EP3358187A1 - Flügelzellenpumpe - Google Patents

Flügelzellenpumpe Download PDF

Info

Publication number
EP3358187A1
EP3358187A1 EP16851026.1A EP16851026A EP3358187A1 EP 3358187 A1 EP3358187 A1 EP 3358187A1 EP 16851026 A EP16851026 A EP 16851026A EP 3358187 A1 EP3358187 A1 EP 3358187A1
Authority
EP
European Patent Office
Prior art keywords
vanes
rotor
slits
vane pump
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16851026.1A
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Maki
Tomoyuki Fujita
Tomoyuki Nakagawa
Masamichi Sugihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Publication of EP3358187A1 publication Critical patent/EP3358187A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0863Vane tracking; control therefor by fluid means the fluid being the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0881Construction of vanes or vane holders the vanes consisting of two or more parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0808Carbon, e.g. graphite

Definitions

  • the present invention relates to a vane pump.
  • JP1999-230057A discloses a vane pump including a rotor that is accommodated in a housing and rotationally driven, vanes that move in a sliding manner in slits in the rotor, and a cam ring that is arranged at the outer side of the vanes and forms pump chambers with the rotor, the vanes, and so forth.
  • An object of the present invention is to improve the starting performance of a vane pump.
  • a vane pump includes a rotor linked to a driving shaft; a plurality of slits formed in the rotor in a radiating pattern to open in an outer circumference of the rotor; a plurality of vanes respectively inserted into the plurality of slits in a slidable manner; a cam ring having an inner circumferential surface on which tip-ends of the vanes slide by rotation of the rotor; pump chambers defined by the rotor, the cam ring, and the pair of adjacent vanes, wherein the plurality of vanes have: a plurality of first vanes formed by applying DLC coating on a base material; and a second vane formed such that the base material is exposed, and the first vanes are respectively inserted into at least two adjacent slits of the plurality of slits.
  • FIGs. 1 and 2 An overall configuration of a vane pump 100 according to a first embodiment of the present invention will be described with reference to FIGs. 1 and 2 .
  • the vane pump 100 is used as a fluid pressure source for a fluid pressure apparatus mounted on a vehicle, such as, for example, a power steering apparatus, a continuously variable transmission, or the like.
  • a fluid pressure apparatus mounted on a vehicle
  • the fixed displacement vane pump 100 using working oil as working fluid will be described.
  • the vane pump 100 may also be a variable displacement vane pump.
  • the vane pump 100 includes a plurality of vanes 3 that are provided so as to be able to reciprocate in the radial direction relative to the rotor 2, a cam ring 4 that accommodates the rotor 2 and has a cam face 4a serving as an inner circumferential surface on which tip-ends of the vanes 3 slide by rotation of the rotor 2, a pump body 10 having an accommodating concave portion 10a for accommodating the cam ring 4, and a pump cover 11 that is fastened to the pump body 10 to seal the accommodating concave portion 10a.
  • the driving shaft 1 is rotatably supported by the pump body 10.
  • slits 7 having openings in an outer circumferential surface of the rotor 2 are formed in a radiating pattern with predetermined gaps.
  • the vanes 3 are respectively inserted into the slits 7 in a reciprocatable manner.
  • back pressure chambers 8 into which discharge pressure is guided are defined by base-end portions of the vanes 3.
  • the adjacent back pressure chambers 8 are communicated with each other by a back pressure groove 8a formed in the pump cover 11 (see FIG. 2 ).
  • vanes 3 are provided in the vane pump 100.
  • the vanes 3 are pushed in the directions in which the vanes 3 are drawn out from the slits 7 by the pressure of the working oil guided into the back pressure chambers 8, and tip-end portions of the vanes 3 are brought into contact with the cam face 4a of the cam ring 4.
  • a plurality of pump chambers 6 are defined in the cam ring 4 by the outer circumferential surface of the rotor 2, the cam face 4a of the cam ring 4, and the adjacent vanes 3.
  • the configuration of the vanes 3 will be described in detail later.
  • the cam ring 4 is an annular member in which the cam face 4a on the inner circumference has a substantially oval shape.
  • the cam ring 4 has suction regions 4b in which volumes of the pump chambers 6, which are defined between respective vanes 3 that slide on the cam face 4a by the rotation of the rotor 2, are increased and discharge regions 4c in which volumes of the pump chambers 6 are decreased.
  • respective pump chambers 6 are expanded/contracted by the rotation of the rotor 2.
  • the cam ring 4 has two suction regions 4b and two discharge regions 4c.
  • the pump cover 11 is arranged so as to be in contact with the one side surface of each of the rotor 2 and the cam ring 4 (upper side surface in FIG. 2 ), and a side plate 5 is arranged so as to be in contact with the other side surface of each of the rotor 2 and the cam ring 4 (lower side surface in FIG. 2 ).
  • the pump cover 11 and the side plate 5 are arranged in such a manner that both side surfaces of each of the rotor 2 and the cam ring 4 are sandwiched, and thereby, the pump chambers 6 are sealed.
  • the two arc-shaped suction ports (not shown) are formed so as to respectively open to the two suction regions 4b of the cam ring 4 (see FIG. 1 ) in a corresponding manner and to guide the working oil to the pump chambers 6.
  • a suction passage (not shown) through which a tank (not shown) is communicated with the suction ports and that guides the working oil in the tank into the pump chambers 6 through the suction ports is formed.
  • the side plate 5 has two arc-shaped discharge ports 20 that are formed so as to penetrate through the side plate 5 and open correspondingly to the discharge regions 4c of the cam ring 4.
  • a high-pressure chamber 21 into which the working oil that has been discharged from the pump chambers 6 in the discharge regions 4c is guided is formed.
  • the working oil that has been discharged from the pump chambers 6 is guided the high-pressure chamber 21 through the discharge ports 20 of the side plate 5.
  • the working oil guided into the high-pressure chamber 21 is supplied to an external hydraulic apparatus through a discharge passage (not shown) that is formed in the pump body 10 and is in communication with the high-pressure chamber 21.
  • two arc-shaped back pressure ports 22 that are in communication with the high-pressure chamber 21 are formed.
  • Each of the back pressure ports 22 communicates with the back pressure chambers 8. With such a configuration, the working oil in the high-pressure chamber 21 is guided into the back pressure chambers 8 through the back pressure ports 22.
  • the vane pump 100 As the rotor 2 is rotated, the working oil is sucked from the tank to each of the pump chambers 6 in the suction regions 4b of the cam ring 4 through the suction ports and the suction passage, and the working oil is discharged to the outside from each of the pump chambers 6 in the discharge regions 4c of the cam ring 4 through the discharge ports 20 and the discharge passage. As described above, in the vane pump 100, the working oil is supplied/discharged by expansion/contraction of the respective pump chambers 6 caused by the rotation of the rotor 2.
  • the plurality of vanes 3 have first vanes 3a that are formed by coating DLC (Diamond Like Carbon) on a base material and second vanes 3b that are formed such that the base material is exposed.
  • a state in which the base material is exposed means a state in which the DLC coating is not applied over the entirety of the vane 3 and the surface of the base material remains exposed as the surface of the vane 3.
  • the plurality of vanes 3 have two first vanes 3a that are respectively inserted into the slits 7, which are adjacent to each other. Because the first vanes 3a on which the DLC coating is applied have a superior slidability, the viscous resistance of the working oil has less effect on the first vanes 3a. Thus, even in the low-temperature situation in which the viscosity and the viscous resistance of the working oil are high, the first vanes 3a project out from the slits 7 easily by the rotation of the rotor 2. Thereby, one pump chamber (hereinafter referred to as "an initial pump chamber 6a”) is defined by the adjacent first vanes 3a, and the starting performance of the vane pump 100 in the low-temperature situation is improved.
  • an initial pump chamber 6a one pump chamber
  • the initial pump chamber 6a is defined by the two adjacent first vanes 3a
  • a part of the working oil discharged from the initial pump chamber 6a is guided into the back pressure chambers 8 through the high-pressure chamber 21 and the back pressure ports 22.
  • the second vanes 3b on which the DLC coating is not applied are also pushed into the directions in which the second vanes 3b are drawn out from the slits 7 by the pressure in the back pressure chambers 8, and thereby, the second vanes 3b project out from the slits 7 and define the pump chambers 6.
  • the initial pump chamber 6a is defined by the two first vanes 3a, it is possible to facilitate projection of other vanes 3 (the second vanes 3b) from the slits 7, and so, it is possible to further improve the starting performance in the low-temperature situation.
  • the first vanes 3a have the superior slidability, because the DLC coating is applied on the base material, the cost required for the manufacture is high. Thus, if all of the plurality of vanes 3 are formed as the first vanes 3a in order to improve the starting performance of the vane pump 100, the manufacturing cost of the vane pump 100 is increased.
  • the wear resistance of the first vanes 3a is also improved.
  • the durability of the vane pump 100 is also improved.
  • the vane pump 100 has the two suction regions 4b and two discharge regions 4c.
  • the vane pump 100 may have one or at least three suction regions 4b and one or at least three discharge regions 4c.
  • the first vanes 3a project out from the slits 7 easily by the centrifugal force caused by the rotation of the rotor 2.
  • the initial pump chamber 6a is formed easily by the adjacent first vanes 3a. Therefore, it is possible to improve the starting performance of the vane pump 100.
  • the initial pump chamber 6a is defined by the two adjacent first vanes 3a
  • the working oil is guided into the back pressure chambers 8 through the high-pressure chamber 21 and the back pressure ports 22, and so, the second vanes 3b also project out from the slits 7 and define the pump chambers 6.
  • the initial pump chamber 6a is defined by the two first vanes 3a, it is possible to facilitate projection of the second vanes 3b from the slits 7, and so, it is possible to further improve the starting performance in the low-temperature situation.
  • the vane pump 100 even there are only two adjacent first vanes 3a, because the initial pump chamber 6a is defined by the first vanes 3a at the starting time and the working oil is guided into the respective back pressure chambers 8, the projection of the second vanes 3b from the slits 7 is facilitated. Therefore, by forming only two adjacent vanes 3 of twelve vanes 3 as the first vanes 3a, it is possible to improve the starting performance of the vane pump 100 in the low-temperature situation, and at the same time, it is possible to suppress the increase in the manufacturing cost of the vane pump 100.
  • a vane pump 200 according to a second embodiment of the present invention will be described with reference to FIG. 3 .
  • differences from the above-mentioned first embodiment will be mainly described, and components that are the same as those in the vane pump 100 in the above-mentioned first embodiment are assigned the same reference numerals and descriptions thereof will be omitted.
  • the two adjacent first vanes 3a are provided, and all the vanes 3 other than the first vanes 3a are formed as the second vanes 3b.
  • the vane pump 200 differs from that in the above-mentioned first embodiment in that three first vanes 3a are provided.
  • the vane pump 200 has three first vanes 3a and nine second vanes 3b.
  • the three first vanes 3a are arranged side by side in a consecutive manner, and two initial pump chambers 6a are respectively defined between the first vanes 3a.
  • the vane pump 200 similarly to the vane pump 100, because the sliding resistance of the first vanes 3a on which the DLC coating is applied is small, even in the low-temperature situation, the first vanes 3a project out from the slits 7 easily by the centrifugal force caused by the rotation of the rotor 2. Thus, at the starting time of the vane pump 200, the initial pump chambers 6a are formed easily by the consecutive three first vanes 3a. Therefore, it is possible to improve the starting performance of the vane pump 200.
  • the vane pump 200 similarly to the vane pump 100, because the initial pump chambers 6a are each defined by the two adjacent first vanes 3a, the working oil is guided into the back pressure chambers 8 through the high-pressure chamber 21 and the back pressure ports 22, and thereby, the second vanes 3b also project out from the slits 7 and form the pump chambers.
  • two initial pump chambers 6a are defined by the three first vanes 3a, it is possible to facilitate projection of the second vanes 3b from the slits 7, and so, it is possible to further improve the starting performance in the low-temperature situation.
  • the first vanes 3a project out from the slits 7 easily, and the projected first vanes 3a are pushed back into the slits 7 as they enter the discharge regions 4c.
  • the working oil in the back pressure chambers 8 defined by these first vanes 3a is guided into the back pressure chambers 8 in the adjacent suction regions 4b through the back pressure groove 8a. Thereby, it is possible to further facilitate projection of the vanes 3 in the suction regions 4b.
  • the vane pump 200 because two initial pump chambers 6a are defined, it is possible to increase the flowing amount of the working oil guided into the back pressure chambers 8 at the starting time. Thus, it is possible to allow the second vanes 3b to project out from the slits 7 with high reliability, and it is possible to further improve the starting performance of the vane pump 200.
  • a vane pump 300 according to a third embodiment of the present invention will be described with reference to FIG. 4 .
  • differences from the above-mentioned second embodiment will be mainly described, and components that are the same as those in the vane pump 200 in the above-mentioned second embodiment are assigned the same reference numerals and descriptions thereof will be omitted.
  • two initial pump chambers 6a are defined by the consecutive three first vanes 3a arranged side by side.
  • the vane pump 300 differs from that in the above-mentioned second embodiment in that the two initial pump chambers 6a are defined by four first vanes 3a.
  • the vanes 3 have four first vanes 3a and eight second vanes 3b.
  • the four first vanes 3a are arranged such that pairs of the adjacent first vanes 3a face against each other with the center of the rotor 2 located therebetween.
  • one initial pump chamber 6a is defined by two adjacent first vanes 3a, and two initial pump chambers 6a that face against each other with the center of the rotor 2 located therebetween are defined by the four first vanes 3a.
  • a state in which a part of the vanes 3 are moved downward in the vertical direction due to the gravitational force and are brought into contact with the cam face 4a (a state in which the vanes 3 are projected out from the slits 7) may be maintained even when the operation is stopped.
  • the vane pump 300 because the two initial pump chambers 6a that face against each other with the center of the rotor 2 located therebetween are defined, when the operation is stopped, as compared with the case in the vane pumps 100 and 200 according to the first and second embodiments, the first vanes 3a are more likely to be located at the position where a state in which the first vanes 3a are projected out from the slits 7 is achieved (in particular, at the lower portion in the vertical direction). Therefore, in the vane pump 300, even when the operation is stopped, the initial pump chamber 6a is likely to be defined, and it is possible to further improve the starting performance.
  • the vane pumps 100, 200, and 300 include: the rotor 2 that is linked to the driving shaft 1; the plurality of slits 7 that are formed in the rotor 2 in a radiating pattern and have opening in the outer circumference of the rotor 2; the plurality of vanes 3 that are respectively inserted into the plurality of slits 7 in a slidable manner; the cam ring 4 that has the cam face 4a on which the tip-ends of the vanes 3 slide by the rotation of the rotor 2; and the pump chambers 6 that are defined by the rotor 2, the cam ring 4, and a pair of adjacent vanes 3.
  • the plurality of vanes 3 have the plurality of first vanes 3a that are formed by applying the DLC coating on the base material and the second vanes 3b that are formed such that the base material is exposed, and the first vanes 3a are respectively inserted into at least two adjacent slits 7 of the plurality of slits 7.
  • the vane pumps 100, 200, and 300 further include the back pressure chambers 8 that are defined in the slits 7 by the base-end portions of the vanes 3 and into which the working oil discharged from the pump chambers 6 is guided.
  • the initial pump chamber 6a is defined by the two adjacent first vanes 3a
  • the working oil is guided into the back pressure chambers 8, and the second vanes 3b also project out from the slits 7 by the pressure of the working oil in the back pressure chambers 8 and define the pump chambers 6.
  • the initial pump chamber 6a is defined by the two first vanes 3a, it is possible to facilitate projection of the second vanes 3b from the slits 7, and so, it is possible to further improve the starting performance in the low-temperature situation.
  • the plurality of vanes 3 have two first vanes 3a.
  • the vane pump 200 has three first vanes 3a, and the three first vanes 3a are arranged side by side in a consecutive manner.
  • the vane pump 300 has four first vanes 3a, and the four first vanes 3a are arranged such that the pairs of the adjacent first vanes 3a face against each other with the center of the rotor 2 located therebetween.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
EP16851026.1A 2015-09-29 2016-09-02 Flügelzellenpumpe Withdrawn EP3358187A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015191667A JP6480841B2 (ja) 2015-09-29 2015-09-29 ベーンポンプ
PCT/JP2016/075860 WO2017056850A1 (ja) 2015-09-29 2016-09-02 ベーンポンプ

Publications (1)

Publication Number Publication Date
EP3358187A1 true EP3358187A1 (de) 2018-08-08

Family

ID=58423246

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16851026.1A Withdrawn EP3358187A1 (de) 2015-09-29 2016-09-02 Flügelzellenpumpe

Country Status (6)

Country Link
US (1) US20180306182A1 (de)
EP (1) EP3358187A1 (de)
JP (1) JP6480841B2 (de)
CN (1) CN108026921A (de)
MX (1) MX2018003766A (de)
WO (1) WO2017056850A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076338A (ja) * 2018-11-06 2020-05-21 株式会社ミクニ ベーンポンプ及びロータ組立体
KR102553909B1 (ko) * 2021-09-13 2023-07-07 현대트랜시스 주식회사 변속기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04269387A (ja) * 1991-02-25 1992-09-25 Toyoda Mach Works Ltd ベーンポンプ
US5672054A (en) * 1995-12-07 1997-09-30 Carrier Corporation Rotary compressor with reduced lubrication sensitivity
JP4616140B2 (ja) * 2005-09-30 2011-01-19 三菱電機株式会社 密閉形圧縮機及び給湯機
JP2007284760A (ja) * 2006-04-18 2007-11-01 Toyota Motor Corp 摺動部材
JP2014181635A (ja) * 2013-03-19 2014-09-29 Jtekt Corp ベーン構造およびベーン装置

Also Published As

Publication number Publication date
US20180306182A1 (en) 2018-10-25
JP6480841B2 (ja) 2019-03-13
JP2017066937A (ja) 2017-04-06
MX2018003766A (es) 2018-07-06
CN108026921A (zh) 2018-05-11
WO2017056850A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
US20140234150A1 (en) Vane pump
JP5282681B2 (ja) ベーンポンプ
US9879670B2 (en) Variable displacement vane pump
US9644626B2 (en) Vane pump
JP6674448B2 (ja) 偏心駆動ベーンを備えた真空ポンプ(偏心ポンプ設計)
EP3358187A1 (de) Flügelzellenpumpe
US9611848B2 (en) Variable displacement vane pump having connection groove communicating with suction-side back pressure port thereof
US9995301B2 (en) Vane pump and vane pump manufacturing method
US9856873B2 (en) Vane pump
EP3037663A1 (de) Pumpe mit variabler verdrängung
JP6670119B2 (ja) ベーンポンプ
JP2014177902A (ja) ベーンポンプ装置
JP6770370B2 (ja) ベーンポンプ
WO2018043433A1 (ja) ベーンポンプ
US11644031B2 (en) Vane pump with tip-end-side guide surfaces provided between inner and outer notches of the discharge port and base-end-side guide surface provided in the back pressure port
US11598334B2 (en) Vane pump having a side member including a triangular-shaped protruding opening portion in communication with a back pressure opening portion for preventing wear of an inner circumference cam face
EP3351798A1 (de) Flügelzellenpumpe
WO2019216173A1 (ja) ベーンポンプ
EP3348838A1 (de) Flügelzellenpumpe
JP6496586B2 (ja) ベーンポンプ
JP5060444B2 (ja) 可変容量型ベーンポンプ
JP2020041465A (ja) ベーンポンプ
JP2009293522A (ja) ベーンポンプ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20180425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20181220