceur se fait autour d'au moins une feuille de verre centrale, comme c'est le cas pour des vitrages multiples à espaceurs tels que décrits dans US 2012/0141699 A1 . En effet, il existe alors un risque d'endommagement de la feuille de verre centrale par le dispositif de remplissage en matériau dessicant.
  • Par ailleurs, le remplissage en gaz de la cavité d'un vitrage isolant se fait classiquement à travers un orifice traversant ménagé dans le cadre espaceur. Or, la mise en place d'un tel orifice traversant dans le cadre espaceur génère un risque de fuite de matériau dessicant et de pollution du vitrage isolant avec le matériau dessicant lors du remplissage en gaz de la cavité du vitrage isolant à travers l'orifice traversant.
  • DE 20 2005 002786 U1 divulgue des profilés destinés à être utilisés en tant qu'espaceurs dans des vitrages isolants. Avant remplissage avec un matériau dessicant, le logement de chaque profilé est fermé à chaque extrémité par un bouchon.
  • US 4 407 105 A divulgue un autre cadre espaceur pour un vitrage isolant.
  • C'est à ces inconvénients qu'entend plus particulièrement remédier l'invention en proposant un espaceur pour vitrage isolant dont la fabrication, y compris le remplissage en matériau dessicant, peut être effectuée en ligne, cet espaceur étant compatible avec un assemblage du cadre espaceur autour d'au moins une feuille de verre centrale et permettant de simplifier le procédé de remplissage en gaz de la cavité d'un vitrage isolant comprenant l'espaceur, sans risque de fuite de matériau dessicant ou de pollution du vitrage isolant avec le matériau dessicant.
  • A cet effet, l'invention a pour objet un espaceur pour vitrage isolant, comprenant un profilé qui comporte au moins une partie tubulaire définissant un logement de réception de matériau dessicant, où le logement débouche au niveau de deux extrémités de la partie tubulaire, le logement étant obturé au voisinage de chaque extrémité de la partie tubulaire à l'aide d'un bouchon et comportant un matériau dessicant entre les deux bouchons, au moins l'un des bouchons étant décalé longitudinalement à l'intérieur du logement par rapport à l'extrémité correspondante de la partie tubulaire, où la partie tubulaire comprend un orifice traversant, destiné au passage de gaz entre une cavité du vitrage isolant et l'extérieur du vitrage isolant pour le remplissage et/ou l'évacuation de gaz de la cavité, qui est ménagé dans un tronçon de la partie tubulaire compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire, où l'orifice traversant débouche dans deux parois de la partie tubulaire destinées à s'étendre transversalement par rapport aux feuilles de verre du vitrage isolant, avec une paroi destinée à être dirigée vers la cavité du vitrage isolant et une paroi destinée à être dirigée vers l'extérieur du vitrage isolant.
  • Au sens de l'invention, un profilé est une pièce de volume droit, c'est-à-dire généré par des droites. Ainsi, l'invention s'intéresse aux espaceurs rigides droits, destinés à être assemblés angulairement à leurs extrémités avec d'autres espaceurs analogues pour former un cadre espaceur de vitrage isolant, par opposition notamment aux cordons espaceurs flexibles qui peuvent être extrudés directement sur une feuille de verre d'un vitrage isolant avec changement de direction de la tête d'extrusion dans les angles.
  • L'invention tire parti du fait que le tronçon compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire est vide, sans matériau dessicant dans son volume intérieur, pour y ménager un orifice traversant de remplissage et/ou d'évacuation de gaz d'une cavité du vitrage isolant. L'agencement de l'orifice traversant dans un tronçon compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire permet, lors du perçage du profilé de l'espaceur, d'éviter tout risque de fuite du matériau dessicant à travers l'orifice traversant. De plus, une fois l'espaceur intégré dans un vitrage isolant, cet agencement permet un remplissage en gaz de la cavité du vitrage isolant à travers l'orifice traversant sans risque de pollution du vitrage isolant avec le matériau dessicant, puisque le matériau dessicant est confiné à l'arrière du bouchon délimitant le tronçon. Il en résulte une simplification du procédé de remplissage en gaz de la cavité du vitrage isolant comprenant un espaceur selon l'invention, et donc une réduction des coûts de fabrication.
  • Chaque cavité du vitrage isolant entre les feuilles de verre peut être remplie d'air. Toutefois, de manière préférée, chaque cavité du vitrage isolant comprend une lame d'un gaz isolant, qui vient se substituer à l'air entre les feuilles de verre. Des exemples de gaz utilisés pour former la lame de gaz isolant dans chaque cavité du vitrage isolant comprennent, notamment, l'argon (Ar), le krypton (Kr), le xénon (Xe). De manière avantageuse, la lame de gaz isolant dans chaque cavité du vitrage isolant comprend au moins 85% d'un gaz présentant une conductivité thermique plus faible que celle de l'air. Des gaz adéquats sont de préférence incolores, non toxiques, non corrosifs, non inflammables, insensibles à l'exposition aux radiations ultraviolettes.
  • Grâce à la structure spécifique d'un espaceur selon l'invention, les étapes de fabrication de l'espaceur peuvent être réalisées en ligne, sur une ligne de production de vitrages isolants. En particulier, il est possible d'intégrer en ligne les étapes que sont la mise à longueur du profilé de l'espaceur, l'obturation de la partie tubulaire au voisinage d'une première extrémité du profilé à l'aide d'un premier bouchon, le remplissage de la partie tubulaire avec le matériau dessicant depuis la deuxième extrémité du profilé, l'obturation de la partie tubulaire au voisinage de la deuxième extrémité du profilé à l'aide d'un deuxième bouchon, le perçage du profilé dans un tronçon de la partie tubulaire compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire. Il en résulte une diminution du temps de cycle et donc une réduction des coûts de fabrication.
  • De manière avantageuse, un espaceur selon l'invention, qui est rempli de matériau dessicant préalablement à son assemblage avec d'autres espaceurs analogues, peut être manipulé aisément par un opérateur ou un robot pour former un cadre espaceur, sans risque de fuite du matériau dessicant puisque celui-ci est confiné entre deux bouchons à l'intérieur de chaque partie tubulaire. Le fait que l'espaceur est pré-rempli en matériau dessicant permet également son utilisation pour l'assemblage d'un cadre espaceur autour d'au moins une feuille de verre centrale, comme cela peut être requis pour la fabrication de vitrages multiples ayant au moins trois feuilles de verre, en s'affranchissant de la nécessité de remplir le cadre avec du matériau dessicant après son assemblage autour de la feuille de verre centrale. L'espaceur pré-rempli en matériau dessicant selon l'invention peut avantageusement être fabriqué juste avant sa mise en œuvre dans un vitrage isolant, ce qui limite l'absorption préalable d'humidité par le matériau dessicant et améliore la qualité du vitrage isolant.
  • De manière avantageuse, la ou chaque partie tubulaire de l'espaceur comporte deux parois latérales, qui sont destinées chacune à être adjacentes à une feuille de verre du vitrage isolant, et deux parois transverses, qui sont destinées à s'étendre transversalement par rapport aux feuilles de verre du vitrage isolant en étant l'une dirigée vers une cavité du vitrage isolant et l'autre dirigée vers l'extérieur du vitrage isolant. Pour chaque partie tubulaire, le logement de réception de matériau dessicant est délimité par les parois latérales et transverses. La paroi transverse qui est dirigée vers la cavité du vitrage isolant est munie d'une pluralité de perforations sur sa partie comprise entre les deux bouchons d'obturation du logement, de manière à mettre en communication le matériau dessicant avec l'air ou le gaz intérieur de la cavité. Le matériau dessicant peut ainsi absorber l'humidité comprise dans la cavité et éviter la formation de buée entre les feuilles de verre du vitrage isolant.
  • Selon une caractéristique, l'orifice traversant est muni d'un obturateur permettant l'injection de gaz dans la cavité du vitrage isolant depuis l'extérieur, à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur depuis l'extérieur, tel qu'une buse ou une seringue, l'obturateur étant par ailleurs conçu pour empêcher la sortie du gaz hors de la cavité une fois la cavité remplie. La fourniture d'un tel obturateur formant une valve de remplissage en gaz, qui est déjà en place dans l'espaceur avant le cycle de remplissage en gaz, permet un gain de temps pour le remplissage en gaz du vitrage isolant car il n'est plus nécessaire de boucher l'orifice traversant après l'étape de remplissage en gaz. Cela permet également une amélioration de la qualité de remplissage en gaz du vitrage isolant, dans la mesure où l'obturation est très rapide après le retrait de l'élément d'injection de gaz.
  • Un tel obturateur formant une valve de remplissage en gaz peut par exemple présenter une structure comportant un clapet et un siège, où le clapet est écarté du siège lorsque l'élément d'injection de gaz est introduit dans l'obturateur, par exemple par déformation de l'un ou l'autre parmi le clapet ou le siège, ce qui permet le remplissage en gaz de la cavité du vitrage isolant depuis l'extérieur, tandis qu'une coopération étanche aux gaz s'établit entre le siège et le clapet lorsque l'élément d'injection de gaz est retiré, ce qui permet d'empêcher la sortie du gaz hors de la cavité une fois la cavité remplie. L'organe parmi le clapet ou le siège qui est déformé lorsque l'élément d'injection de gaz est introduit dans l'obturateur peut notamment être constitué en un matériau à mémoire de forme. Des exemples de matériaux à mémoire de forme comprennent notamment des alliages à mémoire de forme tels que des alliages nickel-titane, ou des polymères à mémoire de forme tels que des polyuréthanes.
  • En variante, un tel obturateur formant une valve de remplissage en gaz peut comprendre au moins une partie à base d'un matériau auto-cicatrisant, qui permet le passage de l'élément d'injection de gaz à travers l'obturateur pour le remplissage en gaz de la cavité du vitrage isolant depuis l'extérieur, et qui cicatrise lorsque l'élément d'injection de gaz est retiré, ce qui empêche la sortie du gaz hors de la cavité du vitrage isolant une fois la cavité remplie. Par matériau auto-cicatrisant, on entend un matériau capable de s'auto-réparer après avoir été endommagé par perforation, en retrouvant notamment toutes ses propriétés d'étanchéité aux gaz. A la différence d'un matériau comme le caoutchouc pour lequel, après perforation, c'est la résilience du matériau qui referme l'emplacement de la perforation, ce qui ne permet qu'une étanchéité limitée et pour de faibles différences de pression, un matériau auto-cicatrisant retrouve à l'identique sa configuration d'origine avant percement, par un processus physico-chimique garantissant une étanchéité même sous forte différence de pression. De préférence, l'auto-réparation est quasi-instantanée afin de réaliser une obturation très rapide après le retrait de l'élément d'injection de gaz. Le matériau auto-cicatrisant peut notamment être choisi parmi des acides gras multifonctionnels, des monomères ou des polymères acryliques, des polyuréthanes et des copolymères à base de polyéthers, de préférence des polymères di-blocs à base de polyéthers pour lesquels la mobilité des chaînes polymères permet une auto-cicatrisation rapide même à basse température.
  • De préférence, l'obturateur de chaque orifice traversant de l'espaceur est choisi avec une couleur de ses parties apparentes en surface de l'espaceur qui est sensiblement identique à la couleur du profilé de l'espaceur, de manière à conférer à l'espaceur un aspect visuel le plus esthétique possible.
  • Selon un aspect de l'invention, le ou chaque tronçon de la partie tubulaire compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire a une longueur de l'ordre de 2 cm à 5 cm. Une telle configuration permet de percer un orifice traversant de passage de gaz dans ce tronçon sans qu'il y ait de difficulté pour positionner le dispositif de perçage, car une longueur suffisante de tronçon exempt de produit dessicant est disponible. De préférence, la distance entre le bouchon décalé et l'orifice traversant est de l'ordre de 0,5 cm à 1,5 cm. De manière avantageuse, l'orifice traversant a un diamètre inférieur ou égal à 1 cm, de préférence de l'ordre de 5 mm.
  • Dans un mode de réalisation, le profilé de l'espaceur comprend au moins deux parties tubulaires et une rainure délimitée entre les deux parties tubulaires, la rainure étant destinée à recevoir un bord d'une feuille de verre centrale, chaque partie tubulaire définissant un logement de réception de matériau dessicant qui débouche au niveau de deux extrémités de la partie tubulaire, le logement de chaque partie tubulaire étant obturé au voisinage de chaque extrémité de la partie tubulaire à l'aide d'un bouchon et comportant un matériau dessicant entre les deux bouchons, au moins l'un des bouchons de chaque partie tubulaire étant décalé longitudinalement à l'intérieur du logement par rapport à l'extrémité correspondante de la partie tubulaire.
  • Une telle structure d'espaceur avec au moins deux parties tubulaires permet la fabrication de vitrages multiples ayant au moins trois feuilles de verre. En particulier, un profilé d'espaceur avec deux parties tubulaires et une rainure est adapté pour la fabrication d'un triple vitrage, où deux feuilles de verre externes sont positionnées de part et d'autre de l'espaceur, tandis qu'une feuille de verre centrale est reçue dans la rainure de l'espaceur. Un profilé d'espaceur avec trois parties tubulaires et deux rainures est adapté pour la fabrication d'un vitrage isolant à quatre feuilles de verre, où deux feuilles de verre externes sont positionnées de part et d'autre de l'espaceur, tandis que deux feuilles de verre centrales sont reçues chacune dans une rainure respective de l'espaceur. Des configurations analogues de vitrages isolants à plus de quatre feuilles de verre peuvent bien entendu être obtenues en augmentant le nombre de parties tubulaires et donc de rainures aptes à recevoir une feuille de verre centrale. De manière avantageuse, quel que soit le nombre de parties tubulaires des espaceurs et donc de rainures aptes à recevoir une feuille de verre centrale, il est possible de former et d'assembler le cadre espaceur du vitrage isolant autour de la ou des feuilles de verre centrales, en insérant les bords de chaque feuille de verre centrale dans les rainures correspondantes des espaceurs et en assemblant les espaceurs deux à deux à leurs extrémités au niveau des angles du cadre espaceur.
  • Selon une caractéristique avantageuse, au voisinage d'au moins une extrémité du profilé de l'espaceur, les bouchons des deux parties tubulaires sont tous les deux décalés longitudinalement à l'intérieur du logement par rapport à l'extrémité correspondante de la partie tubulaire. Il est alors possible, au voisinage de cette extrémité du profilé de l'espaceur où les bouchons sont tous les deux décalés, de ménager deux orifices traversants destinés chacun au passage de gaz entre une cavité du vitrage isolant et l'extérieur du vitrage isolant pour le remplissage et/ou l'évacuation de la cavité, chaque orifice traversant étant ménagé dans l'une des deux parties tubulaires, au niveau du tronçon qui est compris entre le bouchon décalé et l'extrémité correspondante de la partie tubulaire. De préférence, les deux orifices traversants sont juxtaposés, de sorte qu'ils peuvent être créés au moyen d'un même dispositif de perçage, qui comprend soit un organe de perçage mobile entre les positions des deux orifices traversants, soit deux organes de perçage juxtaposés. De manière avantageuse, les deux orifices traversants permettent un remplissage et/ou une évacuation en gaz des deux cavités du vitrage isolant situées de part et d'autre de la feuille de verre centrale.
  • Selon une caractéristique, chacun des deux orifices traversants de l'espaceur est muni d'un obturateur permettant l'injection de gaz dans la cavité correspondante du vitrage isolant depuis l'extérieur, à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur depuis l'extérieur, tel qu'une buse ou une seringue, l'obturateur étant par ailleurs conçu pour empêcher la sortie du gaz hors de la cavité une fois la cavité remplie.
  • Selon un aspect de l'invention, l'espaceur comprend une garniture positionnée dans la rainure pour recevoir le bord de la feuille de verre centrale. La rainure peut avoir une largeur supérieure à l'épaisseur de la feuille de verre centrale. La garniture sert à fixer la feuille de verre centrale dans la rainure, tout en permettant de compenser d'éventuelles variations de dilatation thermique de la feuille de verre centrale. Une fixation sans contrainte de la feuille de verre centrale dans la rainure est ainsi assurée. De manière avantageuse, la réduction des contraintes appliquées sur la feuille de verre centrale permet de diminuer l'épaisseur et le poids de cette feuille de verre, par rapport à celles utilisées dans les vitrages isolants où la feuille de verre centrale est fixée sur la périphérie de l'espaceur au lieu d'être reçue dans une rainure. La mise en place d'une garniture dans la rainure permet également d'adapter l'espaceur à différentes épaisseurs possibles de la feuille de verre centrale. Il est ainsi possible d'utiliser un même modèle d'espaceur pour fabriquer des vitrages isolants ayant des feuilles de verre centrales d'épaisseurs différentes, sans nécessiter de produire des espaceurs avec une gamme de largeurs de rainure différentes, ce qui est avantageux en termes de coûts de production. Dans un mode de réalisation, la garniture est configurée pour permettre un équilibrage par circulation de gaz entre les cavités du vitrage isolant situées de part et d'autre de la feuille de verre centrale.
  • De manière avantageuse, la garniture positionnée dans la rainure de chaque espaceur joue le rôle d'un amortisseur mécanique et acoustique, en particulier lors de l'insertion des bords de la feuille de verre centrale dans les rainures des espaceurs pour former un cadre espaceur autour de la feuille de verre centrale. La garniture peut être fournie de manière continue selon la longueur de la rainure ou de manière discontinue. De préférence, la garniture est à base de matériau élastomère, notamment en caoutchouc éthylène-propylène-diène (EPDM). La garniture peut être obtenue monobloc avec le profilé de l'espaceur par coextrusion. En variante, lorsque le profilé de l'espaceur est en matériau polymère, l'ensemble comprenant le profilé d'espaceur et la garniture positionnée dans la rainure peut être obtenu en une seule pièce par moulage par injection de deux matériaux polymères.
  • Le profilé de l'espaceur selon l'invention peut être constitué en métal et/ou en matériau polymère. Des exemples de matériaux métalliques adaptés pour le profilé d'espaceur comprennent, notamment, l'aluminium ou l'acier inoxydable. Des exemples de matériaux polymères adaptés pour le profilé d'espaceur comprennent, notamment, le polyéthylène (PE), le polycarbonate (PC), le polypropylène (PP), le polystyrène, le polybutadiène, les polyesters, les polyuréthanes, le polyméthacrylate de méthyle, les polyacrylates, les polyamides, le polyéthylène téréphtalate (PET), le polybutylène téréphtalate (PBT), l'acrylonitrile butadiène styrène (ABS), l'acrylonitrile styrène acrylate (ASA), le copolymère styrène-acrylonitrile (SAN). Toute combinaison ou mélange de ces matériaux est également envisageable, par exemple le profilé de l'espaceur peut être à base de polypropylène comportant une armature constituée par un feuil en acier inoxydable. Lorsqu'il est à base de matériau polymère, le profilé de l'espaceur est avantageusement renforcé par des fibres, notamment des fibres de verre ou de carbone.
  • De manière avantageuse, le profilé de l'espaceur comporte un revêtement isolant thermique sur sa surface destinée à être dirigée vers l'extérieur du vitrage isolant. Il peut s'agir, notamment, d'un revêtement multicouche comprenant au moins une couche polymère ainsi qu'une couche métallique ou une couche céramique. L'épaisseur de la ou chaque couche polymère est alors de préférence comprise entre 5 µm et 80 µm, tandis que l'épaisseur des couches métalliques et/ou des couches céramiques est comprise entre 10 nm et 200 nm. Ce revêtement isolant permet de réduire le transfert de chaleur à travers le profilé d'espaceur vers les cavités du vitrage isolant.
  • Selon un aspect de l'invention, chaque bouchon de l'espaceur est formé par injection d'un matériau polymère dans le logement de la partie tubulaire. De préférence, chaque bouchon est en un matériau polymère élastique et résistant tel que du polyisobutylène, également appelé butyl, ou du butyl thermofusible, également appelé butyl hotmelt. Un avantage d'utiliser du butyl, du butyl hotmelt ou un matériau similaire pour les bouchons de l'espaceur est qu'un tel matériau a une stabilité suffisante pour ne pas s'écouler de manière incontrôlée dans le logement de chaque partie tubulaire. De manière avantageuse, les bouchons constitués en butyl ou butyl hotmelt présentent également une bonne étanchéité à la vapeur d'eau et aux gaz.
  • Dans le cadre de l'invention, le matériau dessicant peut être tout matériau apte à assurer une déshydratation de l'air ou de la lame de gaz présent dans les cavités du vitrage isolant entre les feuilles de verre, notamment choisi parmi du tamis moléculaire, du gel de silice, du CaCl2, du Na2S04, du charbon actif, des zéolithes, et/ou un mélange de ceux-ci. De préférence, le matériau dessicant est du tamis moléculaire ou du gel de silice. La capacité d'absorption de ces matériaux dessicants est supérieure à 20% de leur poids. L'utilisation d'un matériau dessicant sous forme fluide, notamment sous forme de poudre ou sous forme granulaire, permet le remplissage du logement de chaque partie tubulaire de l'espaceur par écoulement par gravité du matériau dessicant dans le logement.
  • Selon un aspect de l'invention, chaque extrémité du profilé de l'espaceur est biseautée, de sorte que l'espaceur est apte à être assemblé angulairement avec un espaceur analogue. Dans le cadre de l'invention, tout angle de biseau des extrémités des profilés est envisageable, notamment un angle de biseau de 45° correspondant à un assemblage en coupe d'onglet, mais également tout autre angle de biseau.
  • L'invention a également pour objet un cadre espaceur pour vitrage isolant comprenant quatre espaceurs qui sont assemblés angulairement à leurs extrémités, au moins l'un des espaceurs étant tel que décrit ci-dessus. De préférence, le cadre espaceur comprend quatre espaceurs tels que décrits ci-dessus.
  • Selon un aspect de l'invention, le cadre espaceur comprend un premier espaceur et un deuxième espaceur qui sont assemblés angulairement à leurs extrémités, où chacun parmi les premier et deuxième espaceurs comporte un orifice traversant ménagé dans un tronçon de la partie tubulaire compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire, de telle sorte que, dans au moins une configuration où le plan du cadre espaceur est sensiblement vertical, l'orifice traversant du premier espaceur est en position basse alors que l'orifice traversant du deuxième espaceur est en position haute. Un tel agencement de deux orifices traversants du cadre espaceur est avantageux pour effectuer le remplissage de chaque cavité du vitrage isolant avec un gaz isolant plus dense que l'air, par injection du gaz isolant dans la cavité à travers l'orifice traversant situé en position basse et évacuation de l'air présent dans la cavité à travers l'orifice traversant situé en position haute.
  • L'invention a également pour objet un vitrage isolant comprenant un cadre espaceur positionné entre deux feuilles de verre externes, où le cadre espaceur est formé à partir de quatre espaceurs qui sont assemblés angulairement à leurs extrémités, au moins l'un des espaceurs étant tel que décrit ci-dessus. De préférence, le cadre espaceur est formé à partir de quatre espaceurs tels que décrits ci-dessus.
  • Dans un tel vitrage isolant, le cadre espaceur est classiquement solidarisé à la périphérie des deux feuilles de verre externes à l'aide d'un joint périphérique d'étanchéité, sous la forme d'un cordon de mastic généralement à base de polyisobutylène, ou butyl, qui est particulièrement performant en termes d'étanchéité à la vapeur d'eau et aux gaz. Le maintien des feuilles de verre entre elles et sur le cadre espaceur est assuré par une barrière extérieure de scellement, qui est appliquée sur tout le pourtour extérieur du cadre espaceur entre les deux feuilles de verre externes. La barrière extérieure de scellement peut être formée, notamment, à partir d'une résine choisie parmi les polysulfures, les polyuréthanes, les silicones, les butyls thermofusibles, ou butyls hotmelt, et leurs combinaisons ou mélanges. Ces produits de scellement présentent une bonne adhérence sur les feuilles de verre et des propriétés mécaniques leur permettant d'assurer le maintien des composants verriers sur l'espaceur.
  • L'invention a également pour objet un procédé de fabrication d'un espaceur pour vitrage isolant comprenant des étapes dans lesquelles :
    • on fournit un profilé ayant la longueur souhaitée de l'espaceur, qui comporte au moins une partie tubulaire définissant un logement de réception de matériau dessicant, où le logement débouche au niveau de deux extrémités de la partie tubulaire ;
    • on obture le logement de chaque partie tubulaire du profilé au voisinage d'une première extrémité du profilé à l'aide d'un premier bouchon ;
    • on insère un matériau dessicant dans le logement de chaque partie tubulaire du profilé depuis la deuxième extrémité du profilé opposée à la première extrémité ;
    • on obture le logement de chaque partie tubulaire du profilé au voisinage la deuxième extrémité du profilé à l'aide d'un deuxième bouchon, où, pour chaque partie tubulaire, au moins l'un parmi le premier bouchon et le deuxième bouchon est décalé longitudinalement à l'intérieur du logement par rapport à l'extrémité correspondante de la partie tubulaire.
  • Selon l'invention, on perce le profilé de l'espaceur, notamment au moyen d'un foret, de manière à créer un orifice traversant de passage de gaz dans un tronçon de la partie tubulaire destiné à être compris entre un bouchon décalé et l'extrémité correspondante de la partie tubulaire, où l'orifice traversant débouche dans deux parois de la partie tubulaire prévues pour s'étendre transversalement entre les deux feuilles de verre externes du vitrage isolant. Bien entendu, cette étape de perçage du profilé de l'espaceur peut avoir lieu avant ou après l'étape d'obturation à l'aide d'un bouchon du logement au voisinage de l'extrémité correspondante de la partie tubulaire.
  • Selon l'invention, on obture le logement de chaque partie tubulaire au voisinage de la première extrémité du profilé à l'aide d'un premier bouchon décalé et on perce le profilé de l'espaceur de manière à créer un orifice traversant de passage de gaz dans le tronçon de chaque partie tubulaire destiné à être compris entre le premier bouchon décalé et l'extrémité correspondante de la partie tubulaire, de manière individuelle pour chaque profilé, l'ordre des étapes d'obturation et de perçage étant quelconque ; puis on insère le matériau dessicant dans le logement de chaque partie tubulaire du profilé depuis la deuxième extrémité du profilé et on obture le logement de chaque partie tubulaire au voisinage de la deuxième extrémité du profilé à l'aide du deuxième bouchon, de manière collective pour plusieurs profilés.
  • Selon une caractéristique, on positionne dans l'orifice traversant, avant le remplissage en gaz du vitrage isolant, un obturateur permettant l'injection de gaz dans la cavité correspondante du vitrage isolant depuis l'extérieur, à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur depuis l'extérieur, tel qu'une buse ou une seringue, l'obturateur étant par ailleurs conçu pour empêcher la sortie du gaz hors de la cavité une fois la cavité remplie.
  • Selon une caractéristique, on obtient le profilé de l'espaceur par découpe d'un profilé initial à la longueur souhaitée de l'espaceur, au moyen d'un outil tel qu'une fraise. Selon une autre caractéristique, on façonne chaque extrémité du profilé de l'espaceur selon une forme biseautée avec le même outil que celui utilisé pour découper le profilé à la longueur souhaitée de l'espaceur.
  • Selon un aspect avantageux, on met en place chaque bouchon par injection d'un matériau polymère dans le logement de la partie tubulaire. De préférence, chaque bouchon est en un matériau polymère élastique et résistant, tel que du butyl ou du butyl hotmelt, ayant une stabilité suffisante pour ne pas s'écouler de manière incontrôlée dans le logement de la partie tubulaire.
  • Lorsque le matériau dessicant se présente sous une forme fluide apte à s'écouler, notamment sous forme de poudre ou sous forme granulaire, l'insertion du matériau dessicant dans le logement depuis la deuxième extrémité du profilé de l'espaceur est avantageusement réalisée par écoulement par gravité du matériau dessicant dans le logement.
  • L'invention a également pour objet un procédé de fabrication d'un vitrage isolant comprenant des étapes de fabrication d'un espaceur telles que décrites ci-dessus. De préférence, les étapes de fabrication de chaque espaceur du vitrage isolant sont réalisées en ligne, sur une ligne de production de vitrages isolants. Selon un aspect avantageux de l'invention, chaque espaceur du vitrage isolant est fabriqué juste avant sa mise en œuvre dans la fabrication du vitrage isolant, ce qui limite l'absorption préalable d'humidité par le matériau dessicant et améliore la qualité du vitrage isolant.
  • Une installation de fabrication d'espaceurs pour vitrage isolant, qui ne fait pas partie de l'objet de l'invention, comprend: :
    • un poste de préparation de profilés d'espaceurs avant leur remplissage en matériau dessicant, dans lequel on procède, individuellement pour chaque profilé, à une découpe de chaque profilé d'espaceur à la longueur souhaitée, à une obturation du logement de chaque partie tubulaire au voisinage d'une première extrémité du profilé à l'aide d'un premier bouchon décalé, et éventuellement au perçage du profilé au voisinage de sa première extrémité dans le tronçon de chaque partie tubulaire destiné à être compris entre le premier bouchon décalé et l'extrémité correspondante de la partie tubulaire, de manière à créer un orifice traversant de passage de gaz, l'ordre des étapes d'obturation et de perçage étant quelconque ;
    • un poste de remplissage de profilés d'espaceurs avec un matériau dessicant, dans lequel on procède, collectivement pour plusieurs profilés, à l'insertion de matériau dessicant dans le logement de chaque partie tubulaire du profilé depuis la deuxième extrémité du profilé opposée à la première extrémité, et à l'obturation du logement de chaque partie tubulaire du profilé au voisinage la deuxième extrémité à l'aide d'un deuxième bouchon.
  • De manière avantageuse, cette installation de fabrication d'espaceurs est intégrée sur une ligne de production de vitrages isolants.
  • Les caractéristiques et avantages de l'invention apparaîtront dans la description qui va suivre de plusieurs modes de réalisation d'un espaceur, d'un cadre espaceur et d'un vitrage isolant selon l'invention, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels :
    • la figure 1 est une vue en perspective avec arrachement partiel d'un espaceur pour vitrage isolant conforme à un premier mode de réalisation de l'invention ;
    • la figure 2 est une coupe partielle d'un vitrage isolant dont le cadre espaceur comprend l'espaceur de la figure 1 ;
    • la figure 3 est une vue analogue à la figure 1 d'un espaceur pour vitrage isolant conforme à un deuxième mode de réalisation de l'invention ;
    • la figure 4 est une coupe partielle d'un vitrage isolant dont le cadre espaceur comprend l'espaceur de la figure 3 ;
    • la figure 5 est une vue schématique d'un cadre espaceur pour vitrage isolant formé par l'assemblage de quatre espaceurs de la figure 1 ou de la figure 3 ;
    • la figure 6 est une vue schématique d'un poste de préparation de profilés d'espaceurs conformes au deuxième mode de réalisation avant leur remplissage en matériau dessicant ;
    • la figure 7 est une vue schématique d'un poste de remplissage de profilés d'espaceurs conformes au deuxième mode de réalisation avec un matériau dessicant, dans une configuration d'insertion de matériau dessicant dans le logement de chaque partie tubulaire du profilé ; et
    • la figure 8 est une vue analogue à la figure 7, le poste de remplissage étant dans une configuration d'obturation du logement de chaque partie tubulaire du profilé.
  • Dans le premier mode de réalisation représenté sur les figures 1 et 2, l'espaceur 1 est formé par un profilé 2 comportant une seule partie tubulaire 4, qui définit un logement 5 de réception de matériau dessicant 6. Le logement 5 débouche au niveau des deux extrémités 4A et 4B de la partie tubulaire 4, qui correspondent aux extrémités 2A et 2B du profilé 2. Dans cet exemple, le profilé 2 est en copolymère styrène-acrylonitrile (SAN), renforcé avec environ 35% de fibres de verre. L'espaceur 1 de ce premier mode de réalisation peut être mis en œuvre dans un vitrage isolant 10 de type double vitrage, tel que montré sur la figure 2, comprenant deux feuilles de verre externes 12 et 14 solidarisées à leur périphérie avec un cadre espaceur formé par l'assemblage de plusieurs espaceurs 1.
  • Comme visible sur la figure 2, la partie tubulaire 4 de l'espaceur 1 comporte deux parois latérales 43 et 45 qui, dans le vitrage isolant 10, sont adjacentes respectivement à la feuille de verre 12 et à la feuille de verre 14, et deux parois transverses 44 et 46 qui, dans le vitrage isolant 10, s'étendent transversalement par rapport aux feuilles de verre 12 et 14, avec la paroi 44 dirigée vers la cavité interne 17 du vitrage isolant et la paroi 46 dirigée vers l'extérieur du vitrage isolant. Afin de réduire le transfert de chaleur à travers le profilé 2 à la périphérie du vitrage, le profilé 2 est muni d'un revêtement isolant thermique 22 sur la surface extérieure de la paroi transverse 46 destinée à être dirigée vers l'extérieur. La liaison entre chaque feuille de verre 12 ou 14 et la paroi adjacente 43 ou 45 de l'espaceur 1 est assurée par un cordon d'étanchéité respectif 13 ou 15 en butyl. Le vitrage isolant 10 comprend également une barrière extérieure de scellement 18 en résine polysulfure, qui est appliquée sur tout le pourtour extérieur du cadre espaceur entre les deux feuilles de verre 12 et 14, de manière à maintenir les feuilles de verre 12 et 14 entre elles et sur le cadre espaceur.
  • Le logement 5 de l'espaceur est délimité par les parois latérales 43, 45 et transverses 44, 46 de la partie tubulaire 4. Le matériau dessicant 6, qui dans cet exemple est du tamis moléculaire, est reçu dans une partie centrale du logement 5, comprise entre deux bouchons 7 et 8 d'obturation du logement 5. Plus précisément, le logement 5 est obturé au voisinage de l'extrémité 4A de la partie tubulaire à l'aide d'un bouchon 7 et au voisinage de l'extrémité 4B de la partie tubulaire à l'aide d'un bouchon 8. Chacun des deux bouchons 7 et 8 est décalé longitudinalement à l'intérieur du logement 5 par rapport à l'extrémité correspondante 4A ou 4B, comme montré par la distance d sur la figure 1.
  • De manière avantageuse, chacun des deux bouchons 7 et 8 est obtenu par injection de butyl hotmelt dans le logement 5 depuis l'extrémité 4A ou 4B la plus proche de la partie tubulaire 4, à l'aide d'une buse d'injection. La paroi transverse 44 de la partie tubulaire 4, qui est destinée à être dirigée vers la cavité 17 du vitrage isolant, est munie d'une pluralité de perforations 49 sur sa partie comprise entre les deux bouchons 7 et 8, de sorte que le matériau dessicant 6 est apte à absorber l'humidité comprise dans la cavité 17, ce qui permet d'éviter la formation de buée entre les feuilles de verre 12 et 14.
  • Du fait du positionnement des bouchons 7 et 8 de manière décalée longitudinalement à l'intérieur du logement 5, la partie tubulaire 4 comprend deux tronçons d'extrémité 47 et 48 qui ne comportent pas de matériau dessicant dans leur volume intérieur. Un orifice traversant 9 de passage de gaz est ménagé dans le tronçon d'extrémité 48 compris entre le bouchon 8 et l'extrémité 4B de la partie tubulaire. Le perçage de cet orifice traversant 9 dans le profilé 2 peut avoir lieu indifféremment avant ou après le remplissage du profilé 2 avec le matériau dessicant 6.
  • L'agencement de l'orifice traversant 9 dans le tronçon vide 48 permet, si le perçage du profilé 2 a lieu après le remplissage en matériau dessicant, d'éviter tout risque de fuite du matériau dessicant 6 à travers l'orifice traversant 9. Dans cet exemple, les tronçons d'extrémité 47 et 48 ont chacun une longueur d de l'ordre de 40 mm. L'orifice traversant 9 a un diamètre de l'ordre de 5 mm. La distance entre l'axe central de l'orifice traversant 9 et le bouchon 8 est de l'ordre de 10 mm.
  • L'orifice traversant 9 débouche dans les parois transverses 44 et 46 de la partie tubulaire 4. Ainsi, une fois l'espaceur 1 intégré dans un vitrage isolant, l'orifice traversant 9 peut être utilisé pour effectuer un remplissage de la cavité 17 avec un gaz isolant, ou pour effectuer une évacuation d'air hors de la cavité 17, sans risque de pollution du vitrage isolant avec le matériau dessicant 6 puisque celui-ci est confiné à l'arrière du bouchon 8.
  • De manière optionnelle, l'orifice traversant 9 peut être muni d'un obturateur 29 formant une valve de remplissage en gaz, c'est-à-dire permettant l'injection de gaz isolant dans la cavité 17 du vitrage isolant depuis l'extérieur, à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur 29 depuis l'extérieur, tel qu'une buse ou une seringue, l'obturateur 29 étant par ailleurs conçu pour empêcher la sortie du gaz isolant hors de la cavité 17 une fois celle-ci remplie. L'obturateur 29 peut par exemple présenter une structure comportant un clapet et un siège, avec l'un ou l'autre parmi le clapet ou le siège qui est constitué en un matériau à mémoire de forme, ou encore l'obturateur 29 peut comprendre au moins une partie à base d'un matériau auto-cicatrisant. De préférence, l'obturateur 29 est choisi avec une couleur de ses parties apparentes sensiblement identique à la couleur du profilé 2 de l'espaceur, de manière à conférer à l'espaceur 1 un bon aspect visuel.
  • Dans le deuxième mode de réalisation représenté sur les figures 3 et 4, l'espaceur 1 diffère de celui du premier mode de réalisation en ce que le profilé 2 comporte deux parties tubulaires 4.1 et 4.2 juxtaposées. Chaque partie tubulaire 4.1 ou 4.2 définit un logement 5.1 ou 5.2 de réception de matériau dessicant 6, qui débouche au niveau des deux extrémités 4.1A, 4.1B ou 4.2A, 4.2B de la partie tubulaire. Les extrémités 4.1A et 4.2A sont juxtaposées au niveau de l'extrémité 2A du profilé 2, tandis que les extrémités 4.1B et 4.2B sont juxtaposées au niveau de l'extrémité 2B du profilé 2. Comme dans l'exemple précédent, le profilé 2 est en copolymère styrène-acrylonitrile (SAN), renforcé avec environ 35% de fibres de verre. Une rainure 3 est délimitée entre les deux parties tubulaires 4.1 et 4.2.
  • L'espaceur 1 du deuxième mode de réalisation peut être mis en œuvre dans un vitrage isolant 10 de type triple vitrage, tel que montré sur la figure 4, comprenant deux feuilles de verre externes 12 et 14 positionnées de part et d'autre de l'espaceur 1 et une feuille de verre centrale 16 reçue dans la rainure 3 de l'espaceur. Avec une telle structure de l'espaceur 1, il est possible de former un cadre espaceur autour de la feuille de verre centrale 16, en insérant les bords de la feuille de verre centrale 16 dans les rainures 3 de plusieurs espaceurs 1 et en assemblant les espaceurs 1 deux à deux à leurs extrémités au niveau des angles du cadre espaceur.
  • Chaque partie tubulaire 4.1 ou 4.2 de l'espaceur comporte deux parois latérales, respectivement 43, 40.1 et 40.2, 45. Les parois 40.1 et 40.2 délimitent latéralement la rainure 3 de réception de la feuille de verre centrale 16, tandis que les parois 43 et 45 sont destinées, dans le vitrage isolant 10, à être adjacentes respectivement à la feuille de verre externe 12 et à la feuille de verre externe 14. Chaque partie tubulaire 4.1 ou 4.2 de l'espaceur comporte également deux parois transverses, respectivement 44.1, 46.1 et 44.2, 46.2 qui, dans le vitrage isolant 10, s'étendent transversalement par rapport aux feuilles de verre 12, 14, 16, avec la paroi 44.1 ou 44.2 dirigée vers une cavité interne 17 ou 19 du vitrage isolant et la paroi 46.1 ou 46.2 dirigée vers l'extérieur du vitrage isolant. Les parois 46.1 et 46.2 sont des parties d'une paroi transverse 46 du profilé qui définit aussi le fond de la rainure 3. Afin de réduire le transfert de chaleur à travers le profilé 2 vers les cavités 17 et 19 du vitrage isolant, le profilé 2 comporte un revêtement isolant thermique 22 sur la surface extérieure de la paroi transverse 46 destinée à être dirigée vers l'extérieur du vitrage isolant.
  • Comme dans le premier mode de réalisation, un cordon d'étanchéité 13 ou 15 en butyl assure la liaison entre chaque feuille de verre externe 12 ou 14 et la paroi adjacente 43 ou 45 de l'espaceur 1. Le maintien des feuilles de verre externes 12 et 14 entre elles et sur le cadre espaceur est assuré par une barrière extérieure de scellement 18 en résine polysulfure, qui est appliquée sur tout le pourtour extérieur du cadre espaceur entre les deux feuilles de verre 12 et 14. De plus, l'espaceur 1 comprend une garniture 11 positionnée dans la rainure 3 pour recevoir le bord de la feuille de verre centrale 16. Cette garniture 11 est en EPDM et permet d'assurer une fixation sans contrainte de la feuille de verre centrale 16 dans la rainure 3. La garniture 11 joue également le rôle d'un amortisseur mécanique et acoustique, en particulier lors de l'insertion des bords de la feuille de verre centrale 16 dans les rainures des espaceurs 1 pour former un cadre espaceur autour de la feuille de verre centrale.
  • Le logement 5.1 ou 5.2 de réception de matériau dessicant est délimité par les parois latérales et transverses de la partie tubulaire correspondante 4.1 ou 4.2 de l'espaceur. Comme dans l'exemple précédent, le matériau dessicant 6 est du tamis moléculaire, qui est reçu dans une partie centrale du logement 5.1 ou 5.2, comprise entre deux bouchons 7.1, 8.1 ou 7.2, 8.2 d'obturation du logement. Plus précisément, le logement 5.1 est obturé au voisinage de l'extrémité 4.1A de la partie tubulaire 4.1 à l'aide d'un bouchon 7.1 et au voisinage de l'extrémité 4.1B de la partie tubulaire 4.1 à l'aide d'un bouchon 8.1. Le logement 5.2 est obturé au voisinage de l'extrémité 4.2A de la partie tubulaire 4.2 à l'aide d'un bouchon 7.2 et au voisinage de l'extrémité 4.2B de la partie tubulaire 4.2 à l'aide d'un bouchon 8.2. Pour chaque partie tubulaire 4.1 ou 4.2, chacun des deux bouchons 7.1, 8.1 ou 7.2, 8.2 est décalé longitudinalement à l'intérieur du logement 5.1 ou 5.2 par rapport à l'extrémité correspondante de la partie tubulaire, comme montré par la distance d sur la figure 3.
  • De manière avantageuse, pour chaque partie tubulaire 4.1 ou 4.2, chacun des deux bouchons 7.1, 8.1 ou 7.2, 8.2 est obtenu par injection de butyl hotmelt dans le logement 5.1 ou 5.2 depuis l'extrémité la plus proche de la partie tubulaire 4.1 ou 4.2, à l'aide d'une buse d'injection. Chaque paroi transverse 44.1 et 44.2, destinée à être dirigée vers la cavité 17 ou 19 du vitrage isolant, est munie d'une pluralité de perforations 49.1 ou 49.2 sur sa partie comprise entre les deux bouchons, de sorte que le matériau dessicant 6 est apte à absorber l'humidité comprise dans chaque cavité 17 et 19, ce qui permet d'éviter la formation de buée entre les feuilles de verre 12 et 16 et entre les feuilles de verre 14 et 16.
  • Comme dans le premier mode de réalisation, du fait du positionnement des bouchons 7.1, 8.1 et 7.2, 8.2 de manière décalée longitudinalement à l'intérieur du logement respectif 5.1 et 5.2, chaque partie tubulaire 4.1 ou 4.2 comprend deux tronçons d'extrémité 47.1, 48.1 ou 47.2, 48.2 qui ne comportent pas de matériau dessicant dans leur volume intérieur. Deux orifices traversants 9 .1 et 9.2 de passage de gaz sont ménagés au voisinage de l'extrémité 2B du profilé 2, à savoir l'orifice traversant 9.1 dans le tronçon d'extrémité 48.1 compris entre le bouchon 8.1 et l'extrémité 4.1B de la partie tubulaire 4.1 et l'orifice traversant 9.2 dans le tronçon d'extrémité 48.2 compris entre le bouchon 8.2 et l'extrémité 4.2B de la partie tubulaire 4.2. Le perçage de ces orifices traversants 9.1 et 9.2 dans le profilé 2 peut avoir lieu indifféremment avant ou après le remplissage des logements 5.1 et 5.2 avec le matériau dessicant 6.
  • L'agencement des deux orifices traversants 9.1 et 9.2 dans les tronçons vide 48.1 et 48.2 permet, si le perçage du profilé 2 a lieu après le remplissage avec le matériau dessicant 6, d'éviter tout risque de fuite du matériau dessicant 6 à travers ces orifices. Dans cet exemple, les tronçons d'extrémité 47.1, 48.1 et 47.2, 48.2 ont chacun une longueur d de l'ordre de 40 mm. Chacun des orifices traversants 9.1 et 9.2 a un diamètre de l'ordre de 5 mm. La distance entre l'axe central de l'orifice traversant 9.1 ou 9.2 et le bouchon 8.1 ou 8.2 correspondant est de l'ordre de 10 mm.
  • Chaque orifice traversant 9.1 ou 9.2 débouche dans les parois transverses 44.1, 46.1 ou 44.2, 46.2 de la partie tubulaire 4.1 ou 4 .2. Une fois l'espaceur 1 intégré dans un vitrage isolant, l'orifice traversant 9.1 peut être utilisé pour effectuer un remplissage de la cavité 17 avec un gaz isolant, ou pour effectuer une évacuation d'air hors de la cavité 17, tandis que l'orifice traversant 9.2 peut être utilisé pour effectuer un remplissage de la cavité 19 avec un gaz isolant, ou pour effectuer une évacuation d'air hors de la cavité 19, sans risque de pollution du vitrage isolant avec le matériau dessicant 6 puisque celui-ci est confiné dans chaque logement 5.1 ou 5.2 à l'arrière du bouchon 8.1 ou 8.2.
  • Comme dans le premier mode de réalisation, de manière optionnelle, chacun des deux orifices traversants 9.1 et 9.2 peut être muni d'un obturateur 29.1 ou 29.2 formant une valve de remplissage en gaz, c'est-à-dire permettant l'injection de gaz isolant dans la cavité 17 ou 19 du vitrage isolant depuis l'extérieur, à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur depuis l'extérieur, tel qu'une buse ou une seringue, l'obturateur 29.1 ou 29.2 étant par ailleurs conçu pour empêcher la sortie du gaz isolant hors de la cavité 17 ou 19 une fois celle-ci remplie. Chaque obturateur 29.1 ou 29.2 peut par exemple présenter une structure comportant un clapet et un siège, avec l'un ou l'autre parmi le clapet ou le siège qui est constitué en un matériau à mémoire de forme, ou encore il peut comprendre au moins une partie à base d'un matériau auto-cicatrisant. De préférence, chaque obturateur 29.1 ou 29.2 est choisi avec une couleur de ses parties apparentes sensiblement identique à la couleur du profilé 2 de l'espaceur, de manière à conférer à l'espaceur 1 un bon aspect visuel.
  • Dans les deux modes de réalisation, chacune des deux extrémités 2A et 2B du profilé 2 est biseautée selon un angle de l'ordre de 45°, de sorte que l'espaceur 1 peut être assemblé selon un assemblage en coupe d'onglet avec d'autres espaceurs 1 analogues pour former un cadre espaceur 20, comme visible sur la figure 5. L'assemblage entre les extrémités des espaceurs 1 au niveau de chaque angle du cadre espaceur 20 peut être obtenu, notamment, à l'aide d'équerres d'assemblage ou par soudage, en particulier par soudage par ultrason.
  • De manière avantageuse, le cadre espaceur 20 comprend au moins deux espaceurs 1 munis d'orifices traversants de telle sorte que, dans au moins une configuration sensiblement verticale du cadre espaceur 20 telle que montrée sur la figure 5, le ou les orifices traversants d'un espaceur 1 sont en position basse alors que le ou les orifices traversants de l'autre espaceur 1 sont en position haute. Un tel agencement est avantageux pour effectuer le remplissage de chaque cavité du vitrage isolant avec un gaz isolant plus dense que l'air, par injection du gaz isolant dans la cavité à travers l'orifice traversant 9 situé en position basse selon la flèche F de la figure 5 et évacuation de l'air présent dans la cavité à travers l'orifice traversant 9 situé en position haute selon la flèche E de la figure 5.
  • Les figures 6, 7 et 8 illustrent une installation de fabrication d'espaceurs 1 à deux parties tubulaires conformes au deuxième mode de réalisation représenté sur les figures 3 et 4, destinés à être utilisés pour la production de triples vitrages. Bien entendu, cette installation est facilement adaptable pour la fabrication d'espaceurs 1 à une seule partie tubulaire selon le premier mode de réalisation représenté sur les figures 1 et 2, destinés à être utilisés pour la production de doubles vitrages, ou pour la fabrication d'espaceurs à plus de deux parties tubulaires, destinés à être utilisés pour la production de vitrages multiples à plus de trois feuilles de verre. Telle que montrée sur les figures 6 à 8, l'installation de fabrication d'espaceurs comprend un poste de préparation de profilés 2 d'espaceurs avant leur remplissage en matériau dessicant, dit "poste de préparation", et un poste de remplissage de profilés d'espaceurs avec un matériau dessicant, dit "poste de remplissage".
  • La figure 6 montre le poste de préparation, qui comprend un dispositif 30 de découpe et de façonnage, un dispositif 50 de perçage, et un dispositif 60 d'obturation des deux parties tubulaires du profilé 2 à une extrémité. Un profilé initial 2i de grande longueur transite selon une direction X. Tout d'abord, le profilé initial 2i est découpé à l'aide d'une fraise 31 du dispositif de découpe 30 au niveau de son extrémité avant 2B, la fraise 31 réalisant en même temps le façonnage de cette extrémité 2B selon un biseau à 45°. L'extrémité 2B du profilé 2i est ensuite percée à l'aide d'au moins un foret 51 du dispositif de perçage 50, pour ménager les deux orifices traversants 9.1 et 9.2 dans leur tronçon respectif 48.1 et 48.2. Le dispositif de perçage 50 peut comprendre soit un foret 51 mobile entre les positions des deux orifices traversants 9.1 et 9.2, soit deux forets 51 juxtaposés. Les deux parties tubulaires 4.1 et 4.2 du profilé 2i sont ensuite obturées simultanément au voisinage de l'extrémité 2B du profilé 2i, par injection de deux bouchons 8.1 et 8.2 en butyl hotmelt dans chaque logement 5.1 et 5.2, depuis l'extrémité 4.1B ou 4.2B de la partie tubulaire. Cette étape d'obturation est réalisée à l'aide de deux buses d'injection 62 et 64 du dispositif d'obturation 60, reliées chacune à un réservoir 61 ou 63 de butyl hotmelt. Bien entendu, en variante, l'étape de perçage du profilé 2i peut avoir lieu après l'étape d'obturation des logements 5.1 et 5.2.
  • De manière avantageuse, le dispositif d'obturation 60 est monté mobile sur le châssis du poste de préparation selon la direction X et selon une direction Y transversale à la direction X. La mobilité selon la direction X permet à chaque buse d'injection 62 et 64 de pénétrer suffisamment dans le logement 5.1 et 5.2 pour pouvoir injecter le bouchon 8.1 ou 8.2 à la bonne distance d par rapport à l'extrémité correspondante de la partie tubulaire. La mobilité selon la direction Y permet au dispositif 60 de libérer la place pour que le profilé 2i une fois préparé à son extrémité 2B puisse avancer selon la direction X, puis être découpé à la longueur souhaitée du profilé 2 au niveau de son extrémité 2A. La découpe du profilé 2i au niveau de son extrémité 2A est réalisée à l'aide de la fraise 31 du dispositif de découpe 30, la fraise 31 réalisant en même temps le façonnage de l'extrémité 2A selon un biseau à 45°. Il en résulte un profilé 2 ayant la longueur souhaitée de l'espaceur, biseauté à ses deux extrémités 2A et 2B ainsi que percé et obturé à son extrémité 2B, qui peut avancer vers le poste de remplissage.
  • Comme visible sur les figures 7 et 8, le poste de remplissage comprend un bras mobile 70 de support du profilé 2, un dispositif 80 de remplissage des deux logements 5.1 et 5.2 du profilé 2 avec le matériau dessicant 6, et un dispositif 90 d'obturation des deux parties tubulaires du profilé 2 à l'extrémité 2A laissée ouverte dans le poste de préparation.
  • La figure 7 montre le poste de remplissage dans une configuration d'insertion du matériau dessicant 6 dans le logement 5.1 ou 5.2 de chaque partie tubulaire du profilé 2. Dans cette configuration, le bras 70 maintient le profilé 2 dans une position inclinée par rapport à l'horizontale selon un angle α de l'ordre de 45°, avec son extrémité 2B préalablement obturée dans le poste de préparation dirigée vers le bas et son extrémité 2A laissée ouverte dirigée vers le haut. Le bras 70 est mobile en translation selon la direction de la double flèche F1 de la figure 7, de sorte qu'il peut positionner l'extrémité ouverte 2A du profilé 2 sous le dispositif de remplissage 80. Deux buses 82 et 84 de remplissage en matériau dessicant 6, qui sont reliées à un réservoir 81 de matériau dessicant, sont ainsi positionnées chacune dans l'un des logements 5.1 et 5.2, du côté de l'extrémité ouverte 2A du profilé 2, de sorte que le matériau dessicant 6, qui dans cet exemple est du tamis moléculaire, peut être inséré dans les logements 5.1 et 5.2 par écoulement par gravité. En option, le dispositif de remplissage 80 peut comprendre des moyens de mesure du taux de remplissage de chaque logement 5.1 et 5.2 en matériau dessicant 6.
  • La figure 8 montre le poste de remplissage dans une configuration d'obturation du logement 5.1 ou 5.2 de chaque partie tubulaire du profilé 2. Dans cette configuration, le bras 70 s'est déplacé selon la direction F1 pour s'éloigner du dispositif de remplissage 80, de sorte que le dispositif d'obturation 90, qui est mobile en translation selon la direction de la double flèche F2 de la figure 8, peut venir en regard de l'extrémité 2A du profilé 2. Deux buses d'injection 92 et 94, qui sont reliées chacune à un réservoir 91 ou 93 de butyl hotmelt, sont ainsi positionnées chacune dans l'un des logements 5.1 et 5.2, du côté de l'extrémité ouverte 2A du profilé 2. Les deux parties tubulaires 4.1 et 4.2 du profilé 2 sont alors obturées simultanément au voisinage de l'extrémité 2A du profilé 2, par injection de deux bouchons 7.1 et 7.2 en butyl hotmelt dans chaque logement 5.1 et 5.2. De manière avantageuse, la mobilité du bras 70 selon la direction de la flèche F1 permet à chaque buse d'injection 92 et 94 de pénétrer suffisamment dans le logement 5.1 et 5.2 pour pouvoir injecter le bouchon 7.1 ou 7.2 à la bonne distance d par rapport à l'extrémité correspondante de la partie tubulaire. Le dispositif d'obturation 90 peut comprendre des moyens de soufflage de matériau dessicant afin de libérer un volume dans chaque logement 5.1 et 5.2 pour l'admission du butyl hotmelt qui forme les bouchons.
  • Bien entendu, le poste de remplissage a été décrit pour le traitement d'un seul profilé 2 d'espaceur à la fois, mais il est entendu que le bras 70, le dispositif de remplissage 80 et le dispositif d'obturation 90 peuvent être adaptés pour permettre le traitement de plusieurs profilés 2 à la fois, notamment de quatre profilés d'espaceurs destinés à être assemblés pour former le cadre d'un vitrage isolant.
  • De manière avantageuse, les étapes de fabrication d'un espaceur 1 telles que décrites ci-dessus sont réalisées en ligne, sur une ligne de production de vitrages isolants, et de préférence juste avant la mise en œuvre de l'espaceur 1 dans la fabrication du vitrage isolant.
  • Comme il ressort des modes de réalisation décrits ci-dessus, l'invention fournit un espaceur pour vitrage isolant dont le remplissage en matériau dessicant peut être effectué en ligne, sans risque de fuite du matériau dessicant, et qui peut être utilisé pour un assemblage de cadre espaceur autour d'au moins une feuille de verre centrale, dans le cadre de la fabrication de vitrages multiples à au moins trois feuilles de verre. Un espaceur selon l'invention offre également la possibilité de ménager des orifices traversants dans un tronçon de l'espaceur qui est isolé vis-à-vis du matériau dessicant, ce qui permet un remplissage en gaz de la ou chaque cavité du vitrage isolant sans risque de pollution du vitrage isolant avec le matériau dessicant. Il en résulte une simplification du procédé de remplissage en gaz de la cavité et une réduction des coûts de fabrication du vitrage isolant.
  • L'invention n'est pas limitée aux exemples décrits et représentés. En particulier, comme évoqué précédemment, le nombre de parties tubulaires d'un espaceur selon l'invention peut être supérieur à deux, avec une rainure définie par chaque paire de parties tubulaires adjacentes, ce qui permet la fabrication de vitrages isolants comprenant plus de trois feuilles de verre. De plus, un espaceur selon l'invention peut être rempli avec tout type de matériau dessicant adapté à une utilisation dans un vitrage isolant, y compris un matériau dessicant ne se présentant pas sous forme fluide, qui peut alors être inséré dans le profilé d'espaceur par une technique autre que l'écoulement par gravité. Bien entendu, le procédé de fabrication de l'espaceur décrit ci-dessus a été donné à titre d'exemple non limitatif et peut être adapté en fonction de la géométrie du profilé d'espaceur, de la nature du matériau dessicant, etc.

Claims (19)

  1. Espaceur (1) pour vitrage isolant (10), comprenant un profilé (2) qui comporte au moins une partie tubulaire (4 ; 4.1, 4.2) définissant un logement (5 ; 5.1, 5.2) de réception de matériau dessicant (6), où le logement (5 ; 5.1, 5.2) débouche au niveau de deux extrémités (4A, 4B ; 4.1A, 4.1B, 4.2A, 4.2B) de la partie tubulaire, le logement (5 ; 5.1, 5.2) étant obturé au voisinage de chaque extrémité (4A, 4B ; 4.1A, 4.1B, 4.2A, 4.2B) de la partie tubulaire à l'aide d'un bouchon (7, 8 ; 7.1, 8.1, 7.2, 8.2) et comportant un matériau dessicant (6) entre les deux bouchons, au moins l'un des bouchons (7, 8 ; 7.1, 8.1, 7.2, 8.2) étant décalé (d) longitudinalement à l'intérieur du logement (5 ; 5.1, 5.2) par rapport à l'extrémité correspondante de la partie tubulaire, où la partie tubulaire (4 ; 4.1, 4.2) comprend un orifice traversant (9 ; 9.1, 9.2), destiné au passage de gaz entre une cavité (17, 19) du vitrage isolant (10) et l'extérieur, qui est ménagé dans un tronçon (48; 48.1, 48.2) de la partie tubulaire compris entre un bouchon décalé (8; 8.1, 8.2) et l'extrémité correspondante (4B ; 4.1B, 4.2B) de la partie tubulaire, caractérisé en ce que l'orifice traversant (9 9.1, 9.2) débouche dans deux parois (44, 46 ; 44.1, 46.1, 44.2, 46.2) de la partie tubulaire (4 ; 4.1, 4.2) destinées à s'étendre transversalement par rapport aux feuilles de verre (12, 14, 16) du vitrage isolant (10), avec une paroi (44, 44.1, 44.2) destinée à être dirigée vers la cavité (17) du vitrage isolant et une paroi (46 ; 46.1, 46.2) destinée à être dirigée vers l'extérieur du vitrage isolant.
  2. Espaceur selon la revendication précédente, caractérisé en ce que l'orifice traversant (9; 9.1, 9.2) est muni d'un obturateur (29; 29.1, 29.2) permettant l'injection de gaz dans la cavité (17, 19) du vitrage isolant (10) depuis l'extérieur à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur (29 ; 29.1, 29.2), l'obturateur (29 ; 29.1, 29.2) empêchant la sortie du gaz une fois la cavité remplie.
  3. Espaceur selon l'une des revendications précédentes, caractérisé en ce que le ou chaque tronçon (47, 48 ; 47.1, 48.1, 47.2, 48.2) de la partie tubulaire (4 ; 4.1, 4.2) compris entre un bouchon décalé (7, 8 ; 7.1, 8.1, 7.2, 8.2) et l'extrémité correspondante de la partie tubulaire a une longueur (d) de l'ordre de 2 cm à 5 cm.
  4. Espaceur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profilé (2) de l'espaceur comprend au moins deux parties tubulaires (4.1, 4.2) et une rainure (3) délimitée entre les deux parties tubulaires, la rainure (3) étant destinée à recevoir un bord d'une feuille de verre centrale (16), chaque partie tubulaire (4.1, 4.2) définissant un logement (5.1, 5.2) de réception de matériau dessicant (6) qui débouche au niveau de deux extrémités (4.1A, 4.1B, 4.2A, 4.2B) de la partie tubulaire, le logement (5.1, 5.2) de chaque partie tubulaire (4.1, 4.2) étant obturé au voisinage de chaque extrémité (4.1A, 4.1B, 4.2A, 4.2B) de la partie tubulaire à l'aide d'un bouchon (7.1, 8.1, 7.2, 8.2) et comportant un matériau dessicant (6) entre les deux bouchons, au moins l'un des bouchons (7.1, 8.1, 7.2, 8.2) de chaque partie tubulaire (4.1, 4.2) étant décalé longitudinalement à l'intérieur du logement (5.1, 5.2) par rapport à l'extrémité correspondante de la partie tubulaire.
  5. Espaceur selon la revendication 4, caractérisé en ce que, au voisinage d'au moins une extrémité (2B) du profilé (2) de l'espaceur, les bouchons (8 ; 8.1, 8.2) des deux parties tubulaires (4.1, 4.2) sont tous les deux décalés longitudinalement à l'intérieur du logement (5.1, 5.2) par rapport à l'extrémité correspondante (4.1B, 4.2B) de la partie tubulaire.
  6. Espaceur selon la revendication 5, caractérisé en ce que, au voisinage de ladite extrémité (2B) du profilé (2) de l'espaceur où les bouchons (8 ; 8.1, 8.2) des deux parties tubulaires (4.1, 4.2) sont tous les deux décalés, chaque partie tubulaire (4.1, 4.2) comprend un orifice traversant (9.1, 9.2), destiné au passage de gaz entre une cavité (17, 19) du vitrage isolant (10) et l'extérieur, qui est ménagé dans le tronçon (48.1, 48.2) de la partie tubulaire compris entre le bouchon décalé (8.1, 8.2) et l'extrémité correspondante (4.1B, 4.2B) de la partie tubulaire.
  7. Espaceur selon l'une quelconque des revendications 4 à 6, caractérisé en ce qu'il comprend une garniture (11) positionnée dans la rainure (3) pour recevoir la feuille de verre centrale (16).
  8. Espaceur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profilé (2) de l'espaceur est en métal et/ou en matériau polymère.
  9. Espaceur selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque bouchon (7, 8 ; 7.1, 8.1, 7.2, 8.2) est formé par injection d'un matériau polymère dans le logement (5 ; 5.1, 5.2).
  10. Espaceur selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau dessicant (6) est du tamis moléculaire ou du gel de silice.
  11. Espaceur selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque extrémité (2A, 2B) du profilé (2) de l'espaceur est biseautée, de sorte que l'espaceur (1) est apte à être assemblé angulairement avec un espaceur (1) analogue.
  12. Cadre espaceur pour vitrage isolant (10), comprenant quatre espaceurs (1) qui sont assemblés angulairement à leurs extrémités (2A, 2B), caractérisé en ce qu'au moins l'un des espaceurs (1) est selon l'une quelconque des revendications 1 à 11.
  13. Cadre espaceur selon la revendication 12, caractérisé en ce qu'il comprend un premier espaceur (1) et un deuxième espaceur (1) qui sont assemblés angulairement à leurs extrémités (2A, 2B), où chacun parmi les premier et deuxième espaceurs comprend un orifice traversant (9 ; 9.1, 9.2) ménagé dans un tronçon (48 ; 48.1, 48.2) de la partie tubulaire compris entre un bouchon décalé (8 ; 8.1, 8.2) et l'extrémité correspondante (4B ; 4.1B, 4.2B) de la partie tubulaire de telle sorte que, dans au moins une configuration sensiblement verticale du cadre espaceur, l'orifice traversant (9 ; 9.1, 9.2) du premier espaceur (1) est en position basse alors que l'orifice traversant (9 ; 9.1, 9.2) du deuxième espaceur (1) est en position haute.
  14. Vitrage isolant (10), comprenant un cadre espaceur positionné entre deux feuilles de verre externes (12, 14), le cadre espaceur étant formé de quatre espaceurs (1) assemblés angulairement à leurs extrémités (2A, 2B), caractérisé en ce qu'au moins l'un des espaceurs (1) est selon l'une quelconque des revendications 1 à 11.
  15. Procédé de fabrication d'un espaceur (1) pour vitrage isolant (10), comprenant des étapes dans lesquelles :
    - on fournit un profilé (2) ayant la longueur souhaitée de l'espaceur, qui comporte au moins une partie tubulaire (4 ; 4.1, 4.2) définissant un logement (5 ; 5.1, 5.2) de réception de matériau dessicant (6), où le logement (5 ; 5.1, 5.2) débouche au niveau de deux extrémités (4A, 4B ; 4.1A, 4.1B, 4.2A, 4.2B) de la partie tubulaire ;
    - on obture le logement (5 ; 5.1, 5.2) de chaque partie tubulaire (4 ; 4.1, 4.2) du profilé (2) au voisinage d'une première extrémité (2B) du profilé à l'aide d'un premier bouchon (8 ; 8.1, 8.2) ;
    - on insère un matériau dessicant dans le logement (5 ; 5.1, 5.2) de chaque partie tubulaire (4 ; 4.1, 4.2) du profilé (2) depuis la deuxième extrémité (2A) du profilé (2) opposée à la première extrémité (2B) ;
    - on obture le logement (5 ; 5.1, 5.2) de chaque partie tubulaire (4 ; 4.1, 4.2) du profilé (2) au voisinage la deuxième extrémité (2A) du profilé (2) à l'aide d'un deuxième bouchon (7 ; 7.1, 7.2), où, pour chaque partie tubulaire (4 ; 4.1, 4.2), au moins l'un parmi le premier bouchon (8; 8.1, 8.2) et le deuxième bouchon (7 ; 7.1, 7.2) est décalé (d) longitudinalement à l'intérieur du logement (5 ; 5.1, 5.2) par rapport à l'extrémité correspondante de la partie tubulaire ;
    - on perce le profilé (2) de manière à créer un orifice traversant (9 ; 9.1, 9.2) dans un tronçon (48 ; 48.1, 48.2) de la partie tubulaire destiné à être compris entre un bouchon décalé (8 ; 8.1, 8.2) et l'extrémité correspondante (4B; 4.1B, 4.2B) de la partie tubulaire, où l'orifice traversant (9; 9.1, 9.2) débouche dans deux parois (44, 46; 44.1, 46.1, 44.2, 46.2) de la partie tubulaire (4 ; 4.1, 4.2) destinées à s'étendre transversalement entre les deux feuilles de verre externes (12, 14) du vitrage isolant (10).
  16. Procédé selon la revendication 15, caractérisé en ce qu'on positionne, dans l'orifice traversant (9 ; 9.1, 9.2), un obturateur (29 ; 29.1, 29.2) permettant l'injection de gaz dans la cavité (17, 19) correspondante du vitrage isolant (10) depuis l'extérieur, à l'aide d'un élément d'injection de gaz qui passe dans l'obturateur (29 ; 29.1, 29.2), l'obturateur (29 ; 29.1, 29.2) empêchant la sortie du gaz une fois la cavité remplie.
  17. Procédé selon l'une quelconque des revendications 15 ou 16, caractérisé en ce qu'on obtient le profilé (2) par découpe d'un profilé initial (2i) à la longueur souhaitée de l'espaceur.
  18. Procédé selon la revendication 17, caractérisé en ce qu'on façonne chaque extrémité (2A, 2B) du profilé (2) de l'espaceur selon une forme biseautée avec le même outil (31) que celui utilisé pour découper le profilé (2) à la longueur souhaitée de l'espaceur.
  19. Procédé selon l'une quelconque des revendications 15 à 18, caractérisé en ce qu'on obture le logement (5; 5.1, 5.2) de chaque partie tubulaire (4 ; 4.1, 4.2) du profilé (2) à l'aide du premier bouchon (8 ; 8.1, 8.2) individuellement pour chaque profilé (2), et en ce qu'on insère le matériau dessicant dans le logement (5 ; 5.1, 5.2) de chaque partie tubulaire (4 ; 4.1, 4.2) du profilé (2) et on obture le logement (5 ; 5.1, 5.2) de chaque partie tubulaire (4; 4.1, 4.2) du profilé (2) à l'aide du deuxième bouchon (7; 7.1, 7.2) collectivement pour plusieurs profilés (2).
EP16829301.7A 2015-12-31 2016-12-30 Espaceur pour vitrage isolant Active EP3402956B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563501A FR3046431B1 (fr) 2015-12-31 2015-12-31 Espaceur pour vitrage isolant
PCT/FR2016/053691 WO2017115061A1 (fr) 2015-12-31 2016-12-30 Espaceur pour vitrage isolant

Publications (2)

Publication Number Publication Date
EP3402956A1 EP3402956A1 (fr) 2018-11-21
EP3402956B1 true EP3402956B1 (fr) 2022-06-15

Family

ID=55486897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16829301.7A Active EP3402956B1 (fr) 2015-12-31 2016-12-30 Espaceur pour vitrage isolant

Country Status (5)

Country Link
EP (1) EP3402956B1 (fr)
DK (1) DK3402956T3 (fr)
FR (1) FR3046431B1 (fr)
PL (1) PL3402956T3 (fr)
WO (1) WO2017115061A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3084354B1 (fr) 2018-07-27 2020-07-17 Saint-Gobain Glass France Substrat emaille formant ecran de projection, et sa fabrication.
FR3084391A1 (fr) 2018-07-27 2020-01-31 Saint-Gobain Glass France Vitrage isolant, espaceur pour la realisation d'un cadre espaceur de vitrage isolant et procede de remplissage d'un vitrage isolant avec du gaz isolant
WO2020021198A1 (fr) 2018-07-27 2020-01-30 Saint-Gobain Glass France Vitrage isolant, sous-ensemble de vitrage isolant et espaceur pour la realisation d'un cadre espaceur de ce sous-ensemble
FR3084353B1 (fr) 2018-07-27 2023-03-24 Saint Gobain Substrat emaille, dispositif vitre lumineux avec un tel substrat et sa fabrication.
FR3086686A1 (fr) 2018-09-28 2020-04-03 Saint-Gobain Glass France Procede de fabrication d'un vitrage isolant ayant au moins trois feuilles de verre
FR3087813A1 (fr) 2018-10-31 2020-05-01 Saint-Gobain Glass France Sous-ensemble de vitrage isolant pret a etre rempli avec du gaz isolant
DE202020005504U1 (de) 2019-03-29 2021-06-28 Saint-Gobain Glass France Hohlprofilabstandhalter mit vorapplizierter Abdichtmasse

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1578030A (en) * 1976-08-26 1980-10-29 Pilkington Brothers Ltd Multiple glazing
DE2948018A1 (de) * 1979-11-29 1981-06-04 Wilh. Frank Gmbh, 7022 Leinfelden-Echterdingen Mehrscheiben-isolierglas
DE3233399A1 (de) * 1982-09-09 1984-03-15 Helmut Lingemann GmbH & Co, 5600 Wuppertal Verbindung zweier abstandhalterrahmenprofile sowie verfahren und vorrichtung zur herstellung der verbindung
DE202005002786U1 (de) * 2004-02-27 2005-07-14 Vkr Holding A/S Gerät zum Verschließen offener Enden in Profilen
DE102009057156A1 (de) * 2009-12-05 2011-06-09 Seele Holding Gmbh & Co. Kg Isolierglasscheibe

Also Published As

Publication number Publication date
FR3046431B1 (fr) 2018-12-07
FR3046431A1 (fr) 2017-07-07
DK3402956T3 (da) 2022-08-01
PL3402956T3 (pl) 2022-09-12
EP3402956A1 (fr) 2018-11-21
WO2017115061A1 (fr) 2017-07-06

Similar Documents

Publication Publication Date Title
EP3402956B1 (fr) Espaceur pour vitrage isolant
CA2132910C (fr) Procede pour realiser le vide dans un vitrage isolant et vitrage isolant
CA3007407A1 (fr) Dispositif de prehension et procede de fabrication d'un vitrage isolant
EP1436481B1 (fr) Vitrage isolant et son procede de fabrication
CA1333626C (fr) Vitrage isolant
WO2017168106A2 (fr) Procédé et installation de fabrication d'un vitrage multiple
LU88686A1 (fr) Vitrage multiple et procédé de fabrication d'un tel vitrage
WO2020021198A1 (fr) Vitrage isolant, sous-ensemble de vitrage isolant et espaceur pour la realisation d'un cadre espaceur de ce sous-ensemble
WO2010112746A1 (fr) Procede de moulage d'une piece en matiere plastique avec une piece rapportee maintenue par aspiration, dispositif de moulage et utilisation
FR2546221A1 (fr) Procede de realisation de cadres de fenetres, de portes a partir de profiles en matiere synthetique et cadres ainsi realises
EP2791448A2 (fr) Procédé de fabrication d'un vitrage multiple rempli de gaz
FR3084391A1 (fr) Vitrage isolant, espaceur pour la realisation d'un cadre espaceur de vitrage isolant et procede de remplissage d'un vitrage isolant avec du gaz isolant
CA2924487A1 (fr) Vitrage comportant une portion de joint a insert ferme et procede de fabrication dudit vitrage
EP3670810B1 (fr) Panneau vitré
FR3087813A1 (fr) Sous-ensemble de vitrage isolant pret a etre rempli avec du gaz isolant
EP3728777B1 (fr) Espaceur avec structure absorbante d'humidite et procede de fabrication correspondant
EP3277903B1 (fr) Cordon métallique pour la fabrication d'intercalaire dans un vitrage isolant
WO2024153560A1 (fr) Procede de fabrication d'un vitrage coulissant et vitrage coulissant
FR3086686A1 (fr) Procede de fabrication d'un vitrage isolant ayant au moins trois feuilles de verre
BE1010537A3 (fr) Vitrage multiple et procede de fabrication d'un tel vitrage.
FR3067741A1 (fr) Procede et installation de fabrication de vitrage isolant
CA3229829A1 (fr) Systeme de fixation d'un vitrage lateral de moyen de transport avec un verrou comprenant au moins une saillies de detrompage
EP1830027A1 (fr) Elément de menuiserie apte à recevoir une partie vitrée et élément a fonction verrière correspondant
FR2860543A1 (fr) Procede de fabrication d'un moyen de fermeture et moyen de fermeture obtenu
FR3075853A1 (fr) Espaceur avec structure absorbante d'humidite et procede de fabrication correspondant

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210326

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016072891

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498512

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220726

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016072891

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231109

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20231127

Year of fee payment: 8

Ref country code: IT

Payment date: 20231110

Year of fee payment: 8

Ref country code: FR

Payment date: 20231211

Year of fee payment: 8

Ref country code: DK

Payment date: 20231214

Year of fee payment: 8

Ref country code: DE

Payment date: 20231107

Year of fee payment: 8

Ref country code: CZ

Payment date: 20231218

Year of fee payment: 8

Ref country code: AT

Payment date: 20231127

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231105

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231225

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615