EP3371383B1 - Construction device stabilization method and system - Google Patents

Construction device stabilization method and system Download PDF

Info

Publication number
EP3371383B1
EP3371383B1 EP16808558.7A EP16808558A EP3371383B1 EP 3371383 B1 EP3371383 B1 EP 3371383B1 EP 16808558 A EP16808558 A EP 16808558A EP 3371383 B1 EP3371383 B1 EP 3371383B1
Authority
EP
European Patent Office
Prior art keywords
construction equipment
inclination
item
subgrade
system state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16808558.7A
Other languages
German (de)
French (fr)
Other versions
EP3371383A1 (en
Inventor
Jürgen Grabe
Marius MILATZ
Dominik ZOBEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Hamburg TUHH
Tutech Innovation GmbH
Original Assignee
Technische Universitaet Hamburg TUHH
Tutech Innovation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Hamburg TUHH, Tutech Innovation GmbH filed Critical Technische Universitaet Hamburg TUHH
Publication of EP3371383A1 publication Critical patent/EP3371383A1/en
Application granted granted Critical
Publication of EP3371383B1 publication Critical patent/EP3371383B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • E02F9/262Surveying the work-site to be treated with follow-up actions to control the work tool, e.g. controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/88Safety gear
    • B66C23/90Devices for indicating or limiting lifting moment
    • B66C23/905Devices for indicating or limiting lifting moment electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/18Dredgers; Soil-shifting machines mechanically-driven with digging wheels turning round an axis, e.g. bucket-type wheels
    • E02F3/22Component parts
    • E02F3/26Safety or control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)

Definitions

  • the invention relates to a construction equipment securing method for a standing or moving construction device on a flexible flat surface, the construction device having work equipment and components which are mutually adjustable and form a detectable, changeable system state, with a continuous or inclination measurement being scanned at a high sampling rate, and a construction equipment securing system for this.
  • Compliant planum means that the footprint on which the construction equipment is standing or running is not sufficiently stable for various reasons. For example, there may be an insufficiently compacted subsoil, a soil mechanically variable soil, other voids in the subsoil or defects. It is irrelevant from which material the subsurface is formed, since only the resilience of the subsurface, including the risk of a rupture, endanger the stability of the construction equipment.
  • Construction equipment particularly those with a high center of gravity, are at risk of toppling over on yielding ground.
  • a rigid formation is assumed in accordance with the current standards, and as a result, the stability limits for the excavator (construction equipment) are determined.
  • an insufficiently paved floor can give way gradually or suddenly under a standing, moving or working excavator, which can lead to overturning and thus to considerable property damage and possibly personal injury.
  • Overload warning or shutdown devices for a hoist such as a crane or hydraulic excavator in particular, have been known for a long time, for example from DE 23 43 941 A1 ,
  • the subsoil i.e. the load-bearing capacity of the soil, is disregarded and a rigid subgrade is required.
  • the DE 103 20 382 A1 a mobile work machine that is provided with telescopic support feet that can be supported on a surface to increase stability and thereby raise the chassis, in which measuring devices are arranged in the area of the support feet, which have a support load sensor and a support foot-related motion sensor for detecting the current support load and the movement of the support foot during the installation process.
  • an evaluation unit which responds to the output signals of the measuring device and has evaluation software for recording and linking the output signals of the support foot-related motion sensors and support load sensors and their extrapolation for determining the support foot-related subsurface carrying capacity in the working phase.
  • the DE 10 2010 012 888 A1 In the case of construction machines with undercarriage and an uppercarriage rotatably mounted relative to the undercarriage via a roller slewing ring, a measuring device for measuring the forces in the pulling, pushing and horizontal directions on the roller slewing ring is to be provided, the measured values being fed to a controller and the stability being monitored can.
  • the construction machine can also be equipped with an inclination sensor, which, for example, determines the inclination of the superstructure around a vertical axis.
  • a tilt determination system for construction machines which has tilt sensors and acceleration sensors, the measured values of which are processed by an evaluation unit. Compensatory movements and / or warning signals can be emitted as a safety measure if critical inclination situations arise.
  • a safety device for cranes with at least one position-adjustable load suspension device, a load sensor, a position sensor, a control and monitoring device and a warning device in which a sensor for the continuous detection of the horizontal and / or vertical alignment position of the crane for the duration of its erection is provided.
  • a comparison device is provided in the control and monitoring device, which compares a stored alignment position signal with a current alignment position signal transmitted by the alignment position sensor and outputs a position signal to the control and monitoring device, and inputs the control and monitoring device if a predetermined value of the position signal is exceeded Outputs activation signal to the warning device that triggers this.
  • the plan model created takes into account the changes that occur when the construction equipment is loaded due to the flexibility of the formation when it is loaded, so that after a short "settling phase" the character of the formation, in particular its reaction to loads, is depicted, so that an inclination of the construction equipment is calculated in advance taking into account the system state and the meanwhile recognized flexibility of the formation (formation model).
  • a risk of tilting can thus be recognized in advance and appropriate safety measures can be triggered when the tilting criterion is reached.
  • Security measures mean, on the one hand, the issuing of warning signals to the construction equipment operator in the form of optical and acoustic warning signals, and the active control of the construction equipment and its work equipment and components to reduce the risk of tipping over.
  • a pile driver attached to the construction device can be set down on the floor or its inclination towards the construction device can be adjusted so that the center of gravity moves further back onto its stand area.
  • the security measures are therefore both passive warnings and actively triggered changes to the system of the construction equipment in order to restore stability.
  • the safety measures taken can cause a change in the system status, which relieves the load on the construction equipment in the tilting direction.
  • a heavy load or overloading of the subsoil in this direction is reduced, for example, a drilling or ramming device can be placed on the ground, a deflected uppercarriage can be turned back into alignment with the undercarriage, or a working implement on the construction equipment be pivoted accordingly against the direction of tilt.
  • the center of gravity that characterizes the critical system state moves closer to the central, vertical axis of the construction device, or the weight of the construction device is introduced more evenly on the variable, flexible building ground by additional support on the ground, thus causing undesirable soil overloads and critical yielding of the building ground be avoided.
  • an evaluation unit and a control unit are provided in a construction equipment safety system, the evaluation unit containing a plan model with which the flexibility of the formation can be calculated in advance under load, and evaluating the inclination data measured by the inclination sensor taking into account the respective system status and comparing it with predetermined limit values and comparing the control unit by the evaluation unit when the limit values for changing the System state is controlled to relieve the construction equipment in the tilt direction.
  • the system state of the construction device is simulated as a vehicle model with different, coupled mass points
  • the system state of the construction device with its working devices and components that are mutually adjustable and form a detectable, changing system state can be simulated in a vehicle model.
  • loads and torques of the complete construction device can be simulated in its respective system state. This makes it possible to take into account the complex dependencies between the respective work situation of the construction equipment and the resilient formation below.
  • the vehicle model dynamically takes into account changes in the system status of the construction equipment and in the external loads, the dynamically acting inertia of the entire system and any vibration behavior can be taken into account in the overall evaluation.
  • a contact model between the vehicle model and the plan model simulates the mutual influence, the interaction between the construction equipment and the plan can flow into the model. If, for example, the system condition of the construction device places a particularly heavy load on an outer side of the contact area, this increased load will have a corresponding effect on the resilient surface, so that the inclination reflected on the construction device not only affects the deflection of the construction device, but also an additional sinking of the crawler track this more stressed place of the formation. With the help of the contact model, this can be calculated as an interaction between the vehicle model and the plan model and can thus be predicted.
  • a critical tilt angle suitable for the respective system state is calculated as the tilt criterion, which is compared with the predictive inclination, a prediction for a tilt risk can be derived which, in addition to the actual state of the system and future reactions determined from the previous reactions of the system of both the construction equipment and the formation.
  • the data of the inclination measurement and / or the data of the predictive inclination can also be compared with previously determined, critical movement patterns, with the safety measures being triggered if there is a match; here, critical movement patterns, i.e. also dynamic effects, that result in a critical situation or overturning of the construction equipment.
  • the first time derivative of the inclination measurement data can also be calculated as a criterion for introducing safety measures, characterized by forming the first time derivative of the inclination measurement data, calculating a critical inclination rate for the respective system state, comparing the inclination measurement data of the first derivative with the critical inclination rate applicable in each case, Triggering the security measure shortly before reaching the applicable critical inclination rate.
  • inclination measurement data is filtered for damping and / or smoothing, operating vibrations that are significantly more frequent than the inclination values that can be determined to prevent tipping over can be eliminated for further evaluation.
  • the previously determined, critical movement pattern is a time series of inclination data, inclination rates or inclination accelerations, the one with the respective measurement data, their first time derivative or their second time derivative is compared over a running time window. This can be determined, for example, using filter and / or deconvolution methods.
  • a time period from 0.1 to 10 s, in particular 0.3 to 3 s, looking back from the current time is considered with the moving time window ,
  • the construction device has a self-propelled undercarriage and an uppercarriage rotatably arranged thereon with at least one implement, the geometries belonging to the respective system state and, from this, the current center of gravity and the resulting floor load can be calculated.
  • the respective tilting edges of the undercarriage are determined from the geometry data and from this the stability and, depending on the position of the current center of gravity, the Locally variable floor loads acting below the crawler track are determined.
  • the implement on the superstructure is a drill or piling device, there is a particularly high center of gravity, which significantly increases the risk of tipping.
  • FIG. 1 a construction equipment safety system is shown schematically.
  • a construction device 1 with an undercarriage 11 with a chain undercarriage 10 and an upper carriage 12 rotatable on the undercarriage 11 about a vertical axis Z has a working device 13, for example a pile driver, arranged on the upper carriage 12, and a driver's cab 14 on the upper carriage 12.
  • sensors 2 are provided on the construction device, of which position sensors 22 determine the system status of the construction device 1, namely the position of the superstructure 12 Undercarriage 11, the inclination and orientation of the ramming device 13 and at least one inclination sensor 21, the inclination of the construction device 1 to the vertical axis Z can.
  • an evaluation unit 3 is provided in the construction device 1, which is followed by a control unit 4.
  • Active connections 23 go from sensors 2, namely inclination sensor 21 and position sensor 22 to evaluation unit 3.
  • the measurement data of inclination sensor 21 are first passed through a filter 31 in evaluation unit 3.
  • the filter 31 is a low-pass filter which filters out higher-frequency signals from the inclination sensors 21, which result from operating vibrations of the construction device 1, for example the diesel engine, the hydraulics or the working device 13.
  • Fig. 2 a diagram of the inclination data is shown over the time axis, the unfiltered raw data containing a large number of high-frequency interference signals and the low-pass filtered signal being shown in broken lines.
  • the system state of the construction device 1 is detected from the signals of the position sensors 22 and the instantaneous center of gravity of the device is calculated from this, taking into account any inclination of the construction device 1 to the vertical axis Z.
  • the tipping safety could already be calculated under the condition of a fixed formation.
  • a formation model is now being created, which can reproduce the properties of the floor on which the construction equipment is standing and, in particular, predict its reaction to loads.
  • a vehicle model is created, which replicates the load distribution in the construction device to the respective system state of the construction device (location of the working device) and the components on the construction device, for example with different, coupled mass points and via a contact model between the vehicle model and the plan model Predict overall reaction of the system from construction equipment and formation.
  • the resulting predictive inclination of the construction device is then compared with the currently measured inclination of the construction device and adapted by iterative adaptation of the plan model and possibly the vehicle model to minimize the difference between the predictive inclination and the measured inclination.
  • the optimized plan model and vehicle model then delivers predicted (predictive) grade values that can be compared directly with predefined tilting criteria. It can therefore be decided early (in advance) whether a critical condition could arise.
  • safety measures can then be triggered to warn the vehicle operator of the construction device, to actively intervene in the control and to change the center of gravity positively or, in the event of tipping, which can no longer be prevented, suitable protective measures for the vehicle operator and the construction device or in the vicinity protective persons and property.
  • suitable protective measures for the vehicle operator and the construction device or in the vicinity protective persons and property.
  • it is necessary that the relevant environment of the construction device is continuously monitored by suitable sensors, for example with imaging methods, the data of which are fed to a recognition software. People, structures, obstacles and other construction equipment can be detected. Accordingly, personal injury can be prevented and an unavoidable material damage can be minimized if a toppling is detected as far as possible.
  • a constant comparison of the current inclination with the always newly calculated critical tilt angle for the respective system state could send a first visual and acoustic warning to the construction equipment driver at 50% of the critical tilt angle according to A (1 in a circle).
  • the control unit 4 in addition to a visual and acoustic warning to the construction device driver, controls a change in the system state of the construction device for relief in the tilting direction in order to actively counteract the risk of the construction device 1 falling over.
  • the critical tilt angle is increasingly approached, for example at 90% of the critical tilt angle according to C (3 in a circle) in Fig. 3 an immediate stopping of the implement 13 or a rapid extension of the safety supports to achieve a significant relief of the tilting moment by changing the center of gravity of the implement or increasing the load transfer into the ground.
  • a construction device 1 with a high center of gravity such as a drilling device or pile driver 13
  • both the system status in a vehicle model and the floor in a planar model are taken into account for evaluation and control by the evaluation unit 3 and control unit 4, taking into account the current inclination and the course of the inclination, so that safety measures, possibly automatically, can be taken immediately. to protect human life and property.
  • the dynamic measurement value acquisition with a high sampling rate the current inclination of the construction device 1 and the change in inclination over time are monitored.
  • Critical movement patterns can be predetermined using model calculations, empirical determination or collected data from real accidents and stored as a time series of inclination data, inclination rates or inclination accelerations, with the actually measured inclination data, possibly its first temporal derivation or its second temporal derivation via an accompanying one Time windows are compared with these predetermined critical movement patterns. This can be carried out by means of corresponding digital signal processing by means of time series comparison, filter methods and / or deconvolution over time slots which, looking back from the current point in time, consider a time period of, for example, 0.1 to 10 seconds, in particular 0.3 to 3 seconds.
  • the retrospective time window is short enough to be able to carry out adequate protective measures before the construction unit overturns, whereby for the time until the impact of a construction unit overturning, several seconds depending on the system dimensions of the construction unit with work equipment and in particular its center of gravity must be considered.
  • the window must be sufficient be long in order to be able to distinguish the corresponding critical movement patterns from uncritical movement patterns.
  • the movement behavior predictively calculated with the formation and vehicle models can also be used for this distinction.
  • the system or method according to the invention thus offers help for construction machine drivers to support their work, to protect the construction machine driver and in particular to avoid serious overturns.

Description

Die Erfindung betrifft ein Baugerätstandsicherungsverfahren für ein auf einem nachgiebigen Planum stehendes oder fahrendes Baugerät, wobei das Baugerät Arbeitsgeräte und Bauteile aufweist, die zueinander verstellbar sind und einen erfassbaren, veränderlichen Systemzustand bilden, wobei eine kontinuierliche oder mit hoher Abtastrate abgetastete Neigungsmessung erfolgt, sowie ein Baugerätstandsicherungssystem dafür. Nachgiebiges Planum bedeutet dabei, dass die Aufstandsfläche, auf der das Baugerät steht oder fährt, aus verschiedensten Gründen nicht ausreichend stabil ist. Beispielsweise können ein nicht ausreichend verdichteter Baugrund, ein bodenmechanisch veränderlicher Boden, sonstige Hohlräume im Untergrund oder Fehlstellen vorliegen. Dabei ist es unerheblich, aus welchem Material der Untergrund gebildet ist, da allein die Nachgiebigkeit des Untergrundes einschließlich der Gefahr eines Grundbruchs die Standsicherheit des Baugeräts gefährden.The invention relates to a construction equipment securing method for a standing or moving construction device on a flexible flat surface, the construction device having work equipment and components which are mutually adjustable and form a detectable, changeable system state, with a continuous or inclination measurement being scanned at a high sampling rate, and a construction equipment securing system for this. Compliant planum means that the footprint on which the construction equipment is standing or running is not sufficiently stable for various reasons. For example, there may be an insufficiently compacted subsoil, a soil mechanically variable soil, other voids in the subsoil or defects. It is irrelevant from which material the subsurface is formed, since only the resilience of the subsurface, including the risk of a rupture, endanger the stability of the construction equipment.

Baugeräte, insbesondere mit hohem Schwerpunkt, sind gefährdet, auf nachgebendem Untergrund umzukippen. Bei der Konstruktion derartiger Baugeräte wird gemäß den aktuellen Standards von einem starren Planum ausgegangen und daraus resultierend werden die Standsicherheitsgrenzen für den Bagger (Baugerät) festgelegt. Tatsächlich kann jedoch ein unzureichend befestigter Boden unter einem stehenden, fahrenden oder im Arbeitsbetrieb befindlichen Bagger allmählich oder plötzlich nachgeben, was zum Umstürzen und somit zu erheblichen Sachschäden und gegebenenfalls Personenschäden führen kann.Construction equipment, particularly those with a high center of gravity, are at risk of toppling over on yielding ground. When designing such construction equipment, a rigid formation is assumed in accordance with the current standards, and as a result, the stability limits for the excavator (construction equipment) are determined. In fact, an insufficiently paved floor can give way gradually or suddenly under a standing, moving or working excavator, which can lead to overturning and thus to considerable property damage and possibly personal injury.

In der DE 10 2007 008 881 A1 wird ein Verfahren zum Aufstellen einer Arbeitsmaschine offenbart, wobei die Beschaffenheit und die Tragfähigkeit des Untergrunds berücksichtigt werden.In the DE 10 2007 008 881 A1 discloses a method for setting up a work machine, taking into account the nature and the load-bearing capacity of the subsurface.

Überlastwarn- oder -abschalteinrichtungen für einen Hebezug, wie Kran oder insbesondere Hydraulikbagger sind bereits lange Zeit bekannt, wie beispielsweise aus der DE 23 43 941 A1 . Dabei wird jedoch der Untergrund, also die Tragfähigkeit des Bodens außer Acht gelassen und ein starres Planum vorausgesetzt.Overload warning or shutdown devices for a hoist, such as a crane or hydraulic excavator in particular, have been known for a long time, for example from DE 23 43 941 A1 , However, the subsoil, i.e. the load-bearing capacity of the soil, is disregarded and a rigid subgrade is required.

Im Gegensatz dazu beschreibt die DE 103 20 382 A1 eine mobile Arbeitsmaschine, die mit teleskopierbaren Stützfüßen versehen ist, die zur Erhöhung der Standsicherheit auf einem Untergrund abstützbar sind und dabei das Fahrgestell anheben, bei der im Bereich der Stützfüße Messeinrichtungen angeordnet sind, die einen Stützlastsensor sowie einen stützfußbezogenen Bewegungssensor zur Erfassung der momentanen Stützlast und der Stützfußbewegung beim Aufstellvorgang aufweisen. Damit kann beim Aufstellen der Arbeitsmaschine eine zuverlässige Vorhersage über die Tragfähigkeit des Untergrunds gemacht werden. Entsprechend ist eine Auswerteeinheit vorgesehen, die auf die Ausgangssignale der Messeinrichtung anspricht und eine Auswertesoftware zur Erfassung und Verknüpfung der Ausgangssignale der stützfußbezogenen Bewegungssensoren und Stützlastsensoren und deren Extrapolation zur Ermittlung der stützfußbezogenen Untergrundtragfähigkeit in der Arbeitsphase aufweist.In contrast, the DE 103 20 382 A1 a mobile work machine that is provided with telescopic support feet that can be supported on a surface to increase stability and thereby raise the chassis, in which measuring devices are arranged in the area of the support feet, which have a support load sensor and a support foot-related motion sensor for detecting the current support load and the movement of the support foot during the installation process. This means that a reliable prediction of the load-bearing capacity of the subsoil can be made when the work machine is set up. Correspondingly, an evaluation unit is provided which responds to the output signals of the measuring device and has evaluation software for recording and linking the output signals of the support foot-related motion sensors and support load sensors and their extrapolation for determining the support foot-related subsurface carrying capacity in the working phase.

Diese Art der Ermittlung der Untergrundtragfähigkeit ist jedoch nur mit ortsfesten Stützfüßen nicht für auf Raupen geführte Baugeräte, die sich auch auf dem Baugrund bewegen, anwendbar.However, this type of determination of the underground load-bearing capacity can only be used with stationary support feet and not for construction equipment guided on caterpillars that also move on the building site.

Um die Standsicherheit einer Baumaschine in Baustellenfahrt z.B bei einem Raupenkran ohne Abstützung bestimmen zu können, schlägt daher die DE 10 2010 012 888 A1 bei Baumaschinen mit Unterwagen und einem über eine Rollendrehverbindung relativ zum Unterwagen verdrehbar gelagerten Oberwagen vor, ein Messmittel zur Messung der Kräfte in Zug-, Druck- und Horizontalrichtung auf die Rollendrehverbindung vorzusehen, wobei die Messwerte einer Steuerung zugeführt und die Standsicherung überwacht werden kann. Ergänzt zu den Kraftsensoren kann die Baumaschine auch mit einem Neigungsgeber ausgestattet sein, der beispielsweise die Neigung des Oberwagens um eine lotrechte Achse ermittelt. Ferner kann neben der Überwachung der Betriebs- und Standsicherheit des Raupenkrans bzw. des Mobilkrans auch über die Raupengeometrie und/oder die Bodenplatten auf die aktuell vorhandene Bodenpressung geschlossen werden. Nachteilig ist jedoch, dass Bodenreaktionen nicht erfasst werden können.In order to be able to determine the stability of a construction machine when driving on a construction site, for example, with a crawler crane without a support, the DE 10 2010 012 888 A1 In the case of construction machines with undercarriage and an uppercarriage rotatably mounted relative to the undercarriage via a roller slewing ring, a measuring device for measuring the forces in the pulling, pushing and horizontal directions on the roller slewing ring is to be provided, the measured values being fed to a controller and the stability being monitored can. In addition to the force sensors, the construction machine can also be equipped with an inclination sensor, which, for example, determines the inclination of the superstructure around a vertical axis. In addition to monitoring the operational and stability of the crawler crane or the mobile crane, it is also possible to draw conclusions about the currently existing soil pressure via the caterpillar geometry and / or the base plates. However, it is disadvantageous that soil reactions cannot be recorded.

Aus der DE 10 2008 009 002 B4 ist ein passiver elektromechanischer Neigungsschalter mit einstellbarer Dämpfung für die Kippsicherheitsüberwachung bei Baumaschinen und landwirtschaftlichen Maschinen bekannt. Nachteilig auch bei diesem Neigungsschalter ist, dass die Neigungsgrenzwerte wiederum von einem starren Planum ausgehen und eine solche Kippsicherung ein Bodenversagen nicht in situ ermitteln kann.From the DE 10 2008 009 002 B4 is a passive electromechanical tilt switch with adjustable damping for tipping safety monitoring in construction machinery and agricultural machinery. It is also disadvantageous with this inclination switch that the inclination limit values in turn are based on a rigid formation and such an anti-tilt device cannot determine a floor failure in situ.

Aus der EP 2 060 530 A1 ist ein Verfahren zur Überprüfung der Standsicherheit einer Baumaschine, die Arbeitsgeräte und Bauteile aufweist, die zueinander verstellbar sind und einen erfassbaren, veränderlichen Systemzustand bilden, bekannt, bei der eine kontinuierliche Neigungsmessung erfolgt. Dabei werden aus der momentanen Neigung des Baugeräts ein kritischer Kippwinkel zum jeweiligen Systemzustand berechnet, die momentane Neigung mit dem jeweils geltenden kritischen Kippwinkel verglichen und Sicherheitsmaßnahmen vor Erreichen des jeweils kritischen Kippwinkels ausgelöst.From the EP 2 060 530 A1 is known a method for checking the stability of a construction machine, which has tools and components that are mutually adjustable and form a detectable, changing system state, in which a continuous inclination measurement is carried out. A critical tilt angle to the respective system state is calculated from the current inclination of the construction device, the current inclination is compared with the respectively applicable critical tilt angle and safety measures are triggered before the respective critical tilt angle is reached.

Aus der US 8,548,689 B2 ist ein Neigungsbestimmungssystem für Baumaschinen bekannt, das Neigungssensoren und Beschleunigungssensoren aufweist, deren Messwerte über eine Auswerteeinheit verarbeitet werden. Dabei können als Sicherungsmaßnahme Ausgleichsbewegungen und/oder Warnsignale abgegeben werden, wenn kritische Neigungssituationen entstehen.From the US 8,548,689 B2 A tilt determination system for construction machines is known which has tilt sensors and acceleration sensors, the measured values of which are processed by an evaluation unit. Compensatory movements and / or warning signals can be emitted as a safety measure if critical inclination situations arise.

In der US 2002/059320 A1 wird ein Arbeitsmaschinen-Management-System offenbart, in dem Informationen von Sensoren bei jeder Arbeitsmaschine erfasst und in einer zentralen Datenbank gespeichert werden. Dabei werden die Neigung und die Untergrundeigenschaften berücksichtigt. Das Umkippen einer Arbeitsmaschine kann auch erfasst werden, allerdings werden prädiktive Zustände oder Modelle nicht errechnet.In the US 2002/059320 A1 discloses a work machine management system in which information from sensors is acquired on each work machine and stored in a central database. The inclination and the surface properties are taken into account. The overturning of a work machine can also be recorded, however predictive states or models are not calculated.

Ferner ist aus der DE 202 06 677 U1 eine Sicherheitsvorrichtung für Krane mit mindestens einem in der Position verstellbaren Lastaufnahmemittel, einem Lastsensor, einem Positionssensor, einer Steuer- und Überwachungseinrichtung und einer Warneinrichtung bekannt, bei der ein Sensor zur fortlaufenden Erfassung der horizontalen und/oder vertikalen Ausrichtposition des Krans für die Dauer seiner Aufstellung vorgesehen ist. Dabei ist eine Vergleichseinrichtung in der Steuer- und Überwachungseinrichtung vorgesehen, die ein gespeichertes Ausrichtpositionssignal mit einem von dem Ausrichtpositionssensor übermittelten aktuellen Ausrichtpositionssignal vergleicht und ein Positionssignal an die Steuer- und Überwachungseinrichtung ausgibt, und die Steuer- und Überwachungseinrichtung bei Überschreiten eines vorgegebenen Wertes des Positionssignals ein Aktivierungssignal an die Warneinrichtung ausgibt, das diese auslöst.Furthermore, from the DE 202 06 677 U1 a safety device for cranes with at least one position-adjustable load suspension device, a load sensor, a position sensor, a control and monitoring device and a warning device is known, in which a sensor for the continuous detection of the horizontal and / or vertical alignment position of the crane for the duration of its erection is provided. A comparison device is provided in the control and monitoring device, which compares a stored alignment position signal with a current alignment position signal transmitted by the alignment position sensor and outputs a position signal to the control and monitoring device, and inputs the control and monitoring device if a predetermined value of the position signal is exceeded Outputs activation signal to the warning device that triggers this.

Ausgehend von den Schwierigkeiten hinsichtlich der Berücksichtigung der Tragfähigkeit des anstehenden Bodens wurde auf der Fachtagung Spezialtiefbau der BG BAU am 09. Juni 2011 in Hamburg ein Vortrag mit dem Titel "Standsicherheit von Spezialtiefbaugeräten" von Karl Krollmann, Jürgen Grabe und Marius Milatz gehalten. Darin wird ausgeführt, dass Geräteumstürze meist auf ein Nachgeben des Planums zurückzuführen sind und somit eine Reduzierung derartiger Unfälle nur unter Ergänzung der Einflüsse des Baugrundes möglich ist. Entsprechend soll in einem Forschungsprojekt eine Verbesserung der Standsicherheit über Software gestützte Lösungen erreicht werden, die auch geomechanische Aspekte mit einbezieht.Based on the difficulties in considering the load-bearing capacity of the upcoming soil, a lecture entitled "Stability of special foundation engineering equipment" by Karl Krollmann, Jürgen Grabe and Marius Milatz was given at the BG BAU specialist foundation engineering conference on June 9, 2011 in Hamburg. It explains that device overturns are mostly due to the formation of the subgrade and thus a reduction of such accidents is only possible by supplementing the influences of the subsoil. Accordingly, a research project aims to improve stability through software-based solutions that also include geomechanical aspects.

Entsprechend dieser Schrift ist es Aufgabe der Erfindung, ein Standsicherungsverfahren bzw. ein Standsicherungssystem für Baugeräte mit hohem Schwerpunkt anzugeben, das die Baugerät-Boden-Wechselwirkung bei üblichem, bodenmechanisch veränderlichem, nachgiebigem Baugrund berücksichtigt.According to this document, it is the object of the invention to provide a stand protection method or a stand protection system for construction equipment high focus, which takes into account the interaction between the construction equipment and the floor in the case of conventional, mechanically variable, flexible subsoil.

Gelöst wird diese Aufgabe durch ein Verfahren gemäß Anspruch 1 und durch ein Baugerätstandsicherungssystem gemäß Anspruch 12.This object is achieved by a method according to claim 1 and by a construction equipment security system according to claim 12.

Durch Erstellung eines Planummodells, mit dem die Nachgiebigkeit des Planums bei Belastung vorausberechnet werden kann; Berechnen der Belastung des Planums zum jeweiligen Systemzustand des Baugeräts; Vorausberechnung einer prädiktiven Neigung des Baugerätes unter Berücksichtigung des Systemzustandes und des Planummodells; Vergleich der prädiktiven Neigung des Baugerätes mit der aktuell gemessenen Neigung des Baugeräts und iterative Anpassung des Planummodells zur Minimierung der Differenz zwischen prädiktiver Neigung und gemessener Neigung; Vergleichen der prädiktiven Neigung zum jeweiligen Systemzustand unter Berücksichtigung des Planummodells mit einem vorgegebenen Kippkriterium und Auslösen von Sicherungsmaßnahmen bei Erreichen des Kippkriteriums wird erreicht, dass kritische Belastungssituationen frühzeitig registriert werden können. Dabei berücksichtigt das erstellte Planummodell die bei der Belastung durch das Baugerät entstehenden Veränderungen aufgrund der Nachgiebigkeit des Planums bei dessen Belastung, sodass nach einer kurzen "Einschwingphase" der Charakter des Planums, insbesondere seine Reaktion auf Belastungen abgebildet wird, sodass eine Vorausberechnung einer Neigung des Baugeräts unter Berücksichtigung des Systemzustandes und der zwischenzeitlich erkannten Nachgiebigkeit des Planums (Planummodell) erfolgen kann. Bei dem Vergleich des jeweiligen Systemzustandes unter Berücksichtigung des Planummodells mit einem vorgegebenen Kippkriterium kann somit bereits vorausschauend eine Kippgefahr erkannt werden und bei Erreichen des Kippkriteriums können entsprechende Sicherungsmaßnahmen ausgelöst werden.By creating a plan model, with which the flexibility of the formation can be calculated in advance under load; Calculating the load on the formation to the respective system state of the construction equipment; Predicting a predictive inclination of the construction equipment taking into account the system status and the plan model; Comparison of the predictive inclination of the construction equipment with the currently measured inclination of the construction equipment and iterative adaptation of the plan model to minimize the difference between the predictive inclination and the measured inclination; Comparing the predictive tendency to the respective system state, taking into account the plan model with a given tilt criterion and triggering safety measures when the tilt criterion is reached, it is achieved that critical stress situations can be registered at an early stage. The plan model created takes into account the changes that occur when the construction equipment is loaded due to the flexibility of the formation when it is loaded, so that after a short "settling phase" the character of the formation, in particular its reaction to loads, is depicted, so that an inclination of the construction equipment is calculated in advance taking into account the system state and the meanwhile recognized flexibility of the formation (formation model). When the respective system state is compared, taking into account the plan model with a predetermined tilting criterion, a risk of tilting can thus be recognized in advance and appropriate safety measures can be triggered when the tilting criterion is reached.

Dabei bedeutet Sicherungsmaßnahmen einerseits das Ausgeben von Warnsignalen an den Baugeräteführer in Form von optischen und akustischen Warnsignalen sowie das aktive Steuern des Baugeräts sowie seiner Arbeitsgeräte und Bauteile zur Verringerung des Kipprisikos. Beispielsweise kann ein am Baugerät angesetztes Rammgerät auf dem Boden abgesetzt oder in seiner Neigung zum Baugerät so verstellt werden, dass der Schwerpunkt wieder weiter auf seine Standfläche hineinwandert. Die Sicherungsmaßnahmen sind somit sowohl passive Warnungen, wie auch aktiv ausgelöste Veränderungen am System des Baugeräts, um die Standsicherheit wieder her zu stellen.Security measures mean, on the one hand, the issuing of warning signals to the construction equipment operator in the form of optical and acoustic warning signals, and the active control of the construction equipment and its work equipment and components to reduce the risk of tipping over. For example, a pile driver attached to the construction device can be set down on the floor or its inclination towards the construction device can be adjusted so that the center of gravity moves further back onto its stand area. The security measures are therefore both passive warnings and actively triggered changes to the system of the construction equipment in order to restore stability.

Die getroffenen Sicherungsmaßnahmen können eine Änderung des Systemzustands bewirken, die zu einer Entlastung des Baugeräts in Kipprichtung führt. So wird durch Verlagerung des Schwerpunktes entgegengesetzt zur befürchteten Kipprichtung eine starke Belastung oder Überlastung des Baugrunds in dieser Richtung reduziert, beispielsweise kann ein Bohr- oder Rammgerät auf dem Boden abgesetzt, ein ausgelenkter Oberwagen wieder in Ausrichtung mit dem Unterwagen zurückgedreht oder ein Arbeitsgerät an dem Baugerät entsprechend gegen die Kipprichtung verschwenkt werden. Jeweils wandert der den kritischen Systemzustand charakterisierende Schwerpunkt wieder näher an die mittige, lotrechte Achse des Baugeräts bzw. das Gewicht des Baugeräts wird durch eine zusätzliche Abstützung auf dem Boden gleichmäßiger auf dem veränderlichen, nachgiebigen Baugrund eingeleitet, womit unerwünschte Bodenüberlastungen und ein kritisches Nachgeben des Baugrundes vermieden werden.The safety measures taken can cause a change in the system status, which relieves the load on the construction equipment in the tilting direction. By shifting the center of gravity opposite to the feared tipping direction, a heavy load or overloading of the subsoil in this direction is reduced, for example, a drilling or ramming device can be placed on the ground, a deflected uppercarriage can be turned back into alignment with the undercarriage, or a working implement on the construction equipment be pivoted accordingly against the direction of tilt. In each case, the center of gravity that characterizes the critical system state moves closer to the central, vertical axis of the construction device, or the weight of the construction device is introduced more evenly on the variable, flexible building ground by additional support on the ground, thus causing undesirable soil overloads and critical yielding of the building ground be avoided.

Entsprechend sind bei einem Baugerätstandsicherungssystem eine Auswerteeinheit sowie eine Steuereinheit vorgesehen, wobei die Auswerteeinheit ein Planummodell enthält, mit dem die Nachgiebigkeit des Planums bei Belastung vorausberechnet werden kann, und vom Neigungssensor gemessene Neigungsdaten unter Berücksichtigung des jeweiligen Systemzustandes auswertet und mit vorbestimmten Grenzwerten vergleicht und die Steuereinheit von der Auswerteeinheit bei Überschreiten der Grenzwerte zum Verändern des Systemzustandes zur Entlastung des Baugeräts in Kipprichtung angesteuert wird.Correspondingly, an evaluation unit and a control unit are provided in a construction equipment safety system, the evaluation unit containing a plan model with which the flexibility of the formation can be calculated in advance under load, and evaluating the inclination data measured by the inclination sensor taking into account the respective system status and comparing it with predetermined limit values and comparing the control unit by the evaluation unit when the limit values for changing the System state is controlled to relieve the construction equipment in the tilt direction.

Wenn der Systemzustand des Baugeräts als Fahrzeugmodell mit verschiedenen, gekoppelten Massenpunkten simuliert wird, kann der Systemzustand des Baugeräts mit seinen Arbeitsgeräten und Bauteilen, die zueinander verstellbar sind und einen erfassbaren, veränderlichen Systemzustand bilden, in einem Fahrzeugmodell nachgebildet werden. Damit können Belastungen und Drehmomente des kompletten Baugeräts in seinem jeweiligen Systemzustand nachgebildet werden. Damit ist es möglich, die komplexen Abhängigkeiten zwischen der jeweiligen Arbeitssituation des Baugeräts und des darunter befindlichen, nachgiebigen Planums zu berücksichtigen.If the system state of the construction device is simulated as a vehicle model with different, coupled mass points, the system state of the construction device with its working devices and components that are mutually adjustable and form a detectable, changing system state can be simulated in a vehicle model. This means that loads and torques of the complete construction device can be simulated in its respective system state. This makes it possible to take into account the complex dependencies between the respective work situation of the construction equipment and the resilient formation below.

Dadurch, dass äußere Lasten, nämlich am Baugerät angreifende Windlasten und/oder am Baugerät anhaftender Boden im Fahrzeugmodell berücksichtigt werden, können zudem die Standfestigkeit beeinflussende äußere Lasten und damit veränderte Schwerpunkte und Drehmomente im Fahrzeugmodell nachgebildet werden.Because external loads, namely wind loads attacking the construction device and / or soil adhering to the construction device are taken into account in the vehicle model, external loads influencing the stability and thus changed centers of gravity and torques can also be simulated in the vehicle model.

Wenn das Fahrzeugmodell Veränderungen am Systemzustand des Baugeräts sowie bei den äußeren Lasten dynamisch berücksichtigt, kann die dynamisch wirkende Massenträgheit des gesamten Systems sowie ein etwaiges Schwingungsverhalten bei der Gesamtauswertung berücksichtigt werden.If the vehicle model dynamically takes into account changes in the system status of the construction equipment and in the external loads, the dynamically acting inertia of the entire system and any vibration behavior can be taken into account in the overall evaluation.

Dadurch, dass ein Kontaktmodell zwischen Fahrzeugmodell und Planummodell die gegenseitige Beeinflussung simuliert, kann die Wechselwirkung zwischen dem Baugerät und dem Planum im Modell einfließen. Wird beispielsweise durch den Systemzustand des Baugeräts eine äußere Seite der Aufstandsfläche besonders stark belastet, wirkt diese erhöhte Auflast entsprechend auf den nachgiebigen Untergrund, sodass die sich am Baugerät widerspiegelnde Neigung nicht nur durch die Einfederung des Baugeräts, sondern auch auf ein zusätzliches Einsinken des Kettenfahrwerks an dieser stärker belasteten Stelle des Planums herrührt. Dies kann mit Hilfe des Kontaktmodells als Wechselwirkung zwischen Fahrzeugmodell und Planummodell berechnet und somit vohergesagt werden.Because a contact model between the vehicle model and the plan model simulates the mutual influence, the interaction between the construction equipment and the plan can flow into the model. If, for example, the system condition of the construction device places a particularly heavy load on an outer side of the contact area, this increased load will have a corresponding effect on the resilient surface, so that the inclination reflected on the construction device not only affects the deflection of the construction device, but also an additional sinking of the crawler track this more stressed place of the formation. With the help of the contact model, this can be calculated as an interaction between the vehicle model and the plan model and can thus be predicted.

Dadurch, dass bei der iterativen Vorausberechnung der prädiktiven Neigung des Baugerätes das Fahrzeugmodell und das Planummodell berücksichtigt werden, wobei die prädiktive Neigung des Baugerätes mit der aktuell gemessenen Neigung des Baugeräts verglichen wird und eine iterative Anpassung des Planummodells und des Fahrzeugmodells zur Minimierung der Differenz zwischen prädiktiver Neigung und gemessener Neigung erfolgt, wird eine weitere Anpassung der beiden Modelle, nämlich Planummodell und Fahrzeugmodell an die tatsächlich gemessenen Reaktionen des Baugeräts bei dessen Arbeitsbetrieb erreicht. Diese iterative Anpassung verbessert somit die Vorausberechnung der sich bei entsprechenden Veränderungen einstellenden Neigung des Baugeräts unter Berücksichtigung sowohl des Planums wie auch des Systemzustandes des Baugeräts.The fact that the vehicle model and the plan model are taken into account in the iterative prediction of the predictive inclination of the construction device, the predictive inclination of the construction device being compared with the currently measured inclination of the construction device and an iterative adjustment of the plan model and the vehicle model to minimize the difference between predictive Inclination and measured inclination takes place, a further adjustment of the two models, namely planar model and vehicle model to the actually measured reactions of the construction device during its operation is achieved. This iterative adjustment thus improves the pre-calculation of the inclination of the construction device which arises with corresponding changes, taking into account both the level and the system state of the construction device.

Wenn als Kippkriterium ein zum jeweiligen Systemzustand passender, kritischer Kippwinkel berechnet wird, der mit der prädiktiven Neigung verglichen wird, kann eine Vorhersage für eine Kippgefahr hergeleitet werden, die neben dem Ist-Zustand des Systems auch aus den bisherigen Reaktionen des Systems ermittelte, zukünftige Reaktionen sowohl des Baugeräts, wie auch des Planums berücksichtigt.If a critical tilt angle suitable for the respective system state is calculated as the tilt criterion, which is compared with the predictive inclination, a prediction for a tilt risk can be derived which, in addition to the actual state of the system and future reactions determined from the previous reactions of the system of both the construction equipment and the formation.

Alternativ oder ergänzend können auch die Daten der Neigungsmessung und/oder die Daten der prädiktiven Neigung mit vorher bestimmten, kritischen Bewegungsmustern verglichen werden, wobei bei einer Übereinstimmung die Sicherungsmaßnahmen ausgelöst werden, hierbei können kritische Bewegungsmuster, also auch dynamische Effekte erkannt werden, die zu einer kritischen Situation oder zum Umkippen des Baugeräts führen könnten.As an alternative or in addition, the data of the inclination measurement and / or the data of the predictive inclination can also be compared with previously determined, critical movement patterns, with the safety measures being triggered if there is a match; here, critical movement patterns, i.e. also dynamic effects, that result in a critical situation or overturning of the construction equipment.

In weiterer Ausbildung kann auch die erste zeitliche Ableitung der Neigungsmessdaten als Kriterium zur Einleitung von Sicherheitsmaßnahmen errechnet werden, gekennzeichnet durch Bilden der ersten zeitlichen Ableitung der Neigungsmessdaten, Berechnen einer kritischen Neigungsrate zum jeweiligen Systemzustand, Vergleichen der Neigungsmessdaten erster Ableitung mit der jeweils geltenden kritischen Neigungsrate, Auslösen der Sicherungsmaßnahme kurz vor Erreichen der jeweils geltenden kritischen Neigungsrate.In a further development, the first time derivative of the inclination measurement data can also be calculated as a criterion for introducing safety measures, characterized by forming the first time derivative of the inclination measurement data, calculating a critical inclination rate for the respective system state, comparing the inclination measurement data of the first derivative with the critical inclination rate applicable in each case, Triggering the security measure shortly before reaching the applicable critical inclination rate.

Durch Bilden der zweiten zeitlichen Ableitung der Neigungsmessdaten, Berechnen einer kritischen Neigungsbeschleunigung zum jeweiligen Systemzustand, Vergleichen der Neigungsmessdaten zweiter Ableitung mit der jeweils geltenden kritischen Neigungsbeschleunigung, Auslösen der ersten Sicherheitsmaßnahme kurz vor Erreichen der jeweils geltenden kritischen Neigungsbeschleunigung wird ein ergänzendes Kriterium für das Einleiten von Sicherungsmaßnahmen bereitgestellt.By forming the second time derivative of the inclination measurement data, calculating a critical inclination acceleration for the respective system state, comparing the inclination measurement data of the second derivative with the applicable critical inclination acceleration, triggering the first safety measure shortly before the critical inclination acceleration applicable in each case becomes a supplementary criterion for initiating safety measures provided.

Wenn die Neigungsmessdaten zur Dämpfung und/oder Glättung gefiltert werden, können Betriebsschwingungen, die erheblich höher frequent als die zur Umkippsicherung festzustellenden, zeitlich veränderlichen Neigungswerte sind, für die weitere Auswertung eliminiert werden.If the inclination measurement data is filtered for damping and / or smoothing, operating vibrations that are significantly more frequent than the inclination values that can be determined to prevent tipping over can be eliminated for further evaluation.

Bei Überschreiten des kritischen Kippwinkels, der kritischen Neigungsrate und/oder der kritischen Neigungsbeschleunigung oder bei Auftreten eines bestimmten Bewegungsmusters kann als weitere Sicherungsmaßnahme eine Änderung des Systemzustands ausgelöst werden, die zu einem Schutz des Baugerätführers und des Baugeräts führt. Dabei werden durch aktive Schutzmaßnahmen gegen die Folgen eines nunmehr nicht mehr aufzuhaltenden Kippvorgangs beispielsweise gegen die Gefahr des Zerquetschens der Kabine unter dem Baugerät durch Rausdrehen der Fahrerkabine aus dem kritischen Bereich, Auslösen von Gurtstraffern und Fahrerairbags (passive Schutzmaßnahmen) der Baugerätführer sowie ggf. zusätzlich das Baugerät selbst geschützt bzw. Beschädigungen in Folge des Umstürzens verringert.If the critical tilt angle, the critical inclination rate and / or the critical inclination acceleration is exceeded or if a specific movement pattern occurs, a change in the system state can be triggered as a further security measure, which leads to protection of the construction operator and the construction equipment. Active protective measures against the consequences of a tilting process that can no longer be stopped, e.g. against the risk of the cabin being crushed under the construction equipment by turning the driver's cab out of the critical area, triggering belt tensioners and driver airbags (passive Protective measures) of the construction equipment operator as well as, if necessary, additionally protecting the construction equipment itself or reducing damage as a result of the overturning.

Wenn die Daten der Neigungsmessung mit vorher bestimmten, kritischen Bewegungsmustern verglichen werden, wobei bei einer ausreichenden Übereinstimmung die erste oder zweite Sicherungsmaßnahme ausgelöst wird, können bestimmte, kritische Bewegungsabläufe im Voraus bestimmt und deren Auftreten anhand des Vergleichs mit den aktuellen Messdaten relativ schnell erkannt und entsprechend geeignete Sicherungsmaßnahmen eingeleitet werden. Um die in hoher Abtastrate ermittelten Messwerte oder daraus abgeleiteten Werte für Neigungsraten und Neigungsbeschleunigungen interpretieren zu können, ist das vorher bestimmte, kritische Bewegungsmuster eine Zeitreihe von Neigungsdaten, Neigungsraten oder Neigungsbeschleunigungen, das mit den jeweiligen Messdaten, deren erster zeitlichen Ableitung oder deren zweiter zeitlichen Ableitung über ein mitlaufendes Zeitfenster verglichen wird. Dies kann beispielsweise mittels Filter- und/oder Dekonvolutionsmethoden ermittelt werden.If the data of the inclination measurement are compared with previously determined, critical movement patterns, with the first or second securing measure being triggered if there is sufficient agreement, certain critical movement sequences can be determined in advance and their occurrence can be recognized relatively quickly by means of the comparison with the current measurement data and accordingly appropriate security measures are initiated. In order to be able to interpret the measured values determined at high sampling rate or derived values for inclination rates and inclination accelerations, the previously determined, critical movement pattern is a time series of inclination data, inclination rates or inclination accelerations, the one with the respective measurement data, their first time derivative or their second time derivative is compared over a running time window. This can be determined, for example, using filter and / or deconvolution methods.

Um eine ausreichend schnelle Reaktion einerseits und eine genügende Datenbasis zum Erkennen des kritischen Bewegungsmusters (typischer Finderabdruck) erreichen zu können, wird mit dem mitlaufenden Zeitfenster ein vom momentanen Zeitpunkt rückblickender Zeitraum von 0,1 bis 10 s, insbesondere 0,3 bis 3 s betrachtet.In order to be able to achieve a sufficiently fast reaction on the one hand and a sufficient database for recognizing the critical movement pattern (typical finder imprint), a time period from 0.1 to 10 s, in particular 0.3 to 3 s, looking back from the current time is considered with the moving time window ,

Wenn das Baugerät einen selbstfahrenden Unterwagen und darauf drehbar angeordnet einen Oberwagen mit wenigstens einem Arbeitsgerät hat, sind die zum jeweiligen Systemzustand gehörenden Geometrien und daraus der momentane Schwerpunkt sowie die daraus resultierende Bodenbelastung berechenbar.If the construction device has a self-propelled undercarriage and an uppercarriage rotatably arranged thereon with at least one implement, the geometries belonging to the respective system state and, from this, the current center of gravity and the resulting floor load can be calculated.

Wenn der Unterwagen ein Kettenfahrwerk aufweist, werden aus den Geometriedaten die jeweiligen Kippkanten des Fahrwerks bestimmt und daraus die Standfestigkeit und je nach Lage des momentanen Schwerpunktes die unterhalb des Kettenfahrwerks wirkende, örtlich veränderliche Bodenbelastung ermittelt.If the undercarriage has a chain undercarriage, the respective tilting edges of the undercarriage are determined from the geometry data and from this the stability and, depending on the position of the current center of gravity, the Locally variable floor loads acting below the crawler track are determined.

Wenn das Arbeitsgerät am Oberwagen ein Bohrgerät oder Rammgerät ist, liegt ein besonders hoher Schwerpunkt vor, der die Kippgefahr deutlich erhöht.If the implement on the superstructure is a drill or piling device, there is a particularly high center of gravity, which significantly increases the risk of tipping.

Dadurch, dass ein erster Neigungssensor im Unterwagen und ein zweiter Neigungssensor im Oberwagen angeordnet sind, können auch Neigungsdifferenzen zwischen Ober- und Unterwagen, beispielsweise aufgrund eines Spiels im Drehwerk, erfasst und bei der Auswertung berücksichtigt werden.Due to the fact that a first inclination sensor is arranged in the undercarriage and a second inclination sensor in the uppercarriage, inclination differences between the uppercarriage and undercarriage, for example due to play in the slewing gear, can also be recorded and taken into account in the evaluation.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der beiliegenden Zeichnungen detailliert beschrieben.An exemplary embodiment of the invention is described in detail below with reference to the accompanying drawings.

Darin zeigt:

Fig. 1
eine Prinzipskizze des im Baugerät verwirklichten Standsicherungssystems;
Fig. 2
ein Diagramm mit Neigungsmessdaten vor und nach Filterung;
Fig. 3
die gefilterten Neigungsmessdaten gemäß Fig. 2 in einem Diagramm mit markierten Auslösepunkten für Sicherungsmaßnahmen;
Fig. 4
ein Diagramm der Neigungsrate im Zeitverlauf.
It shows:
Fig. 1
a schematic diagram of the state protection system implemented in the construction device;
Fig. 2
a diagram with inclination measurement data before and after filtering;
Fig. 3
the filtered inclination measurement data according to Fig. 2 in a diagram with marked trigger points for security measures;
Fig. 4
a graph of the rate of slope over time.

In Fig. 1 ist schematisch ein Baugerätstandsicherungssystem dargestellt. Ein Baugerät 1 mit einem Unterwagen 11 mit Kettenfahrwerk 10 und einem auf dem Unterwagen 11 drehbar um eine vertikale Achse Z drehbaren Oberwagen 12 weist ein am Oberwagen 12 angeordnetes Arbeitsgerät 13, beispielsweise ein Rammgerät, und am Oberwagen 12 eine Fahrerkabine 14 auf. Ferner sind am Baugerät 1 Sensoren 2 vorgesehen, von denen Lagesensoren 22 den Systemzustand des Baugeräts 1, nämlich die Stellung des Oberwagens 12 zum Unterwagen 11, die Neigung und Ausrichtung des Rammgeräts 13 sowie über wenigstens einen Neigungssensor 21 die Neigung des Baugeräts 1 zur vertikalen Achse Z erfassen können.In Fig. 1 a construction equipment safety system is shown schematically. A construction device 1 with an undercarriage 11 with a chain undercarriage 10 and an upper carriage 12 rotatable on the undercarriage 11 about a vertical axis Z has a working device 13, for example a pile driver, arranged on the upper carriage 12, and a driver's cab 14 on the upper carriage 12. Furthermore, sensors 2 are provided on the construction device, of which position sensors 22 determine the system status of the construction device 1, namely the position of the superstructure 12 Undercarriage 11, the inclination and orientation of the ramming device 13 and at least one inclination sensor 21, the inclination of the construction device 1 to the vertical axis Z can.

Ferner ist im Baugerät 1 eine Auswerteeinheit 3 vorgesehen, der eine Steuereinheit 4 nachgeschaltet ist. Von den Sensoren 2, nämlich Neigungssensor 21 und Lagesensor 22 gehen Wirkverbindungen 23 zur Auswerteeinheit 3. Die Messdaten des Neigungssensors 21 werden in der Auswerteeinheit 3 zunächst durch einen Filter 31 geleitet. Der Filter 31 ist ein Tiefpassfilter, der höherfrequente Signale der Neigungssensoren 21, die von Betriebsschwingungen des Baugeräts 1, beispielsweise dem Dieselmotor, der Hydraulik oder dem Arbeitsgerät 13 herrühren, herausfiltert. In Fig. 2 ist ein Diagramm der Neigungsdaten über der Zeitachse dargestellt, wobei die ungefilterten Rohdaten eine Vielzahl von hochfrequenten Störsignalen beinhalten und gestrichelt dazu das Tiefpass-gefilterte Signal dargestellt ist.Furthermore, an evaluation unit 3 is provided in the construction device 1, which is followed by a control unit 4. Active connections 23 go from sensors 2, namely inclination sensor 21 and position sensor 22 to evaluation unit 3. The measurement data of inclination sensor 21 are first passed through a filter 31 in evaluation unit 3. The filter 31 is a low-pass filter which filters out higher-frequency signals from the inclination sensors 21, which result from operating vibrations of the construction device 1, for example the diesel engine, the hydraulics or the working device 13. In Fig. 2 a diagram of the inclination data is shown over the time axis, the unfiltered raw data containing a large number of high-frequency interference signals and the low-pass filtered signal being shown in broken lines.

In der Auswerteeinheit 3 wird aus den Signalen der Lagesensoren 22 der Systemzustand des Baugeräts 1 erfasst und daraus der momentane Geräteschwerpunkt unter Berücksichtigung einer etwaigen Neigung des Baugeräts 1 zur vertikalen Achse Z errechnet. Unter Zugrundlegung der Gerätedaten des Baugeräts 1 und dem festgestellten Systemzustand könnte unter der Voraussetzung eines festen Planums bereits die Kippsicherheit berechnet werden.In the evaluation unit 3, the system state of the construction device 1 is detected from the signals of the position sensors 22 and the instantaneous center of gravity of the device is calculated from this, taking into account any inclination of the construction device 1 to the vertical axis Z. On the basis of the device data of the construction device 1 and the determined system state, the tipping safety could already be calculated under the condition of a fixed formation.

Um die Nachgiebigkeit des Planums bei Belastung zu berücksichtigen, wird nun ein Planummodell erstellt, das die Eigenschaften des Bodens, auf dem das Baugerät steht, nachbilden und insbesondere deren Reaktion auf Belastungen vorausberechnen kann. Ferner wird ein Fahrzeugmodell erstellt, das die Lastverteilung im Baugerät zum jeweiligen Systemzustand des Baugeräts (Lage des Arbeitsgeräts) und der Bauteile am Baugerät beispielsweise mit verschiedenen, gekoppelten Massenpunkten nachbildet und über ein Kontaktmodell zwischen dem Fahrzeugmodell und dem Planummodell die Gesamtreaktion des Systems aus Baugerät und Planum vorausberechnen kann. Die sich dabei ergebende prädiktive Neigung des Baugeräts wird dann mit der aktuell gemessenen Neigung des Baugeräts verglichen und durch iterative Anpassung des Planummodells und ggfs. des Fahrzeugsmodells zur Minimierung der Differenz zwischen prädiktiver Neigung und gemessener Neigung angepasst.In order to take the flexibility of the formation under load into account, a formation model is now being created, which can reproduce the properties of the floor on which the construction equipment is standing and, in particular, predict its reaction to loads. Furthermore, a vehicle model is created, which replicates the load distribution in the construction device to the respective system state of the construction device (location of the working device) and the components on the construction device, for example with different, coupled mass points and via a contact model between the vehicle model and the plan model Predict overall reaction of the system from construction equipment and formation. The resulting predictive inclination of the construction device is then compared with the currently measured inclination of the construction device and adapted by iterative adaptation of the plan model and possibly the vehicle model to minimize the difference between the predictive inclination and the measured inclination.

Das somit optimierte Planummodell und Fahrzeugmodell liefert dann vorausberechnete (prädiktive) Neigungswerte, die direkt mit vorgegebenen Kippkriterien verglichen werden können. Es kann somit frühzeitig (im Voraus) entschieden werden, ob ein kritischer Zustand entstehen könnte. Entsprechend können dann Sicherungsmaßnahmen ausgelöst werden, um den Fahrzeugführer des Baugeräts zu warnen, aktiv in die Steuerung einzugreifen und die Schwerpunktlage positiv zu verändern oder bei einem nicht mehr zu verhindernden Umkippen geeignete Schutzmaßnahmen für den Fahrzeugführer und das Baugerät bzw. in der Umgebung befindliche, zu schützende Personen und Sachwerte vorzunehmen. Dazu ist es erforderlich, dass die relevante Umgebung des Baugeräts kontinuierlich durch eine geeignete Sensorik, beispielsweise mit bildgebenden Verfahren, deren Daten einer Erkennungssoftware zugeführt werden, zu überwachen. Dabei können Menschen, Bauwerke, Hindernisse und andere Baugeräte erfasst werden. Entsprechend kann bei einer Feststellung eines Umsturzes im Rahmen des Möglichen ein Personenschaden verhindert und ein unvermeidbarer materieller Schaden minimiert werden.The optimized plan model and vehicle model then delivers predicted (predictive) grade values that can be compared directly with predefined tilting criteria. It can therefore be decided early (in advance) whether a critical condition could arise. Correspondingly, safety measures can then be triggered to warn the vehicle operator of the construction device, to actively intervene in the control and to change the center of gravity positively or, in the event of tipping, which can no longer be prevented, suitable protective measures for the vehicle operator and the construction device or in the vicinity protective persons and property. For this purpose, it is necessary that the relevant environment of the construction device is continuously monitored by suitable sensors, for example with imaging methods, the data of which are fed to a recognition software. People, structures, obstacles and other construction equipment can be detected. Accordingly, personal injury can be prevented and an unavoidable material damage can be minimized if a toppling is detected as far as possible.

Dadurch, dass die Sensorsignale in hoher Abtastrate von der Auswerteeinheit 3 abgefragt werden und stets der momentane Systemzustand und auch die jeweils gemessene Neigung zur vertikalen Achse Z aktualisiert werden und auch der zeitliche Verlauf der Neigungsänderung in der Auswerteeinheit 3 betrachtet wird, können Sicherheitshinweise über die Steuereinheit 4 an den in der Fahrerkabine 14 sitzenden Baugerätefahrer ausgesendet und/oder aktiv Maßnahmen von der Steuereinheit 4 ausgeführt werden.The fact that the sensor signals are queried by the evaluation unit 3 at a high sampling rate and the current system state and also the respectively measured inclination to the vertical axis Z are always updated and the time course of the change in inclination in the evaluation unit 3 is also considered, safety information about the control unit 4 to the construction equipment driver seated in the driver's cab 14 and / or measures are actively carried out by the control unit 4.

Wie in Fig. 3 dargestellt, könnte beispielsweise beim ständigen Vergleich der aktuellen Neigung mit dem stets neu berechneten kritischen Kippwinkel zum jeweiligen Systemzustand eine erste optische und akustische Warnung an den Baugerätefahrer bei 50 % des kritischen Kippwinkels gemäß A (1 im Kreis) gesendet werden. Bei Erreichen von 75 % des kritischen Kippwinkels gemäß B (2 im Kreis) in Fig. 3, wird dann beispielsweise über die Steuereinheit 4 neben einer optisch und akustischen Warnung an den Baugerätfahrer eine Veränderung des Systemzustandes des Baugeräts zur Entlastung in Kipprichtung angesteuert, um der Gefahr eines Umstürzens des Baugeräts 1 aktiv entgegen zu wirken. Bei dennoch zunehmender Annäherung an den kritischen Kippwinkel erfolgt beispielsweise bei 90 % des kritischen Kippwinkels gemäß C (3 im Kreis) in Fig. 3 ein sofortiges Absetzen des Arbeitsgeräts 13 oder ein schnelles Ausfahren von Sicherheitsstützen, um eine deutliche Entlastung des Kippmoments durch Veränderung des Geräteschwerpunkts bzw. Vergrößerung der Lasteinleitung in den Baugrund zu erreichen.As in Fig. 3 If, for example, a constant comparison of the current inclination with the always newly calculated critical tilt angle for the respective system state could send a first visual and acoustic warning to the construction equipment driver at 50% of the critical tilt angle according to A (1 in a circle). When reaching 75% of the critical tilt angle according to B (2 in a circle) in Fig. 3 , then, for example, the control unit 4, in addition to a visual and acoustic warning to the construction device driver, controls a change in the system state of the construction device for relief in the tilting direction in order to actively counteract the risk of the construction device 1 falling over. If, however, the critical tilt angle is increasingly approached, for example at 90% of the critical tilt angle according to C (3 in a circle) in Fig. 3 an immediate stopping of the implement 13 or a rapid extension of the safety supports to achieve a significant relief of the tilting moment by changing the center of gravity of the implement or increasing the load transfer into the ground.

Kann diese Maßnahme nicht durchgeführt werden oder führt sie nicht zum gewünschten Erfolg und wird nach Überschreiten des kritischen Kippwinkels (Point of no return) und/oder bei Vergleich der Neigungsrate gemäß Fig. 4 durch ein mitlaufendes, rückblickendes Zeitfenster ein nicht mehr aufzuhaltendes Umkippen des Baugeräts festgestellt, werden über die Steuereinheit 4 sofortige Schutzmaßnahmen eingeleitet. Beispielsweise das Auslösen von Airbags in der Fahrerkabine 14 und/oder Gurtstraffern sowie Ausdrehen der Fahrerkabine 14 aus einem kritischen Aufprallbereich zur Vermeidung von Personenschäden. Ferner können automatische Maßnahmen zur Reduzierung der Materialschäden eingeleitet werden, beispielsweise automatisches Neigen des Arbeitsgeräts, Drehen des Oberwagens oder Verfahren des Baugeräts, quasi von einem Fahrsicherheitsassistenten eingeleitet werden.If this measure cannot be carried out or does not lead to the desired success, it will be performed after the critical point of no return has been exceeded and / or when the inclination rate has been compared Fig. 4 As a result of an ongoing, retrospective time window that the construction device can no longer be tipped over, immediate protective measures are initiated via the control unit 4. For example, the triggering of airbags in the driver's cab 14 and / or belt tensioners and the turning out of the driver's cab 14 from a critical impact area to avoid personal injury. Furthermore, automatic measures to reduce material damage, for example automatic tilting of the implement, turning the uppercarriage or moving the construction device, can be initiated by a driving safety assistant.

Somit wird erfindungsgemäß ein Umsturzversagen von einem Baugerät 1 mit hohem Schwerpunkt, wie einem Bohrgerät oder Rammgerät 13 durch dynamische Messwerterfassung über die Sensoren 2, nämlich Neigungssensor 21 und Lagesensor 22 erkannt. Dafür wird sowohl der Systemzustand in einem Fahrzeugmodell wie auch der Boden in einem Planummodell unter Berücksichtigung der momentanen Neigung und des Neigungsverlaufs für eine Auswertung und Regelung durch die Auswerteeinheit 3 und Steuereinheit 4 erfasst, so dass umgehend Sicherheitsmaßnahmen, ggf. automatisch, getroffen werden können, um Menschenleben und Sachwerte zu schützen. Dabei werden bei der dynamischen Messwerterfassung mit hoher Abtastrate die momentane Neigung des Baugeräts 1 und die zeitliche Änderung der Neigung überwacht. Hierfür erfolgt eine Differentiation der Neigungsmesswerte, nämlich Ausführen der ersten und ggf. zweiten Zeitableitung des Messsignals, wobei der Verlust der Lagesicherheit beim Vergleich der Messsignale und abgeleiteten Messsignale bei einem bestimmten kritischen Bewegungsmuster (quasi einem kritischen "Fingerabdruck") detektiert wird.Thus, according to the invention, a fallover failure from a construction device 1 with a high center of gravity, such as a drilling device or pile driver 13, through dynamic measurement value acquisition via the sensors 2, namely Inclination sensor 21 and position sensor 22 detected. For this purpose, both the system status in a vehicle model and the floor in a planar model are taken into account for evaluation and control by the evaluation unit 3 and control unit 4, taking into account the current inclination and the course of the inclination, so that safety measures, possibly automatically, can be taken immediately. to protect human life and property. In the dynamic measurement value acquisition with a high sampling rate, the current inclination of the construction device 1 and the change in inclination over time are monitored. For this purpose there is a differentiation of the inclination measurement values, namely execution of the first and possibly second time derivative of the measurement signal, the loss of positional security being detected when comparing the measurement signals and derived measurement signals with a specific critical movement pattern (quasi a critical "fingerprint").

Dabei können kritische Bewegungsmuster durch Modellrechnungen, empirische Ermittlung oder gesammelten Daten von echten Unfällen vorbestimmt werden und als Zeitreihe von Neigungsdaten, Neigungsraten oder Neigungsbeschleunigungen abgelegt werden, wobei dann die tatsächlich gemessenen Neigungsdaten, ggf. deren erste zeitliche Ableitung oder deren zweite zeitliche Ableitung über ein mitlaufendes Zeitfenster mit diesen vorbestimmten kritischen Bewegungsmustern verglichen werden. Dies kann über mitlaufende Zeitfenster, die vom momentanen Zeitpunkt rückblickend einen Zeitraum von beispielsweise 0,1 bis 10 Sekunden, insbesondere 0,3 bis 3 Sekunden betrachten, durch entsprechende digitale Signalverarbeitung mittels Zeitreihenvergleich, Filtermethoden und/oder Dekonvolution durchgeführt werden. Wichtig ist dabei, dass das rückblickende Zeitfenster kurz genug ist, um noch ausreichende Schutzmaßnahmen vor dem Umstürzen des Baugerätes durchführen zu können, wobei für die Zeitdauer bis zum Aufprall bei einem Umsturz eines Baugerätes durchaus mehrere Sekunden abhängig von den Systemabmessungen des Baugeräts mit Arbeitsgerät und insbesondere seiner Schwerpunktlage anzusetzen sind. Andererseits muss das Fenster ausreichend lang sein, um die entsprechenden kritischen Bewegungsmuster von unkritischen Bewegungsmustern unterscheiden zu können. Für diese Unterscheidung kann auch das mit Planum- und Fahrzeugmodell prädiktiv berechnete Bewegungsverhalten herangezogen werden.Critical movement patterns can be predetermined using model calculations, empirical determination or collected data from real accidents and stored as a time series of inclination data, inclination rates or inclination accelerations, with the actually measured inclination data, possibly its first temporal derivation or its second temporal derivation via an accompanying one Time windows are compared with these predetermined critical movement patterns. This can be carried out by means of corresponding digital signal processing by means of time series comparison, filter methods and / or deconvolution over time slots which, looking back from the current point in time, consider a time period of, for example, 0.1 to 10 seconds, in particular 0.3 to 3 seconds. It is important that the retrospective time window is short enough to be able to carry out adequate protective measures before the construction unit overturns, whereby for the time until the impact of a construction unit overturning, several seconds depending on the system dimensions of the construction unit with work equipment and in particular its center of gravity must be considered. On the other hand, the window must be sufficient be long in order to be able to distinguish the corresponding critical movement patterns from uncritical movement patterns. The movement behavior predictively calculated with the formation and vehicle models can also be used for this distinction.

Je nach erkanntem Zustand können dann abgestuft entsprechende Sicherungsmaßnahmen ausgelöst werden. Zunächst reichen Warntöne und Warnleuchten in der Fahrerkabine, um den Baugerätfahrer zu warnen. In einer nächsten Stufe könnten automatische, situationsabhängige Veränderungen mittels Fahrsicherheitsassistent an dem Systemzustand des Baugeräts, beispielsweise Veränderung der Neigung des Anbaugeräts, Ansteuerung des Fahrwerks zum Verfahren des gesamten Baugeräts, Ansteuerung des Drehkranzes zwischen Ober- und Unterwagen und ggf. Ausklappen von ergänzenden Sicherheitsstützen ausgelöst werden. Bei einer Detektion des typischen "Fingerabdrucks" eines Umkippens sind dann sofort die Arbeitsabläufe zu unterbrechen und Sicherheitsmaßnahmen zu aktivieren, die über die Steuereinheit 4 anhand der in der Auswerteeinheit 3 durchgeführten Analyse der Messdaten das Baugerät durch Rausdrehen der Fahrerkabine aus dem unmittelbaren Gefahrenbereich und Auslösen von Gurtstraffer und Fahrerairbags sowie etwaigen Schutzmaßnahmen für das Baugerät selbst und deren Umgebung so beeinflussen, dass das Baugerät mit möglichst geringem Schaden und möglichst ohne Gefährdung von Menschen umstürzen kann.Depending on the detected condition, appropriate security measures can then be triggered in stages. First, warning tones and warning lights in the driver's cab are enough to warn the construction machine driver. In a next stage, automatic, situation-dependent changes could be triggered by means of a driving safety assistant on the system status of the construction device, for example changing the inclination of the attachment, controlling the chassis to move the entire construction device, controlling the slewing ring between the uppercarriage and undercarriage and, if necessary, unfolding additional safety supports , When the typical "fingerprint" of a tipping over is detected, the work processes are to be interrupted immediately and safety measures are to be activated which, via the control unit 4 and the analysis of the measurement data carried out in the evaluation unit 3, the construction device by turning the driver's cab out of the immediate danger area and triggering Inflate belt tensioners and driver airbags as well as any protective measures for the construction device itself and its surroundings in such a way that the construction device can fall over with as little damage as possible and as far as possible without endangering people.

Somit bietet das erfindungsgemäße System bzw. Verfahren eine Hilfe für Baugerätefahrer zur Unterstützung seiner Tätigkeit, zum Schutz des Baugerätfahrers und insbesondere zur Vermeidung schwerer Umstürze.The system or method according to the invention thus offers help for construction machine drivers to support their work, to protect the construction machine driver and in particular to avoid serious overturns.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
BaugerätConstruction Equipment
1010
KettenfahrwerkKettenfahrwerk
1111
Unterwagenundercarriage
1212
Oberwagensuperstructure
1313
Arbeitsgerät, RammgerätImplement, piling equipment
1414
Fahrerkabinecab
22
Sensorsensor
2121
Neigungssensortilt sensor
2222
Lagesensorposition sensor
33
Auswerteeinheitevaluation
3131
Filterfilter
44
Steuereinheitcontrol unit
AA
erster kritischer Kippwinkel (1 im Kreis)first critical tilt angle (1 in a circle)
BB
zweiter kritischer Kippwinkel (2 im Kreis)second critical tilt angle (2 in a circle)
CC
dritter kritischer Kippwinkel (3 im Kreis)third critical tilt angle (3 in a circle)
ZZ
vertikale Achsevertical axis

Claims (15)

  1. A construction equipment stabilization method for an item (1) of construction equipment standing or travelling on a yielding subgrade, wherein
    - the item (1) of construction equipment has implements (13) and component parts which are adjustable relative to one another and form an ascertainable, variable system state, and
    - measurement of the inclination of the item (1) of construction equipment takes place, in a continuous manner or though sampling with a high sampling rate,
    characterized by the steps
    - preparation of a subgrade model with which the yieldingness of the subgrade when loaded can be precalculated;
    - calculation of the loading of the subgrade for the particular system state of the item (1) of construction equipment;
    - precalculation of a predictive inclination of the item (1) of construction equipment, taking into account the system state and the subgrade model;
    - comparison of the predictive inclination of the item (1) of construction equipment with the currently measured inclination of the item (1) of construction equipment and iterative adaptation of the subgrade model in order to minimize the difference between predictive inclination and measured inclination;
    - comparison of the predictive inclination for the particular system state, taking into account the subgrade model, with a predetermined tilt criterion and
    - triggering of safety measures when the tilt criterion is reached.
  2. A construction equipment stabilization method according to claim 1, characterized in that the system state of the item (1) of construction equipment is simulated as a vehicle model with different coupled point masses.
  3. A construction equipment stabilization method according to claim 2, characterized in that external loads, namely wind loads acting on the item of construction equipment and/or ground adhering to the item of construction equipment, are taken into account in the vehicle model.
  4. A construction equipment stabilization method according to claim 3, characterized in that the vehicle model dynamically takes into account variations in the system state of the item (1) of construction equipment as well as variations in the external loads.
  5. A construction equipment stabilization method according to claim 2, 3 or 4, characterized in that a contact model between vehicle model and subgrade model simulates the reciprocal influencing.
  6. A construction equipment stabilization method according to claim 5, characterized in that the vehicle model and the subgrade model are taken into account upon precalculation of the predictive inclination of the item (1) of construction equipment, wherein the predictive inclination of the item (1) of construction equipment is compared with the currently measured inclination of the item (1) of construction equipment and an iterative adaptation of the subgrade model and the vehicle model takes place in order to minimize the difference between predictive inclination and measured inclination.
  7. A construction equipment stabilization method according to any one of the preceding claims, characterized in that as a tilt criterion there is calculated a critical tilt angle, matching the particular system state, which is compared with the predictive inclination.
  8. A construction equipment stabilization method according to any one of the preceding claims, characterized in that the data of the inclination measurement and/or the data of the predictive inclination is/are compared with previously determined, critical motion patterns, whereby the safety measures are triggered in the event of correspondence.
  9. A construction equipment stabilization method according to claim 8, characterized in that the previously determined, critical motion pattern is a time series of inclination data, inclination rates or inclination accelerations, which is compared via a concurrent time window with the particular measurement data, its first derivative with respect to time or its second derivative with respect to time.
  10. A construction equipment stabilization method according to any one of the preceding claims, characterized in that the inclination measurement data are filtered for damping and/or smoothing.
  11. A construction equipment stabilization method according to any one of the preceding claims, characterized in that the environment around the item (1) of construction equipment is monitored using a detection sensor system.
  12. A construction equipment stabilization system having an item (1) of construction equipment, which is standing or travelling on yielding subgrade and which has implements (13) and component parts which are adjustable relative to one another and which form an ascertainable, variable system state, and at least one inclination sensor (21), characterized in that an evaluation unit (3) as well as a control unit (4) are provided,
    wherein
    - the evaluation unit (3) includes a subgrade model, with which the yieldingness of the subgrade when loaded can be precalculated, and inclination data measured by the inclination sensor (21) is, taking into account the particular system state, evaluated and compared with predetermined boundary values according to the construction equipment stabilization method according to claim 1 and
    - when the boundary values are exceeded, the evaluation unit (3) triggers the control unit (4) to change the system state to unload the item of construction equipment (1) in the tilt direction.
  13. A construction equipment stabilization system according to claim 12, characterized in that the item (1) of construction equipment has a self-propelled undercarriage (11) with a crawler track (10) and, rotatably mounted thereon, a superstructure (12) with at least one implement (13).
  14. A construction equipment stabilization system according to claim 13, characterized in that the implement (13) on the superstructure (12) is a drilling apparatus or pile-driver (13).
  15. A construction equipment stabilization system according to claim 13 or 14, characterized in that system sensors are provided on the item of construction equipment, its implements and component parts for ascertaining the system state, whereby a first inclination sensor is arranged in the undercarriage (11) and a second inclination sensor is arranged in the superstructure (12).
EP16808558.7A 2015-11-02 2016-11-02 Construction device stabilization method and system Active EP3371383B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015118719 2015-11-02
PCT/DE2016/100515 WO2017076390A1 (en) 2015-11-02 2016-11-02 Construction device stabilization method and system

Publications (2)

Publication Number Publication Date
EP3371383A1 EP3371383A1 (en) 2018-09-12
EP3371383B1 true EP3371383B1 (en) 2020-01-29

Family

ID=57517656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16808558.7A Active EP3371383B1 (en) 2015-11-02 2016-11-02 Construction device stabilization method and system

Country Status (2)

Country Link
EP (1) EP3371383B1 (en)
WO (1) WO2017076390A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767348B2 (en) 2018-07-30 2020-09-08 Deere & Company Machine stability detection and control
CN111314907B (en) * 2020-02-13 2024-03-26 广州佳简通信科技有限公司 Remote data acquisition terminal system
EP4092203A1 (en) * 2021-05-21 2022-11-23 Hilti Aktiengesellschaft Risk management system and risk sensor unit
DE102021128642A1 (en) 2021-11-03 2023-05-04 Weidemann GmbH Construction machine or agricultural machine
CN116630898B (en) * 2023-07-21 2024-03-22 深圳市睿拓新科技有限公司 Intelligent safety management system and method for large-scale engineering construction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2343941A1 (en) 1973-08-31 1975-03-13 Rheinstahl Ag Hanomag Baumasch Mobile hydraulic excavator - lifting mechanism with overload warning and cut off switches
JP2002188183A (en) * 2000-10-12 2002-07-05 Komatsu Ltd Management device for construction equipment
DE20206677U1 (en) 2002-04-26 2002-07-25 Wiesian Willi Safety device for cranes
DE10320382A1 (en) 2003-05-06 2004-12-23 Universität Stuttgart vertreten durch das Institut für Geotechnik Work vehicle having a extending arm system, has sensors in the ground support plates to register load and movement conditions to a computer system to ensure stability
DE102007008881A1 (en) * 2007-02-21 2008-08-28 Putzmeister Concrete Pumps Gmbh Method for setting up a mobile work machine
US20090125196A1 (en) 2007-11-14 2009-05-14 Honeywell International, Inc. Apparatus and method for monitoring the stability of a construction machine
DE102008009002B4 (en) 2008-02-13 2010-03-04 Gräf, Stefan Passive electromechanical tilt switch with adjustable damping
DE102010012888B4 (en) 2010-03-26 2018-02-08 Liebherr-Werk Ehingen Gmbh Construction machinery
US8548689B2 (en) 2010-11-23 2013-10-01 Caterpillar Inc. Implement induced machine pitch detection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3371383A1 (en) 2018-09-12
WO2017076390A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
EP3371383B1 (en) Construction device stabilization method and system
EP2378053B1 (en) Civil construction machine with computer unit for determining an adjustment range
DE102009037880B4 (en) Mobile working machine with a control device with a working arm and method for working point control of a working arm of a mobile working machine
DE102011107754B4 (en) Angle-related procedure for monitoring crane safety during the set-up process, as well as crane and crane control
EP1675760B1 (en) Moveable working device with supporting extension arms
DE112016000014B4 (en) Control system for a work vehicle, control method and work vehicle
EP3303732B1 (en) Large manipulator with articulated mast that can be quickly folded and unfolded
WO2007045426A1 (en) Working mast, in particular for large manipulators and movable concrete pumps
DE19919655B4 (en) Industrial truck with anti-tip device
DE202012104857U1 (en) Safety device for a lifting device
DE102009016366A1 (en) Crane e.g. vehicle crane such as crawler crane, operating method for lifting and shifting load, involves comparing reference position of position detection devices with effective position of detection devices
DE112008003479T5 (en) Control for a constant working tool angle
EP3268538B1 (en) Method of limiting the soil pressure of a constructing machine and constructing machine
EP3362400B1 (en) Arrangement of a control device and a mobile control module
EP2736833A1 (en) Control means
EP3825462B1 (en) Self-propelled construction machine and method for determining the use of a construction machine
DE112013003616B4 (en) Working machine
DE102015005605A1 (en) Excavator system with linkage positioning training
DE3711239C2 (en)
EP3696137B1 (en) Mobile work machine
EP2378054B1 (en) Construction machine with a safety device
EP3769048B1 (en) Device for bearing capacity failure monitoring and system
EP3613903B1 (en) Method for monitoring the structural load of a carrier machine with a drilling and ramming device, and working machine comprising a ramming and drilling device
DE102015222485A1 (en) Method for lifting height and / or swivel angle limitation of an excavator
DE102007055535A1 (en) Mobile crane e.g. crawler crane, for use with vehicle, has control device connected with recording unit and controlling extension and retraction of cylinders based on supporting forces or parameters e.g. pressure, representing forces

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20191209

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1228580

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008577

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200621

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008577

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016008577

Country of ref document: DE

Representative=s name: HANSEN, JOCHEN, DIPL.-GEOPHYS., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1228580

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 8