EP3339784A1 - Method for operating an installation and assembly with an installation - Google Patents

Method for operating an installation and assembly with an installation Download PDF

Info

Publication number
EP3339784A1
EP3339784A1 EP17020053.9A EP17020053A EP3339784A1 EP 3339784 A1 EP3339784 A1 EP 3339784A1 EP 17020053 A EP17020053 A EP 17020053A EP 3339784 A1 EP3339784 A1 EP 3339784A1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
storage tank
plant
gaseous nitrogen
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17020053.9A
Other languages
German (de)
French (fr)
Inventor
Dimitri GOLUBEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP3339784A1 publication Critical patent/EP3339784A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • the invention is in the field of plants using gaseous nitrogen and relates to a method for operating a plant and an arrangement with a plant according to the preambles of the independent claims.
  • Liquid nitrogen is needed for a wide variety of applications. Liquid nitrogen can be obtained, for example, from gaseous nitrogen in a nitrogen liquefaction plant.
  • a provision of gaseous nitrogen can be carried out, for example, by means of an air separation unit (ASU). If "nitrogen” is mentioned below, it may be pure nitrogen or a nitrogen-rich gas mixture with, for example, more than 80, 90, 95 or 99 mol% of nitrogen. In an air separation plant can also be provided directly a provision of liquid nitrogen.
  • ASU air separation unit
  • Air separation plants have distillation column systems which include, for example, two or three column arrangements for providing nitrogen and oxygen rich air products.
  • at least one so-called (high) pressure column and a so-called low pressure column are present.
  • the operating pressure of the high-pressure column is, for example, 4.3 to 6.9 bar, preferably about 5.3 bar.
  • the low-pressure column is operated at an operating pressure of, for example, 1.3 to 1.7 bar, preferably about 1.4 bar.
  • the stated pressure values are present in the bottom of corresponding columns. It may also be present, for example, so-called medium-pressure columns, which at a Operating pressure can be operated, which lies between the above values.
  • the low-pressure column may also be formed in two parts.
  • the literature refer to the literature.
  • the classical air separation process with the double-column method allows the removal of a certain amount of gaseous nitrogen at the top of the high-pressure column. Also conceivable is a removal of liquid and gaseous nitrogen at the top of the low-pressure column.
  • Liquid nitrogen recovered by means of a nitrogen liquefaction plant or an air separation plant can now be stored in an external storage tank designed for storage of liquid nitrogen for later use. It is also conceivable to store the liquid nitrogen produced by several nitrogen liquefaction plants and / or air separation plants in a common storage tank.
  • the object of the present invention is to make a process for liquefying nitrogen or making available liquid nitrogen more energy-efficient overall.
  • the present invention is based on a known per se method for operating a system with lines for one or more streams of gaseous nitrogen to produce liquid nitrogen, for example directly in the system, which may include in particular an air separation plant and / or a nitrogen liquefaction plant, but in particular also using of gaseous nitrogen from the air separation plant, that of the nitrogen liquefaction plant is supplied, as explained in more detail above.
  • the lines provided in the system for one or more streams of gaseous nitrogen can be passed through a heat exchanger, in particular a main heat exchanger, the plant and serve at least partially for the provision and / or supply of gaseous nitrogen and / or are used in a circuit of the plant , Liquid nitrogen is supplied to an external storage tank for liquid nitrogen.
  • An “external” storage tank is understood to mean a storage tank which is arranged outside the plant, that is to say in particular the air separation plant and / or the nitrogen liquefaction plant, and in particular is exposed to the ambient temperature.
  • An external storage tank is therefore not located in particular in a cold box containing other apparatuses of the air separation plant such as heat exchangers and / or distillation columns.
  • An external storage tank thus differs from any existing storage containers within an air separation plant or nitrogen liquefaction plant, as may be provided, for example, for temporary or longer-term buffering of liquid nitrogen to compensate for production fluctuations.
  • An external storage tank also differs from such internal storage tanks in that it does not remove any liquid nitrogen and returns it to the air separation plant or nitrogen liquefaction plant, particularly a distillation column system used in such a plant.
  • the liquid nitrogen is supplied from the storage tank and the system.
  • an external storage tank it is understood that within the scope of the present invention, several storage tanks, in particular in the form of a so-called tank farm, can be used.
  • a stream or its part that is "used in a system circulation eg, co-compressed in a cycle compressor of the air separation plant, is at least partially recycled to at least one distillation column of the air separation plant each partially or completely heated gaseous nitrogen stream, cooled, and fed into the high-pressure column, as well as in FIG. 4 shown.
  • the external storage tank in which the liquid nitrogen is stored so-called flat bottomed tanks with appropriate insulation can be used.
  • Such commonly used flat bottom tanks are usually operated under a relatively low pressure of about 50 to 100 mbar.
  • the liquid nitrogen which is undercooled, for example, to about 81 K, can be conveyed to the external storage tank under a pressure of about 5 to 6 bar.
  • the external storage tank may for example have a storage volume of about 500 to about 5000 m 3 .
  • flash gas is created when throttling to the operating pressure in the external tank.
  • the amount of flash gas (for example, about 3 to 4% of the total liquid nitrogen at the plant boundary) is combined with so-called boil-off losses, ie losses due to the evaporation of the liquid nitrogen, which greatly depends on the size of the external storage tank and also depend on its isolation, derived to the environment. Not only the nitrogen molecules but also the exergy of the cold are lost. Such losses also occur when the liquid nitrogen from an air separation plant is fed into the storage tank
  • a higher overpressure may be provided in the storage tank.
  • gaseous nitrogen is now taken from the external storage tank and one (or more) of the gaseous nitrogen streams and passed through a heat exchanger of the system.
  • the gaseous nitrogen may preferably first be passed through the heat exchanger separately and then fed to the stream (or possibly the several streams) of gaseous nitrogen.
  • the gaseous nitrogen is supplied to the stream of gaseous nitrogen or combined with such a stream, before the current is conducted at a cold end of the heat exchanger in the heat exchanger.
  • the idea here is to recover the cold from the flash gas and evaporative losses by recycling this cold gaseous nitrogen into the plant and, for example, to save a corresponding amount of gaseous nitrogen to be supplied for liquefaction and / or an amount of gaseous feed to be otherwise provided Increase nitrogen.
  • this cold gaseous nitrogen for example, in the air separation plant is conceivable without increasing the operating pressure in the storage tank.
  • by a higher operating pressure easier recycle of the gaseous nitrogen is possible. In this way, in particular an additional recompression of the nitrogen can be saved.
  • the liquid nitrogen is recovered in a nitrogen liquefaction plant as a plant (or part of the plant) to which gaseous nitrogen is fed for liquefaction and fed via a line to the external liquid nitrogen storage tank. It is particularly expedient if one of the streams of gaseous nitrogen of an air separation plant also present as part of the plant, which serve to provide gaseous nitrogen, the nitrogen liquefaction plant is supplied for liquefaction.
  • the air separation plant thus provides (at least partially) the gaseous nitrogen required for the nitrogen liquefaction plant.
  • cold which is performed in the form of liquid nitrogen in the storage tank, here from the nitrogen liquefaction plant, partially recover, instead of losing them unused.
  • the nitrogen liquefaction plant can thus be operated more efficiently.
  • liquid nitrogen is recovered in a distillation column of the air separation plant, in particular comes here a pressure column, and via a line to the external storage tank for liquid nitrogen, in particular. from the head of the low-pressure column or from a separate separator in the pressure column or the rectification box.
  • a pressure column for liquid nitrogen, in particular. from the head of the low-pressure column or from a separate separator in the pressure column or the rectification box.
  • liquid nitrogen can be generated and also provided.
  • the present invention thus makes it possible to partially recycle and utilize refrigeration, which is fed into the storage tank by the air separation plant in the form of liquid nitrogen, instead of losing it unused. Such an air separation plant can thus be operated more efficiently.
  • liquid nitrogen from both an air separation plant and a nitrogen liquefaction plant is conveyed into a common storage tank.
  • the gaseous nitrogen from the external storage tank can then continue to be used (optionally only partially) in the air separation plant in the heat exchanger.
  • gaseous nitrogen can then additionally be taken from the external storage tank and fed to the nitrogen liquefaction plant.
  • the gaseous nitrogen taken from the storage tank and supplied to the stream (or streams) of gaseous nitrogen passed through the heat exchanger before or after that stream (or possibly the multiple streams) ) is passed through a subcooler.
  • a subcooler By means of a subcooler, it is possible to reduce flash losses when the pressure is reduced, in particular to a pressure which is relevant for the storage tank. If the liquid stream is undercooled, less flash gas will flow to the valve when the liquid is being added to the storage tank.
  • Such a subcooler can be provided not only in a separate nitrogen liquefaction plant, but also in air separation plants. There, in addition to the liquid nitrogen and other air products can be cooled.
  • the gaseous nitrogen is supplied to the corresponding stream only after it has been passed through the subcooler, but that the gaseous nitrogen from the storage tank is also previously conducted separately through the subcooler. Depending on the situation thus, the cold of the gaseous nitrogen from the storage tank in the subcooler and / or in the heat exchanger can be used.
  • the gaseous nitrogen removed from the storage tank and fed to one of the streams of gaseous nitrogen and passed through the heat exchanger can be maintained.
  • the use of boil-off losses from the storage tank can (possibly in addition to other measures) be helpful in counteracting the temperature compensation in the heat exchanger given by the longitudinal heat conduction. This can e.g. be ensured that a similar large (but warm) nitrogen stream is cooled in countercurrent and discharged, for example through the drain line from a liquid to the environment.
  • FIG. 1 a nitrogen liquefaction plant for the liquefaction of gaseous nitrogen of a known type is shown in the form of a schematic process flow diagram. The present invention will first be explained in more detail with reference to such a nitrogen liquefaction plant in various preferred embodiments.
  • Nitrogen liquefaction plants of the type shown are often described elsewhere, for example in Frank G. Kerry, Industrial Gas Handbook, Gas Separation And Purification, CRC Press, Taylor & Francis Group, 2007 , For detailed explanations on the structure and mode of operation, reference is therefore made to corresponding technical literature.
  • a nitrogen liquefaction plant can be designed in different ways.
  • a nitrogen liquefaction plant 100 is shown, to which gaseous nitrogen (stream a) is supplied.
  • gaseous nitrogen stream a
  • various heat exchangers, compressors and expansion turbines, in particular also a main heat exchanger 150 and a separator 155 liquid nitrogen is produced, which is further cooled in a subcooler 160 and then fed in a stream b to a storage tank 200 for liquid nitrogen.
  • the storage tank 200 is now formed due to evaporation of gaseous nitrogen, which can be drained unused in conventional operation, for example as a stream d via a pipe and a valve.
  • gaseous nitrogen which can be drained unused in conventional operation, for example as a stream d via a pipe and a valve.
  • formed during transport of the liquid nitrogen from the subcooler 160 via the corresponding line (stream b) in the storage tank 200 flash gas, which is also undesirable.
  • this gaseous nitrogen (stream c) is fed upstream of the subcooler 160 into a stream of gaseous nitrogen (here a low pressure stream), the stream e itself being passed through the subcooler 160.
  • the cooling energy of the flow c in the main heat exchanger 150 can be utilized, whereby the entire liquefaction process becomes more efficient.
  • the current e is also fed back to the current a, i. the amount of gaseous nitrogen conducted in the stream c is supplied via the stream e to the stream a and thus again to the liquefaction process. This means that a smaller amount of newly feeding, gaseous nitrogen is necessary, but still the same amount of liquid nitrogen and also with less energy can be generated.
  • FIG. 3 shows another nitrogen liquefaction plant 100 ', which essentially corresponds to the nitrogen liquefaction plant 100 according to FIG. 1 equivalent.
  • the cooling energy of the flow c can be used not only in the main heat exchanger 150, but already in the subcooler 160, whereby the entire liquefaction process is also more efficient.
  • FIG. 2 shows another nitrogen liquefaction plant 100 ", which likewise essentially corresponds to the nitrogen liquefaction plant 100 according to FIG. 1 equivalent.
  • no subcooler and thus also no corresponding, recirculating stream of gaseous nitrogen are provided here.
  • the stream c of gaseous and cold nitrogen from the storage tank 200 is here instead of the current e passed through the main heat exchanger 150 and then, as in the previous cases, the stream e, fed into the stream a.
  • the cooling energy of the stream c in the main heat exchanger 150 can be used.
  • the required amount of gaseous nitrogen can be reduced for liquefaction.
  • FIG. 4 An air separation plant of a known type is shown, with which, in addition to other air products, both gaseous and liquid nitrogen can be provided and by means of which a method according to the invention is to be explained in a further preferred embodiment.
  • Air separation plants of the type shown are often described elsewhere, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, in particular Section 2.2.5, "Cryogenic Rectification Reference should therefore be made to the corresponding specialist literature for detailed explanations on the structure and mode of operation An air separation plant for use of the present invention may be designed in many different ways.
  • the air separation plant 300 shown has, inter alia, a main air compressor 301, a pre-cooler 302, a purification system 303, a main heat exchanger 350 and a distillation column system 310.
  • the distillation column system 310 in the example shown comprises a classic double column arrangement comprising a (high) pressure column 311 and a low pressure column 312 and a crude argon column 313 and a pure argon column 314.
  • GAN Atm gaseous nitrogen
  • GOX Atm gaseous oxygen
  • DLIN liquid nitrogen
  • another stream of gaseous nitrogen (stream g) is branched off, in the so-called feed compressor (305) to approximately the pressure in the pressure column (minus any pressure losses) compressed and a cycle compressor (306) fed and then passed through the main heat exchanger 350 in addition to the provision of pressurized nitrogen (DGAN).
  • feed compressor (305) to approximately the pressure in the pressure column (minus any pressure losses) compressed and a cycle compressor (306) fed and then passed through the main heat exchanger 350 in addition to the provision of pressurized nitrogen (DGAN).
  • DGAN pressurized nitrogen
  • liquid nitrogen which is generated in the pressure column 311, taken in a stream b.
  • This flow of liquid nitrogen liquid is now fed to a storage tank 200 for liquid nitrogen.
  • the air separation plant 300 thus forms a preferred embodiment of an arrangement according to the invention.
  • the storage tank 200 corresponds to that according to FIGS. 1 to 3 In this respect, reference should also be made to the description there.
  • gaseous and cold nitrogen is produced due to evaporation and flash gas, which is now conducted as stream c back into the air separation plant 300.
  • stream c gaseous nitrogen fed into the stream f and before it passes through the subcooler 360.
  • the cooling energy of the flow c can be utilized both in the subcooler 360 and in the main heat exchanger 350, making the entire air separation process more efficient.
  • the stream c is supplied to the stream f, via which gaseous, as pure as possible nitrogen from the air separation process is provided, the total amount of gaseous nitrogen provided can be increased. It should be noted that the stream c is also very pure, gaseous nitrogen, since it is produced directly from liquid nitrogen.
  • a nitrogen liquefaction plant as in the FIGS. 1 to 3 can be provided, which gaseous nitrogen is supplied from the air separation plant for liquefaction, wherein the liquid nitrogen produced there can also be supplied into the storage tank shown here.
  • the flow of gaseous nitrogen from the storage tank can then continue, as in FIG. 4 shown to be fed to the air separation plant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Anlage (300) mit Leitungen für einen oder mehrere Ströme (f) gasförmigen Stickstoffs, die zumindest zum Teil zur Bereitstellung und/oder Zufuhr gasförmigen Stickstoffs dienen und/oder in einem Kreislauf der einen Anlage (300) verwendet werden, wobei flüssiger Stickstoff (b) einem externen Speichertank (200) für flüssigen Stickstoff zugeführt wird, wobei gasförmiger Stickstoff (c) aus dem externen Speichertank (200) entnommen, einem der Ströme (f) gasförmigen Stickstoffs und durch einen Wärmetauscher (350) der einen Anlage (300) geführt wird, sowie eine Anordnung mit einer solchen Anlage (300) und einem solchen externen Speichertank (200).The invention relates to a method for operating a system (300) with lines for one or more streams (f) of gaseous nitrogen, which at least partially serve to supply and / or supply gaseous nitrogen and / or in a circuit of a plant (300). wherein liquid nitrogen (b) is supplied to an external liquid nitrogen storage tank (200), gaseous nitrogen (c) being taken from the external storage tank (200), one of the gaseous nitrogen streams (f) and a heat exchanger (350 ) of a plant (300) is guided, and an arrangement with such a plant (300) and such an external storage tank (200).

Description

Die Erfindung liegt auf dem Gebiet der Anlagen mit Verwendung gasförmigen Stickstoffs und betrifft ein Verfahren zum Betreiben einer Anlage sowie eine Anordnung mit einer Anlage gemäß den Oberbegriffen der unabhängigen Patentansprüche.The invention is in the field of plants using gaseous nitrogen and relates to a method for operating a plant and an arrangement with a plant according to the preambles of the independent claims.

Stand der TechnikState of the art

Flüssiger Stickstoff wird für verschiedenste Anwendungen benötigt. Flüssiger Stickstoff kann beispielsweise aus gasförmigem Stickstoff in einer Stickstoffverflüssigungsanlage gewonnen werden.Liquid nitrogen is needed for a wide variety of applications. Liquid nitrogen can be obtained, for example, from gaseous nitrogen in a nitrogen liquefaction plant.

Eine Bereitstellung gasförmigen Stickstoffs kann beispielsweise mittels einer Luftzerlegungsanlage (engl. "Air Separation Unit", ASU) erfolgen. Ist nachfolgend von "Stickstoff" die Rede, kann es sich um Reinstickstoff aber auch um ein stickstoffreiches Gasgemisch mit beispielsweise mehr als 80, 90, 95 oder 99 mol-% Stickstoff handeln. Bei einer Luftzerlegungsanlage kann zudem auch direkt eine Bereitstellung flüssigen Stickstoffs vorgesehen sein.A provision of gaseous nitrogen can be carried out, for example, by means of an air separation unit (ASU). If "nitrogen" is mentioned below, it may be pure nitrogen or a nitrogen-rich gas mixture with, for example, more than 80, 90, 95 or 99 mol% of nitrogen. In an air separation plant can also be provided directly a provision of liquid nitrogen.

Die Herstellung von Luftprodukten in flüssigem oder gasförmigem Zustand durch Tieftemperaturzerlegung von Luft in Luftzerlegungsanlagen ist bekannt und beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification ", beschrieben.The production of air products in the liquid or gaseous state by cryogenic separation of air in air separation plants is known and, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, especially Section 2.2.5, "Cryogenic Rectification ", described.

Luftzerlegungsanlagen weisen Destillationssäulensysteme auf, die beispielsweise Zwei- oder Dreisäulenanordnungen zur Bereitstellung von stickstoff- und sauerstoffreichen Luftprodukten umfassen. Typischerweise sind dabei zumindest eine sogenannte (Hoch-)Drucksäule und eine sogenannte Niederdrucksäule vorhanden. Der Betriebsdruck der Hochdrucksäule beträgt beispielsweise 4,3 bis 6,9 bar, vorzugsweise etwa 5,3 bar. Die Niederdrucksäule wird bei einem Betriebsdruck von beispielsweise 1,3 bis 1,7 bar, vorzugsweise etwa 1,4 bar betrieben. Die genannten Druckwerte liegen im Sumpf entsprechender Säulen vor. Es können auch beispielsweise sogenannte Mitteldrucksäulen vorhanden sein, die bei einem Betriebsdruck betrieben werden, der zwischen den genannten Werten liegt. Insbesondere die Niederdrucksäule kann auch zweiteilig ausgebildet sein. Zu Details sei auf die Fachliteratur verwiesen.Air separation plants have distillation column systems which include, for example, two or three column arrangements for providing nitrogen and oxygen rich air products. Typically, at least one so-called (high) pressure column and a so-called low pressure column are present. The operating pressure of the high-pressure column is, for example, 4.3 to 6.9 bar, preferably about 5.3 bar. The low-pressure column is operated at an operating pressure of, for example, 1.3 to 1.7 bar, preferably about 1.4 bar. The stated pressure values are present in the bottom of corresponding columns. It may also be present, for example, so-called medium-pressure columns, which at a Operating pressure can be operated, which lies between the above values. In particular, the low-pressure column may also be formed in two parts. For details refer to the literature.

Der klassische Luftzerlegungsprozess mit dem Doppelsäulen-Verfahren erlaubt beispielsweise die Entnahme einer bestimmten Menge an gasförmigem Stickstoff am Kopf der Hochdrucksäule. Denkbar ist zudem auch eine Entnahme flüssigen und gasförmigen Stickstoffs am Kopf der Niederdrucksäule.For example, the classical air separation process with the double-column method allows the removal of a certain amount of gaseous nitrogen at the top of the high-pressure column. Also conceivable is a removal of liquid and gaseous nitrogen at the top of the low-pressure column.

Flüssiger Stickstoff, der mittels einer Stickstoffverflüssigungsanlage oder einer Luftzerlegungsanlage gewonnen wird, kann nun in einem externen Speichertank, der für die Speicherung flüssigen Stickstoffs ausgebildet ist, für eine spätere Verwendung gespeichert bzw. bereitgehalten werden. Denkbar ist dabei auch, den von mehreren Stickstoffverflüssigungsanlagen und/oder Luftzerlegungsanlagen erzeugten flüssigen Stickstoff in einem gemeinsamen Speichertank zu speichern.Liquid nitrogen recovered by means of a nitrogen liquefaction plant or an air separation plant can now be stored in an external storage tank designed for storage of liquid nitrogen for later use. It is also conceivable to store the liquid nitrogen produced by several nitrogen liquefaction plants and / or air separation plants in a common storage tank.

Die vorliegende Erfindung stellt sich vor diesem Hintergrund die Aufgabe, einen Prozess zur Verflüssigung von Stickstoff bzw. eine Bereithaltung flüssigen Stickstoffs insgesamt energieeffizienter zu gestalten.Against this background, the object of the present invention is to make a process for liquefying nitrogen or making available liquid nitrogen more energy-efficient overall.

Offenbarung der ErfindungDisclosure of the invention

Diese Aufgabe wird durch ein Verfahren zum Betreiben einer Anlage sowie eine Anordnung mit einer Anlage mit den Merkmalen der unabhängigen Patentansprüche gelöst. Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.This object is achieved by a method for operating a system and an arrangement with a system having the features of the independent patent claims. Embodiments are the subject of the dependent claims and the following description.

Vorteile der ErfindungAdvantages of the invention

Die vorliegende Erfindung geht von einem an sich bekannten Verfahren zum Betreiben einer Anlage mit Leitungen für einen oder mehrere Ströme gasförmigen Stickstoffs unter Erzeugung flüssigen Stickstoffs beispielsweise direkt in der Anlage, die insbesondere eine Luftzerlegungsanlage und/oder eine Stickstoffverflüssigungsanlage umfassen kann, insbesondere aber auch unter Verwendung von gasförmigem Stickstoff aus der Luftzerlegungsanlage, der der Stickstoffverflüssigungsanlage zugeführt wird, aus, wie dies eingangs näher erläutert wurde. Die in der Anlage vorgesehenen Leitungen für einen oder mehrere Ströme gasförmigen Stickstoffs, können durch einen Wärmetauscher, insbesondere einen Hauptwärmetauscher, der Anlage geführt werden und dienen zumindest zum Teil zur Bereitstellung und/oder Zufuhr gasförmigen Stickstoffs und/oder werden in einem Kreislauf der Anlage verwendet. Flüssiger Stickstoff wird dabei einem externen Speichertank für flüssigen Stickstoff zugeführt.The present invention is based on a known per se method for operating a system with lines for one or more streams of gaseous nitrogen to produce liquid nitrogen, for example directly in the system, which may include in particular an air separation plant and / or a nitrogen liquefaction plant, but in particular also using of gaseous nitrogen from the air separation plant, that of the nitrogen liquefaction plant is supplied, as explained in more detail above. The lines provided in the system for one or more streams of gaseous nitrogen can be passed through a heat exchanger, in particular a main heat exchanger, the plant and serve at least partially for the provision and / or supply of gaseous nitrogen and / or are used in a circuit of the plant , Liquid nitrogen is supplied to an external storage tank for liquid nitrogen.

Unter einem "externen" Speichertank wird dabei ein Speichertank verstanden, der außerhalb der Anlage, also insbesondere der Luftzerlegungsanlage und/oder der Stickstoffverflüssigungsanlage, angeordnet ist und insbesondere der Umgebungstemperatur ausgesetzt ist. Ein externer Speichertank befindet sich also insbesondere nicht in einer Coldbox, die weitere Apparate der Luftzerlegungsanlage wie Wärmetauscher und/oder Destillationssäulen enthält. Ein externer Speichertank unterscheidet sich damit von ggf. vorhandenen Speicherbehältern innerhalb einer Luftzerlegungsanlage oder Stickstoffverflüssigungsanlage, wie sie beispielsweise zum kurz- oder längerfristigen Zwischenspeichern von flüssigem Stickstoff zum Ausgleich von Produktionsschwankungen bereitgestellt sein können. Ein externer Speichertank unterscheidet sich ferner dadurch von solchen internen Speicherbehältern, dass ihm kein flüssiger Stickstoff entnommen und in die Luftzerlegungsanlage oder Stickstoffverflüssigungsanlage, insbesondere ein in einer solchen Anlage eingesetztes Destillationssäulensystem, zurückgeführt wird. Denkbar ist in gewissen Fällen allerdings auch, beispielsweise bei einem Schaden in der Turbine, dass der flüssige Stickstoff aus dem Speichertank und der Anlage zugeführt wird. Wenngleich hier von "einem" externen Speichertank die Rede ist, versteht sich, dass im Rahmen der vorliegenden Erfindung auch mehrere Speichertanks, insbesondere in Form einer sog. Tankfarm, eingesetzt werden können.An "external" storage tank is understood to mean a storage tank which is arranged outside the plant, that is to say in particular the air separation plant and / or the nitrogen liquefaction plant, and in particular is exposed to the ambient temperature. An external storage tank is therefore not located in particular in a cold box containing other apparatuses of the air separation plant such as heat exchangers and / or distillation columns. An external storage tank thus differs from any existing storage containers within an air separation plant or nitrogen liquefaction plant, as may be provided, for example, for temporary or longer-term buffering of liquid nitrogen to compensate for production fluctuations. An external storage tank also differs from such internal storage tanks in that it does not remove any liquid nitrogen and returns it to the air separation plant or nitrogen liquefaction plant, particularly a distillation column system used in such a plant. However, it is also conceivable in certain cases, for example in the event of damage in the turbine, that the liquid nitrogen is supplied from the storage tank and the system. Although this is referred to as "an" external storage tank, it is understood that within the scope of the present invention, several storage tanks, in particular in the form of a so-called tank farm, can be used.

Ein Strom oder dessen Teil, der "in einem Kreislauf der Anlage verwendet wird, d.h. beispielsweise in einem Kreislauf-Verdichter der Luftzerlegungsanlage mitverdichtet wird, wird beispielsweise zumindest zum Teil wieder in wenigstens eine Destillationssäule der Luftzerlegungsanlage zurückgeführt. Beispielsweise kann ein vom Kopf der Niederdrucksäule abgezogener gasförmiger Stickstoffstrom jeweils teilweise oder vollständig erwärmt, verdichtet, abgekühlt und in die Hochdrucksäule eingespeist werden, wie auch in Figur 4 gezeigt.For example, a stream or its part that is "used in a system circulation, eg, co-compressed in a cycle compressor of the air separation plant, is at least partially recycled to at least one distillation column of the air separation plant each partially or completely heated gaseous nitrogen stream, cooled, and fed into the high-pressure column, as well as in FIG. 4 shown.

Für den externen Speichertank, in dem der flüssige Stickstoff gespeichert wird, können sog. Flachbodentanks mit entsprechender Isolierung verwendet werden. Solche üblicherweise eingesetzten Flachbodentanks werden in der Regel unter einem relativ geringen Überdruck von ca. 50 bis 100 mbar betrieben. Im Falle einer separaten Stickstoffverflüssigungsanlage kann der beispielsweise auf ca. 81 K unterkühlte flüssige Stickstoff unter einem Druck von ca. 5 bis 6 bar zum externen Speichertank gefördert werden. Der externe Speichertank kann beispielsweise ein Speichervolumen von ca. 500 bis ca. 5000 m3 aufweisen. Trotz Unterkühlung entsteht bei der Drosselung auf den Betriebsdruck im externen Tank eine bestimmte Menge an sog. Flash-Gas. Dabei handelt es sich um Gasblasen, die sich im ansonsten flüssigen Stickstoff bilden. Die Menge des Flash-Gases (beispielsweise ca. 3 bis 4% des gesamten flüssigen Stickstoffs an der Anlagengrenze) wird zusammen mit sog. Boil-Off Verlusten, also Verlusten aufgrund der Verdampfung des flüssigen Stickstoffs, welche stark von der Größe des externen Speichertanks und auch dessen Isolierung abhängen, an die Umgebung abgeleitet. Dabei gehen nicht nur die Stickstoff-Moleküle sondern auch die Exergie der Kälte verloren. Solche Verluste entstehen auch, wenn der flüssige Stickstoff aus einer Luftzerlegungsanlage in den Speichertank geführt wirdFor the external storage tank in which the liquid nitrogen is stored, so-called flat bottomed tanks with appropriate insulation can be used. Such commonly used flat bottom tanks are usually operated under a relatively low pressure of about 50 to 100 mbar. In the case of a separate nitrogen liquefaction plant, the liquid nitrogen, which is undercooled, for example, to about 81 K, can be conveyed to the external storage tank under a pressure of about 5 to 6 bar. The external storage tank may for example have a storage volume of about 500 to about 5000 m 3 . Despite subcooling, a certain amount of so-called flash gas is created when throttling to the operating pressure in the external tank. These are gas bubbles that form in otherwise liquid nitrogen. The amount of flash gas (for example, about 3 to 4% of the total liquid nitrogen at the plant boundary) is combined with so-called boil-off losses, ie losses due to the evaporation of the liquid nitrogen, which greatly depends on the size of the external storage tank and also depend on its isolation, derived to the environment. Not only the nitrogen molecules but also the exergy of the cold are lost. Such losses also occur when the liquid nitrogen from an air separation plant is fed into the storage tank

Durch geeignete Veränderungen in der Konstruktion des externen Speichertanks, beispielsweise durch den Einsatz von Verstärkungsringen oder Ähnlichem, kann in dem Speichertank ein höherer Überdruck vorgesehen werden. Bevorzugt ist hier ein Überdruck in einem Bereich zwischen 0,1 und 1 bar, insbesondere zwischen 0,3 und 0,5 bar. Dieser Überdruck kann dabei auf einen Wert in diesem Bereich eingestellt oder eingeregelt werden.By appropriate changes in the construction of the external storage tank, for example by the use of reinforcing rings or the like, a higher overpressure may be provided in the storage tank. Preference is given here to an overpressure in a range between 0.1 and 1 bar, in particular between 0.3 and 0.5 bar. This overpressure can be set or adjusted to a value in this range.

Durch diese Erhöhung des Betriebsdrucks kann der Anteil von Flash-Gas bei der Drosselung bzw. Zuspeisung des flüssigen Stickstoffs aus der Stickstoffverflüssigungsanlage bzw. der Luftzerlegungsanlage bereits reduziert werden. Ganz vermieden werden können diese Verluste in der Regel jedoch nicht. Auch die durch unvollkommene Isolation entstehenden Verdampfungsverluste (Boil-Off) werden dabei nicht nennenswert beeinflusst.As a result of this increase in the operating pressure, the proportion of flash gas in the throttling or feed of the liquid nitrogen from the nitrogen liquefaction plant or the air separation plant can already be reduced. However, these losses can not be completely avoided. Also, the resulting by imperfect isolation evaporation losses (Boil-Off) are not significantly affected.

Erfindungsgemäß wird nun gasförmiger Stickstoff aus dem externen Speichertank entnommen und einem (oder auch mehreren) der Ströme gasförmigen Stickstoffs und durch einen Wärmetauscher der Anlage geführt. Hierbei kann der gasförmige Stickstoff vorzugsweise zunächst separat durch den Wärmetauscher geführt und dann dem Strom (oder ggf. den mehreren Strömen) gasförmigen Stickstoff zugeführt werden. Bevorzugt ist jedoch auch, wenn der gasförmige Stickstoff dem Strom gasförmigen Stickstoff zugeführt bzw. mit einem solcher Ströme vereinigt wird, und zwar bevor der Strom an einem kalten Ende des Wärmetauschers in den Wärmetauscher geführt wird.According to the invention, gaseous nitrogen is now taken from the external storage tank and one (or more) of the gaseous nitrogen streams and passed through a heat exchanger of the system. In this case, the gaseous nitrogen may preferably first be passed through the heat exchanger separately and then fed to the stream (or possibly the several streams) of gaseous nitrogen. However, it is also preferred if the gaseous nitrogen is supplied to the stream of gaseous nitrogen or combined with such a stream, before the current is conducted at a cold end of the heat exchanger in the heat exchanger.

Die Idee hierbei besteht darin, die Kälte aus dem Flash-Gas und den Verdampfungsverlusten durch Rückführen dieses kalten gasförmigen Stickstoffs in die Anlage zurückzugewinnen und beispielsweise auch eine entsprechende Menge an neu zuzuführendem, gasförmigem Stickstoff für die Verflüssigung einzusparen und/oder eine anderweitig bereitzustellende Menge gasförmigen Stickstoffs zu erhöhen. Der Vollständigkeit halber sei hierbei angemerkt, dass die Rückführung dieses kalten gasförmigen Stickstoffs beispielsweise in die Luftzerlegungsanlage auch ohne Erhöhung des Betriebsdrucks im Speichertank denkbar ist. Jedoch ist durch einen höheren Betriebsdruck eine einfachere Rückführung des gasförmigen Stickstoffs möglich. Auf diese Weise lässt sich insbesondere eine zusätzliche Rückverdichtung des Stickstoffs einsparen.The idea here is to recover the cold from the flash gas and evaporative losses by recycling this cold gaseous nitrogen into the plant and, for example, to save a corresponding amount of gaseous nitrogen to be supplied for liquefaction and / or an amount of gaseous feed to be otherwise provided Increase nitrogen. For completeness, it should be noted here that the return of this cold gaseous nitrogen, for example, in the air separation plant is conceivable without increasing the operating pressure in the storage tank. However, by a higher operating pressure easier recycle of the gaseous nitrogen is possible. In this way, in particular an additional recompression of the nitrogen can be saved.

Es ist bevorzugt, wenn der flüssige Stickstoff in einer Stickstoffverflüssigungsanlage als Anlage (oder Teil der Anlage), welcher gasförmiger Stickstoff zur Verflüssigung zugeführt wird, gewonnen und über eine Leitung dem externen Speichertank für flüssigen Stickstoff zugeführt wird. Dabei ist es besonders zweckmäßig, wenn einer der Ströme gasförmigen Stickstoffs einer ebenfalls als Teil der Anlage vorhandenen Luftzerlegungsanlage, die zur Bereitstellung gasförmigen Stickstoffs dienen, der Stickstoffverflüssigungsanlage zur Verflüssigung zugeführt wird. Die Luftzerlegungsanlage stellt damit den für die Stickstoffverflüssigungsanlage benötigten gasförmigen Stickstoff (zumindest teilweise) bereit. Auch hier ist es durch die vorliegende Erfindung möglich, Kälte, die in Form flüssigen Stickstoffs in den Speichertank geführt wird, hier von der Stickstoffverflüssigungsanlage, teilweise wieder zurückzugewinnen, anstatt sie ungenutzt zu verlieren. Die Stickstoffverflüssigungsanlage kann damit effizienter betrieben werden.It is preferable that the liquid nitrogen is recovered in a nitrogen liquefaction plant as a plant (or part of the plant) to which gaseous nitrogen is fed for liquefaction and fed via a line to the external liquid nitrogen storage tank. It is particularly expedient if one of the streams of gaseous nitrogen of an air separation plant also present as part of the plant, which serve to provide gaseous nitrogen, the nitrogen liquefaction plant is supplied for liquefaction. The air separation plant thus provides (at least partially) the gaseous nitrogen required for the nitrogen liquefaction plant. Again, it is possible by the present invention, cold, which is performed in the form of liquid nitrogen in the storage tank, here from the nitrogen liquefaction plant, partially recover, instead of losing them unused. The nitrogen liquefaction plant can thus be operated more efficiently.

Alternativ oder zusätzlich ist es bevorzugt, wenn der flüssige Stickstoff in einer Destillationssäule der Luftzerlegungsanlage gewonnen wird, insbesondere kommt hier eine Drucksäule in Betracht, und über eine Leitung dem externen Speichertank für flüssigen Stickstoff, insbesondere. vom Kopf der Niederdrucksäule oder aus einem separaten Abscheider in der Drucksäule bzw. der Rektifikationsbox, zugeführt wird. Wie eingangs bereits erwähnt, kann bei einem üblichen Luftzerlegungsprozess bzw. einer entsprechenden Luftzerlegungsanlage flüssiger Stickstoff erzeugt und auch bereitgestellt werden. Durch die vorliegende Erfindung ist es somit möglich, Kälte, die von der Luftzerlegungsanlage in Form flüssigen Stickstoffs in den Speichertank geführt wird, teilweise wieder zurückzuführen und zu nutzen, anstatt sie ungenutzt zu verlieren. Eine solche Luftzerlegungsanlage kann damit effizienter betrieben werden.Alternatively or additionally, it is preferred if the liquid nitrogen is recovered in a distillation column of the air separation plant, in particular comes here a pressure column, and via a line to the external storage tank for liquid nitrogen, in particular. from the head of the low-pressure column or from a separate separator in the pressure column or the rectification box. As already mentioned, in a conventional air separation process or a corresponding air separation plant liquid nitrogen can be generated and also provided. The present invention thus makes it possible to partially recycle and utilize refrigeration, which is fed into the storage tank by the air separation plant in the form of liquid nitrogen, instead of losing it unused. Such an air separation plant can thus be operated more efficiently.

Bei Verwendung einer (separaten) Stickstoffverflüssigungsanlage muss in der Luftzerlegungsanlage kein flüssiger Stickstoff erzeugt oder bereitgestellt werden. Es versteht sich jedoch, dass dies dennoch der Fall sein kann. Denkbar ist darüber hinaus auch, dass flüssiger Stickstoff sowohl aus einer Luftzerlegungsanlage als auch einer Stickstoffverflüssigungsanlage in einen gemeinsamen Speichertank gefördert wird. Der gasförmige Stickstoff aus dem externen Speichertank kann dann weiterhin (optional auch nur teilweise) in der Luftzerlegungsanlage im Wärmetauscher genutzt werden. Vorzugsweise kann dann zusätzlich auch noch gasförmiger Stickstoff aus dem externen Speichertank entnommen und der Stickstoffverflüssigungsanlage zugeführt werden.When using a (separate) nitrogen liquefaction plant, no liquid nitrogen must be generated or provided in the air separation plant. It is understood, however, that this may still be the case. It is also conceivable that liquid nitrogen from both an air separation plant and a nitrogen liquefaction plant is conveyed into a common storage tank. The gaseous nitrogen from the external storage tank can then continue to be used (optionally only partially) in the air separation plant in the heat exchanger. Preferably, in addition, gaseous nitrogen can then additionally be taken from the external storage tank and fed to the nitrogen liquefaction plant.

Es ist von Vorteil, wenn der gasförmige Stickstoff, der aus dem Speichertank entnommen und dem Strom (oder auch den mehreren Strömen) gasförmigen Stickstoffs, der durch den Wärmetauscher geführt wird, zugeführt wird, bevor oder nachdem dieser Strom (oder ggf. die mehreren Ströme) durch einen Unterkühler geführt wird. Durch einen Unterkühler können Flash-Verluste bei einer Drosselung des Drucks, insbesondere auf einen für den Speichertank relevanten Druck, reduziert werden. Ist der Flüssigstrom unterkühlt, entsteht weniger Flash-Gas nach dem Ventil beim Zuführen der Flüssigkeit in den Speichertank. Ein solcher Unterkühler kann nicht nur bei einer separaten Stickstoffverflüssigungsanlage vorgesehen sein, sondern auch bei Luftzerlegungsanlagen. Dort können neben dem flüssigen Stickstoff auch andere Luftprodukte gekühlt werden. Denkbar ist weiterhin auch, dass der gasförmige Stickstoff dem entsprechenden Strom erst zugeführt wird, nachdem dieser durch den Unterkühler geführt wurde, dass jedoch der gasförmige Stickstoff aus dem Speichertank zuvor separat auch durch den Unterkühler geführt wird. Je nach Situation kann damit die Kälte des gasförmigen Stickstoffs aus dem Speichertank im Unterkühler und/oder im Wärmetauscher genutzt werden.It is advantageous if the gaseous nitrogen taken from the storage tank and supplied to the stream (or streams) of gaseous nitrogen passed through the heat exchanger before or after that stream (or possibly the multiple streams) ) is passed through a subcooler. By means of a subcooler, it is possible to reduce flash losses when the pressure is reduced, in particular to a pressure which is relevant for the storage tank. If the liquid stream is undercooled, less flash gas will flow to the valve when the liquid is being added to the storage tank. Such a subcooler can be provided not only in a separate nitrogen liquefaction plant, but also in air separation plants. There, in addition to the liquid nitrogen and other air products can be cooled. It is also conceivable that the gaseous nitrogen is supplied to the corresponding stream only after it has been passed through the subcooler, but that the gaseous nitrogen from the storage tank is also previously conducted separately through the subcooler. Depending on the situation Thus, the cold of the gaseous nitrogen from the storage tank in the subcooler and / or in the heat exchanger can be used.

Vorzugsweise wird, auch wenn ein Betrieb der Anlage, also der Luftzerlegungsanlage und/oder der Stickstoffverflüssigungsanlage, unterbrochen ist oder unterbrochen wird, der gasförmige Stickstoff aus dem Speichertank entnommen und einem der Ströme gasförmigen Stickstoffs zugeführt und durch den Wärmetauscher geführt. Damit kann das Temperaturprofil des Wärmetauschers auch während einer Unterbrechung des Betriebs der Anlage (zumindest teilweise) aufrechterhalten werden. Die Nutzung von Boil-Off-Verlusten aus dem Speichertank kann dabei (evtl. zusätzlich zu anderen Maßnahmen) hilfreich sein, um dem durch Längswärmeleitung gegebenen Temperaturausgleich im Wärmetauscher entgegenzuwirken. Dies kann z.B. dadurch gewährleistet werden, dass ein ähnlich großer (aber warmer) Stickstoff-Strom im Gegenstrom abgekühlt und beispielweise durch die Entleerungsleitung von einem Flüssigabscheider an die Umgebung abgeführt wird.Preferably, even if an operation of the plant, so the air separation plant and / or the nitrogen liquefaction plant is interrupted or interrupted, the gaseous nitrogen removed from the storage tank and fed to one of the streams of gaseous nitrogen and passed through the heat exchanger. Thus, the temperature profile of the heat exchanger even during an interruption of the operation of the system (at least partially) can be maintained. The use of boil-off losses from the storage tank can (possibly in addition to other measures) be helpful in counteracting the temperature compensation in the heat exchanger given by the longitudinal heat conduction. This can e.g. be ensured that a similar large (but warm) nitrogen stream is cooled in countercurrent and discharged, for example through the drain line from a liquid to the environment.

Bzgl. der erfindungsgemäßen Anordnung mit einer Anlage, umfassend insbesondere eine Luftzerlegungsanlage und/oder eine Stickstoffverflüssigungsanlage, sowie deren vorteilhaften Ausgestaltungen und Vorteile sei zur Vermeidung von Wiederholungen auf obige Ausführungen zum Verfahren verwiesen, die dort entsprechend gelten.Concerning. the arrangement according to the invention with a plant, comprising in particular an air separation plant and / or a nitrogen liquefaction plant, and their advantageous embodiments and advantages, reference is made to the above statements on the method to avoid repetition, which apply accordingly.

Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung näher erläutert, welche verschiedene Anlagenteile zeigt, anhand derer die erfindungsgemäßen Maßnahmen erläutert werden.The invention will be explained in more detail below with reference to the accompanying drawing, which shows various parts of the installation, by means of which the measures according to the invention will be explained.

Kurze Beschreibung der Zeichnung

Figuren 1 bis 3
zeigen verschiedene Anordnungen mit einer Stickstoffverflüssigungsanlage mit jeweils einem Speichertank gemäß verschiedener bevorzugter Ausführungsformen der Erfindung in Form schematischer Prozessflussdiagramme.
Figur 4
zeigt eine Anordnung mit einer Luftzerlegungsanlage und einem Speichertank gemäß einer weiteren Ausführungsform der Erfindung in Form eines schematischen Prozessflussdiagramms.
Short description of the drawing
FIGS. 1 to 3
show various arrangements with a nitrogen liquefaction plant, each with a storage tank according to various preferred embodiments of the invention in the form of schematic process flow diagrams.
FIG. 4
shows an arrangement with an air separation plant and a storage tank according to another embodiment of the invention in the form of a schematic process flow diagram.

Ausführliche Beschreibung der ZeichnungDetailed description of the drawing

In Figur 1 ist eine Stickstoffverflüssigungsanlage zur Verflüssigung gasförmigen Stickstoffs an sich bekannter Art dargestellt in Form eines schematischen Prozessflussdiagramms dargestellt. Die vorliegende Erfindung soll zunächst anhand einer solchen Stickstoffverflüssigungsanlage in verschiedenen bevorzugten Ausführungsformen näher erläutert werden.In FIG. 1 a nitrogen liquefaction plant for the liquefaction of gaseous nitrogen of a known type is shown in the form of a schematic process flow diagram. The present invention will first be explained in more detail with reference to such a nitrogen liquefaction plant in various preferred embodiments.

Stickstoffverflüssigungsanlagen der gezeigten Art sind vielfach an anderer Stelle beschrieben, beispielsweise bei Frank G. Kerry, Industrial Gas Handbook, Gas Separation And Purification, CRC Press, Taylor & Francis Group, 2007 . Für detaillierte Erläuterungen zu Aufbau und Funktionsweise sei daher auf entsprechende Fachliteratur verwiesen. Eine Stickstoffverflüssigungsanlage kann dabei auf unterschiedliche Weise ausgebildet sein.Nitrogen liquefaction plants of the type shown are often described elsewhere, for example in Frank G. Kerry, Industrial Gas Handbook, Gas Separation And Purification, CRC Press, Taylor & Francis Group, 2007 , For detailed explanations on the structure and mode of operation, reference is therefore made to corresponding technical literature. A nitrogen liquefaction plant can be designed in different ways.

Vorliegend ist eine Stickstoffverflüssigungsanlage 100 gezeigt, welcher gasförmiger Stickstoff (Strom a) zugeführt wird. Unter Verwendung verschiedener Wärmetauscher, Verdichter und Expansionsturbinen, insbesondere auch eines Hauptwärmetauschers 150 und eines Abscheiders 155 wird flüssiger Stickstoff erzeugt, der in einem Unterkühler 160 weiter abgekühlt wird und anschließend in einem Strom b einem Speichertank 200 für flüssigen Stickstoff zugeführt wird.In the present case, a nitrogen liquefaction plant 100 is shown, to which gaseous nitrogen (stream a) is supplied. Using various heat exchangers, compressors and expansion turbines, in particular also a main heat exchanger 150 and a separator 155, liquid nitrogen is produced, which is further cooled in a subcooler 160 and then fed in a stream b to a storage tank 200 for liquid nitrogen.

In dem Speichertank 200 bildet sich nun aufgrund von Verdampfung gasförmiger Stickstoff, der bei herkömmlichem Betrieb beispielsweise als Strom d über eine Leitung und ein Ventil ungenutzt abgelassen werden kann. Daneben bildet sich beim Transport des flüssigen Stickstoffs vom Unterkühler 160 über die entsprechende Leitung (Strom b) in den Speichertank 200 Flash-Gas, das ebenfalls unerwünscht ist.In the storage tank 200 is now formed due to evaporation of gaseous nitrogen, which can be drained unused in conventional operation, for example as a stream d via a pipe and a valve. In addition, formed during transport of the liquid nitrogen from the subcooler 160 via the corresponding line (stream b) in the storage tank 200 flash gas, which is also undesirable.

Es kann nun eine weitere Leitung vorgesehen sein, über die gasförmiger und kalter Stickstoff aus dem Speichertank 200 als Strom c zurück in den Verflüssigungsprozess geführt werden kann. Im hier gezeigten Fall wird dieser gasförmige Stickstoff (Strom c) stromaufwärts des Unterkühlers 160 in einen Strom e gasförmigen Stickstoffs (hier ein Niederdruckstrom) eingespeist, wobei der Strom e selbst durch den Unterkühler 160 geführt wird.It is now possible to provide a further line via which gaseous and cold nitrogen can be passed from the storage tank 200 as stream c back into the liquefaction process. In the case shown here, this gaseous nitrogen (stream c) is fed upstream of the subcooler 160 into a stream of gaseous nitrogen (here a low pressure stream), the stream e itself being passed through the subcooler 160.

Auf diese Weise kann die Kälteenergie des Stroms c im Hauptwärmetauscher 150 genutzt werden, wodurch der gesamte Verflüssigungsprozess effizienter wird. Der Strom e wird zudem wieder dem Strom a zugeführt, d.h. die im Strom c geführte Menge gasförmigen Stickstoffs wird über den Strom e dem Strom a und damit wieder dem Verflüssigungsprozess zugeführt. Dies bedeutet, dass eine geringere Menge neu zuführenden, gasförmigen Stickstoffs nötig ist, aber dennoch die gleiche Menge flüssigen Stickstoffs und auch mit geringerem Energieaufwand erzeugt werden kann.In this way, the cooling energy of the flow c in the main heat exchanger 150 can be utilized, whereby the entire liquefaction process becomes more efficient. The current e is also fed back to the current a, i. the amount of gaseous nitrogen conducted in the stream c is supplied via the stream e to the stream a and thus again to the liquefaction process. This means that a smaller amount of newly feeding, gaseous nitrogen is necessary, but still the same amount of liquid nitrogen and also with less energy can be generated.

In Figur 2 ist eine weitere Stickstoffverflüssigungsanlage 100' gezeigt, die im Wesentlichem der Stickstoffverflüssigungsanlage 100 gemäß Figur 1 entspricht. Im Unterschied dazu ist hier nun jedoch vorgesehen, den Strom b gasförmigen und kalten Stickstoffs aus dem Speichertank 200, bevor er stromaufwärts des Unterkühlers 160 in den Strom e eingespeist wird, zunächst selbst durch den Unterkühler 160 zu führen. Auf diese Weise kann die Kälteenergie des Stroms c nicht nur im Hauptwärmetauscher 150, sondern bereits im Unterkühler 160 genutzt werden, wodurch der gesamte Verflüssigungsprozess ebenfalls effizienter wird.In FIG. 2 FIG. 3 shows another nitrogen liquefaction plant 100 ', which essentially corresponds to the nitrogen liquefaction plant 100 according to FIG FIG. 1 equivalent. In contrast, however, it is now provided here, the current b of gaseous and cold nitrogen from the storage tank 200 before it is fed upstream of the subcooler 160 in the stream e, first to pass through the subcooler 160. In this way, the cooling energy of the flow c can be used not only in the main heat exchanger 150, but already in the subcooler 160, whereby the entire liquefaction process is also more efficient.

In Figur 3 ist eine weitere Stickstoffverflüssigungsanlage 100" gezeigt, die ebenfalls im Wesentlichen der Stickstoffverflüssigungsanlage 100 gemäß Figur 1 entspricht. Im Unterschied dazu ist hier jedoch kein Unterkühler und damit auch kein entsprechender, rückzuführender Strom e gasförmigen Stickstoffs vorgesehen. Der Strom c gasförmigen und kalten Stickstoffs aus dem Speichertank 200 wird hier nun anstatt des Stroms e durch den Hauptwärmetauscher 150 geführt und dann, wie in den vorigen Fällen der Strom e, in den Strom a eingespeist. Auch hier kann die Kälteenergie des Stroms c im Hauptwärmetauscher 150 genutzt werden. Zudem kann die benötigte Menge gasförmigen Stickstoffs zur Verflüssigung reduziert werden.In FIG. 3 FIG. 2 shows another nitrogen liquefaction plant 100 ", which likewise essentially corresponds to the nitrogen liquefaction plant 100 according to FIG FIG. 1 equivalent. In contrast to this, however, no subcooler and thus also no corresponding, recirculating stream of gaseous nitrogen are provided here. The stream c of gaseous and cold nitrogen from the storage tank 200 is here instead of the current e passed through the main heat exchanger 150 and then, as in the previous cases, the stream e, fed into the stream a. Again, the cooling energy of the stream c in the main heat exchanger 150 can be used. In addition, the required amount of gaseous nitrogen can be reduced for liquefaction.

In Figur 4 ist eine Luftzerlegungsanlage an sich bekannter Art dargestellt, mit der neben anderen Luftprodukten sowohl gasförmiger als auch flüssiger Stickstoff bereitgestellt werden können und anhand welcher ein erfindungsgemäßes Verfahren in einer weiteren bevorzugten Ausführungsform erläutert werden soll.In FIG. 4 An air separation plant of a known type is shown, with which, in addition to other air products, both gaseous and liquid nitrogen can be provided and by means of which a method according to the invention is to be explained in a further preferred embodiment.

Luftzerlegungsanlagen der gezeigten Art sind vielfach an anderer Stelle beschrieben, beispielsweise bei H.-W. Häring (Hrsg.), Industrial Gases Processing, Wiley-VCH, 2006, insbesondere Abschnitt 2.2.5, "Cryogenic Rectification ". Für detaillierte Erläuterungen zu Aufbau und Funktionsweise sei daher auf entsprechende Fachliteratur verwiesen. Eine Luftzerlegungsanlage zum Einsatz der vorliegenden Erfindung kann auf unterschiedlichste Weise ausgebildet sein.Air separation plants of the type shown are often described elsewhere, for example at H.-W. Haring (ed.), Industrial Gases Processing, Wiley-VCH, 2006, in particular Section 2.2.5, "Cryogenic Rectification Reference should therefore be made to the corresponding specialist literature for detailed explanations on the structure and mode of operation An air separation plant for use of the present invention may be designed in many different ways.

Die in Figur 4 gezeigte Luftzerlegungsanlage 300 verfügt unter anderem über einen Hauptluftverdichter 301, eine Vorkühleinrichtung 302, ein Reinigungssystem 303, einen Hauptwärmetauscher 350 und ein Destillationssäulensystem 310. Das Destillationssäulensystem 310 umfasst im dargestellten Beispiel eine klassische Doppelsäulenanordnung aus einer (Hoch-)Drucksäule 311 und einer Niederdrucksäule 312 sowie eine Rohargonsäule 313 und eine Reinargonsäule 314.In the FIG. 4 The air separation plant 300 shown has, inter alia, a main air compressor 301, a pre-cooler 302, a purification system 303, a main heat exchanger 350 and a distillation column system 310. The distillation column system 310 in the example shown comprises a classic double column arrangement comprising a (high) pressure column 311 and a low pressure column 312 and a crude argon column 313 and a pure argon column 314.

Aus dem Hauptwärmetauscher 350 führt neben einem Strom f mit gasförmigem Stickstoff (GAN Atm) aus der Niederdrucksäule 312, nachdem dieser einen Unterkühler 360 durchlaufen hat, beispielsweise auch ein Strom gasförmiger Sauerstoff (GOX Atm). Durch den Unterkühler 360 werden zudem auch Ströme für flüssigen Sauerstoff (LOX) und flüssigen Stickstoff (DLIN) geführt.From the main heat exchanger 350 leads in addition to a flow f with gaseous nitrogen (GAN Atm) from the low pressure column 312 after it has passed through a subcooler 360, for example, a stream of gaseous oxygen (GOX Atm). The subcooler 360 also carries streams for liquid oxygen (LOX) and liquid nitrogen (DLIN).

Weiterhin wird unter anderem aus dem Strom gasförmigen Stickstoffs (GAN Atm) ein weiterer Strom gasförmigen Stickstoffs (Strom g) abgezweigt, im sog Feedverdichter (305) auf in etwa den Druck in der Drucksäule (abzüglich eventueller Druckverluste) verdichtet und einem Kreislaufverdichter (306) zugeführt und neben der Bereitstellung als unter Druck stehenden Stickstoffs (DGAN) dann durch den Hauptwärmetauscher 350 geführt.Furthermore, among other things from the stream of gaseous nitrogen (GAN Atm) another stream of gaseous nitrogen (stream g) is branched off, in the so-called feed compressor (305) to approximately the pressure in the pressure column (minus any pressure losses) compressed and a cycle compressor (306) fed and then passed through the main heat exchanger 350 in addition to the provision of pressurized nitrogen (DGAN).

Weiterhin wird aus der Niederdrucksäule 312 flüssiger Stickstoff, der in der Drucksäule 311 erzeugt wird, in einem Strom b entnommen. Dieser Strom b flüssigen Stickstoffs wird nun einem Speichertank 200 für flüssigen Stickstoff zugeführt. Zusammen mit dem Speichertank 200 bildet die Luftzerlegungsanlage 300 damit eine bevorzugte Ausführungsform einer erfindungsgemäßen Anordnung.Furthermore, from the low-pressure column 312 liquid nitrogen, which is generated in the pressure column 311, taken in a stream b. This flow of liquid nitrogen liquid is now fed to a storage tank 200 for liquid nitrogen. Together with the storage tank 200, the air separation plant 300 thus forms a preferred embodiment of an arrangement according to the invention.

Der Speichertank 200 entspricht demjenigen gemäß Figuren 1 bis 3, insofern sei auch auf die dortige Beschreibung verwiesen. Auch hier entsteht gasförmiger und kalter Stickstoff aufgrund von Verdampfung und Flash-Gas, welcher nun als Strom c zurück in die Luftzerlegungsanlage 300 geführt wird. Im hier gezeigten Beispiel wird der Strom c gasförmigen Stickstoffs in den Strom f eingespeist und zwar bevor dieser den Unterkühler 360 durchläuft.The storage tank 200 corresponds to that according to FIGS. 1 to 3 In this respect, reference should also be made to the description there. Here, too, gaseous and cold nitrogen is produced due to evaporation and flash gas, which is now conducted as stream c back into the air separation plant 300. In the example shown here is the Stream c gaseous nitrogen fed into the stream f and before it passes through the subcooler 360.

Auf diese Weise kann die Kälteenergie des Stroms c sowohl im Unterkühler 360 als auch im Hauptwärmetauscher 350 genutzt werden, wodurch der gesamte Luftzerlegungsprozess effizienter wird. Je nach Situation kann es jedoch auch zweckmäßig sein, den Strom c erst dann in den Strom f einzuspeisen, nachdem dieser den Unterkühler 360 durchlaufen hat. Dann kann die gesamte Kälteenergie des Stroms c im Hauptwärmetauscher 350 genutzt werden.In this way, the cooling energy of the flow c can be utilized both in the subcooler 360 and in the main heat exchanger 350, making the entire air separation process more efficient. Depending on the situation, however, it may also be expedient to feed the stream c into the stream f only after it has passed through the subcooler 360. Then, the entire cooling energy of the stream c in the main heat exchanger 350 can be used.

Da der Strom c dem Strom f zugeführt wird, über welchen gasförmiger, möglichst reiner Stickstoff aus dem Luftzerlegungsprozess bereitgestellt wird, kann die insgesamt bereitgestellte Menge gasförmigen Stickstoffs erhöht werden. Hierzu sei angemerkt, dass es sich auch bei dem Strom c um sehr reinen, gasförmigen Stickstoff handelt, da dieser direkt aus flüssigem Stickstoff entsteht.Since the stream c is supplied to the stream f, via which gaseous, as pure as possible nitrogen from the air separation process is provided, the total amount of gaseous nitrogen provided can be increased. It should be noted that the stream c is also very pure, gaseous nitrogen, since it is produced directly from liquid nitrogen.

Es sei angemerkt, dass zusätzlich zur der gezeigten Luftzerlegungsanlage eine Stickstoffverflüssigungsanlage, wie in den Figuren 1 bis 3 gezeigt, vorgesehen sein kann, welcher gasförmiger Stickstoff aus der Luftzerlegungsanlage zur Verflüssigung zugeführt wird, wobei der dort erzeugte flüssige Stickstoff ebenfalls in den hier gezeigten Speichertank zugeführt werden kann. Der Strom gasförmigen Stickstoffs aus dem Speichertank kann dann weiterhin, wie in Figur 4 gezeigt, der Luftzerlegungsanlage zugeführt werden.It should be noted that in addition to the air separation plant shown, a nitrogen liquefaction plant, as in the FIGS. 1 to 3 can be provided, which gaseous nitrogen is supplied from the air separation plant for liquefaction, wherein the liquid nitrogen produced there can also be supplied into the storage tank shown here. The flow of gaseous nitrogen from the storage tank can then continue, as in FIG. 4 shown to be fed to the air separation plant.

Denkbar ist auch, dass in der Luftzerlegungsanlage kein flüssiger Stickstoff bereitgestellt wird. Auch dann kann, wie eben erwähnt, eine Sickstoffverflüssigungsanlage vorgesehen sein, welcher gasförmiger Stickstoff aus der Luftzerlegungsanlage zugeführt wird. In den Speichertank wird dann jedoch nur flüssiger Stickstoff aus der Stickstoffverflüssigungsanlage zugeführt.It is also conceivable that no liquid nitrogen is provided in the air separation plant. Even then, as just mentioned, a nitrogen liquefaction plant can be provided, which gaseous nitrogen from the air separation plant is supplied. However, only liquid nitrogen from the nitrogen liquefaction plant is then fed into the storage tank.

Claims (18)

Verfahren zum Betreiben einer Anlage (100, 100', 100", 300) mit Leitungen für einen oder mehrere Ströme (a, f) gasförmigen Stickstoffs, die zumindest zum Teil zur Bereitstellung und/oder Zufuhr gasförmigen Stickstoffs und/oder in einem Kreislauf der Anlage (100, 100', 100", 300) verwendet werden, wobei flüssiger Stickstoff (b) einem externen Speichertank (200) für flüssigen Stickstoff zugeführt wird, dadurch gekennzeichnet, dass gasförmiger Stickstoff (c) aus dem externen Speichertank (200) entnommen, einem der Ströme (a, f) gasförmigen Stickstoffs zugeführt und durch einen Wärmetauscher (150, 350) der Anlage (100, 100', 100", 300) geführt wird. Method for operating a plant (100, 100 ', 100 ", 300) with lines for one or more streams (a, f) of gaseous nitrogen, at least partly for the supply and / or supply of gaseous nitrogen and / or in a cycle of Plant (100, 100 ', 100 ", 300) can be used, wherein liquid nitrogen (b) is supplied to an external liquid nitrogen storage tank (200), characterized in that gaseous nitrogen (c) taken from the external storage tank (200), one of the streams (a, f) supplied gaseous nitrogen and by a heat exchanger (150, 350) of the plant (100, 100 ', 100 ", 300 ) to be led. Verfahren nach Anspruch 1, wobei die Anlage eine Stickstoffverflüssigungsanlage (100, 100', 100") umfasst, und wobei der flüssige Stickstoff wenigstens teilweise in der Stickstoffverflüssigungsanlage (100), welcher gasförmiger Stickstoff (a) zur Verflüssigung zugeführt wird, gewonnen und über eine Leitung dem Speichertank (200) für flüssigen Stickstoff zugeführt wird.A process according to claim 1, wherein the plant comprises a nitrogen liquefaction plant (100, 100 ', 100 "), and wherein the liquid nitrogen is at least partially recovered in the nitrogen liquefaction plant (100), which is fed gaseous nitrogen (a) for liquefaction, and via a Line is supplied to the storage tank (200) for liquid nitrogen. Verfahren nach Anspruch 1 oder 2, wobei die Anlage eine Luftzerlegungsanlage (300) umfasst.The method of claim 1 or 2, wherein the plant comprises an air separation plant (300). Verfahren nach Anspruch 3, wobei der flüssige Stickstoff (b) wenigstens teilweise in einer Drucksäule (311) der Luftzerlegungsanlage (300) gewonnen und über eine Leitung dem Speichertank (200) für flüssigen Stickstoff zugeführt wird.The method of claim 3, wherein the liquid nitrogen (b) is at least partially recovered in a pressure column (311) of the air separation plant (300) and fed via a conduit to the liquid nitrogen storage tank (200). Verfahren nach Anspruch 3 oder 4, rückbezogen auf Anspruch 2, wobei einer der Ströme (f, a) gasförmigen Stickstoffs, die zur Bereitstellung gasförmigen Stickstoffs dienen, von der Luftzerlegungsanlage (300) umfasst ist und der Stickstoffverflüssigungsanlage (100) zur Verflüssigung zugeführt wird.A method according to claim 3 or 4, when dependent on claim 2, wherein one of the streams (f, a) of gaseous nitrogen used to provide gaseous nitrogen is included in the air separation plant (300) and supplied to the nitrogen liquefaction plant (100) for liquefaction. Verfahren nach einem der vorstehenden Ansprüche, wobei der gasförmige Stickstoff (c) aus dem externen Speichertank (200) entnommen und separat an einem kalten Ende des Wärmetauschers in den Wärmetauscher (150) geführt wird, bevor der gasförmige Stickstoff (c) einem der Ströme (a) gasförmigen Stickstoffs zugeführt wird.Method according to one of the preceding claims, wherein the gaseous nitrogen (c) taken from the external storage tank (200) and fed separately at a cold end of the heat exchanger in the heat exchanger (150) is before the gaseous nitrogen (c) is supplied to one of the streams (a) of gaseous nitrogen. Verfahren nach einem der Ansprüche 1 bis 5, wobei der gasförmige Stickstoff (c) aus dem externen Speichertank (200) entnommen und einem der Ströme (f) gasförmigen Stickstoffs, die durch den Wärmetauscher (350) geführt werden, zugeführt wird, bevor der Strom (f) an einem kalten Ende des Wärmetauschers in den Wärmetauscher (350) geführt wird.A method according to any one of claims 1 to 5, wherein the gaseous nitrogen (c) is taken from the external storage tank (200) and fed to one of the gaseous nitrogen streams (f) passing through the heat exchanger (350) before the stream (F) at a cold end of the heat exchanger in the heat exchanger (350) is guided. Verfahren nach Anspruch 7, wobei der gasförmige Stickstoff (c), der aus dem Speichertank (200) entnommen und dem Strom (f) gasförmigen Stickstoffs, der durch den Wärmetauscher (350) geführt wird, zugeführt wird, bevor oder nachdem dieser Strom (f) durch einen Unterkühler (160, 360) geführt wird.The method of claim 7, wherein the gaseous nitrogen (c) taken from the storage tank (200) and supplied to the stream (f) of gaseous nitrogen passed through the heat exchanger (350) before or after that stream (f ) is passed through a subcooler (160, 360). Verfahren nach Anspruch 8, wobei der gasförmige Stickstoff (c), der aus dem Speichertank (200) entnommen wird, zunächst separat durch den Unterkühler (160, 360) geführt wird und dann dem Strom (f) gasförmigen Stickstoffs, der durch den Wärmetauscher (150, 350) geführt wird, zugeführt wird, nachdem dieser Strom (f) durch den Unterkühler (160, 360) geführt wird.A method according to claim 8, wherein the gaseous nitrogen (c) withdrawn from the storage tank (200) is first passed separately through the subcooler (160, 360) and then to the stream (f) of gaseous nitrogen passing through the heat exchanger (15). 150, 350) is fed, after this stream (f) is passed through the subcooler (160, 360). Verfahren nach einem der vorstehenden Ansprüche, wobei in dem Speichertank (200) für flüssigen Stickstoff ein Überdruck in einem Bereich zwischen 0,1 und 1 bar, insbesondere zwischen 0,3 und 0,5 bar, vorgesehen ist oder auf einen Wert in diesem Bereich eingestellt oder eingeregelt wird.Method according to one of the preceding claims, wherein in the storage tank (200) for liquid nitrogen, an overpressure in a range between 0.1 and 1 bar, in particular between 0.3 and 0.5 bar, is provided or to a value in this range is set or adjusted. Verfahren nach einem der vorstehenden Ansprüche, wobei, auch wenn ein Betrieb der Anlage (100, 100', 100",300) unterbrochen ist oder wird, der gasförmige Stickstoff (c) aus dem Speichertank (200) entnommen und einem der Ströme (a, f) gasförmigen Stickstoffs zugeführt und durch den Wärmetauscher (150, 350) geführt wird.Method according to one of the preceding claims, wherein, even if an operation of the plant (100, 100 ', 100 ", 300) is interrupted, the gaseous nitrogen (c) is removed from the storage tank (200) and one of the streams (a , f) supplied to gaseous nitrogen and through the heat exchanger (150, 350) is guided. Anordnung mit einer Anlage (100, 100', 100", 300) mit Leitungen für einen oder mehrere Ströme (a, f) gasförmigen Stickstoffs, die zumindest zum Teil zur Bereitstellung und/oder Zufuhr gasförmigen Stickstoffs vorgesehen und/oder in einem Kreislauf der Anlage (100, 100', 100", 300) verwendbar sind, und mit einem externen Speichertank (200) für flüssigen Stickstoff, wobei eine Leitung vorgesehen ist, über die flüssiger Stickstoff (b) dem Speichertank (200) zuführbar ist, gekennzeichnet durch eine Leitung zwischen dem Speichertank (200) und wenigstens einer der Leitungen für die ein oder mehrere Ströme (a, f) gasförmigen Stickstoffs, die derart angeordnet ist, dass der gasförmige Stickstoff (c) aus dem Speichertank (200) entnehmbar, einem der Ströme (f) gasförmigen Stickstoffs zuführbar und durch einen Wärmetauscher (150, 350) der Anlage (100, 100', 100", 300) führbar ist. Arrangement with a system (100, 100 ', 100 ", 300) with lines for one or more streams (a, f) of gaseous nitrogen, which are provided at least in part for the supply and / or supply of gaseous nitrogen and / or in a cycle of Appendix (100, 100 ', 100 ", 300), and with an external storage tank (200) for liquid nitrogen, wherein a line is provided, via which liquid nitrogen (b) can be supplied to the storage tank (200), characterized by a conduit between the storage tank (200) and at least one of the conduits for the one or more streams (a, f) of gaseous nitrogen disposed such that the gaseous nitrogen (c) is removable from the storage tank (200) the streams (f) of gaseous nitrogen can be supplied and by a heat exchanger (150, 350) of the plant (100, 100 ', 100 ", 300) is feasible. Anordnung nach Anspruch 12, wobei die Anlage eine Stickstoffverflüssigungsanlage (100, 100', 100") umfasst, welcher gasförmiger Stickstoff (a) zur Verflüssigung zuführbar ist und die dazu eingerichtet ist, flüssigen Stickstoff zu erzeugen, wobei eine Leitung vorgesehen ist, über welche flüssiger Stickstoff (b) aus der Stickstoffverflüssigungsanlage (100, 100', 100" dem Speichertank (200) für flüssigen Stickstoff zuführbar ist.Arrangement according to claim 12, wherein the plant comprises a nitrogen liquefaction plant (100, 100 ', 100 "), which gaseous nitrogen (a) can be supplied for liquefaction and which is adapted to produce liquid nitrogen, whereby a conduit is provided, over which liquid nitrogen (b) from the nitrogen liquefaction plant (100, 100 ', 100 ") can be fed to the liquid nitrogen storage tank (200). Anordnung nach Anspruch 12 oder 13, wobei die eine Anlage eine Luftzerlegungsanlage (300) umfasst, die insbesondere eine Drucksäule (311) aufweist und dazu ausgebildet ist, flüssigen Stickstoff in der Drucksäule (311) zu erzeugen, und wobei eine Leitung vorgesehen ist, über welche der flüssige Stickstoff (b) aus der der Luftzerlegungsanlage (300) dem Speichertank (200) für flüssigen Stickstoff zuführbar ist.Arrangement according to claim 12 or 13, wherein the one plant comprises an air separation plant (300), in particular a pressure column (311) and is adapted to generate liquid nitrogen in the pressure column (311), and wherein a conduit is provided over which the liquid nitrogen (b) from the air separation plant (300) to the storage tank (200) for liquid nitrogen can be supplied. Anordnung nach Anspruch 14 rückbezogen auf Anspruch 13, wobei eine der Leitungen für die Ströme (f) gasförmigen Stickstoffs der Luftzerlegungsanlage (300), die zur Bereitstellung gasförmigen Stickstoffs vorgesehen sind, derart angeordnet ist, dass gasförmiger Stickstoff aus der Luftzerlegungsanlage (300) der Stickstoffverflüssigungsanlage (100) zur Verflüssigung zuführbar ist.An assembly according to claim 14 when dependent on claim 13, wherein one of the gaseous nitrogen streams (f) of the air separation plant (300) provided for supplying gaseous nitrogen is arranged such that gaseous nitrogen from the air separation plant (300) of the nitrogen liquefaction plant (100) can be supplied for liquefaction. Anordnung nach einem der Ansprüche 12 bis 15, wobei die Anlage (100, 100', 100", 300) einen Unterkühler (160, 360) aufweist, durch den der Strom (f) gasförmigen Stickstoffs, dem der gasförmige Stickstoff (c) aus dem Speichertank (200) zuführbar ist, geführt wird, und wobei der gasförmige Stickstoff (c) aus dem Speichertank (200) diesem Strom (f) zugeführt wird, bevor oder nachdem dieser Strom (f) durch den Unterkühler (160, 360) geführt wird.Arrangement according to one of claims 12 to 15, wherein the plant (100, 100 ', 100 ", 300) has a subcooler (160, 360), through which the stream (f) of gaseous nitrogen, which is the gaseous nitrogen (c) the storage tank (200) can be fed, is guided, and wherein the gaseous nitrogen (c) from the Storage tank (200) is supplied to this stream (f) before or after this stream (f) is passed through the subcooler (160, 360). Anordnung nach Anspruch 16, die derart eingerichtet ist, dass der gasförmige Stickstoff (c) aus dem Speichertank (200) entnommen und separat durch den Unterkühler geführt wird und dann dem Strom (f) gasförmigen Stickstoffs zugeführt wird, nachdem dieser Strom (f) durch den Unterkühler (160, 360) geführt wird.An assembly according to claim 16, arranged to extract the gaseous nitrogen (c) from the storage tank (200) and pass it separately through the subcooler and then to the stream (f) of gaseous nitrogen after passing through said stream (f) the subcooler (160, 360) is guided. Anordnung nach einem der Ansprüche 12 bis 17, wobei in dem Speichertank (200) für flüssigen Stickstoff ein Überdruck in einem Bereich zwischen 0,1 und 1 bar, insbesondere zwischen 0,3 und 0,5 bar, vorgesehen ist oder auf einen Wert in diesem Bereich einstellbar oder einregelbar ist.Arrangement according to one of claims 12 to 17, wherein in the storage tank (200) for liquid nitrogen, an overpressure in a range between 0.1 and 1 bar, in particular between 0.3 and 0.5 bar, is provided or to a value in This range is adjustable or einregelbar.
EP17020053.9A 2016-12-22 2017-02-10 Method for operating an installation and assembly with an installation Withdrawn EP3339784A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016015293 2016-12-22

Publications (1)

Publication Number Publication Date
EP3339784A1 true EP3339784A1 (en) 2018-06-27

Family

ID=58043831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17020053.9A Withdrawn EP3339784A1 (en) 2016-12-22 2017-02-10 Method for operating an installation and assembly with an installation

Country Status (1)

Country Link
EP (1) EP3339784A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719428A1 (en) * 2019-04-05 2020-10-07 Linde GmbH Method for operating a heat exchanger, assembly with heat exchanger and system with corresponding assembly
WO2021037391A1 (en) * 2019-08-23 2021-03-04 Linde Gmbh Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement
EP4184100A1 (en) * 2021-11-18 2023-05-24 Linde GmbH Method and cryogenic production arrangement for producing a liqui liquid nitrogen product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6500101A (en) * 1964-01-06 1965-07-07
US3358460A (en) * 1965-10-08 1967-12-19 Air Reduction Nitrogen liquefaction with plural work expansion of feed as refrigerant
JP2009243739A (en) * 2008-03-31 2009-10-22 Taiyo Nippon Sanso Corp Method and device for producing liquefied nitrogen
US20130118204A1 (en) * 2010-07-28 2013-05-16 Air Products And Chemicals, Inc. Integrated liquid storage
US20160313057A1 (en) * 2015-04-24 2016-10-27 Air Products And Chemicals, Inc. Integrated Methane Refrigeration System for Liquefying Natural Gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6500101A (en) * 1964-01-06 1965-07-07
US3358460A (en) * 1965-10-08 1967-12-19 Air Reduction Nitrogen liquefaction with plural work expansion of feed as refrigerant
JP2009243739A (en) * 2008-03-31 2009-10-22 Taiyo Nippon Sanso Corp Method and device for producing liquefied nitrogen
US20130118204A1 (en) * 2010-07-28 2013-05-16 Air Products And Chemicals, Inc. Integrated liquid storage
US20160313057A1 (en) * 2015-04-24 2016-10-27 Air Products And Chemicals, Inc. Integrated Methane Refrigeration System for Liquefying Natural Gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Industrial Gases Processing", 2006, WILEY-VCH
FRANK G. KERRY: "Industrial Gas Handbook, Gas Separation And Purification", 2007, TAYLOR & FRANCIS GROUP

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719428A1 (en) * 2019-04-05 2020-10-07 Linde GmbH Method for operating a heat exchanger, assembly with heat exchanger and system with corresponding assembly
WO2021037391A1 (en) * 2019-08-23 2021-03-04 Linde Gmbh Method for operating a heat exchanger, arrangement with a heat exchanger, and system with a corresponding arrangement
EP4184100A1 (en) * 2021-11-18 2023-05-24 Linde GmbH Method and cryogenic production arrangement for producing a liqui liquid nitrogen product
EP4184101A1 (en) * 2021-11-18 2023-05-24 Linde GmbH Method and cryogenic production arrangement for producing a liquid nitrogen product

Similar Documents

Publication Publication Date Title
EP3179187B1 (en) Method for obtaining a liquid and a gaseous oxygen-rich air product in an air breakdown apparatus and air breakdown apparatus
EP2980514A1 (en) Method for the low-temperature decomposition of air and air separation plant
DE102010052544A1 (en) Process for obtaining a gaseous product by cryogenic separation of air
EP0895045A2 (en) Air separation process
EP3410050B1 (en) Method for producing one or more air products and air separation system
EP3339784A1 (en) Method for operating an installation and assembly with an installation
WO2020083528A1 (en) Method and unit for low-temperature air separation
EP3205963A1 (en) Method for obtaining an air product and air decomposition system
EP2979051B1 (en) Method and device for producing gaseous compressed oxygen having variable power consumption
EP2322888B1 (en) Method and device for generating a helium-neon concentrate from air
WO2019201475A1 (en) Method for operating a heat exchanger, assembly comprising a heat exchanger, and air preparing system comprising a corresponding assembly
EP2600090B1 (en) Method and device for generating pressurised oxygen by cryogenic decomposition of air
EP3312533A1 (en) Method for air separation and air separation plant
DE102014010103A1 (en) Process for LNG recovery from N2-rich gases
EP3696486A1 (en) Method and apparatus for providing one or more gaseous oxygen rich air products
EP1300640A1 (en) Process and device for producing ultra-high purity Nitrogen by cryogenic separation of air
DE102017010001A1 (en) Process and installation for the cryogenic separation of air
EP2647934A1 (en) Device and method for generating electrical energy
DE102016015446A1 (en) Process for the cryogenic separation of air and air separation plant
WO2021129948A1 (en) Process and plant for provision of an oxygen product
EP3124902A1 (en) Air separation facility, operating method and control device
EP2906889B1 (en) Process and facility for generating liquid and gaseous oxygen products by low-temperature separation of air
DE102018009780A1 (en) Process and plant for the low-temperature separation of air
DE202018006161U1 (en) Plant for the cryogenic separation of air
DE102016013091A1 (en) Method and system for purifying a gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190103