EP3374304B1 - Procédé de commande d'un dispositif de pose de fil à roue à ailettes, dispositif de pose de fil à roue à ailettes et bobineuse - Google Patents

Procédé de commande d'un dispositif de pose de fil à roue à ailettes, dispositif de pose de fil à roue à ailettes et bobineuse Download PDF

Info

Publication number
EP3374304B1
EP3374304B1 EP16775721.0A EP16775721A EP3374304B1 EP 3374304 B1 EP3374304 B1 EP 3374304B1 EP 16775721 A EP16775721 A EP 16775721A EP 3374304 B1 EP3374304 B1 EP 3374304B1
Authority
EP
European Patent Office
Prior art keywords
thread
impeller
angular velocity
impellers
idle stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16775721.0A
Other languages
German (de)
English (en)
Other versions
EP3374304A1 (fr
Inventor
Franz Böni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSM Schaerer Schweiter Mettler AG
Original Assignee
SSM Schaerer Schweiter Mettler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSM Schaerer Schweiter Mettler AG filed Critical SSM Schaerer Schweiter Mettler AG
Publication of EP3374304A1 publication Critical patent/EP3374304A1/fr
Application granted granted Critical
Publication of EP3374304B1 publication Critical patent/EP3374304B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2836Traversing devices; Package-shaping arrangements with a rotating guide for traversing the yarn
    • B65H54/2839Traversing devices; Package-shaping arrangements with a rotating guide for traversing the yarn counter rotating guides, e.g. wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/32Traversing devices; Package-shaping arrangements with thread guides reciprocating or oscillating with variable stroke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for controlling an impeller thread laying device, an impeller thread laying device and a winder.
  • thread-laying devices are used in thread winding processes, by means of which a thread to be wound up on a rotating bobbin is moved back and forth in the direction of the longitudinal axis of the bobbin by means of a high-frequency traversing movement.
  • different types of such thread-laying devices have been established. These can be functionally differentiated into those with a variable stroke width and those with a fixed stroke width of the traversing movement.
  • Yarn laying devices with variable stroke allow for the winding of yarn packages all freedoms for the winding structure, such as Chamfering of the coil flanks, rounding of the edges or the free positioning of a impartwickels at a desired longitudinal position of the coil. Due to the high-frequency traversing movement of the yarn and the braking in the reversal points on the sides of the yarn package these designs are subject to heavy wear, lead to undesirable yarn accumulation in the reversal points and a higher energy consumption at high speeds.
  • Examples of thread-laying devices with a fixed stroke width are those with counter-threaded shafts or so-called impeller thread laying devices. These are mechanically bound to a fixed stroke width, but can be operated with a high double stroke rate per minute (over 1'000 double strokes / min).
  • the high Doppelhubwar are achieved in that the drive motor of the yarn laying device is always operated in one direction with a substantially constant engine speed.
  • the above-mentioned impeller thread laying devices have two impellers, which are driven in opposite directions about their respective axis of rotation.
  • the impellers are usually each provided with two or three wings, which extend away from the axis of rotation of the respective impeller in the radial direction.
  • the foundedspulende on the bobbin thread is performed during the winding process in constant change to the wings of the one and the other impeller and is thus reciprocated in the sense of a traversing movement relative to the coil in the direction of the coil longitudinal axis in rapid succession.
  • the other impeller is moved in each case in a so-called idle stroke.
  • This impeller can also be referred to as Leerhub impeller.
  • the thread is usually on a bow disc or plate, ie, guided on a so-called thread guide ruler, emerge from the thread guide contour, the wings of the vanes in operation and in which they dive again in the range of immersion points.
  • a thread transfer between the Vane wheels and a consequent stroke reversal of the traversing movement of the thread takes place in each case in the region of the immersion points of the wings of the vanes, which thus coincide in the axial direction of the coil with the reversal points of the traversing movement of the thread.
  • a so-called filament winding is produced whose quality is decisively determined by an exact axial position of the reversal points relative to the longitudinal axis of the spool.
  • the task relating to the thread-laying device is achieved by a thread-laying device having the features specified in patent claim 1.
  • the thread laying device according to the invention has the in Claim 10 specified and the winding machine according to the invention specified in claim 15 features. Further advantages and advantageous embodiments of the subject of the invention will become apparent from the description, the dependent claims and the drawings.
  • the inventive method for controlling a yarn laying device with two counter-driven impellers around one on a rotating Coil winding yarn by means of a traversing movement with a deviating from a Grundhubbreite H N of the yarn laying device desired stroke width H S between two reversal points (U 1 , U 2 ) along the coil longitudinal axis back and forth, comprising the following steps:
  • a respective axial position of the Hubendlagen ie the reversal points U 1 , U 2 , the traversing movement of the thread relative to the coil longitudinal axis defined or predetermined.
  • the reversal points U 1 , U 2 of the traversing movement of the thread define the desired desired stroke width Hs of the traversing movement of the thread relative to the spool.
  • the axes of rotation of the impellers and an aforementioned thread guide ruler of the yarn laying device are preferably positioned relative to each other depending on the respective predetermined for the traversing movement of the thread target stroke width of the thread such that the respective immersion points of the vanes with the associated reversal points orthogonal to the coil longitudinal axis Direction aligned with each other.
  • the theoretical compensation angular velocity V C is thus the purely computational angular velocity with which the respective idle stroke impeller from the last reversal point U 1 , U 2 to the next reversal point U 1 , U 2 of the traversing movement of the thread should be moved to the thread in following reversal point U 1 , U 2 from the other (during the Leerhubintervalls T L thread leading) impeller to take over.
  • the reversal points U 1 , U 2 of the traversing movement in the axial direction are spaced less far from each other, as this at a determined by the constructive features of the yarn laying device Grundhubbreite H N of the yarn laying device, in which the two impellers are moved counter to each other without further control interventions with a constant and matching basic angular velocity.
  • the theoretical compensation angular velocity V C is therefore greater than the basic angular velocity of the two impellers corresponding to the basic stroke width H N of the yarn laying device.
  • the compensation angular velocity V C of the idle stroke moving impeller is correspondingly smaller than the basic angular velocity of the two impellers.
  • an over-compensation angular velocity V OC for the idling impeller during a first sub-interval T L1 of the no-lift interval T L is calculated on the basis of the theoretical compensating angular velocity V C of the idling impeller.
  • the idle impeller is moved during the first temporal sub-interval T L1 of the Leerhubintervalls with the overcompensation angular velocity V OC .
  • the time Leerhubintervall T L available for the control or regulation of the rotational speed of the Leerhub-impeller is divided into two time intervals TL 1 , T L2 : A time overcompensation interval of the speed control and a fine control / fine control of the rotational movement of the Leerhub-impeller to a predetermined working angular velocity control-technically advantageous sedative interval.
  • the stroke width and thus the reversal points U 1 , U 2 of the traversing movement of the thread during a winding process or for different winding processes can be varied variably.
  • a stroke width between 1 mm and 290 mm, in particular between 5 mm and 290 mm can be specified for the traversing movement of the thread.
  • coils of different lengths can be wound on the one hand become.
  • thread windings can be generated with oblique to the longitudinal axis side edges.
  • the inventive method allows unprecedented versatility of impeller thread laying devices. It should be noted that the inventive method can be used in existing retrofit even with existing impeller thread laying devices.
  • the overcompensation angular velocity V OC is preferably selected such that it deviates from the calculated theoretical constant compensation angular velocity V C by a maximum of 20%, preferably by a maximum of 15%, particularly preferably by a maximum of 12%.
  • control or regulating interventions with respect to the respective rotational speed of the impellers can be minimized and a particularly precise traversing movement of the thread can be realized. This is for the quality of forming on the bobbin thread winding advantage.
  • This also benefits the life of the electric motors serving as the drive of the impellers, because they do not have to be supplied with excess power for the required accelerations.
  • a time start, ie a starting time T S , of the second sub-interval T L2 of the no-lift interval T L is preferably determined by a continuous integration of the at the overcompensation angular velocity V OC from the start time of the idle stroke movement of the respective idle stroke impeller, ie from a takeover time T 1 , T 2 of the thread at the reversal point U 1 , U 2 , by the respective working stroke executing other impeller to a control side continuously redetermined, ie temporally migrating test time T P in Leerhubintervall of Leerhub impeller and the achievable at the predetermined working angular velocity V W Angle distance of Leerhub-impeller from the test time T P to the acquisition time of the thread through the respective Leerhub impeller in each subsequent (next) reversal point U 1 , U 2 calculated the traversing movement.
  • the inspection time T P is determined by the control means as the starting time of the second sub-interval T L2.
  • the idle stroke impeller is adjusted from this start time of the controller to the predetermined working angular velocity to take over the thread in the subsequent reversal point U 1 , U 2 exactly at the time of acquisition T 1 , T 2 from the other and coming from the impeller impeller ,
  • the speed of the Leerhub impeller for the adoption of the thread in (temporally and spatially) next reversal point U 1 , U 2 of the traversing movement can be controlled accurately and easily.
  • the thread laying device particularly preferably has an aforementioned thread guiding device, on which the thread concernedspulende on the spool is guided along.
  • the thread guide device preferably has a thread guide ruler with a straight or even a curved thread guide contour. Malfunction can be counteracted.
  • the two electric motors are particularly preferably driven by means of a common digital signal processor.
  • the method can be carried out in a simple and reliable manner and with little technical effort.
  • a particularly reliable and sensitive control of the electric motors can be achieved according to the invention by a so-called vector control of the electric motors.
  • the signal processor of the control device is preferably connected in each case via a vector controller with the electric motors.
  • a detection of the respective rotational position of the impellers about their axes of rotation is preferably carried out in each case with an angular resolution of 0.25 ° or less.
  • the respective position and speed of the impellers can be determined particularly precisely. This is for the quality of the coil to be produced on the thread winding advantage.
  • the control device preferably has encoders for the electric motors of the impellers, by means of which the position of the impeller (or its vanes) and its respective angular velocity are detected.
  • the encoders can be designed, for example, as so-called 2-channel encoders with 720 pulses. By evaluating all flanks, in this case 2880 measured position results over a 360 ° rotation of the respective electric motor / impeller.
  • a sufficiently high accuracy of the position detection and positioning accuracy of the vanes can be achieved. It is understood that the accuracy of the position detection and the positioning accuracy can be further increased if necessary.
  • a so-called zero-compensation of the rotational position of the impellers relative to each other is made. This can be done, for example, that the two impellers are moved with one of their wings against a defined stop.
  • the stop can be moved, for example, in the swept by the two impellers rotation range. This can be done by a translational relative movement of the axes of rotation of the impellers and the stopper in a direction orthogonal to the longitudinal axis of the coil.
  • the absolute rotational position of the two impellers is known before the start of a winding process with respect to the respective encoder position and can be used for control purposes.
  • the electric motors can be controlled by the control device with an optimal load angle.
  • the thread laying device according to the invention has two impellers, which are each driven in opposite directions about their axes of rotation by means of an electric motor.
  • the thread laying device has a control device for the Execution of the above-explained control method is programmed.
  • the control device can also be designed or programmed according to the invention for controlling a coil drive, with which the coil can be driven in rotation.
  • the electric motors are advantageously designed brushless, so that they have a long service life.
  • the electric motors can be designed in particular as three-phase hybrid stepper motors.
  • Such electric motors provide a high torque in relation to the size and inertia of the rotor. Due to the large number of poles of such motors, they can be operated particularly efficiently in the lower speed range at speeds of up to approximately 1500 revolutions / minute. In addition, only 3 half-bridges are needed to control such electric motors. In closed-loop operation with vector control, these motors achieve good overall efficiency.
  • the vector control also enables exact torque control of the electric motors. Together with the well-known mechanical data of the impellers, the control can be optimally adapted to the application, which enables short transient processes and high engine efficiencies.
  • the phase currents of the motor are preferably detected at the base of a control-side half-bridge circuit of the motors. By synchronizing the sampling point of the current with a PWM of the half bridges, the current can thereby be realized with a low hardware outlay of sufficient quality for the application.
  • the measurement information of the phase currents are needed in the vector control of the electric motors. Furthermore, this measurement information can be used to calculate a protection function of the electric motor (motor temperature calculation, monitoring of malfunctions or detection of mechanical obstacles).
  • the control device preferably has a digital signal processor, which serves for joint control or regulation of both electric motors of the impellers.
  • the impellers can be optimally synchronized with each other.
  • the power of the signal processor is dimensioned so that the signal processor within 50 ⁇ s (control cycle) can do a complete vector control, the calculation of target values of the impeller position and the position control.
  • the control device has two signal processors for driving / regulating the electric motors of the impellers.
  • this also requires an extremely fast data exchange between the processors and carries an increased risk of malfunction.
  • the control device for controlling / regulating a coil drive of a coil holder of the yarn laying device is formed, by means of which the coil is driven circumferentially.
  • a rotational speed of the spool during the winding or winding process can be changed dynamically in order to wind the thread with different winding patterns (for example step precision winding / cross winding) on the spool.
  • the invention relates to a summary, a method for controlling a cross-winding device with two counter driven impellers to a foundedspulenden on a rotating bobbin thread by means of a traversing movement to one of a Grundhubbreite H N of the thread laying device different target stroke width H S between two reversal points U 1, U 2 move back and forth along the coil longitudinal axis.
  • the respective idle impeller ie the respective idling impeller, is first accelerated or decelerated in its idle stroke interval T L to an overcompensation angular velocity V OC , which is determined on the basis of a thread reversal at the next reversal point U 1 .
  • the invention further relates to a yarn laying device with a control device programmed for carrying out the method according to the invention and to a winding machine with such a yarn laying device.
  • Fig. 1 shows a winding unit of a winder 10 with a thread laying device 12 for winding a thread 14 on a spool 16.
  • the réellespulende on the spool 16 thread 14 can for example on a in Fig. 1 be provided not shown reproduced supply coil.
  • the coil 16 is arranged on a coil holder 18 and by means of a coil drive 20 about its coil longitudinal axis 22 in the direction of arrow 24 driven in rotation.
  • the thread laying device 12 is designed as a so-called impeller thread laying and has two impellers 26, 28 in each case.
  • the two impellers 26, 28 are independent of each other by means of an electric motor 30 about their respective axis of rotation 32, 34 driven in opposite directions.
  • the electric motors 30 and the impellers 26, 28 are arranged on a support frame 36 .
  • the control device 38 has a signal processor 38a for jointly controlling the two electric motors 30 of the impellers (26, 28).
  • the signal processor 38a is connected to the two electric motors 30 via a respective vector regulator 38b .
  • the impellers 26, 28 serve to ceremoniesspulenden the coil 16 thread 14 in the direction of the coil longitudinal axis 22 relative to the rotating coil 16 in to move quickly back and forth to form during the Aufspulreaes designated 40 filament winding on the spool.
  • the support frame 36 in the present case comprises two mutually parallel extending longitudinal profiles 42, which are interconnected in a manner not shown in detail.
  • a (bearing) carriage 44 is arranged, which is displaceably mounted relative to the support frame 36 by means of an adjusting drive 46 along an adjusting axis designated by 48 .
  • the two impellers 26, 28 are rotatably mounted on the bearing carriage 44.
  • the adjustment drive 46 can be designed as an electric motor, in particular as a stepping motor.
  • the thread guide ruler 50 may, in particular, have an arcuate (convex) thread guide contour 52 , against which the thread 14 to be wound is tensioned and guided during the winding process. It is understood that the thread guide ruler 50 can be made in several parts.
  • a stop means 54 is arranged for a zero balance of the rotational position of the two vanes.
  • the stop means 54 is movable by moving the bearing carriage 44 in the direction of the stop means 54 in a swept by the two Fügelckenn 26, 28 rotation range and serves to calibrate the control device 38 to a defined by the stop means 54 rotational position of the vanes 26, 28.
  • the impellers 26, 28 can be exactly synchronized in their respective rotational position about their axis of rotation 32, 34 in a simple manner before the beginning of the winding process.
  • For detecting a respective rotational position (rotational position) of the impellers 26, 28 are encoder 56.
  • the encoder 56 are connected for the purpose of data transmission in unspecified reproduced manner with the control device 38.
  • Fig. 2 shows the thread-laying device 12 Fig. 1 in a freestanding top view.
  • the two impellers 26, 28 each have three wings 26a, 26b, 26c; 28a, 28b, 28c . It is understood that the impellers 26, 28 also two or have four or even five wings.
  • the axes of rotation 32, 34 of the two impellers 26, 28 are in the direction of in Fig. 1 Coil longitudinal axis 22 shown arranged laterally offset from each other.
  • the réellespulende thread 14 is in the winding process in a conventional manner in quick change to the wings 26a, 26b, 26c; 28a, 28b, 28c of the counter-rotating impellers 26, 28 guided.
  • the wings 26a, 26b, 26c; 28a, 28b, 28c of the impellers 26, 28 respectively emerge at respective points of emergence A 1 , A 2 from the thread guide contour 52 of the thread guide ruler 50 and enter the thread guide contour 52 of the thread guide ruler 50 in the region of immersion points E 1 , E 2 again.
  • a thread transfer between the vane wheels 26, 28 takes place in each case in the area or at the immersion points E 1 , E 2 .
  • the emergence points A 1 , A 2 and the immersion points E 1 , E 2 of the two impellers 26, 28 do not coincide due to the mutually offset (in the direction of the coil longitudinal axis 22) axes of rotation 32, 34 of the impellers 26, 28.
  • the above-described rotation range of the two impellers is in Fig. 2 designated R 1 , R 2 .
  • the traversing movement of the yarn in the direction of the longitudinal axis of the coil 22 (FIG. Fig. 1 ) or in the direction of the traversing axis 58 (FIG. Fig. 2 ) have only one fixed stroke width, ie a so-called normal stroke width H N.
  • the thread 14 can be displaced relative to the nominal stroke width H S deviating from the normal stroke width H N Coil longitudinal axis 22 ( Fig.1 ) or oscillating axis 58 are moved.
  • Fig. 2 is a target stroke width Hs with reversal points U 1 , U 2 of the traversing movement of the thread 14 entered, which is selected, for example, smaller than the normal stroke width H N of the thread-laying device 12.
  • the lifting center of the respective traversing movement of the thread 14 is designated H C.
  • Fig. 3 the individual steps of the method 100 according to the invention are reproduced as a block diagram.
  • a first step 102 the respective axial position of the reversal points U 1 , U 2 of the traversing movement of the thread 14 relative to the coil longitudinal axis 22 (FIG. Fig. 1 ),
  • the desired desired stroke width Hs of the thread in the direction of the traversing axis defined or predetermined.
  • the axes of rotation 32, 34 of the two impellers 26, 28 and the thread guide ruler 50 are preferably positioned relative to each other in dependence on the predetermined for the traversing movement desired stroke width H S of the thread 14 such that the respective immersion points E 1 , E 2 of the impellers 26th , 28 are aligned with the respective corresponding predetermined reversal point U 1 , U 2 in the direction of the traverse axis 58.
  • a theoretical constant compensating angular velocity V c for the idle stroke during idle stroke interval T L is moved in each case (ie, the thread respectively not leading during the idle stroke interval T L ), thus the respective idle stroke impeller 26, 28, for a takeover of the thread 14 ( Fig. 1 ) by the idle stroke impeller 26, 28 of the respective thread-leading other impeller 26, 28 in the temporally following predetermined reversal point U 1 , U 2 of the traversing movement of the thread 14 (FIG. FIGS. 1 ).
  • an overcompensation angular velocity V OC for the idle impeller 26, 28 during a first sub-interval T L1 of the idle stroke interval is calculated based on the theoretical constant compensation angular velocity V c .
  • step 108 the idle impeller 26, 28 is driven at the overcompensation angular velocity V OC during the first temporal sub-interval T L1 . This is done by appropriate control of the electric motor 30 of the idle stroke moving idle stroke impeller 26, 28 on the part of the control device 38th
  • a further step 110 the idle impeller 26, 28 during an on the first sub-interval T L1 immediately following the second sub-interval T L2 of the Leerhubintervall T L of the overcompensation angular velocity V OC to a predetermined operating angular velocity V W of the Leerhub-impeller 26, 28 in the following reversal point U 1 , U 2 of the traversing motion adjusted to the thread 14 with the idle impeller 26, 28 from the thread leading other impeller 26, 28 in the next reversal point U 1 , U 2 of the traversing movement with the predetermined working angular velocity V W. to take over.
  • steps 102 to 110 or 104 to 110 are repeated for winding up the thread 14 on the spool 16 with the predetermined desired stroke width H S , preferably continuously.
  • the second sub-interval T L2 of the Leelaufintervall T L serves as a control technology calming before the immediately following phase of the Leerhub impeller 26, 28.
  • the respective working stroke of the impellers 26, 28 upstream calming phase has the consequence that without a speed adjustment of the impellers 26, 28 at the desired time, the yarn transfer at the reversal point U 1 , U 2 is possible.
  • the settling phase is therefore compensated according to the invention by overshooting the theoretical compensation angular velocity V C of the impeller 26, 28 to an overcompensation angular velocity V OC .
  • a long calming phase favors a working angular velocity V W of the impeller 26, 28 in a small tolerance range.
  • the resulting high overcompensation angular velocity V OC requires a great dynamics of the system. It is therefore advantageous to keep the settling phase, ie the second sub-interval T L2 of the idle stroke interval T L , as small as necessary, since this permits an overcompensation angular velocity V OC close to the theoretical constant compensation angular velocity V C.
  • the overcompensation angular velocity V OC for the narrowest, usable nominal stroke width H S of the yarn laying apparatus is in each case equal to or less than 120%, preferably equal to or less than 112%, of the theoretical constant compensating angular velocity V C.
  • the overcompensation angular velocity V OC is not less than 88% of the theoretical compensation angular velocity V C.
  • the overcompensation angular velocity V OC starting from the normal stroke H N , for example, is in a range of -12% to + 12% of the theoretical compensation angular velocity V C.
  • FIG. 5 is the angular course of both impellers 26, 28 exemplary of a predetermined desired stroke width H S , which is smaller than the normal stroke width H N ( Fig. 2 ) of the yarn laying device 12, applied for two double strokes over time t.
  • the slope of the curves corresponds to the respective angular velocity of the impellers 26, 28 (FIG. Fig. 2 ).
  • the starting point is, for example, at the first turning point U 1 to the left of the lifting center H C ( Fig. 2 ) with the first wing 26a of the first impeller 26th
  • the first wing 26a of the first impeller 26 is now moved by driving the electric motor 30 of the first impeller 26 in the first sub-interval T L1 of Leerhubintervall T L with the overcompensation angular velocity V OC .
  • the temporal beginning of the second sub-interval T L2 of the Leerhubintervalls T L - in other words the control or control technical calming - is through the intersection of the overcompensation angular velocity V OC and the predetermined working angular velocity V W of the respective Leerhub impeller in the following reversal point U 2 marked.
  • the second wing 26b is therefore also like the first wing 26a in the first subinterval T L1 of Leerhubintervall T L with the overcompensation angular velocity V OC and the second subinterval T L2 of Leerhubintervall T L , ie the subsequent calming phase T L2 , with the working Angular velocity V W moves to take over the thread 14 exactly at the transfer time T 2 at the reversal point U 1 left of the lifting center H C of the second impeller 28.
  • the electric motor 30 of the (idle stroke) impeller 26, 28 is controlled by the control device 38 from the start time T S such that the idle stroke impeller 26, 28 is adjusted to the predetermined working angular velocity V W during the second Leerhubintervall T L2 , so that the idle-stroke impeller 26, 28, the thread 14 in the following reversal point U 1 , U 2 of the desired stroke width H S exactly in the respective acquisition time T 1 , T 2 of the respectively coming from the working stroke other impeller 26, 28 takes over.
  • the thread 14 is subsequently from the impeller 26, 28, after this has taken over the thread 14, with the respective desired working angular velocity V W on the desired stroke width H S in the direction of the traverse axis 58 (FIGS. Fig.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Winding Filamentary Materials (AREA)

Claims (15)

  1. Procédé (100) dévolu à la commande d'un dispositif (12) d'engagement de fil, muni de deux roues (26, 28) à ailettes pouvant être entraînées dans des sens opposés, en vue d'imprimer des va-et-vient à un fil (14) devant être bobiné sur une bobine (16) en rotation, moyennant un mouvement alternatif présentant une largeur de course de consigne (HS) s'écartant d'une largeur de course de base (HN) dudit dispositif (12) d'engagement de fil entre deux points d'inversion (U1, U2), le long de l'axe longitudinal (22) de ladite bobine, incluant les étapes suivantes :
    a) définition (102) d'un emplacement axial respectif des points d'inversion (U1, U2) de la largeur de course de consigne (Hs) du mouvement alternatif du fil (14), par rapport à l'axe longitudinal (22) de la bobine ;
    b) calcul (104) d'une vitesse angulaire de compensation constante théorique (VC) à laquelle la roue (26, 28) à ailettes effectuant respectivement une course à vide, c'est-à-dire la roue (26, 28) à ailettes à course à vide, devrait être mise en mouvement, durant un intervalle (TL) de course à vide, pour prélever le fil (14) de l'autre roue (26, 28) à ailettes qui assure respectivement un guidage dudit fil, au point d'inversion successif (U1, U2) dudit mouvement alternatif ;
    caractérisé par le fait que ledit procédé (100) inclut, en outre, les étapes suivantes :
    c) calcul (106) d'une vitesse angulaire de surcompensation (VOC) de la roue (26, 28) à ailettes à course à vide, durant un premier intervalle partiel (TL1) de l'intervalle (TL) de course à vide, sur la base de la vitesse angulaire de compensation théorique (VC) ;
    d) pilotage (108) du moteur électrique (30) de ladite roue (26, 28) à ailettes à course à vide, de façon telle que cette dernière soit entraînée à ladite vitesse angulaire de surcompensation (VOC) durant ledit premier intervalle temporel partiel (TL1) ; suivi d'un
    e) ajustement (110) de ladite roue (26, 28) à ailettes à course à vide, la faisant passer de ladite vitesse angulaire de surcompensation (VOC) à une vitesse angulaire de travail (VW) préétablie, au point d'inversion successif (U1, U2) du mouvement alternatif, durant un second intervalle partiel (TL2) dudit intervalle (TL) de course à vide qui succède audit premier intervalle partiel (TL1), de manière à prélever le fil (14) par ladite roue (26, 28) à ailettes à course à vide à partir de l'autre roue (26, 28) à ailettes assurant un guidage dudit fil audit point d'inversion successif (U1, U2) dudit mouvement alternatif, à ladite vitesse angulaire de travail (VW) préétablie ; et
    f) réitération des étapes b) - e), en vue d'imprimer un mouvement alternatif audit fil (14) avec la largeur de course de consigne (HS) préétablie, par rapport à la bobine (16).
  2. Procédé selon la revendication 1, caractérisé par le fait que la vitesse angulaire de surcompensation (VOC) est choisie de telle manière qu'elle s'écarte de 20 % au maximum, préférentiellement de 15 % au maximum, de 12 % au maximum avec préférence particulière, de la vitesse angulaire de compensation de consigne constante théorique (VC) calculée.
  3. Procédé selon la revendication 1 ou 2, caractérisé par le fait qu'un instant (TS) de début du second intervalle partiel (TL2) de l'intervalle (TL) de course à vide est respectivement déterminé, ou calculé, à l'appui d'une intégration continue de la distance angulaire à la vitesse angulaire de surcompensation (VOC), depuis l'instant de prélèvement (T1) lors du mouvement de course à vide de la roue considérée (26, 28) à ailettes à course à vide jusqu'à un instant de contrôle (TP1, TP2, TPN) déterminé à nouveau en permanence, dans intervalle (TL) de course à vide de ladite roue (26, 28) à ailettes à course à vide, ainsi que de la distance angulaire de ladite roue (26, 28) à ailettes à course à vide pouvant être atteinte à la vitesse angulaire de travail (VW) préétablie, depuis ledit instant de contrôle (TP1, TP2, TPN) jusqu'à l'instant (T2) de prélèvement du fil (14), par la roue considérée (26, 28) à ailettes à course à vide, au point respectif d'inversion successif (U1, U2) du mouvement alternatif dudit fil (14).
  4. Procédé selon l'une des revendications précédentes, caractérisé par le fait que le dispositif (12) d'engagement de fil est muni d'une réglette guide-fil (50), ladite réglette guide-fil (50) et les axes de rotation (32, 34) des deux roues (26, 28) à ailettes étant positionnés, l'une par rapport aux autres, en fonction de la largeur de course de consigne (HS) respectivement préétablie pour le mouvement alternatif du fil (14).
  5. Procédé selon l'une des revendications précédentes, caractérisé par le fait qu'une largeur de course de consigne (HS) comprise entre 1 mm et 290 mm, notamment entre 5 mm et 290 mm, est préétablie pour le mouvement alternatif du fil (14).
  6. Procédé selon l'une des revendications précédentes, caractérisé par le fait que les moteurs électriques (30) sont pilotés au moyen d'un processeur commun (38a) de signaux numériques.
  7. Procédé selon la revendication 6, caractérisé par le fait que les moteurs électriques (30) des roues (26, 28) à ailettes sont commandés, par le dispositif de commande (38), par l'entremise d'une régulation vectorielle.
  8. Procédé selon l'une des revendications précédentes, caractérisé par l'occurrence d'une détection métrologique d'une position considérée que les roues (26, 28) à ailettes ont prise par rotation autour de leurs axes de rotation (32, 34), à l'aide d'un codeur respectif (56) doté, de préférence, d'une résolution angulaire de 0, 25° ou moins.
  9. Procédé selon l'une des revendications précédentes, caractérisé par le fait que la roue (26, 28) à ailettes assurant un guidage du fil est entraînée, pendant sa course de travail, à une vitesse angulaire de travail (VW) constante ou variable.
  10. Dispositif (12) d'engagement de fil, affecté au bobinage d'un fil (14) sur une bobine (22) et comprenant :
    deux roues (26, 28) à ailettes pouvant être entraînées dans des sens opposés, autour de leurs axes de rotation (32, 34), au moyen d'un moteur électrique (30) respectif ;
    un dispositif de commande (38), conçu pour commander/réguler les moteurs électriques (30) et programmé en vue de l'exécution d'un procédé de commande (100) conforme à l'une des revendications précédentes.
  11. Dispositif d'engagement de fil, selon la revendication 10, caractérisé par le fait que les moteurs électriques (30) sont de réalisation dépourvue de balais, notamment en tant que moteurs pas à pas hybrides triphasés.
  12. Dispositif d'engagement de fil, selon la revendication 10 ou 11, caractérisé par le fait que le dispositif de commande (38) est équipé d'un processeur de signaux (38a), au moyen duquel les deux moteurs électriques (30) des roues (26, 28) à ailettes peuvent être pilotés de manière synchronisée.
  13. Dispositif d'engagement de fil, selon l'une des revendications 10 à 12, caractérisé par le fait que le dispositif de commande (38) est respectivement pourvu d'un codeur (56) conçu pour détecter, à chaque fois, une position prise par rotation et une vitesse des roues (26, 28) à ailettes.
  14. Dispositif d'engagement de fil, selon l'une des revendications 10 à 13, caractérisé par le fait que le dispositif de commande (38) est réalisé en vue de commander/réguler un entraînement (20) dédié à la bobine (16) devant être garnie de bobinages au moyen du fil (14).
  15. Bobineuse (10) comprenant un support (18) de bobines, associé à un entraînement (20) dédié à l'entraînement rotatoire d'une bobine (16) mise en place sur ledit support (18) de bobines, et un dispositif (12) d'engagement de fil conforme à l'une des revendications précédentes 10 à 14.
EP16775721.0A 2015-11-10 2016-10-04 Procédé de commande d'un dispositif de pose de fil à roue à ailettes, dispositif de pose de fil à roue à ailettes et bobineuse Active EP3374304B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015222044.3A DE102015222044B3 (de) 2015-11-10 2015-11-10 Verfahren zum Steuern einer Flügelrad-Fadenverlegevorrichtung, Flügelrad-Fadenverlegevorrichtung sowie Spulmaschine
PCT/EP2016/073656 WO2017080718A1 (fr) 2015-11-10 2016-10-04 Procédé de commande d'un dispositif de pose de fil à roue à ailettes, dispositif de pose de fil à roue à ailettes et bobineuse

Publications (2)

Publication Number Publication Date
EP3374304A1 EP3374304A1 (fr) 2018-09-19
EP3374304B1 true EP3374304B1 (fr) 2019-08-07

Family

ID=57068112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16775721.0A Active EP3374304B1 (fr) 2015-11-10 2016-10-04 Procédé de commande d'un dispositif de pose de fil à roue à ailettes, dispositif de pose de fil à roue à ailettes et bobineuse

Country Status (4)

Country Link
EP (1) EP3374304B1 (fr)
CN (1) CN107848726B (fr)
DE (1) DE102015222044B3 (fr)
WO (1) WO2017080718A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108975052A (zh) * 2018-04-24 2018-12-11 江苏海欣纤维有限公司 获得优良丝饼成形的拨叉成形板弧线的确定装置
DE102018112797A1 (de) 2018-05-29 2019-12-05 Maschinenfabrik Rieter Ag Verfahren zum Ermitteln von Betriebszuständen einer Textilmaschine sowie eine Textilmaschine
CN109335841B (zh) * 2018-08-23 2020-11-10 杨凌美畅新材料股份有限公司 一种金刚线绕线方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH521279A (de) * 1971-02-05 1972-04-15 Schaerer Maschf Einrichtung zum Aufspulen von Fäden, Garnen oder Bändern zu Kreuzspulen
DE3345237A1 (de) * 1983-12-14 1985-06-27 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Aufspulmaschine
DE8513881U1 (de) * 1985-05-10 1986-09-04 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Aufspulmaschine
DE3614831A1 (de) * 1985-05-10 1986-11-13 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Aufspulmaschine
CH669175A5 (de) * 1985-05-10 1989-02-28 Barmag Barmer Maschf Aufspulmaschine.
DE29620149U1 (de) * 1996-11-20 1998-03-19 Gme Maschinen Und Verfahrenste Changiereinrichtung
EP0997422B1 (fr) * 1998-10-26 2003-03-26 Schärer Schweiter Mettler AG Dispositif de guidage d'un fil
DE29909746U1 (de) * 1999-06-04 2000-10-19 Muennekehoff Gerd Changiereinrichtung
JP2008143625A (ja) * 2006-12-07 2008-06-26 Murata Mach Ltd 綾振りドラム
CN202575538U (zh) * 2012-04-13 2012-12-05 浙江省新昌县康立电子有限公司 纺织机械的纱线电子成型装置
JP2014094787A (ja) * 2012-11-07 2014-05-22 Murata Mach Ltd 綾振装置およびこれを備えた巻取装置
CN105517931B (zh) * 2013-07-19 2018-01-02 Ssm萨罗瑞士麦特雷有限公司 敷纱设备和络筒机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107848726B (zh) 2019-08-23
EP3374304A1 (fr) 2018-09-19
CN107848726A (zh) 2018-03-27
DE102015222044B3 (de) 2017-02-02
WO2017080718A1 (fr) 2017-05-18

Similar Documents

Publication Publication Date Title
EP0999992B1 (fr) Procede et dispositif a va-et-vient pour la pose d'un fil
EP1159216B1 (fr) Guide-fil pour l'amenee traversante d'un fil a une bobine receptrice entrainee en rotation
EP0914287A1 (fr) Procede d'embobinage d'un fil arrivant en continu
DE2600511A1 (de) Aufspulvorrichtung fuer draht
EP3374304B1 (fr) Procédé de commande d'un dispositif de pose de fil à roue à ailettes, dispositif de pose de fil à roue à ailettes et bobineuse
EP0453622A1 (fr) Procédé et dispositif pour enrouler un fil sur une bobine
DE10300106B4 (de) Verfahren zur Steuerung des Antriebsmotors einer Traversierführung
EP2828017A1 (fr) Procédé et dispositif de fabrication de ressorts hélicoïdaux par enroulement
EP0195325A2 (fr) Procédé de bobinage
DE2428219C2 (de) Einrichtung zum Steuern und Regeln von Schnittabstand und Gleichlauf an einem Bandmaterial bearbeitenden Schneidgerät
EP0906239B1 (fr) Procede de commande d'un dispositif d'ensouplage croise
EP0256383A1 (fr) Méthode pour embobiner des fils
EP3464862B1 (fr) Procédé et dispositif d'étalonnage d'un système d'actionneur
EP3022144B1 (fr) Dispositif de pose de fil et enrouleuse
DE10322533A1 (de) Traversiervorrichtung und Traversiersteuervorrichtung
EP1222133B1 (fr) Procede et dispositif pour enrouler un fil sur une bobine
EP3074333A1 (fr) Unité va-et-vient et procédé de commande d'une unité va-et-vient
DE102020110999B4 (de) Verfahren zur hochpräzisen Fadenablage eines Fadens beim Wickeln einer Spule
DE19849007A1 (de) Verfahren zum Aufspulen eines laufenden Fadens
DE10296719B4 (de) Verfahren zum Steuern einer Wickeleinrichtung
EP3374305B1 (fr) Dispositif de pose de fil
DE19950285A1 (de) Verfahren und Vorrichtung zum Aufwickeln eines Fadens auf eine Spule
EP3825787B1 (fr) Procédé de régulation rapide de la valeur moyenne d'une grandeur de régulation, support de données avec programme ainsi que régulation de moteur permettant de mettre en oeuvre ledit procédé et moteur d'entraînement doté d'une telle régulation de moteur
DE3718079C2 (fr)
EP1883597B1 (fr) Mecanisme de commande de deplacement de fil, notamment pour poste de travail d'une machine textile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180611

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1163535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016006018

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190807

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016006018

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191004

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191007

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161004

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1163535

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211004

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 8

Ref country code: DE

Payment date: 20231020

Year of fee payment: 8