EP3374697B1 - Method for controlling a heating unit, and heating unit and computer program product for carrying out the control method - Google Patents

Method for controlling a heating unit, and heating unit and computer program product for carrying out the control method Download PDF

Info

Publication number
EP3374697B1
EP3374697B1 EP16794647.4A EP16794647A EP3374697B1 EP 3374697 B1 EP3374697 B1 EP 3374697B1 EP 16794647 A EP16794647 A EP 16794647A EP 3374697 B1 EP3374697 B1 EP 3374697B1
Authority
EP
European Patent Office
Prior art keywords
voltage
burner
ionization
heating unit
ionization electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16794647.4A
Other languages
German (de)
French (fr)
Other versions
EP3374697A1 (en
Inventor
Sebastian Hack
Arno Clemens
Martin Ries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Climate Solutions SE
Original Assignee
Viessmann Climate Solutions SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viessmann Climate Solutions SE filed Critical Viessmann Climate Solutions SE
Publication of EP3374697A1 publication Critical patent/EP3374697A1/en
Application granted granted Critical
Publication of EP3374697B1 publication Critical patent/EP3374697B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • F23N5/126Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/06Sampling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/42Function generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/54Recording
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/12Flame sensors with flame rectification current detecting means

Definitions

  • the present invention relates to a method for controlling a heating unit.
  • gas or oil operated heating units with a corresponding gas or oil burner are known.
  • Such heating units are used, for example, to heat buildings.
  • a so-called ionization fuse is used, for example, in addition to alternative known options, in which an AC voltage is present between an ionization electrode and a conductive part of the housing.
  • a relevant parameter in the operation of such a heating unit is, among other things, the air/fuel ratio, the so-called air ratio or lambda value A. This can be set to a desired value, for example, by varying a fan speed or regulating a fuel valve.
  • Preferred values for the air ratio A are in the range from 1.15 to 1.3.
  • the monitoring of the air ratio is, for example, in a method such as that from DE 44 33 425 A1 is known, carried out in such a way that an alternating voltage is applied between the ionization electrode and the conductive part of the housing is applied and a current flowing from the ionization electrode, rectified due to the rectifier property of the flame, is detected as the ionization current.
  • the measured ionization current is then compared with a setpoint value for the ionization current that corresponds to the set setpoint value of the air ratio, and the composition of the air/fuel mixture is readjusted accordingly.
  • More burner controls are in the US 2011/0018544 A1 , EP 2 495 496 A1 , EP 2 357 410 A2 , EP 1 983 264 A2 and DE 10 2005 024 763 B1 disclosed.
  • the inventors of the present inventors have found that in the high load range of the corresponding heating unit, problems occur when determining the air ratio and the measured ionization current only enables the lambda value A to be determined imprecisely or unreliably.
  • the present invention proposes a method having the features of claim 1.
  • This method for controlling a heating unit contains at least the following method steps: applying an AC voltage between an ionization electrode and a burner housing by means of a power supply, and readjusting the power of the power supply when parasitic leakage currents occur.
  • the heating unit contains at least one burner with a burner housing, an ionization electrode assigned to the burner, and a voltage supply for applying an alternating voltage between the ionization electrode and the burner housing.
  • the inventors of the present invention have observed that, surprisingly, the resistance in the heating unit, in particular between the ionization electrode and the burner housing, is of a complex nature and not just of an ohmic nature.
  • the resistance has an ohmic and a capacitive part. It was found that the burner flame also has a capacitor effect in addition to the ohmic component.
  • the resistance to be considered in the equivalent circuit diagram of the burner flame which compensates for the readjustment of the ionization voltage, is complex.
  • an oscillating circuit is formed between the ohmic and capacitive components, which reduces the ionization voltage compared to the idealized picture, or allows the ionization voltage to collapse.
  • the ionization current flowing between the ionization electrode and the burner housing through the flame at a specific AC voltage applied is therefore actually lower in reality than in the idealized image if no parasitic leakage currents are flowing. Accordingly, for example, the ionization current measured at the ionization electrode, ie the proportionality factor between the actual air ratio and the measured ionization current, can change even if the actual air ratio remains the same. In particular, problems arise when determining the air ratio in the high load range of the corresponding heating unit because the measured ionization current in this area in particular, only an unreliable determination of the lambda value A is possible.
  • the AC voltage applied corresponds to the value that is set on the power supply or is output by it.
  • the voltage actually applied to the ionization electrode is an individual value that does not necessarily correspond to the value that is set on the voltage supply.
  • the voltage actually present at the ionization electrode can be set to a predetermined value by readjusting the power of the voltage supply.
  • the level of such parasitic leakage currents can depend, for example, on the respective load point at which the heating unit is operated and/or on the operating time and/or the ambient conditions.
  • the power of the power supply is readjusted when such parasitic leakage currents occur, it is possible that the measured ionization electrode current through the flame for reliable determination of the air ratio, especially at high load points (up to full-load operation of the heating unit) can be used.
  • the power of the voltage supply is preferably increased in these areas, in particular essentially only in these areas.
  • the power of the power supply can be increased with increasing load points of the heating unit.
  • the power of the voltage supply is accordingly increased in order to compensate for the parasitic leakage currents or the parasitic resistances that occur.
  • the load points of the heating unit are usually specified in % between 0 and 100, with a load point of 100% representing full load operation of the heating unit.
  • the voltage actually present at the ionization electrode is measured and compared with a target value and, if necessary, adjusted to this target value.
  • the voltage actually present between the ionization electrode and the burner housing is then measured when the voltage is essentially constant, at least for a short time. As soon as this actual voltage applied to the ionization electrode decreases or increases for a short time, it is assumed that the heating unit is in such an operating state, in particular in such a load point, in which leakage currents occur.
  • the voltage it outputs (the applied voltage) is changed in such a way that the voltage actually present at the ionization electrode again corresponds to the target value present at the ionization electrode that was originally applied.
  • the power of the voltage supply is preferably regulated up with increasing load points, so that the voltage actually applied between the ionization electrode and the burner housing corresponds to the desired value, even if parasitic leakage currents occur in this operating state of the heating unit.
  • the power of the voltage supply can be readjusted in such a way that the detected ionization current at each load point can be clearly assigned to an air ratio in which the burner is operated.
  • the applied AC voltage is regulated according to the invention in such a way that in each operating state of the burner, in particular at each load point, a voltage change is caused by the leakage current occurring voltage loss at the ionization electrode is essentially exactly compensated, so that the actual current flowing through the flame corresponds to that current which would flow through it without leakage current.
  • the actual AC voltage applied to the ionization electrode can be kept essentially constant over the entire load range.
  • the actual ionization current dependence of the lambda number of the ionization current corresponds to the idealized model and can therefore be assigned better.
  • different heating units e.g. B. due to design, manufacturer or operational at predetermined, applied between the ionization electrode and the burner housing AC voltages.
  • these different heating units are each designed for a specific maximum voltage at which the heating unit can be operated without risk of damage.
  • Such maximum voltage values between 20 and 200 V, in particular between 90 and 150 V, very particularly preferably 130 V +/- 10 V, are preferably chosen.
  • the aforementioned values can each define an upper or lower limit. This means that the heating units are operated with such a voltage.
  • the AC voltages between the ionization electrode and the burner housing are preferably between 30 and 150 Hz, in particular between 40 Hz and 100 Hz, very particularly preferably 50 Hz +/- 10 Hz.
  • the power of the voltage supply can be reduced as the load point increases.
  • a corresponding ionization current/lambda value setpoint curve can be set for each applied voltage be known and the applied AC voltages of the air ratio can be determined using the known ionization current/lambda value setpoint curve.
  • the change in the ionization current is inversely related to the change in the air ratio.
  • the corresponding lambda value can be determined in each case even if the actual voltages applied to the ionization electrodes and the burner housing have changed.
  • a heating unit according to claim 7 is also proposed.
  • This heating unit also has a control unit which readjusts the voltage supply when parasitic leakage currents occur.
  • This control unit is preferably designed in such a way that it controls the aforementioned preferred development of the method according to the invention. Further advantageous developments of the heating unit according to the invention are described in claims 8 and 9.
  • control unit can be designed in such a way that it carries out the method steps described above.
  • a measuring device which measures the voltage actually present at the ionization electrode and forwards the measured values to the control unit, with the control unit controlling a voltage source in the manner explained above for the method described.
  • the burner can have a cylindrical surface which is provided with a perforation structure.
  • the gas-air mixture thus flows over the cylindrical surface and through the perforation structure.
  • the perforation structure is selected accordingly in the area of the ionization electrode in order to achieve the greatest possible constancy of the assignment described.
  • the combination of the power control of the voltage supply with the perforation structure ensures an even better correlation between the ionization current and the lambda value.
  • a computer program product is proposed with computer-executable instructions for executing the method according to the invention.
  • This computer program product can, for example, be stored in the form of software within control or regulation electronics in the heating unit.
  • any commercially available heating unit can be upgraded using the computer program product by installing the software, insofar as the heating device is capable of doing so in terms of the device or design.
  • FIG. 1a shows schematically a burner 1, which is part of a heating unit, not shown.
  • the burner 1 has a cylindrical burner housing 2 with a front opening 3.
  • a gas nozzle 4 is arranged inside the burner housing 2 and concentrically thereto and slightly set back from the front opening 3.
  • a mixing zone 5 arranged in front of the nozzle and inside the burner housing the gas from the nozzle 4 is mixed by means of the air.
  • the gas-air mixture is ignited by means of an igniter, not shown, and a flame 6 is produced, which extends out of the housing through the front opening 3 .
  • An ionization electrode 7 arranged on the front in front of the opening 3 is provided inside the flame.
  • the applied AC voltage is between 20 and 75 volts, further preferred values are between 20 and 150 V, in particular between 30 and 100 V, very particularly preferably 130 V.
  • the burner 4 has a cylindrical surface which is provided with a perforation structure.
  • the gas-air mixture thus flows over the cylindrical surface and through the perforation structure.
  • a frequency is preferably 50 Hz, further preferred ranges are between 30 and 150 Hz, in particular between 40 Hz and 100 Hz, very particularly preferably 50 Hz +/- 10 Hz.
  • the AC voltage is generated by a voltage supply 8 and applied accordingly between the ionization electrode 7 and the burner housing 2 .
  • the AC voltage applied is preferably between 20 and 200 V, in particular between 90 and 150 V, very particularly preferably 130 V +/- 10 V.
  • the power of the voltage supply can be regulated.
  • the power supply 8 is preferably contained in a control unit of the heating unit, which is not shown.
  • This control unit can contain a control unit with which the method according to the invention is carried out.
  • This schematic diagram shows the idealized behavior of the rectification.
  • the ionization electrode 7 and the burner 2 can have any geometry, but these two must be arranged relative to one another in such a way that an ionization current is generated between the ionization electrode 7 and the burner by the rectification effect of the flame 6 .
  • an oil burner or a burner for another fuel can also be used, for example.
  • Figure 1c accordingly shows the idealized current flow compared to the applied voltage over time. As can be seen from this figure, the flame 6 has a rectifying effect.
  • the resistance in the heating unit in particular between the ionization electrode and the burner housing, is of a complex nature and not just of an ohmic nature. This results in parasitic resistances which, in addition to the ionization current through the combustion flame, are responsible for a further parasitic current flow.
  • a corresponding equivalent circuit diagram of a real burner 1 is shown, for example, in figure 2 shown, this also having a measuring circuit 9, by means of which, as described later, the voltage actually present between the ionization electrode 7 and the burner housing 2 is measured and the voltage supply 8 is readjusted accordingly via this.
  • the power supply 8 is in figure 2 shown schematically on the left and has a resistance R inside .
  • FIG. 2 An equivalent circuit diagram of the burner 6 is in figure 2 reproduced on the right.
  • the idealized flame 6 itself, with the rectification effect, is formed by the diode D and the flame resistance R flame .
  • a parasitic resistance Z flame is shown in the figure, which for a parasitic current flow depending on the operating parameters such.
  • B. load, lambda value and gas type is responsible.
  • the parasitic resistance Z flame is of a complex nature and is therefore also provided as a type of impedance with the usual reference symbol Z, as is used with coils.
  • the resistance has an ohmic and a capacitive one Proportion of. It was found that the burner flame also has a capacitor effect in addition to the ohmic component.
  • an oscillating circuit is formed between the ohmic and capacitive components, which reduces the ionization voltage compared to the idealized picture, or allows the ionization voltage to collapse.
  • the arrow provided with reference number 10 in figure 2 shows schematically that the voltage supply 8 is regulated in the method according to the invention based on the actually measured voltage of the ionization electrode 7.
  • FIG. 3a shows an ionization current dependency on the load point for different lambda values without the control according to the invention, ie power stabilization
  • Figure 3b shows an ionization current dependency on the load point for different lambda values with the regulation according to the invention, ie power stabilization.
  • the values entered on the Y-axis are current values (current in ⁇ A). The lower the corresponding lambda value, the higher the measured ionization current.)
  • the ionization current only drops sharply between approx. 50% and approx. 75%.
  • This drop in the measured ionization current between the ionization electrode 7 and the burner housing 2 is caused by the fact that a parasitic current flow occurs.
  • the voltage actually applied between the ionization electrode 7 and the burner 1 drops and the ionization current in the flame decreases accordingly.
  • the corresponding air ratio or the lambda value can no longer be inferred from the ionization current.
  • Such load ranges can be as follows: above 30%, preferably above 50%, in particular above 70% but below 100%.
  • the values described can each be an upper and lower limit.
  • Figure 3a three different areas are shown. Up to a load point of 10%, the current (at least for lambda values of 1.34 and more) increases sharply. This area is referred to as the area of unfavorable sensitivity because a measurement there can be subject to large errors. In addition to this range and the previously described range without sensitivity, the characteristic curve for lambda 1.34 in particular has an unfavorable characteristic curve in the area of the apex.
  • Figure 3b shows the same dependency for the corresponding seven lambda values with the regulation according to the invention. To the extent that the actual voltage at the ionization electrode 7 is measured and this is kept constant depending on the load point, for example, the lines of the ionization current dependency on the load point no longer overlap for the corresponding lambda values.
  • the power of the voltage supply 8 is regulated up.
  • figure 4 12 shows a comparison of a dependency of the applied voltage (voltage set on the power supply) on the ionization current.
  • the applied voltage is always constant, even if, due to the leakage currents at the same load point, the Ionization current decreased.
  • the voltage output by the voltage source is increased, so that a constant actual voltage is then present between the ionization electrode 7 and the burner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Steuerung einer Heizeinheit.The present invention relates to a method for controlling a heating unit.

Im Stand der Technik sind mittels Gas oder mittels Öl betriebene Heizeinheiten mit einem entsprechenden Gas- oder Ölbrenner bekannt. Solche Heizeinheiten werden beispielsweise zur Erwärmung von Gebäuden verwendet.In the state of the art, gas or oil operated heating units with a corresponding gas or oil burner are known. Such heating units are used, for example, to heat buildings.

Zur Überwachung der Brennerflamme wird beispielweise, neben alternativen bekannten Möglichkeiten, eine so genannte lonisationssicherung verwendet, bei welcher zwischen einer lonisationselektrode und einem leitfähigen Teil des Gehäuses eine Wechselspannung anliegt.To monitor the burner flame, a so-called ionization fuse is used, for example, in addition to alternative known options, in which an AC voltage is present between an ionization electrode and a conductive part of the housing.

Solange im Brenner eine Brennerflamme brennt, in der ein Brennstoff-Luftgemisch verbrannt wird, fließt über das Plasma zwischen der lonisationselektrode und dem leitfähigen Teil des Brennergehäuses u. a. ein Gleichstrom.As long as a burner flame burns in the burner, in which a fuel-air mixture is burned, e.g. a direct current.

Ein relevanter Parameter bei dem Betrieb einer solchen Heizeinheit ist unter anderem das Luft/Brennstoffverhältnis, die so genannte Luftzahl bzw. der Lambdawert A. Dieser kann beispielsweise durch Variation einer Gebläsedrehzahl oder Regulierung eines Brennstoffventils auf einen gewünschten Wert eingestellt werden.A relevant parameter in the operation of such a heating unit is, among other things, the air/fuel ratio, the so-called air ratio or lambda value A. This can be set to a desired value, for example, by varying a fan speed or regulating a fuel valve.

Bevorzugte Werte für die Luftzahl A liegen hierbei im Bereich von 1,15 bis 1,3. Je höher der Lambdawert λ, desto größer der Luftüberschuss.Preferred values for the air ratio A are in the range from 1.15 to 1.3. The higher the lambda value λ, the greater the excess air.

Die Überwachung der Luftzahl wird beispielsweise in einem Verfahren, wie es aus der DE 44 33 425 A1 bekannt ist, derart durchgeführt, dass zwischen der lonisationselektrode und dem leitfähigen Teil des Gehäuses eine Wechselspannung angelegt wird und ein von der lonisationselektrode abfließender, aufgrund der Gleichrichtereigenschaft der Flamme gleichgerichteter Strom als lonisationsstrom erfasst wird.The monitoring of the air ratio is, for example, in a method such as that from DE 44 33 425 A1 is known, carried out in such a way that an alternating voltage is applied between the ionization electrode and the conductive part of the housing is applied and a current flowing from the ionization electrode, rectified due to the rectifier property of the flame, is detected as the ionization current.

Mittels einer Regelschaltung wird dann der gemessene lonisationsstrom mit einem dem eingestellten Sollwert der Luftzahl entsprechendem Sollwert für den lonisationsstrom verglichen und die Zusammensetzung des Luftbrennstoffgemisches entsprechend nachgeregelt. Weitere Brennersteuerungen sind in der US 2011/0018544 A1 , EP 2 495 496 A1 , EP 2 357 410 A2 , EP 1 983 264 A2 und DE 10 2005 024 763 B1 offenbart.By means of a control circuit, the measured ionization current is then compared with a setpoint value for the ionization current that corresponds to the set setpoint value of the air ratio, and the composition of the air/fuel mixture is readjusted accordingly. More burner controls are in the US 2011/0018544 A1 , EP 2 495 496 A1 , EP 2 357 410 A2 , EP 1 983 264 A2 and DE 10 2005 024 763 B1 disclosed.

Insbesondere haben die Erfinder der vorliegenden Erfinder festgestellt, dass im hohen Lastbereich der entsprechenden Heizeinheit Probleme bei der Luftzahlbestimmung auftreten und der gemessene lonisationsstrom nur ungenaue bzw. eine unzuverlässige Bestimmung des Lambdawertes A ermöglicht.In particular, the inventors of the present inventors have found that in the high load range of the corresponding heating unit, problems occur when determining the air ratio and the measured ionization current only enables the lambda value A to be determined imprecisely or unreliably.

Ausgehend von dem zuvor beschriebenen Problem, ist es Aufgabe der vorliegenden Erfindung, insbesondere eine Verbesserung der Zuverlässigkeit der Ermittlung des Luft/Brennstoffverhältnis über den lonisationsstrom zu erreichen.Proceeding from the problem described above, it is the object of the present invention, in particular to achieve an improvement in the reliability of the determination of the air/fuel ratio via the ionization current.

Zur Lösung des zuvor beschriebenen Problems schlägt die vorliegende Erfindung ein Verfahren mit den Merkmalen von Anspruch 1 vor.To solve the problem described above, the present invention proposes a method having the features of claim 1.

Weitere vorteilhafte Ausgestaltungen sind in den Unteransprüchen definiert.Further advantageous configurations are defined in the dependent claims.

Dieses Verfahren zur Steuerung einer Heizeinheit enthält zumindest die Verfahrensschritte: Anlegen einer Wechselspannung zwischen einer lonisationselektrode und einem Brennergehäuse mittels einer Spannungsversorgung, und Nachregeln der Leistung der Spannungsversorgung bei Auftreten von parasitären Leckageströmen.This method for controlling a heating unit contains at least the following method steps: applying an AC voltage between an ionization electrode and a burner housing by means of a power supply, and readjusting the power of the power supply when parasitic leakage currents occur.

Die Heizeinheit enthält zumindest einen Brenner mit einem Brennergehäuse, einer dem Brenner zugeordneten lonisationselektrode, und eine Spannungsversorgung zum Anlegen einer Wechselspannung zwischen der lonisationselektrode und dem Brennergehäuse.The heating unit contains at least one burner with a burner housing, an ionization electrode assigned to the burner, and a voltage supply for applying an alternating voltage between the ionization electrode and the burner housing.

Es wurde beobachtet, dass der zuvor beschriebene Gleichrichtereffekt der Gasflamme lediglich ein idealisiertes Modell darstellt, welches die Wirklichkeit nur teilweise abbildet.It was observed that the previously described rectifier effect of the gas flame is merely an idealized model that only partially reflects reality.

Die Erfinder der vorliegenden Erfindung haben beobachtet, dass verwunderlicherweise der Widerstand in der Heizeinheit, insbesondere zwischen der lonisationselektrode und dem Brennergehäuse komplexer Art und nicht lediglich ohmscher Natur ist. Der Widerstand hat einen ohmschen und auch einen kapazitiven Anteil. Es wurde festgestellt, dass die Brennerflamme neben dem ohmschen Anteil eben auch einen Kondensatoreffekt besitzt.The inventors of the present invention have observed that, surprisingly, the resistance in the heating unit, in particular between the ionization electrode and the burner housing, is of a complex nature and not just of an ohmic nature. The resistance has an ohmic and a capacitive part. It was found that the burner flame also has a capacitor effect in addition to the ohmic component.

Somit ist der zu beachtende Widerstand im Ersatzschaltbild der Brennerflamme, welcher die Nachregelung der Ionisationsspannung kompensiert, komplex.Thus, the resistance to be considered in the equivalent circuit diagram of the burner flame, which compensates for the readjustment of the ionization voltage, is complex.

In der Brennerflamme bildet sich, insbesondere in hohen Lastbereichen ein Schwingkreis zwischen dem ohmschen und kapazitiven Anteil aus, die Ionisationsspannung im Vergleich zum idealisierten Bild reduziert, bzw. die Ionisationsspannung zusammenbrechen lässt.In the burner flame, especially in high load ranges, an oscillating circuit is formed between the ohmic and capacitive components, which reduces the ionization voltage compared to the idealized picture, or allows the ionization voltage to collapse.

Das zuvor beschriebene Problem wird durch die erfindungsgemäße Steuerung des Nachregelns der Leistung der Spannungsversorgung bei Auftreten von parasitären Leckageströmen, vermindert, bzw. behoben.The problem described above is reduced or eliminated by the inventive control of the readjustment of the power of the voltage supply when parasitic leakage currents occur.

Der zwischen der lonisationselektrode und dem Brennergehäuse fließende lonisationsstrom durch die Flamme bei einer bestimmten angelegten Wechselspannung fällt demnach in der Realität tatsächlich niedriger aus, als in dem idealisierten Bild, wenn keine parasitären Leckageströme fließen. Entsprechend kann sich zum Beispiel auch bei gleichbleibender tatsächlicher Luftzahl der an der lonisationselektrode gemessen lonisationsstrom, d.h. der Proportionalitätsfaktor zwischen tatsächlicher Luftzahl und dem gemessenen lonisationsstrom ändern. Insbesondere treten bei der Luftzahlbestimmung im hohen Lastbereich der entsprechenden Heizeinheit Probleme auf, weil der gemessene lonisationsstrom gerade in diesem Bereich nur eine unzuverlässige Bestimmung des Lambdawertes A ermöglicht.The ionization current flowing between the ionization electrode and the burner housing through the flame at a specific AC voltage applied is therefore actually lower in reality than in the idealized image if no parasitic leakage currents are flowing. Accordingly, for example, the ionization current measured at the ionization electrode, ie the proportionality factor between the actual air ratio and the measured ionization current, can change even if the actual air ratio remains the same. In particular, problems arise when determining the air ratio in the high load range of the corresponding heating unit because the measured ionization current in this area in particular, only an unreliable determination of the lambda value A is possible.

Begrifflich wird eine angelegte Wechselspannung und eine tatsächlich an der lonisationselektrode anliegende Spannung unterschieden. Die angelegte Wechselspannung entspricht hierbei demjenigen Wert, der an der Spannungsversorgung eingestellt ist bzw. von dieser ausgegeben wird. Die tatsächlich an der lonisationselektrode anliegende Spannung hingegen ist ein individueller Wert der nicht zwangsläufig dem demjenigen Wert, der an der Spannungsversorgung eingestellt ist, entspricht.A conceptual distinction is made between an applied AC voltage and a voltage actually present at the ionization electrode. The AC voltage applied corresponds to the value that is set on the power supply or is output by it. The voltage actually applied to the ionization electrode, on the other hand, is an individual value that does not necessarily correspond to the value that is set on the voltage supply.

Durch den komplexen Widerstand bricht die anliegende Spannung ein bzw. zusammen. Damit ist die lonisationsstrom-Lambda-Charakteristik nicht mehr zum Steuern der Luftzahl brauchbar. Durch nachregeln der Leistung der Spannungsversorgung kann die tatsächlich an der lonisationselektrode anliegende Spannung auf einen vorgegebenen Wert eingestellt werden.Due to the complex resistance, the applied voltage breaks down or collapses. This means that the ionization current/lambda characteristic can no longer be used to control the air ratio. The voltage actually present at the ionization electrode can be set to a predetermined value by readjusting the power of the voltage supply.

Die Höhe solcher parasitären Leckageströme kann beispielsweise in Abhängigkeit des jeweiligen Lastpunkt, bei welchem die Heizeinheit betrieben wird und/oder von der Betriebsdauer und/oder den Umgebungsbedingungen abhängen.The level of such parasitic leakage currents can depend, for example, on the respective load point at which the heating unit is operated and/or on the operating time and/or the ambient conditions.

Wenn, wie die vorliegende Erfindung vorschlägt, die Leistung der Spannungsversorgung nachgeregelt wird, wenn solche parasitären Leckageströme auftreten, ist es möglich, dass der gemessene lonisationselektrodenstrom durch die Flamme zur zuverlässigen Bestimmung der Luftzahl insbesondere auch bei hohen Lastpunkten (bis hin zum Vollastbetrieb der Heizeinheit) herangezogen werden kann.If, as the present invention proposes, the power of the power supply is readjusted when such parasitic leakage currents occur, it is possible that the measured ionization electrode current through the flame for reliable determination of the air ratio, especially at high load points (up to full-load operation of the heating unit) can be used.

Es ist nicht zwangsweise notwendig, dass eine solche Nachregelung schon bei minimalen Leckageströmen bzw. unmittelbar bei Auftreten von solchen Leckageströmen durchgeführt wird, sondern zumindest in einem Betriebsbereich, in dem Leckageströme auftreten. Vorteilhaft ist es jedoch, dass eine solche Nachregelung schon bei minimalen Leckageströmen bzw. unmittelbar bei Auftreten von solchen Leckageströmen durchgeführt wird.It is not absolutely necessary for such a readjustment to be carried out even with minimal leakage flows or immediately when such leakage flows occur, but rather at least in an operating range in which leakage flows occur. However, it is advantageous that such a Readjustment is carried out even with minimal leakage currents or immediately when such leakage currents occur.

Solche Leckageströme können in Abhängigkeit der jeweiligen spezifischen Heizeinheit im gesamten Lastbereich der Heizeinheit auftreten. Die Leistung der Spannungsversorgung wird vorzugsweise in diesen, insbesondere im Wesentlichen lediglich in diesen Bereichen erhöht.Depending on the specific heating unit in question, such leakage currents can occur in the entire load range of the heating unit. The power of the voltage supply is preferably increased in these areas, in particular essentially only in these areas.

Gemäß einer vorteilhaften Weiterbildung nach Anspruch 2 kann die Leistung der Spannungsversorgung mit steigenden Lastpunkten der Heizeinheit erhöht werden.According to an advantageous development according to claim 2, the power of the power supply can be increased with increasing load points of the heating unit.

Insbesondere wurde beobachtet, dass bei hohen Lastpunkten, insbesondere im oberen Lastbereich der Heizung von vorzugsweise oberhalb von 30%, insbesondere oberhalb von 60%, ganz besonders bevorzugt oberhalb von 80%, hohe parasitäre Leckageströme auftreten welches zu einem Spannungsabfall führt, wodurch der durch die Flamme fließende lonisationsstrom niedriger ist, als im zuvor beschriebenen idealisierten Modell der Abhängigkeit des Ionisationsstroms von der Luftzahl. Deshalb wird die Leistung der Spannungsversorgung Spannungsversorgung mit steigenden Lastpunkten der Heizeinheit erhöht.In particular, it has been observed that at high load points, especially in the upper load range of the heater of preferably above 30%, in particular above 60%, most preferably above 80%, high parasitic leakage currents occur which leads to a voltage drop, whereby the The ionization current flowing through the flame is lower than in the previously described idealized model of the dependency of the ionization current on the air ratio. Therefore, the power of the power supply is increased with increasing load points of the heating unit.

Die Abhängigkeit des Lambda-Werts vom lonisationsstrom ist deshalb nicht mehr eindeutig und verschiedene Luftzahlen werden durch denselben lonisationsströmen repräsentiert.The dependence of the lambda value on the ionization current is therefore no longer unambiguous and different air ratios are represented by the same ionization current.

Mit steigenden Lastpunkten wird demnach die Leistung der Spannungsversorgung erhöht, um die auftretenden parasitären Leckageströme bzw. die parasitären Widerstände zu kompensieren.With increasing load points, the power of the voltage supply is accordingly increased in order to compensate for the parasitic leakage currents or the parasitic resistances that occur.

Die Lastpunkte der Heizeinheit werden üblicherweise in % zwischen 0 und 100 angegeben, wobei ein Lastpunkt von 100% ein Volllastbetrieb der Heizeinheit darstellt.The load points of the heating unit are usually specified in % between 0 and 100, with a load point of 100% representing full load operation of the heating unit.

Erfindungsgemäß wird die tatsächlich an der lonisationselektrode anliegende Spannung gemessen und mit einem Sollwert verglichen und wenn nötig auf diesen Sollwert eingeregelt.According to the invention, the voltage actually present at the ionization electrode is measured and compared with a target value and, if necessary, adjusted to this target value.

Zum Nachregeln der Spannungsversorgung wird hiernach bei im Wesentlichen zumindest kurzzeitig konstanter anliegender Spannung die tatsächlich zwischen der Ionisationselektrode und dem Brennergehäuse anliegende Spannung gemessen. Sobald sich diese tatsächliche an der Ionisationselektrode anliegende Spannung kurzzeitig erniedrigt bzw. erhöht, wird davon ausgegangen, dass sich die Heizeinheit in einem solchen Betriebszustand, insbesondere in einem solchen Lastpunkt befindet, in welchem Leckageströme auftreten.In order to readjust the voltage supply, the voltage actually present between the ionization electrode and the burner housing is then measured when the voltage is essentially constant, at least for a short time. As soon as this actual voltage applied to the ionization electrode decreases or increases for a short time, it is assumed that the heating unit is in such an operating state, in particular in such a load point, in which leakage currents occur.

Mittels der Nachregelung der Leistung der Spannungsversorgung wird die von dieser abgegebenen Spannung (die angelegte Spannung) derart geändert, dass die tatsächlich an der Ionisationselektrode anliegende Spannung wieder dem an der lonisationselektrode anliegendem Sollwert entspricht, der ursprünglich angelegt war.By readjusting the power of the voltage supply, the voltage it outputs (the applied voltage) is changed in such a way that the voltage actually present at the ionization electrode again corresponds to the target value present at the ionization electrode that was originally applied.

Vorzugsweise wird mit steigenden Lastpunkten die Leistung der Spannungsversorgung hoch geregelt, damit die tatsächlich zwischen der lonisationselektrode und dem Brennergehäuse angelegte Spannung dem Sollwert entspricht, auch wenn in diesem Betriebszustand der Heizeinheit parasitäre Leckageströme auftreten.The power of the voltage supply is preferably regulated up with increasing load points, so that the voltage actually applied between the ionization electrode and the burner housing corresponds to the desired value, even if parasitic leakage currents occur in this operating state of the heating unit.

Gemäß einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 3 kann das Nachregeln der der Leistung der Spannungsversorgung derart durchgeführt werden, dass der detektierte lonisationsstrom zu jedem Lastpunkt eindeutig einer Luftzahl, in welcher der Brenner betrieben wird, zugeordnet werden kann.According to an advantageous development of the invention according to claim 3, the power of the voltage supply can be readjusted in such a way that the detected ionization current at each load point can be clearly assigned to an air ratio in which the burner is operated.

Durch Leckageströme in dem Brenner ist bei ungeregelter Spannungsversorgung und somit vorgegebener angelegter Spannung, welche von der Spannungsversorgung abgegeben wird, eine eindeutige Zuordnung des entsprechenden durch die Flamme fließenden Ionisationsstroms zu dem entsprechenden Luftzahlwert nicht möglich, denn aufgrund des zusätzlichen Leckagestroms fließt tatsächlich ein niedrigerer Ionisationsstrom durch die Flamme, als für die entsprechende Luftzahl erwartet.By leakage currents in the burner is unregulated power supply and thus predetermined applied voltage, which of the power supply is delivered, a clear assignment of the corresponding ionization current flowing through the flame to the corresponding air ratio value is not possible, because due to the additional leakage current, a lower ionization current actually flows through the flame than expected for the corresponding air ratio.

Um die entsprechende charakteristische Abhängigkeit zwischen Luftzahl und lonisationsstrom erreichen zu können, wie es ohne Leckageströme der Fall wäre, wird hiernach erfindungsgemäß die angelegte Wechselspannung derart geregelt, dass jeweils in jedem Betriebszustand des Brenners, insbesondere zu jedem Lastpunkt durch eine Spannungsänderung eben der durch den Leckagestrom auftretende Spannungsverlust an der lonisationselektrode im Wesentlichen genau kompensiert wird, so dass der tatsächliche durch die Flamme fließende Strom demjenigen Strom entspricht, der ohne Leckagestrom durch diese fließen würde.In order to be able to achieve the corresponding characteristic dependency between the air ratio and the ionization current, as would be the case without leakage currents, the applied AC voltage is regulated according to the invention in such a way that in each operating state of the burner, in particular at each load point, a voltage change is caused by the leakage current occurring voltage loss at the ionization electrode is essentially exactly compensated, so that the actual current flowing through the flame corresponds to that current which would flow through it without leakage current.

Gemäß einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 4 kann die tatsächliche an der Ionisationselektrode anliegende Wechselspannung im gesamten Lastbereich im Wesentlichen konstant gehalten werden.According to an advantageous development of the invention according to claim 4, the actual AC voltage applied to the ionization electrode can be kept essentially constant over the entire load range.

Hierzu ist es vorteilhaft, jeweils die tatsächliche an der Ionisationselektrode anliegende Wechselspannung zu messen und im gesamten Lastbereich, von Teillast bis zur Volllast, konstant zu halten. Auch wenn beispielsweise demnach bei höherer Last ein höherer Leckagestrom auftritt, muss dementsprechend an der Spannungsversorgung jeweils eine erhöhte Spannung eingestellt werden, um den Effekt des Leckagestroms zu kompensieren. Die tatsächliche Spannung an der lonisationselektrode soll jedoch konstant gehalten werden.For this purpose, it is advantageous to measure the actual AC voltage applied to the ionization electrode and to keep it constant over the entire load range, from partial load to full load. Even if, for example, a higher leakage current occurs with a higher load, an increased voltage must be set accordingly on the power supply in order to compensate for the effect of the leakage current. However, the actual voltage at the ionization electrode should be kept constant.

Durch diese konstante tatsächliche Spannung an der Ionisationselektrode entspricht die tatsächliche Ionisationsstromabhängigkeit der Lambda-Zahl des Ionisationsstroms dem Idealisierten Modell und kann demnach besser zugeordnet werden.Due to this constant actual voltage at the ionization electrode, the actual ionization current dependence of the lambda number of the ionization current corresponds to the idealized model and can therefore be assigned better.

Üblicherweise werden unterschiedliche Heizeinheiten, z. B. bauart-, hersteller- oder betriebsbedingt bei vorgegebenen, zwischen der lonisationselektrode und dem Brennergehäuse angelegten Wechselspannungen betrieben. Insbesondere sind diese unterschiedlichen Heizeinheiten jeweils für sich auf eine bestimmte Maximalspannung ausgelegt, bei welcher die Heizeinheit ohne Gefahr der Beschädigung betrieben werden kann. Vorzugsweise sind solche Maximalspannungswerte zwischen 20 und 200 V, insbesondere zwischen 90 und 150 V, ganz besonders bevorzugt 130 V +/- 10 V gewählt. Die zuvor genannten Werte können jeweils für sich eine obere bzw. untere Grenze definieren. Das heißt die Heizeinheiten werden mit einer solchen Spannung betrieben. Die Wechselspannungen zwischen der lonisationselektrode und dem Brennergehäuse betragen vorzugsweise zwischen 30 und 150 Hz, insbesondere zwischen 40 Hz und 100 Hz, ganz besonders bevorzugt 50 Hz +/- 10 Hz.Usually, different heating units, e.g. B. due to design, manufacturer or operational at predetermined, applied between the ionization electrode and the burner housing AC voltages. In particular, these different heating units are each designed for a specific maximum voltage at which the heating unit can be operated without risk of damage. Such maximum voltage values between 20 and 200 V, in particular between 90 and 150 V, very particularly preferably 130 V +/- 10 V, are preferably chosen. The aforementioned values can each define an upper or lower limit. This means that the heating units are operated with such a voltage. The AC voltages between the ionization electrode and the burner housing are preferably between 30 and 150 Hz, in particular between 40 Hz and 100 Hz, very particularly preferably 50 Hz +/- 10 Hz.

Gemäß einer vorteilhaften Weiterbildung der Erfindung nach Anspruch 5 kann die Leistung der Spannungsversorgung mit steigendem Lastpunkt erniedrigt werden.According to an advantageous development of the invention as claimed in claim 5, the power of the voltage supply can be reduced as the load point increases.

Diese vorteilhafte Weiterbildung stellt eine Alternative zu der in Anspruch 2 beschriebenen Verfahrensweise bzw. zu der zuvor beschriebenen Verfahrensweise dar, bei welcher die Spannung mit steigendem Lastpunkt erhöht wird.This advantageous further development represents an alternative to the procedure described in claim 2 or to the procedure described above, in which the voltage is increased as the load point increases.

Denn das tatsächliche Verhalten der Leckageströme in den verschiedenen Lastbereichen ist Brennerspezifisch und hängt zum Beispiel von der Brennergeometrie ab.Because the actual behavior of the leakage currents in the various load ranges is burner-specific and depends, for example, on the burner geometry.

Gemäß einer vorteilhaften Weiterbildung nach Anspruch 6 kann für jede anliegende Spannung eine entsprechende Ionisationsstrom/Lambdawert-Sollwertkurve bekannt sein und anhand der bekannten Ionisationsstrom/Lambdawert Sollwertkurve die angelegten Wechselspannungen der Luftzahl bestimmt werden. Wie zuvor beschrieben, besteht bei einer konstanten tatsächlich zwischen der Ionisationselektrode und dem Brennergehäuse anliegenden Wechselspannung zwischen dem jeweiligen lonisationsstrom und dem jeweiligen Lambda-Wert im idealisierten Modell, soweit keine Leckageströme auftreten, eine wohl definierte Abhängigkeit. Insbesondere verhält sich die Änderung des Ionisationsstroms invers zur Änderung der Luftzahl.According to an advantageous development according to claim 6, a corresponding ionization current/lambda value setpoint curve can be set for each applied voltage be known and the applied AC voltages of the air ratio can be determined using the known ionization current/lambda value setpoint curve. As previously described, if there is a constant AC voltage actually present between the ionization electrode and the burner housing, there is a well-defined dependency between the respective ionization current and the respective lambda value in the idealized model, as long as no leakage currents occur. In particular, the change in the ionization current is inversely related to the change in the air ratio.

Wenn für jeden anliegenden Spannungswert die entsprechende Abhängigkeit zwischen gemessenem Ionisationsstrom und Lambda-Wert bekannt ist, kann auch bei veränderter an den Ionisationselektroden und dem Brennergehäuse anliegenden tatsächlichen Spannungen jeweils der entsprechende Lambda-Wert bestimmt werden.If the corresponding dependency between the measured ionization current and the lambda value is known for each applied voltage value, the corresponding lambda value can be determined in each case even if the actual voltages applied to the ionization electrodes and the burner housing have changed.

Erfindungsgemäß wird auch eine Heizeinheit nach Anspruch 7 vorgeschlagen.According to the invention, a heating unit according to claim 7 is also proposed.

Diese Heizeinheit weist zudem eine Regeleinheit auf, welche bei Auftreten von parasitären Leckageströmen Spannungsversorgung nachregelt.This heating unit also has a control unit which readjusts the voltage supply when parasitic leakage currents occur.

Diese Regeleinheit ist vorzugsweise derart ausgebildet, dass diese die zuvor benannte bevorzugte Weiterbildung des erfindungsgemäßen Verfahrens regelt. Weitere vorteilhafte Weiterbildungen der erfindungsgemäßen Heizeinheit sind in den Ansprüchen 8 und 9 beschrieben.This control unit is preferably designed in such a way that it controls the aforementioned preferred development of the method according to the invention. Further advantageous developments of the heating unit according to the invention are described in claims 8 and 9.

Darüber hinaus kann die Regeleinheit jeweils so ausgebildet sein, dass diese die zuvor beschriebenen Verfahrensschritte ausführt.In addition, the control unit can be designed in such a way that it carries out the method steps described above.

Erfindungsgemäß ist eine Messeinrichtung vorgesehen, die den tatsächlich an der Ionisationselektrode anliegende Spannung misst und die gemessenen Werte in der Regeleinheit weitergibt, wobei die Regeleinheit eine Spannungsquelle derart regelt, wie zuvor für das beschriebene Verfahren erläutert.According to the invention, a measuring device is provided which measures the voltage actually present at the ionization electrode and forwards the measured values to the control unit, with the control unit controlling a voltage source in the manner explained above for the method described.

Gemäß einer vorteilhaften Weiterbildung nach Anspruch 9 kann der Brenner eine zylindrische Oberfläche aufweisen, welche mit einer Belochungsstruktur versehen ist.According to an advantageous development according to claim 9, the burner can have a cylindrical surface which is provided with a perforation structure.

Das Gasluftgemisch strömt somit über zylindrische Oberfläche und durch die Belochungsstruktur.The gas-air mixture thus flows over the cylindrical surface and through the perforation structure.

Die Belochungsstruktur wird im Bereich der lonisationselektrode entsprechend gewählt, um eine größtmögliche Konstanz der beschriebenen Zuordnung zu erreichen.The perforation structure is selected accordingly in the area of the ionization electrode in order to achieve the greatest possible constancy of the assignment described.

Die Kombination der Leistungssteuerung der Spannungsversorgung mit der Belochungsstruktur gewährleistet eine noch bessere Zuordnung zwischen lonisationsstrom und Lambda-Wert.The combination of the power control of the voltage supply with the perforation structure ensures an even better correlation between the ionization current and the lambda value.

Gemäß eines weiteren nebengeordneten Aspektes der Erfindung wird ein Computerprogrammprodukt vorgeschlagen mit computerausführbaren Instruktionen zur Ausführung des erfindungsgemäßen Verfahrens.According to a further subordinate aspect of the invention, a computer program product is proposed with computer-executable instructions for executing the method according to the invention.

Dieses Computerprogrammprodukt kann beispielsweise nach Art einer Software innerhalb einer Steuerungs- bzw. Regelungselektronik in der Heizeinheit hinterlegt sein.This computer program product can, for example, be stored in the form of software within control or regulation electronics in the heating unit.

Insbesondere kann mittels des Computerprogrammprodukts jede handelsübliche Heizeinheit aufgerüstet werden, indem die Software aufgespielt wird, soweit die Heizeinrichtung vorrichtungsgemäß bzw. konstruktiv dazu in der Lage ist.In particular, any commercially available heating unit can be upgraded using the computer program product by installing the software, insofar as the heating device is capable of doing so in terms of the device or design.

Vorteilhafte Weiterbildungen der Erfindung werden anhand eines nachfolgend erläuterten Ausführungsbeispiels in Verbindung mit der Zeichnung näher erläutert. In dieser zeigen:

Figur 1a
eine schematische Ansicht eines Gasbrenners, bei welchem das Gasbrennergehäuse auf positives Potenzial und eine lonisationselektrode auf negatives Potenzial geschaltet ist,
Figur 1b
eine schematische Ansicht desselben Brenners mit umgekehrter Polung,
Figur 1c
den Spannungsverlauf über die Zeit und den idealisierte Ionisationsstrom zwischen Brenner und lonisationselektrode in der Flamme,
Figur 2
ein Ersatzschaltbild eines Brenners einer Heizeinrichtung mit einer Wechselstromspannungsversorgung,
Figur 3a
eine lonisationsstromabhängigkeit vom Lastpunkt der Heizeinrichtung aus dem Stand der Technik, sowie
Figur 3b
eine Ionisationsstromabhängigkeit vom Heizlastpunkt mit einer erfindungsgemäßen Regelung,
Figur 4
eine Stromspannungscharakteristikkurve ohne die erfindungsgemäße Regelung sowie eine Stromspannungscharakteristikkurve bei der erfindungsgemäßen Regelung.
Advantageous developments of the invention are explained in more detail using an exemplary embodiment explained below in conjunction with the drawing. In this show:
Figure 1a
a schematic view of a gas burner, in which the gas burner housing is connected to positive potential and an ionization electrode to negative potential,
Figure 1b
a schematic view of the same burner with reversed polarity,
Figure 1c
the voltage curve over time and the idealized ionization current between burner and ionization electrode in the flame,
figure 2
an equivalent circuit diagram of a burner of a heating device with an AC voltage supply,
Figure 3a
an ionization current dependency on the load point of the heating device from the prior art, and
Figure 3b
an ionization current dependency on the heating load point with a control according to the invention,
figure 4
a current-voltage characteristic curve without the inventive control and a current-voltage characteristic curve with the inventive control.

Figur 1a zeigt schematisch einen Brenner 1, welcher Teil einer nicht dargestellten Heizeinheit ist. Figure 1a shows schematically a burner 1, which is part of a heating unit, not shown.

Der Brenner 1 weist ein zylindrisches Brennergehäuse 2 auf mit einer frontseitigen Öffnung 3. Innerhalb des Brennergehäuses 2 und konzentrisch dazu und leicht zu der frontseitigen Öffnung 3 zurückversetzt ist eine Gasdüse 4 angeordnet.The burner 1 has a cylindrical burner housing 2 with a front opening 3. A gas nozzle 4 is arranged inside the burner housing 2 and concentrically thereto and slightly set back from the front opening 3.

Von einer Rückseite des Brennergehäuses 2 strömt in das Brennergehäuse 2 Luft und in die Gasdüse 4 Gas ein. In einer vor der Düse und innerhalb des Brennergehäuses angeordneten Mischzone 5 wird das Gas aus der Düse 4 mittels der Luft vermischt.Air flows into the burner housing 2 and gas flows into the gas nozzle 4 from a rear side of the burner housing 2 . In a mixing zone 5 arranged in front of the nozzle and inside the burner housing, the gas from the nozzle 4 is mixed by means of the air.

Mittels eines nicht dargestellten Zünders wird das Gas-Luft-Gemisch gezündet und es entsteht eine Flamme 6, die sich aus dem Gehäuse durch die frontseitige Öffnung 3 hinauserstreckt. Innerhalb der Flamme ist eine frontseitig vor der Öffnung 3 angeordnete lonisationselektrode 7 vorgesehen.The gas-air mixture is ignited by means of an igniter, not shown, and a flame 6 is produced, which extends out of the housing through the front opening 3 . An ionization electrode 7 arranged on the front in front of the opening 3 is provided inside the flame.

Zwischen der Ionisationselektrode 7 und dem Brennergehäuse 2 liegt eine Wechselspannung (vgl. Figur 1c). Die anliegende Wechselspannung beträgt zwischen 20 und 75 Volt, weitere bevorzugte Werte sind zwischen 20 und 150 V, insbesondere zwischen 30 und 100 V, ganz besonders bevorzugt 130 V gewählt.There is an alternating voltage between the ionization electrode 7 and the burner housing 2 (cf. Figure 1c ). The applied AC voltage is between 20 and 75 volts, further preferred values are between 20 and 150 V, in particular between 30 and 100 V, very particularly preferably 130 V.

In einer in der Figur 1 nicht dargestellten Variante, weist der Brenner 4 eine zylindrische Oberfläche auf, welche mit einer Belochungsstruktur versehen ist. Das Gasluftgemisch strömt somit über zylindrische Oberfläche und durch die Belochungsstruktur.In one in the figure 1 variant not shown, the burner 4 has a cylindrical surface which is provided with a perforation structure. The gas-air mixture thus flows over the cylindrical surface and through the perforation structure.

Damit bildet sich ein Flammenteppich auf der Oberfläche aus, welcher insbesondere durch die Belochungsstruktur stabilisiert wird. Durch passende Wahl der Belochungsstruktur wird ein konstanterer Verlauf der Ionisationsstromsollwerte für konstante Luftzahl erreicht. Dies ist für den Regelprozeß und auch Aspekte wie Luftzahltreue bei Modulation vorteilhaft.This creates a carpet of flames on the surface, which is stabilized in particular by the perforated structure. A more constant progression of the ionization current set values for a constant air ratio is achieved through a suitable choice of the perforation structure. This is advantageous for the control process and also for aspects such as air ratio accuracy with modulation.

Eine Frequenz beträgt von vorzugsweise 50 Hz, weitere bevorzugte Bereiche liegen zwischen 30 und 150 Hz, insbesondere zwischen 40 Hz und 100 Hz, ganz besonders bevorzugt 50 Hz +/- 10 Hz.A frequency is preferably 50 Hz, further preferred ranges are between 30 and 150 Hz, in particular between 40 Hz and 100 Hz, very particularly preferably 50 Hz +/- 10 Hz.

Die Wechselspannung wird von einer Spannungsversorgung 8 erzeugt und entsprechend zwischen der Ionisationselektrode 7 und dem Brennergehäuse 2 angelegt. Vorzugsweise liegt die angelegte Wechselspannung zwischen 20 und 200 V, insbesondere zwischen 90 und 150 V, ganz besonders bevorzugt 130 V +/- 10 V. Die Leistung der Spannungsversorgung kann geregelt werden.The AC voltage is generated by a voltage supply 8 and applied accordingly between the ionization electrode 7 and the burner housing 2 . The AC voltage applied is preferably between 20 and 200 V, in particular between 90 and 150 V, very particularly preferably 130 V +/- 10 V. The power of the voltage supply can be regulated.

Die Spannungsversorgung 8 ist vorzugsweise in einer Steuereinheit der Heizeinheit enthalten, welche nicht dargestellt ist. Diese Steuereinheit kann eine Regeleinheit enthalten, mit der das erfindungsgemäße Verfahren durchgeführt wird.The power supply 8 is preferably contained in a control unit of the heating unit, which is not shown. This control unit can contain a control unit with which the method according to the invention is carried out.

Wie in Abfolge der Figuren 1a und 1b dargestellt, fließt, wenn der Pluspol der Spannungsversorgung 8 auf das Brennergehäuse 2 geschaltet ist und der Minuspol der Spannungsversorgung 8 an die Ionisationselektrode 7 geschaltet ist, ein Strom und im umgekehrten Fall wie in Figur 1b, wenn das Brennergehäuse 2 auf negatives Potenzial und die Ionisationselektrode auf positives Potenzial geschaltet ist, kein Strom, da die Elektroden e- in der Flamme mit den Ionen I+ zur Ionisationselektrode 7 strömen und dort die Ionen I+ entladen, d. h. neutralisieren.As in sequence of Figures 1a and 1b shown, if the positive pole of the power supply 8 is connected to the burner housing 2 and the negative pole of the power supply 8 is connected to the ionization electrode 7, a current flows and in the opposite case as in FIG Figure 1b , when the burner housing 2 is switched to negative potential and the ionization electrode to positive potential, no current, since the electrodes e- in the flame flow with the ions I + to the ionization electrode 7 and there the ions I + are discharged, ie neutralized.

Dieses schematische Schaubild zeigt das idealisierte Verhalten der Gleichrichtung.This schematic diagram shows the idealized behavior of the rectification.

Die lonisationselektrode 7 und der Brenner 2 können beliebige Geometrie aufweisen, jedoch müssen diese beiden zueinander derart angeordnet sein, dass zwischen der Ionisationselektrode 7 und dem Brenner ein Ionisationsstrom durch den Gleichrichtungseffekt der Flamme 6 erzeugt wird.The ionization electrode 7 and the burner 2 can have any geometry, but these two must be arranged relative to one another in such a way that an ionization current is generated between the ionization electrode 7 and the burner by the rectification effect of the flame 6 .

Alternativ zum Gasbrenner kann beispielsweise auch ein Ölbrenner oder ein Brenner für einen weiteren Kraftstoff Verwendung finden.As an alternative to the gas burner, an oil burner or a burner for another fuel can also be used, for example.

Figur 1c zeigt entsprechend den idealisierten Stromfluss im Vergleich zur angelegten Spannung über die Zeit. Wie aus dieser Figur ersichtlich, hat die Flamme 6 ein Gleichrichtungseffekt. Figure 1c accordingly shows the idealized current flow compared to the applied voltage over time. As can be seen from this figure, the flame 6 has a rectifying effect.

Bei realen Heizeinheiten hat sich verwunderlicherweise gezeigt, dass der Widerstand in der Heizeinheit, insbesondere zwischen der lonisationselektrode und dem Brennergehäuse komplexer Art und nicht lediglich ohmscher Natur ist. Hierdurch ergeben sich parasitäre Widerstände, die zusätzlich zu dem lonisationsstrom durch die Brennflamme für einen weiteren parasitären Stromfluss verantwortlich sind.Surprisingly, in real heating units it has been shown that the resistance in the heating unit, in particular between the ionization electrode and the burner housing, is of a complex nature and not just of an ohmic nature. This results in parasitic resistances which, in addition to the ionization current through the combustion flame, are responsible for a further parasitic current flow.

Ein entsprechendes Ersatzschaltbild eines realen Brenners 1 ist beispielsweise in Figur 2 dargestellt, wobei dieser auch eine Messschaltung 9 aufweist, mittels welcher wie später beschrieben die tatsächlich wischen der lonisationselektrode 7 und dem Brennergehäuse 2 anliegende Spannung gemessen wird und hierüber die Spannungsversorgung 8 entsprechend nachjustiert wird.A corresponding equivalent circuit diagram of a real burner 1 is shown, for example, in figure 2 shown, this also having a measuring circuit 9, by means of which, as described later, the voltage actually present between the ionization electrode 7 and the burner housing 2 is measured and the voltage supply 8 is readjusted accordingly via this.

Die Spannungsversorgung 8 ist in Figur 2 schematisch links dargestellt und weist einen Widerstand Rinnen auf.The power supply 8 is in figure 2 shown schematically on the left and has a resistance R inside .

Ein Ersatzschaltbild des Brenners 6 ist in Figur 2 rechts wiedergegeben. Die idealisierte Flamme 6 selbst, mit dem Gleichrichtungseffekt, wird durch die Diode D sowie durch den Flammenwiderstand RFlamme gebildet. Parallel dazu geschaltet ist in der Figur ein parasitärer Widerstand ZFlamme gezeigt, welcher für einen parasitären Stromfluss in Abhängigkeit der Betriebsparameter, wie z. B. Last, Lambda-Wert und Gasart verantwortlich ist.An equivalent circuit diagram of the burner 6 is in figure 2 reproduced on the right. The idealized flame 6 itself, with the rectification effect, is formed by the diode D and the flame resistance R flame . Connected in parallel, a parasitic resistance Z flame is shown in the figure, which for a parasitic current flow depending on the operating parameters such. B. load, lambda value and gas type is responsible.

Der parasitärer Widerstand ZFlamme ist komplexer Art und demnach auch als eine Art Scheinwiederstand mit dem üblichen Bezugszeichen Z, wie es bei Spulen verwendet wird, versehen. Der Widerstand hat einen ohmschen und auch einen kapazitiven Anteil. Es wurde festgestellt, dass die Brennerflamme neben dem ohmschen Anteil eben auch einen Kondensatoreffekt besitzt.The parasitic resistance Z flame is of a complex nature and is therefore also provided as a type of impedance with the usual reference symbol Z, as is used with coils. The resistance has an ohmic and a capacitive one Proportion of. It was found that the burner flame also has a capacitor effect in addition to the ohmic component.

In der Brennerflamme bildet sich, insbesondere in hohen Lastbereichen ein Schwingkreis zwischen dem ohmschen und kapazitiven Anteil aus, die Ionisationsspannung im Vergleich zum idealisierten Bild reduziert, bzw. die lonisationsspannung zusammenbrechen lässt.In the burner flame, especially in high load ranges, an oscillating circuit is formed between the ohmic and capacitive components, which reduces the ionization voltage compared to the idealized picture, or allows the ionization voltage to collapse.

Der mit Bezugszeichen 10 versehene Pfeil in Figur 2 zeigt schematisch, dass die Spannungsversorgung 8 in dem erfindungsgemäßen Verfahren anhand der tatsächlich gemessenen Spannung der Ionisationselektrode 7 geregelt wird.The arrow provided with reference number 10 in figure 2 shows schematically that the voltage supply 8 is regulated in the method according to the invention based on the actually measured voltage of the ionization electrode 7.

Figuren 3a zeigt eine Ionisationsstromabhängigkeit vom Lastpunkt für verschiedene Lambda-Werte ohne die erfindungsgemäße Regelung, d. h. Leistungsstabilisierung und Figur 3b zeigt eine Ionisationsstromabhängigkeit vom Lastpunkt für verschiedene Lambda-Werte mit der erfindungsgemäßen Regelung, d. h. Leistungsstabilisierung. figures 3a shows an ionization current dependency on the load point for different lambda values without the control according to the invention, ie power stabilization and Figure 3b shows an ionization current dependency on the load point for different lambda values with the regulation according to the invention, ie power stabilization.

Die Linien in Figuren 3a und 3b entsprechen von oben angefangen den in den entsprechenden Figuren rechts dargestellten Lambda-Werten von 1,04, 1,14, 1,24, 1,34, 1,54, d.h. dass der Luftüberschuss in den Graphen von oben nach unten zunimmt.The lines in Figures 3a and 3b starting from the top, correspond to the lambda values of 1.04, 1.14, 1.24, 1.34, 1.54 shown on the right in the corresponding figures, ie the excess air in the graphs increases from top to bottom.

Wie beispielsweise Figur 3a bei einem niedrigen Lastpunkt von 10% zu erkennen, erhöht sich der gemessene lonisationsstrom mit steigendem Lambda im Wesentlich invers dazu (vertikaler Schnitt bei 10% Lastpunkt). Die Änderung des Ionisationsstroms ist invers proportionall zur Änderung der Luftzahl.Like for example Figure 3a can be seen at a low load point of 10%, the measured ionization current increases with increasing lambda, essentially inversely (vertical section at 10% load point). The change in the ionization current is inversely proportional to the change in the air ratio.

Die auf der Y-Achse eingetragenen Werte sind Stromwerte (Stromstärke in µA). Je niedriger der entsprechende Lambda-Wert, desto höher der jeweils gemessene Ionisationsstrom.)The values entered on the Y-axis are current values (current in µA). The lower the corresponding lambda value, the higher the measured ionization current.)

Für den Lambda-Wert von 1,34 (4. Linie von oben in Figur 3a) soll nachfolgend der gemessene Ionisationsstrom bei vorgegebener voreingestellter Spannung an der Spannungsversorgung 8 beschrieben werden.For the lambda value of 1.34 (4th line from the top in Figure 3a ) the measured ionization current at a given preset voltage at the power supply 8 is to be described below.

Wenn der Lastpunkt von ca. 10% auf ca. 40% erhöht wird, steigt der gemessene Ionisationsstrom.If the load point is increased from about 10% to about 40%, the measured ionization current increases.

Bei weiterer Erhöhung des Lastpunktes hingegen fällt der Ionisationsstrom erst zwischen ca. 50% und ca. 75% stark ab. Dieser Abfall des gemessenen Ionisationsstroms zwischen Ionisationselektrode 7 und Brennergehäuse 2 ist dadurch verursacht, dass ein parasitärer Stromfluss auftritt. Hierdurch fällt die tatsächlich zwischen der Ionisationselektrode 7 und Brenner 1 anliegende Spannung ab und der Ionisationsstrom in der Flamme erniedrigt sich entsprechend.On the other hand, if the load point is further increased, the ionization current only drops sharply between approx. 50% and approx. 75%. This drop in the measured ionization current between the ionization electrode 7 and the burner housing 2 is caused by the fact that a parasitic current flow occurs. As a result, the voltage actually applied between the ionization electrode 7 and the burner 1 drops and the ionization current in the flame decreases accordingly.

Wie in Figur 3a zu sehen, schneiden sich bei dem 75% Lastpunkt die beiden Kurven und für den Lambda-Wert von 1,14 und 1,04 (vgl. die oberen beiden Linien in Figur 3a; 2. Punkt von rechts auf den jeweiligen Graphen in Figur 3): Obwohl unterschiedliche Lambdawerte vorliegen, wird derselbe Ionisationsstrom gemessen.As in Figure 3a As can be seen, the two curves intersect at the 75% load point and for the lambda value of 1.14 and 1.04 (cf. the top two lines in Figure 3a ; 2 . Point from the right on the respective graph in figure 3 ): Although the lambda values are different, the same ionization current is measured.

Demnach kann nicht mehr über den Ionisationsstrom auf die entsprechende Luftzahl bzw. den Lambdawert rückgeschlossen werden.Accordingly, the corresponding air ratio or the lambda value can no longer be inferred from the ionization current.

Der in Figur 3a dargestellte schraffierte Bereich (Bereich ohne Sensitivität) von 50% bis 100% und zwischen den Linien für eine Luftzahl von 1,04 und 1,14 weist demnach keine Luftzahlsensivität aus.the inside Figure 3a The shaded area shown (area without sensitivity) from 50% to 100% and between the lines for an air ratio of 1.04 and 1.14 therefore shows no air ratio sensitivity.

D. h. der Ionisationsstrom kann in diesem Lastbereich nicht zur Bestimmung der Luftzahl herangezogen werden. Solche Lastbereiche können folgende sein: oberhalb von 30%, vorzugsweise oberhalb von 50%, insbesondere oberhalb von 70% jedoch unterhalb von 100%. Die beschriebenen Werte können jeweils für sich eine obere und untere Grenze sein.i.e. the ionization current cannot be used to determine the air ratio in this load range. Such load ranges can be as follows: above 30%, preferably above 50%, in particular above 70% but below 100%. The values described can each be an upper and lower limit.

In Figur 3a sind drei unterschiedliche Bereiche dargestellt. Bis zu einem Lastpunkt von 10% steigt der Strom (zumindest für Lambda Werte von 1,34 und mehr) stark an. Dieser Bereich ist als Bereich ungünstiger Sensitivität bezeichnet, weil eine Messung dort mit starken Fehlern behaftet sein kann. Neben diesem Bereich und dem zuvor beschriebenen Bereich ohne Sensitivität weist insbesondere die Kennlinie für Lambda 1,34 im Bereich des Scheitelpunks einen ungünstigen Kennlinienverlauf auf.In Figure 3a three different areas are shown. Up to a load point of 10%, the current (at least for lambda values of 1.34 and more) increases sharply. This area is referred to as the area of unfavorable sensitivity because a measurement there can be subject to large errors. In addition to this range and the previously described range without sensitivity, the characteristic curve for lambda 1.34 in particular has an unfavorable characteristic curve in the area of the apex.

Figur 3b hingegen zeigt dieselbe Abhängigkeit für die entsprechenden sieben Lambda-Werte mit der erfindungsgemäßen Regelung. Soweit nämlich die tatsächliche an der Ionisationselektrode 7 angemessene Spannung gemessen wird und diese in Abhängigkeit des Lastpunktes beispielsweise konstant gehalten wird, überschneiden sich für die entsprechenden Lambda-Werte die Linien der Ionisationsstromabhängikeit vom Lastpunkt nicht mehr. Figure 3b however, shows the same dependency for the corresponding seven lambda values with the regulation according to the invention. To the extent that the actual voltage at the ionization electrode 7 is measured and this is kept constant depending on the load point, for example, the lines of the ionization current dependency on the load point no longer overlap for the corresponding lambda values.

So wird beispielsweise, sobald ein parasitärer Widerstand bzw. Leckagestrom auftritt, die Leistung der Spannungsversorgung 8 hochgeregelt wird.For example, as soon as a parasitic resistance or leakage current occurs, the power of the voltage supply 8 is regulated up.

So kann auch für niedrige Lambda-Werte von unterhalb von 1,14, eindeutig die Luftzahl bestimmt werden. Denn die entsprechenden Linien in Figur 3b schneiden sich nicht. Die entsprechenden Graphen für die einzelnen Lambda-Werte in Figur 3b steigen allesamt leicht an. Lediglich der Graph für den Lambdawert 1,3 fällt zwischen ca. 50% und 70% des Lastpunktes leicht ab. Dennoch kommt es zu keiner Überschneidung bzw. Berührung der einzelnen Graphen.In this way, the air ratio can also be clearly determined for low lambda values below 1.14. Because the corresponding lines in Figure 3b don't intersect. The corresponding graphs for the individual lambda values in Figure 3b all increase slightly. Only the graph for the lambda value 1.3 drops slightly between approx. 50% and 70% of the load point. Nevertheless, there is no overlap or touching of the individual graphs.

Insbesondere liegt dies daran, dass der entsprechende tatsächlich an der Ionisationselektrode 7 anliegende Spannungswert eingeregelt wird.In particular, this is due to the fact that the corresponding voltage value actually present at the ionization electrode 7 is regulated.

Figur 4 zeigt einen Vergleich einer Abhängigkeit der angelegten Spannung (an der Spannungsversorgung eingestellten Spannung) von dem Ionisationsstrom. figure 4 12 shows a comparison of a dependency of the applied voltage (voltage set on the power supply) on the ionization current.

Bei der mit a bezeichneten Linie ist die angelegte Spannung immer konstant auch wenn sich aufgrund der Leckageströme bei gleichem Lastpunkt der Ionisationsstrom erniedrigt. Bei dem erfindungsgemäßen Verfahren (vgl. Linie b in Figur 4) wird bei einem sich aufgrund von auftretenden Leckageströmen erniedrigenden Ionisationsstrom die von der Spannungsquelle abgegebene Spannung erhöht, sodass dann zwischen der Ionisationselektrode 7 und dem Brenner eine konstante tatsächliche Spannung anliegt.In the case of the line marked a, the applied voltage is always constant, even if, due to the leakage currents at the same load point, the Ionization current decreased. In the method according to the invention (see line b in figure 4 ) when the ionization current decreases due to leakage currents that occur, the voltage output by the voltage source is increased, so that a constant actual voltage is then present between the ionization electrode 7 and the burner.

BezugszeichenlisteReference List

11
Brennerburner
22
Brennergehäuseburner housing
33
Öffnungopening
44
Gasdüsegas nozzle
55
Mischzonemixing zone
66
Flammeflame
77
Ionisationselektrodeionization electrode
88th
Spannungsversorgungpower supply
99
Messschaltungmeasuring circuit
1010
Regelungregulation
DD
Diodediode
RFlammeRflame
Widerstandresistance
ZFlammeZflame
Leckagewiderstandleakage resistance

Claims (10)

  1. A method for controlling a heating unit comprising a burner (1) with a burner housing (2), an ionization electrode (7) associated with said burner (1), and a voltage supply (8) for applying an AC voltage between said ionization electrode (7) and said burner housing (2),
    said method comprising the steps of:
    applying an AC voltage between said ionization electrode (7) and said burner housing (2) by means of said voltage supply (8),
    characterized by
    readjusting the output of said voltage supply (8) in the event of parasitic leakage currents by means of a closed-loop control unit,
    wherein a voltage actually applied to said ionization electrode (7) is measured, is compared to a target value and, if necessary, is adjusted to the target value.
  2. The method according to claim 1, characterized in that the output of said voltage supply (8) is increased with increasing load points of the gas heating unit.
  3. The method according to one of the preceding claims, characterized in that the readjusting of the output of said voltage supply (8) is carried out in such a way that the detected ionization current for each load point can clearly be associated with an air ratio at which said burner (1) is operated.
  4. The method according to one of the preceding claims, characterized in that the AC voltage actually applied to said ionization electrode (7) is kept substantially constant throughout the load range.
  5. The method according to claim 1, characterized in that the output of said voltage supply (8) is decreased with increasing load point.
  6. The method according to one of the preceding claims, characterized in that an ionization current target value curve is known for each applied AC voltage and the air ratio is determined on the basis of the known ionization current target value curve and the applied AC voltage.
  7. A heating unit, comprising a burner (1) with a burner housing (2), an ionization electrode (7) associated with said burner (1), and a voltage supply (8) for applying an AC voltage between said ionization electrode (7) and said burner housing (2),
    characterized by
    a closed-loop control unit which readjusts a voltage supply (8) in the event of parasitic leakage currents, wherein the closed-loop control unit is configured in such a way that it comprises a measuring unit by means of which the voltage actually applied to said ionization electrode (7) is measured, and the closed-loop control unit compares the voltage actually applied to said ionization electrode (7) with a target value and, if necessary, adjusts it to the target value.
  8. The heating unit according to claim 7, characterized in that the closed-loop control unit is configured in such a way that the output of said voltage supply (8) is increased or decreased with increasing load points of the gas heating unit.
  9. The heating unit according to claim 7 or 8, characterized in that the burner has a cylindrical surface provided with a perforation structure.
  10. A computer program product including computer-executable instructions for executing the method according to one of claims 1 to 6.
EP16794647.4A 2015-11-11 2016-11-11 Method for controlling a heating unit, and heating unit and computer program product for carrying out the control method Active EP3374697B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015222155.5A DE102015222155B4 (en) 2015-11-11 2015-11-11 Method for controlling a heating unit and heating unit and computer program product for carrying out the control method
PCT/EP2016/077512 WO2017081307A1 (en) 2015-11-11 2016-11-11 Method for controlling a heating unit, and heating unit and computer program product for carrying out the control method

Publications (2)

Publication Number Publication Date
EP3374697A1 EP3374697A1 (en) 2018-09-19
EP3374697B1 true EP3374697B1 (en) 2022-03-16

Family

ID=57286516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16794647.4A Active EP3374697B1 (en) 2015-11-11 2016-11-11 Method for controlling a heating unit, and heating unit and computer program product for carrying out the control method

Country Status (5)

Country Link
US (1) US10605458B2 (en)
EP (1) EP3374697B1 (en)
CA (1) CA3004943A1 (en)
DE (1) DE102015222155B4 (en)
WO (1) WO2017081307A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018118288A1 (en) * 2018-07-27 2020-01-30 Ebm-Papst Landshut Gmbh Method for monitoring and regulating a burner flame of a heater burner
CN114576648B (en) 2021-11-18 2022-12-06 浙江菲斯曼供热技术有限公司 Method for operating a gas burner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4433425C2 (en) 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Control device for setting a gas-combustion air mixture in a gas burner
DE19539568C1 (en) 1995-10-25 1997-06-19 Stiebel Eltron Gmbh & Co Kg Gas burner regulation system
DE20112299U1 (en) * 2001-07-26 2001-10-18 Buderus Heiztechnik Gmbh Ionization electrode
FR2829564A1 (en) * 2001-09-10 2003-03-14 Sourdillon Sa GAS APPLIANCE WITH LOWER PART BURNER, EQUIPPED WITH SAFETY MEANS, AND WATER HEATER USING THE SAME
US7493766B2 (en) * 2004-09-30 2009-02-24 Gm Global Technology Operations, Inc. Auxiliary electrical power generation
DE102005009274B3 (en) * 2005-02-25 2006-07-27 Stamm, Dan, Dipl.-Ing. Combustion chamber cleaning method, involves blowing compressed air or water to air jet produce angular momentum that is conveyed to air jet, where air jet experiences expansion of distributing angle of specific degrees through momentum
US7768410B2 (en) 2005-05-12 2010-08-03 Honeywell International Inc. Leakage detection and compensation system
DE102005024763B3 (en) 2005-05-31 2006-06-08 Stiebel Eltron Gmbh & Co. Kg Heating device, has combustion chamber with ionization electrode for detecting ionization signals and evaluation unit coupled with fuel valve for controlling of fuel valve in dependence of evaluated time process of alternating voltage
DE102007018122B4 (en) * 2007-04-16 2013-10-17 Viessmann Werke Gmbh & Co Kg Flame monitoring device with a voltage generating and measuring arrangement and method for monitoring a burner by means of the flame monitoring device
ES2710378T3 (en) * 2008-03-07 2019-04-24 Bertelli & Partners Srl Improved procedure and device to detect the flame in a burner that works with solid, liquid or gaseous fuel
DE102010001307B4 (en) 2010-01-28 2013-12-24 Viessmann Werke Gmbh & Co Kg Method and apparatus for ionization current based flame detection and flame monitoring system
US20110248690A1 (en) * 2010-04-07 2011-10-13 Maxitrol Company Power supply circuit for combustion appliance
EP2495496B1 (en) * 2011-03-03 2015-04-29 Siemens Aktiengesellschaft Burner assembly
CN106062136A (en) 2013-10-17 2016-10-26 Ab午夜控股公司 A fire-resistant material and a method for obtaining a fire-resistant material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3374697A1 (en) 2018-09-19
DE102015222155B4 (en) 2019-06-19
US20180372317A1 (en) 2018-12-27
WO2017081307A1 (en) 2017-05-18
US10605458B2 (en) 2020-03-31
CA3004943A1 (en) 2017-05-18
DE102015222155A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
EP2495496B1 (en) Burner assembly
DE602004008840T2 (en) A load driving device and portable device using such load driving device
DE19539568C1 (en) Gas burner regulation system
EP0770824A2 (en) Method and circuit for controlling a gas burner
DE10021537A1 (en) Method and device for operating a gas discharge lamp
DE19502901C2 (en) Control device for a gas burner
DE202019100263U1 (en) Heater with control of a gas mixture using a gas sensor, a fuel gas sensor and a gas mixture sensor
EP3374697B1 (en) Method for controlling a heating unit, and heating unit and computer program product for carrying out the control method
EP3690318B1 (en) Method for regulating a fuel-air mixture in a heating device
EP3824366B1 (en) Method for the closed-loop control of a gas mixture using a gas sensor, a combustion-gas sensor and a gas-mixture sensor
DE102019119186A1 (en) Method and device for controlling a fuel gas-air mixture in a heater
EP2405198B1 (en) Method for the calibration of the regulation of the fuel-air ratio of a gaseous fuel burner
EP3029375B1 (en) Heater appliance and method for operating a heater appliance
DE19839160B4 (en) Method and circuit for regulating a gas burner
DE102014107349B4 (en) Device for providing an output voltage
DE202019100261U1 (en) Heater with regulation of a gas mixture
EP3182007B1 (en) Heating device system and method with a heating device system
EP3825610B1 (en) Method and device for measuring the lambda value in a fossil-fired burner, in particular for a heating and / or water system
DE102019101189A1 (en) Process for regulating a gas mixture
EP2354657B1 (en) Method for operating a gas burner
EP3173699A1 (en) Heating device, in particular gas and/or oil burner device, and method for operating a heating device
EP2154430B1 (en) Control device for a gas burner, and use of the control device
DE102015223681A1 (en) Heat generator, in particular burner, in particular gas and / or oil burner, for generating heat, monitoring device and method for monitoring combustion thereto
DE202019100264U1 (en) Heater with control of a gas mixture using a gas sensor and a gas mixture sensor
WO2019091619A1 (en) Method for controlling a combustion-gas operated heating device

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIES, MARTIN

Inventor name: HACK, SEBASTIAN

Inventor name: CLEMENS, ARNO

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211025

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VIESSMANN CLIMATE SOLUTIONS SE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014651

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1476140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220716

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014651

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

26N No opposition filed

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502016014651

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221111

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1476140

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316