EP3339736B1 - Flame detection for combustion appliances - Google Patents
Flame detection for combustion appliances Download PDFInfo
- Publication number
- EP3339736B1 EP3339736B1 EP17202230.3A EP17202230A EP3339736B1 EP 3339736 B1 EP3339736 B1 EP 3339736B1 EP 17202230 A EP17202230 A EP 17202230A EP 3339736 B1 EP3339736 B1 EP 3339736B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- sensor configuration
- supply
- inverting
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/08—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
- F23N5/082—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2229/00—Flame sensors
- F23N2229/12—Flame sensors with flame rectification current detecting means
Definitions
- the instant disclosure generally relates to devices for flame detection in combustion appliances. More particularly, the instant disclosure relates to flame detection that is not based on CdS diodes.
- Combustion appliances for fossil fuels such as gas burners generally rely on optical sensors that detect the presence of a flame. Signals obtained from these optical sensors are processed to ensure safe operation of the appliance.
- Optical sensors suitable for flame detection need to meet a plethora of conflicting technical requirements. They need to exhibit low dark currents in order that false alarms are avoided. Suitable sensors also need be sensitive enough to detect low levels of incident light such as 0.5 Lux. In other words, the sensors and their detection circuits are required to minimize both false positives (type I errors) and false negatives (type II errors). The additional requirement of low-cost sensors further exacerbates the problem.
- CdS cadmium sulfide
- a filter circuit 13 and a dark current adder circuit 12 are arranged between the cable 30 and the light-receiving element 11.
- the filter circuit 13 functions to minimize adverse influences due to noise.
- a diode 14 inhibits faults due to polarity reversal.
- EP0942232B1 issued on 21 September 2005 .
- EP0942232B1 teaches a flame sensor with dynamic sensitivity adjustment.
- the disclosure of EP0942232B1 focuses on flame detection in gas turbines.
- a circuit with two amplifiers U1A and U1B is employed to dynamically adjust sensitivity.
- a photo diode D4 made of silicon carbide (SiC) connects to the non-inverting input of amplifier U1A.
- the gain of amplifier U1A is controlled via a switch Q1. If the switch Q1 becomes conducting, it will shunt a resistor R4. Since R4 is part of the feedback loop that controls the gain of amplifier U1A, Q1 also controls the sensitivity of the circuit.
- the amplifier U1B in conjunction with a transistor Q2 acts to convert the output voltage of U1A into an electric current.
- EP0942232B1 employs a silicon carbide (SiC) diode that detects (ultraviolet) light at wavelengths such as 310 nm.
- EP0942232B1 employs a plurality of amplifiers U1A, U1B, and Q2 that are each susceptible to failure.
- the specification of EP0942232B1 teaches connection of the flame detection circuit via a single pair of wires W1, W2.
- the wires W1 and W2 supply the circuit with power and also carry the output signal of the circuit.
- DE2654881A1 was filed on 3 December 1976 and was published on 21 September 1978.
- DE2654881A1 discloses a sensor configuration according to the preamble of claim 1.
- the present disclosure teaches a circuit for flame detection that dispenses with CdS technology.
- the instant disclosure focuses on a circuit for use in combustion appliances for fossil fuels.
- the present disclosure provides a method and / or a device and / or a circuit for indicating the presence of a flame in a combustion appliance.
- an amplifier is employed that maintains (substantially) zero voltage drop over a photo diode. That is, the photoiode is not reverse biased and does not operate in photoconductive mode.
- the photodiode connects to the inverting input of the amplifier.
- the amplifier employed in the circuit described hereinafter exhibits a quiescent current that is lower than any allowable dark current.
- an amplifier with low current supply mitigates the risk of false positives. In other words, an amplifier with a low current supply is employed to inhibit indication of a flame when there is no flame (type I errors).
- FIG 1 shows a sensor configuration with a photodiode 1 and with a differential amplifier 2.
- Differential amplifier 2 provides inverting (-) and non-inverting (+) input channels.
- the two terminals of photodiode 1 (directly) connect to the inverting (-) and to the non-inverting (1+) input channels of differential amplifier 2.
- Photodiode 1 advantageously has its anode (directly) connected to the non-inverting input channel (+) of differential amplifier 2.
- the cathode of photodiode 1 advantageously (directly) connects to the inverting input channel (-) of differential amplifier 2.
- photodiode 1 is a silicon diode. It is desirable for purposes of flame detection that photodiode 1 exhibits a low value of parasitic parallel resistivity. A photocurrent produced by diode 1 may otherwise be consumed by the parasitic parallel resistivity of photodiode 1. Low values of parasitic parallel resistivity frequently indicate low values of dark current I R .
- the temperature coefficient TC I of the short-circuit current I SC (at 25 degrees Celsius) is preferably less than 0.5%/Kelvin, even more preferred less than 0.3%/Kelvin, yet more preferred less than 0.1%/Kelvin or even 0.04%/Kelvin.
- photodiode 1 ought to exhibit a spectral sensitivity ⁇ 10% that matches and / or overlaps with the signal obtained from a flame in a combustion appliance.
- photodiode 1 exhibits a spectral sensitivity ⁇ 10% between 200 nm and 900 nm, yet more preferred between 300 nm and 900 nm, even more preferred between 400 nm and 900 nm.
- photodiode 1 exhibits a spectral sensitivity at infrared wavelengths such as 900 nm that is less than 20%, preferably less than 10%, the sensitivity at 600 nm wavelength.
- Photodiode 1 may, in a particular embodiment, be a type VEMD5510 device. According to an aspect, photodiode 1 is implemented as a surface-mounted device (SMD). Surface-mounted devices allow low cost manufacture at large scale. Surface-mounted device also allow miniaturized circuits. Photodiode 1 ideally withstands elevated temperatures inside a combustion appliance, in particular elevated temperatures inside or near a burner chamber of a combustion appliance.
- SMD surface-mounted device
- Differential amplifier 2 amplifies the difference in signals between its inverting (-) and its non-inverting (+) input channels. Differential amplifier 2 provides an output channel 3 for the amplified signal. Differential amplifier 2 ideally is an operational amplifier. According to an aspect, amplifier 2 is implemented as a surface-mounted device (SMD). Surface-mounted devices allow low cost manufacture at large scale. Surface-mounted device also allow miniaturized circuits. According to another aspect, amplifier 2 comes as an integrated circuit (IC).
- IC integrated circuit
- Differential amplifier 2 advantageously exhibits a low value of input bias current.
- a low value of input bias current of differential amplifier 2 yields benefits in terms of low photocurrents that can be detected.
- the input bias current of differential amplifier 2 (at 25 degrees Celsius) preferably is less than 100 pA, yet more preferred less than 20 pA, still more preferred less than 10 pA.
- Differential amplifier 2 advantageously exhibits a low value of offset voltage.
- a low value of offset voltage 2 yields benefits in terms of low signals from diode 1 that can be detected.
- the offset voltage between the inverting and the non-inverting terminals of differential amplifier 2 (at 25 degrees Celsius) preferably is less than 50 mV, yet more preferred less than 20 mV, still more preferred less than 10 mV.
- the quiescent current of amplifier 2 at 25 degrees Celsius and at nominal supply voltage is less than 5 ⁇ A, preferably less than 2 ⁇ A, still more preferred 1.2 ⁇ A or less.
- differential amplifier 2 preferably functions at supply voltages at its terminals 7 and 8 as small as ⁇ 3 V. Differential amplifier yet more preferably functions at supply voltages as small as ⁇ 2.5 V at 25 degrees Celsius. Still more preferably, amplifier 2 functions at supply voltages as low as ⁇ 1.2 V or even ⁇ 1.1 V at 25 degrees Celsius.
- Photodiode 1 provides an anode terminal and a cathode terminal.
- the cathode terminal of photodiode 1 advantageously connects to the inverting input (-) channel of amplifier 2.
- the anode terminal of photodiode 1 advantageously connects to the non-inverting input (+) channel of amplifier 2.
- Photodiode 1 provides an anode terminal and a cathode terminal.
- the cathode terminal of photodiode 1 advantageously connects to the inverting input (-) channel of amplifier 2.
- the anode terminal of photodiode 1 advantageously connects to the non-inverting input (+) channel of amplifier 2.
- photodiode 1 When photodiode 1 is illuminated by a light source such as a flame, photodiode 1 will produce a photocurrent.
- the signal obtained from photodiode 1 will then be amplified by differential amplifier 2.
- Amplifier 2 will produce a signal at its output terminal 3 that is a function of the difference between the signals at its inverting (-) and non-inverting (+) input channels. In other words, amplifier 2 will produce a signal at its output terminal that is a function of the photocurrent produced by diode 1.
- amplifier 2 is a Texas Instruments® type LPV812 operational amplifier. Signals may also build up at the inverting (-) and / or at the non-inverting input (+) channels of amplifier 2 due to ambient influences. Those ambient influences are generally undesirable. The sensor configuration should inhibit such ambient influences in order to differentiate signals obtained from the photodiode and ambient noise.
- FIG 1 shows two impedances 4 and 5 that connect the input channels of amplifier 2 to earth.
- First impedance 4 connects the inverting input channel (-) of differential amplifier 2 to earth.
- Second impedance connects the non-inverting input channel (+) of differential amplifier 2 to earth.
- impedance 4 is a resistor (an ohmic resistor). Resistor 4 is chosen such that resistor 4 in conjunction with the input capacitance of amplifier 2 and / or in conjunction with a capacitor parallel to resistor 4 yields suitable RC time constants. The signal at the output channel 3 of amplifier 2 may otherwise be perturbed by remnant charges at the input channels of amplifier 2.
- resistor 4 shows a resistivity of less than 100 kOhm (at 25 degrees Celsius), preferably less than 20 kOhm (at 25 degrees Celsius), yet more preferred less than 10 kOhm or even 4.7 kOhm (at 25 degrees Celsius).
- Impedance 4 also maintains the cathode terminal of photodiode 1 (substantially) at earth potential. In other words, any reverse bias of photodiode 1 is inhibited. Photodiode 1 operates near zero voltage. Consequently, any issues due in relation to dark currents through photo diode 1 are mitigated.
- Impedances 4 and 9 determine the output signal of amplifier 2 as a function of photocurrent.
- a photocurrent emanates from sensor 1 and flows through impedance 5 to ground.
- the potential at the non-inverting (+) input channel thus increases.
- Amplifier 2 then produces equal signals at the inverting (-) and non-inverting (+) input channels by driving an electric current through impedance 9 (and also through sensor 1). Consequently, the voltage drop over impedance 4 is the same as the voltage drop over impedance 5.
- the input offset voltage determines the precision of amplifier 2 and also the voltage bias of sensor 1.
- impedance 5 is a resistor (such as an ohmic resistor). Resistor 5 is chosen such that resistor 5 in conjunction with the input capacitance of amplifier 2 yields suitable RC time constants. The signal at the output channel 3 of amplifier 2 may otherwise be perturbed by remnant charges at the input channels of amplifier 2. Resistor 5 may, by way of non-limiting example, have a resistivity of 2.2 MOhm (at 25 degrees Celsius). Resistor 5 may, by way of another non-limiting example, have a resistivity of 4.7 MOhm (at 25 degrees Celsius). Resistor 5 may, by of yet another non-limiting example, have a resistivity of 6.8 MOhm or even 10 MOhm (at 25 degrees Celsius).
- the characteristics of the sensor configuration can be matched to actual values of photocurrent.
- Photocurrents may vary, by way of non-limiting example, due to light attenuation by a housing of the configuration and / or due to different sensors 1 used.
- Impedance 5 advantageously yields an increase in voltage at output channel 3 without requiring extra amplification. A higher level of amplification by amplifier 2 would otherwise be required. Higher levels of amplification do, however, adversely affect the offset voltage of amplifier 2. An augmented offset voltage would then exacerbate the inaccuracies and / or error signals of the configuration.
- resistor 5 may to some extent also be capacitive.
- a capacitive member may be connected in parallel to resistor 5. The capacitive member functions to create a well-defined capacitance between the terminals of resistor 5. The capacitive member thereby contributes to a well-defined RC time constant.
- Impedance 6 connects the output channel 3 to earth. Photodiode 1 under the influence of incident light produces a photocurrent. The corresponding signal is amplified by differential amplifier 2. Differential amplifier 2 then produces a signal at its output channel that is a function of the photocurrent through diode 1. Consequently, impedance 6 dissipates an amount of (electric) power that is a function of the photocurrent through photodiode 1. Terminals V+ 7 and V- 8 of the circuit feed this amount of power to amplifier 2.
- Impedance 6 is chosen such that the amount of power dissipated is within acceptable limits of differential amplifier 2. Impedance 6 is also chosen such that light incident on diode 1 results in a measurable increase in supply current through terminals 7, 8. Impedance 6 is preferably chosen such that 2 Lux of incident light yield a measureable increase in supply current. Impedance 6 is more preferably chosen such that 1 Lux of incident light yields a measureable increase in supply current. Impedance 6 is still more preferably chosen such that 1.1 Lux of incident light yields a measureable increase in supply current.
- a measurable increase in supply current (power) through terminals 7, 8 is at least five times the value of the quiescent current of amplifier 2. More preferred, a measurable increase in supply current (power) through terminals 7, 8 is at least twice the value of the quiescent current of amplifier 2. Still more preferred, a measurable increase in supply current (power) through terminals 7, 8 is at least half the value of the quiescent current of amplifier 2. In a particular embodiment, oversampling yields further improvements on the signal-to-noise ratio of the signal between terminals 7 and 8.
- impedance 6 is a resistor (such as an ohmic resistor).
- resistor 6 exhibits a resistivity at 25 degrees Celsius of 100 kOhm or 68 kOhm or 47 kOhm or 33 kOhm or 22 kOhm or 10 kOhm.
- Terminals 7 and 8 are advantageously implemented as compatible with the terminals of existing CdS based configurations. Terminals 7 and 8 preferably provide suitable plugs and / or suitable sockets that allow terminals 7 and 8 to be readily connected to (the terminals of) an existing combustion appliance.
- a feedback loop with feedback members 9, 10 connects the output channel 3 of amplifier 2 to its inverting input channel (-).
- Feedback member 9 preferably is a resistor (such as an ohmic resistor).
- Feedback member 10 preferably is a capacitor.
- U out is a first order polynomial of the resistivity R feedback .
- U out is also function of the product R feedback ⁇ I ph of the resistivity R feedback of member 9 and of the current I ph through photodiode 1:
- U out f R feedback ⁇ I ph
- U out is a first order polynomial of the product R feedback ⁇ I ph .
- Suitable values of the resistivity of member 9 mitigate adverse influences due to offset voltages and / or bias currents etc.
- the resistivity of member 9 may, by way of non-limiting example, attain 0.47 MOhm at 25 degrees Celsius.
- the resistivity of member 9 may, by way of another non-limiting example, attain 2 MOhm at 25 degrees Celsius.
- the resistivity of member 9 may, by way of yet another non-limiting example, be 1 MOhm at 25 degrees Celsius.
- member 9 is a potentiometer. That way, the sensitivity of the circuit shown on FIG 1 can be tuned.
- Feedback member 10 advantageously is a capacitor.
- Capacitor 10 is connected in parallel to resistor 9.
- Capacitor 10 contributes to optimizing the dynamic characteristics of the system and / or inhibits instability (of differential amplifier 2).
- the choice of capacitor 10 depends on the input capacitance of amplifier 2.
- the capacitance of member 10 also depends on the resistivity of the feedback resistor 9.
- the choice of capacitance 10 is influenced by the capacitance of photodiode 1.
- resistor 9 may to some extent also be capacitive.
- the feedback members 9 and 10 are implemented as a single resistive-capacitive member. It is also envisaged that another particular embodiment dispenses with capacitor 10.
- amplifier 2 effectively becomes a comparator. Accordingly, amplifier 2 produces a high output signal (such as 3 V, 2.5 V, 1.2 V or 1.1 V) indicative of a photocurrent through diode 1. Amplifier 2 produces a low output signal (substantially 0 V) when there is no photocurrent through diode 1.
- the embodiment advantageously employs a positive feedback loop between the output channel 3 of amplifier 2 and its non-inverting (-) input channel. The embodiment ideally relies on a sensor 1 that exhibits (substantially) linear characteristics in the relevant operational range.
- the supply and detection circuit 11 functions to supply the sensor configuration with electric current and / or with electric power.
- the supply and detection circuit 11 also functions to detect any changes in current and / or in power to the sensor configuration due to the photodiode 1 receiving light.
- the sensor configuration provides a pair of wires 12, 13 and a connector 14. It is envisaged that connector 14 plugs into a suitable connector of supply and detection circuit 11. Connector 14 thereby establishes an electric connection between the wires 12, 13 and the supply and detection circuit 11. Wires 12, 13 ideally directly connect to supply terminals 7, 8.
- the sensor configuration according to the instant disclosure is advantageously arranged on a (printed) circuit board.
- the skilled person separates the paths for supply voltages 7, 8 and / or for inverting and / or non-inverting input channels and / or for output channels 3 in order that parasitic currents are inhibited. It is envisaged that suitable guard traces are arranged on the (printed) circuit board between these paths, since guard traces further reduce parasitic effects.
- connector 14 also comprises an ampere meter, an analog-to-digital converter, a processing module, and / or a radio frequency module connected to an antenna.
- connector 14 also comprises a power source such as an electric battery and / or an energy harvesting circuit to supply relevant components with power.
- the ampere meter is arranged in series with any of the wires 12, 13 and records a current value indicative of the current through any of the wires 12, 13.
- the analog-to-digital converter receives the analog current value from the ampere meter and converts the value into a digital representation.
- the processing unit generates a message for transmission over a computer network from the digital representation. The digital message is then sent to the radio frequency module.
- the radio frequency module converts the message to a radio frequency signal which is forwarded to the antenna.
- the analog-to-digital converter and / or the radio frequency module is integrated in the processing module. It is envisaged to split the message in a plurality of messages. The latter step offers benefits in terms of redundancy and / or immunity to disturbances.
- the radio frequency module may allow for unidirectional or for bidirectional wireless communication. Data transmission may be directional or non-directional. According to an aspect, radio frequency module employs a modulation process that accommodates for the characteristics of the air interface between the receiver and the transmitter. Factors that influence the choice of any particular modulation process include, but are not limited to, range, immunity to disturbances, bit rate, channel bandwidth, characteristics of the channel etc.
- the modulation process may change over time as a function of the characteristics of the communication channel.
- the modulation process thus adapts continuously in order to achieve optimum performance.
- the bandwidth of any particular channel is subdivided into a plurality of frequency bands.
- each frequency band uses its own particular modulation process that suits the characteristics of the frequency band.
- Each frequency band advantageously carries a proportion of data traffic that depends on the capacity of the frequency band for data transmission.
- a digital modulation process is employed to reduce and / or to mitigate disturbances.
- a digital modulation process uses a digital signal to modulate an analog carrier.
- Digital modulation processes may, by way of non-limiting example, rely on techniques such as phase-shift-keying, continuous phase modulation, and / or quadrature amplitude modulation.
- a bridge rectifier 15 that supplies currents at its load terminals 18, 19 to the diode configuration.
- the bridge rectifier 15 has its load terminals 18, 19 connected to the terminals 7, 8 of the diode configuration.
- the bridge rectifier 15 also provides a pair of supply terminals 16, 17. Those supply terminals ideally connect to a pair of wires 12, 13 that supplies the entire configuration with power.
- the arrangement of FIG 3 offers benefits in terms of immunity to polarity reversal and / or to wiring errors.
- the sensor configuration is not going to be damaged, even if the voltage between wires 12, 13 is erroneously reversed.
- electric components of the circuits disclosed herein such as resistors, capacitors, and guard traces are arranged on a circuit board via an additive manufacturing technique.
- These resistors and capacitors can, in particular, be arranged via a three-dimensional additive manufacturing technique.
- suitable materials as well as suitable parameters such as temperature when printing electric components.
- necessary mechanical members such as sockets for integrated circuits, in particular sockets for operational amplifiers, can be arranged via additive manufacturing.
- suitable materials as well as suitable parameters such as stiffness and / or glass-transition temperature when printing mechanical members. Additive manufacturing techniques offer benefits in terms of low cost even at small quantities.
- a sensor configuration for a combustion appliance comprising:
- the first sensor terminal directly connects to the inverting input channel (-).
- the second sensor terminal directly connects to the non-inverting input channel (+).
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a differential amplifier 2 is configured to draw a first load current from the supply terminals 7, 8 in response to the at least a load member 6 dissipating the first amount of power.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a differential amplifier 2 is configured to maintain a voltage drop of (substantially) between its inverting - and its non-inverting input channels.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a differential amplifier 2 is configured to maintain a voltage drop of (substantially) between its inverting - and its non-inverting input channels, such that reverse bias of the sensor 1 (by the at least an amplifier 2) is inhibited.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a differential amplifier 2 is configured to maintain a voltage drop of (substantially) between its inverting - and its non-inverting input channels, such that reverse bias of the sensor 1 (by the at least an amplifier 2) is inhibited and any dark current of sensor 1 is minimized and / or eliminated.
- the instant disclosure also teaches one of the aforementioned sensor configurations, the sensor configuration additionally comprising at least a feedback resistor 9 such as an ohmic feedback resistor 9 connecting the output channel 3 to the inverting - input channel of the at least a differential amplifier 2.
- a feedback resistor 9 such as an ohmic feedback resistor 9 connecting the output channel 3 to the inverting - input channel of the at least a differential amplifier 2.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a feedback resistor 9 comprises a potentiometer.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a feedback resistor 9 comprises a potentiometer, such that the resistance of the at least a feedback resistor 9 can be tuned.
- the instant disclosure also teaches one of the aforementioned sensor configurations, the sensor configuration additionally comprising at least a feedback network 9 connecting the output channel 3 to the inverting - input channel of the at least a differential amplifier 2, wherein the feedback network 9 comprises a plurality of resistors and at least a switch, wherein the feedback network 9 exhibits a resistivity, wherein the switch is configured to change the resistivity of the feedback network 9 (by actuating the switch).
- the instant disclosure also teaches one of the aforementioned sensor configurations, the sensor configuration additionally comprising at least a feedback capacitor 10 connecting the output channel 3 to the inverting - input channel of the at least a differential amplifier 2.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a sensor 1 has a sensor capacitance indicative of a capacitance of the at least a sensor 1, wherein the at least a feedback capacitor 10 has a feedback capacitance indicative of a capacitance of the at least a feedback capacitor 10, wherein the feedback capacitance in conjunction with the sensor capacitance is configured to inhibit instability of the at least a differential amplifier 2.
- the instant disclosure also teaches one of the aforementioned sensor configurations, the sensor configuration additionally comprising at least a first earth impedance 4 such as an (ohmic) earth resistor connecting the inverting - input channel to one of the supply terminals 7, 8.
- a first earth impedance 4 such as an (ohmic) earth resistor connecting the inverting - input channel to one of the supply terminals 7, 8.
- the instant disclosure also teaches one of the aforementioned sensor configurations, the sensor configuration additionally comprising at least a second earth impedance 5 such as an (ohmic) earth resistor connecting the non-inverting + input channel to one of the supply terminals 7, 8, wherein the at least a first earth impedance 4 and the at least a second earth impedance 5 (an in an embodiment also the at least a load impedance 6) all connect to the same supply terminal 7, 8.
- a second earth impedance 5 such as an (ohmic) earth resistor connecting the non-inverting + input channel to one of the supply terminals 7, 8, wherein the at least a first earth impedance 4 and the at least a second earth impedance 5 (an in an embodiment also the at least a load impedance 6) all connect to the same supply terminal 7, 8.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a first earth impedance 4 has a first impedance value indicative of an impedance of the at least a first earth impedance 4, and the at least a second earth impedance 5 has a second impedance value indicative of an impedance of the at least a second earth impedance 5, wherein the second impedance value exceeds the first impedance value at least by a factor ten, preferably at least by a factor one hundred, more preferably at least by a factor one thousand.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the sensor configuration provides a pair of wires with a first wire 12 and with a second wire 13, wherein the first load current is an electric current, wherein the second quiescent current is an electric current, wherein the first wire 12 connects to the first supply terminal 7 and the second wire 13 connects to the second supply terminal 8, wherein the pair of wires is configured to exclusively supply the sensor configuration with electric currents and / or with electric signals.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the pair of wires (at its far end) provides a connector 14 for connection of the first wire 12 and of the second wire 13 to a supply and detection circuit 11, wherein the connector 14 is the only connector of the sensor configuration configured to connect the first wire 12 and the second wire 13 to the supply and detection circuit 11.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the pair of wires (at its far end) provides a connector 14 for connection of the first wire 12 and of the second wire 13 to a supply and detection circuit 11, wherein the connector 14 is the only connector of the sensor configuration configured to connect the sensor configuration to the supply and detection circuit 11.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the at least a sensor 1 comprises and / or is a photodiode.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the first sensor terminal connects to the cathode of the photodiode and / or the second sensor terminal connects to the anode of the photodiode.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the photodiode has a temperature coefficient indicative of a dependence of a short-circuit current of the photodiode on temperature, wherein the temperature coefficient at three hundred degrees Kelvin is less than one percent per Kelvin, preferably less than half a percent per Kelvin, more preferred less than 0.2 percent per Kelvin, or even 0.04 percent per Kelvin or less.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the photodiode 1 has a first spectral sensitivity at 900 nm optical wavelength and a second spectral sensitivity at 600 nm optical wavelength, the second spectral sensitivity is at least five times, preferably at least ten times, the first spectral sensitivity.
- the aforementioned optical wavelengths relate to wavelengths of light incident on photodiode 1, preferably from a combustion appliance.
- the aforementioned values of sensitivity offer benefits in terms of optimum match with typical wavelengths of flames combustion appliances.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein at least a differential amplifier 2 is an operational amplifier, in particular a low-noise operational amplifier and / or an ultra low-noise operational amplifier and / or an instrument amplifier.
- a differential amplifier 2 is an operational amplifier, in particular a low-noise operational amplifier and / or an ultra low-noise operational amplifier and / or an instrument amplifier.
- the instant disclosure also teaches a combustion appliance with a sensor configuration according to the instant disclosure.
- the instant disclosure also teaches one of the aforementioned sensor configurations, wherein the sensor configuration additionally comprises a bridge rectifier 15 with supply terminals 16, 17 and with load terminals 18, 19, and a pair of wires with a first wire 12 and with a second wire 13, wherein the first load current is an electric current, wherein the second quiescent current is an electric current, wherein the first wire 12 and the second wire 13 connect to the supply terminals 16, 17 of the bridge rectifier 15, wherein the bridge rectifier 15 is configured to convert an alternating electric current applied between its supply terminals 16, 17 into a direct electric current between its load terminals 18, 19, wherein the first supply terminal 7 and the second supply terminal 8 connect to the load terminals 18, 19 of the bridge rectifier 15, wherein the pair of wires is configured to exclusively supply the sensor configuration with electric currents and / or with electric signals.
- any steps of a method according to the present application may be embodied in hardware, in a software module executed by a processor, in a cloud computing arrangement, or in a combination thereof.
- the software may include a firmware, a hardware driver run in the operating system, or an application program.
- the invention also relates to a computer program product for performing the operations presented herein. If implemented in software, the functions described may be stored as one or more instructions on a computer-readable medium. Some examples of storage media that may be used include random access memory (RAM), read only memory (ROM), flash memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, other optical disks, or any available media that can be accessed by a computer or any other IT equipment and appliance.
- RAM random access memory
- ROM read only memory
- flash memory EPROM memory
- EEPROM memory electrically erasable programmable read-only memory
- registers a hard disk, a removable disk, other optical disks, or any available media that can be accessed
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Amplifiers (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Control Of Combustion (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP16205682 | 2016-12-21 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3339736A1 EP3339736A1 (en) | 2018-06-27 |
| EP3339736B1 true EP3339736B1 (en) | 2019-04-10 |
Family
ID=57794058
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP17202230.3A Active EP3339736B1 (en) | 2016-12-21 | 2017-11-17 | Flame detection for combustion appliances |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3339736B1 (tr) |
| ES (1) | ES2735213T3 (tr) |
| TR (1) | TR201906363T4 (tr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2727815C1 (ru) * | 2018-12-06 | 2020-07-24 | Сименс Акциенгезелльшафт | Устройство контроля пламени |
| EP4397907A1 (en) | 2023-01-04 | 2024-07-10 | Siemens Aktiengesellschaft | Combustion sensor control |
| EP4545854A1 (de) | 2023-10-25 | 2025-04-30 | Siemens Aktiengesellschaft | Regelung einer verbrennungsvorrichtung |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4283196B1 (en) | 2022-05-23 | 2024-10-30 | Siemens Aktiengesellschaft | Controlling a mixing ratio |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE699956C (de) | 1936-08-26 | 1940-12-10 | Klangfilm G M B H | Messgeraet fuer Wechselspannungen mit Gleichrichter und Gleichstromanzeigegeraet |
| DE1011563B (de) | 1953-09-18 | 1957-07-04 | Licentia Gmbh | Photoelektrischer Flammenwaechter |
| DE2439812A1 (de) | 1974-08-20 | 1976-03-04 | Durag Apparatebau Gmbh | Flammenwaechter |
| DE2654881A1 (de) | 1976-10-22 | 1978-09-21 | Landis & Gyr Ag | Ueberwachungseinrichtung fuer physikalische groessen, insbesondere flammenwaechter |
| DE3234532A1 (de) | 1982-06-15 | 1983-12-15 | Touto Denki K.K., Tokyo | Automatischer brennstoffzufuhrunterbrecher |
| DE3235242A1 (de) | 1982-09-23 | 1984-03-29 | Heimann Gmbh, 6200 Wiesbaden | Schaltung zur messung geringer beleuchtungsstaerken |
| DE3314211C2 (de) | 1983-04-20 | 1985-08-08 | Kurt-Henry Dipl.-Ing. 4030 Ratingen Mindermann | Verstärkerschaltung für das Eingangssignal einer Flammenüberwachungsanordnung |
| US4731529A (en) | 1985-04-03 | 1988-03-15 | Canon Kabushiki Kaisha | Light measuring circuit having circuitry for bypassing a low frequency component in the output of a photoelectric conversion element |
| DE4206555A1 (de) | 1991-03-11 | 1992-09-24 | Mitsubishi Electric Corp | Fotoelektrischer wandlerschaltkreis, sowie system hiermit |
| DE3529077C2 (de) | 1984-09-27 | 1995-03-23 | Esm Int Inc | Normalisierer |
| DE19730333C1 (de) | 1997-07-15 | 1998-11-26 | Leuze Lumiflex Gmbh & Co | Schaltungsanordnung zum Verstärken und Aufbereiten von Lichtsignalen |
| DE10029609A1 (de) | 1999-06-29 | 2001-02-15 | Infineon Technologies Corp | Hochgeschwindigkeits-Optokoppler-Detektor |
| US6652266B1 (en) | 2000-05-26 | 2003-11-25 | International Thermal Investments Ltd. | Flame sensor and method of using same |
| DE102004051083B3 (de) | 2004-10-19 | 2006-01-05 | Bfi Automation Dipl.-Ing. Kurt-Henry Mindermann Gmbh | Flammenwächter |
| DE69927311T2 (de) | 1998-03-13 | 2006-06-22 | General Electric Co. | Flammendetektor mit dynamischer Empfindlichkeitseinstellung |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5042637B2 (ja) | 2007-01-12 | 2012-10-03 | アズビル株式会社 | 火炎検出装置 |
-
2017
- 2017-11-17 TR TR2019/06363T patent/TR201906363T4/tr unknown
- 2017-11-17 ES ES17202230T patent/ES2735213T3/es active Active
- 2017-11-17 EP EP17202230.3A patent/EP3339736B1/en active Active
Patent Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE699956C (de) | 1936-08-26 | 1940-12-10 | Klangfilm G M B H | Messgeraet fuer Wechselspannungen mit Gleichrichter und Gleichstromanzeigegeraet |
| DE1011563B (de) | 1953-09-18 | 1957-07-04 | Licentia Gmbh | Photoelektrischer Flammenwaechter |
| DE2439812A1 (de) | 1974-08-20 | 1976-03-04 | Durag Apparatebau Gmbh | Flammenwaechter |
| DE2654881A1 (de) | 1976-10-22 | 1978-09-21 | Landis & Gyr Ag | Ueberwachungseinrichtung fuer physikalische groessen, insbesondere flammenwaechter |
| DE2654881C2 (de) | 1976-10-22 | 1982-10-14 | LGZ Landis & Gyr Zug AG, 6301 Zug | Überwachungseinrichtung mit veränderbarem Ansprechschwellenwert zur Überwachung physikalischer Größen, insbesondere Flammenwächter |
| DE3234532A1 (de) | 1982-06-15 | 1983-12-15 | Touto Denki K.K., Tokyo | Automatischer brennstoffzufuhrunterbrecher |
| DE3235242A1 (de) | 1982-09-23 | 1984-03-29 | Heimann Gmbh, 6200 Wiesbaden | Schaltung zur messung geringer beleuchtungsstaerken |
| DE3314211C2 (de) | 1983-04-20 | 1985-08-08 | Kurt-Henry Dipl.-Ing. 4030 Ratingen Mindermann | Verstärkerschaltung für das Eingangssignal einer Flammenüberwachungsanordnung |
| DE3529077C2 (de) | 1984-09-27 | 1995-03-23 | Esm Int Inc | Normalisierer |
| US4731529A (en) | 1985-04-03 | 1988-03-15 | Canon Kabushiki Kaisha | Light measuring circuit having circuitry for bypassing a low frequency component in the output of a photoelectric conversion element |
| DE4206555A1 (de) | 1991-03-11 | 1992-09-24 | Mitsubishi Electric Corp | Fotoelektrischer wandlerschaltkreis, sowie system hiermit |
| DE19730333C1 (de) | 1997-07-15 | 1998-11-26 | Leuze Lumiflex Gmbh & Co | Schaltungsanordnung zum Verstärken und Aufbereiten von Lichtsignalen |
| DE69927311T2 (de) | 1998-03-13 | 2006-06-22 | General Electric Co. | Flammendetektor mit dynamischer Empfindlichkeitseinstellung |
| DE10029609A1 (de) | 1999-06-29 | 2001-02-15 | Infineon Technologies Corp | Hochgeschwindigkeits-Optokoppler-Detektor |
| US6652266B1 (en) | 2000-05-26 | 2003-11-25 | International Thermal Investments Ltd. | Flame sensor and method of using same |
| DE102004051083B3 (de) | 2004-10-19 | 2006-01-05 | Bfi Automation Dipl.-Ing. Kurt-Henry Mindermann Gmbh | Flammenwächter |
Non-Patent Citations (22)
| Title |
|---|
| "Amplifiers and Comparators, Product Guide", AMPLIFIERS AND COMPARATORS-27 US 7/10, 27 July 2010 (2010-07-27), pages 1 - 24, XP055673690 |
| "Data Sheet, LPV811/LPV812 Precision 425 nA Nanopower Operational Amplifiers , SNOSD33B", TEXAS INSTRUMENTS, November 2016 (2016-11-01), pages 1 - 20, XP055673726 |
| "Data Sheet, OPA656 Wideband, Unity-Gain Stable, FET-Input Operational Amplifier, SBOS196H", TEXAS INSTRUMENTS, December 2001 (2001-12-01), pages 1 - 24, XP055673579 |
| "Data Sheet, TLV521 NanoPower, 350nA, RRIO, CMOS Input, Operational Amplifier, SNOSD 26", TEXAS INSTRUMENTS, May 2016 (2016-05-01), pages 1 - 20, XP055673574 |
| ANONYMOUS: "LPV811/LPV812 Precision 425 nA Nanopower Operational Amplifiers", TEXAS INSTRUMENTS DATA SHEET SNOSD33B, November 2016 (2016-11-01), pages 1 - 20, XP055673726 |
| ANONYMOUS: "OPA656 Wideband, Unity-Gain Stable, FET-Input Operational Amplifier", TEXAS INSTRUMENTS - DATA SHEET SBOS196H, December 2001 (2001-12-01), pages 1 - 24, XP055673579 |
| ANONYMOUS: "Operational Amplifiers Selection Guide 2011-2012", ANALOG DEVICES, September 2011 (2011-09-01), pages 1-7,15 - 61, 69-71, XP055673711 |
| ANONYMOUS: "OPT301, Integrated Photodiode and Amplifier", BURR-BROWN DATA SHEET, January 1994 (1994-01-01), pages 1 - 11, XP055673729 |
| ANONYMOUS: "TEXAS INSTRUMENTS Brochure", AMPLIFIERS SELECTION GUIDE, 2003, pages 1 - 40, XP055673704 |
| ANONYMOUS: "TLV521 NanoPower, 350nA, RRIO, CMOS Input, Operational Amplifier", TEXAS INSTRUMENTS-DATA SHEET SNOSD26, May 2016 (2016-05-01), pages 1 - 20, XP055673574 |
| ANONYMUS: "Amplifiers and Comparators-27 US 7/10", MAXIM AMPLIFIERS AND COMPARATORS, PRODUCT GUIDE, July 2010 (2010-07-01), pages 1 - 24, XP055673690 |
| BONNIE C. BAKER: "Analog Applications Journal, Automating circuit designs for photodiode amplifiers", TEXAS INSTRUMENTS, 2017, pages 1 - 7, XP055673568 |
| BONNIE C. BAKER: "Automating circuit designs for photodiode amplifiers", ANALOG APPLICATIONS JOURNAL,, vol. 1Q, 2017, pages 1 - 7, XP055673568 |
| CHARLES KITCHIN ET AL., A DESIGNER'S GUIDE TO INSTRUMENTATION AMPLIFIERS, 2006, XP055673628 |
| CHARLES KITCHIN ET AL.: "A Designer's Guide to Instrumentation Amplifiers (G02678-15-9/06(B))", ANLOG DEVICES, 2006, pages Frontpg.- vi, 1-1 - 7-8, A-1-D-2, XP055173156 |
| DATA SHEET, OPT301, INTEGRATED PHOTODIODE AND AMPLIFIER, January 1994 (1994-01-01), pages 1 - 11, XP055673729 |
| DIETER NÜHRMANN, OPERATIONSVERSTARKER-PRAXIS, 1977, pages 7 - 9, 40-41, XP055673557 |
| DIETER NÜHRMANN: "Operationsverstärker-Praxis", 1977, München, ISBN: 3-7723-6341-5, article "3.4 Der Ausgleich (Kompensation) der Offsetströme und Offsetspannungen.", pages: 7 - 9; 40-41, XP055673557 |
| MATTHIAS VIEHMANN, OPERATIONSVERSTARKER GRUNDLAGEN, 9 May 2016 (2016-05-09), pages 244, XP055673564 |
| MATTHIAS VIEHMANN: "Operationsverstärker Grundlagen, Schaltungen, Anwendungen", 9 May 2016, FACHBUCHVERLAG LEIPZIG, ISBN: 978-3-446-43053-2, article "11.2 Betriebsvarianten", pages: 244, XP055673564 |
| OPERATIONAL AMPLIFIERS SELECTION GUIDE, 2011, pages 1 - 70, XP055673711 |
| TEXAS INSTRUMENTS, AMPLIFIERS SELECTION GUIDE, 2003, pages 1 - 39, XP055673704 |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2727815C1 (ru) * | 2018-12-06 | 2020-07-24 | Сименс Акциенгезелльшафт | Устройство контроля пламени |
| EP4397907A1 (en) | 2023-01-04 | 2024-07-10 | Siemens Aktiengesellschaft | Combustion sensor control |
| EP4545854A1 (de) | 2023-10-25 | 2025-04-30 | Siemens Aktiengesellschaft | Regelung einer verbrennungsvorrichtung |
Also Published As
| Publication number | Publication date |
|---|---|
| TR201906363T4 (tr) | 2019-05-21 |
| EP3339736A1 (en) | 2018-06-27 |
| ES2735213T3 (es) | 2019-12-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3339736B1 (en) | Flame detection for combustion appliances | |
| CA2298926C (en) | Temperature compensated power detector | |
| US6852966B1 (en) | Method and apparatus for compensating a photo-detector | |
| US4070572A (en) | Linear signal isolator and calibration circuit for electronic current transformer | |
| US7620332B2 (en) | Optical receiving unit reducing cross talk between optical transmitting unit and optical transmitting/receiving apparatus installing the same | |
| US7961053B1 (en) | Integrated circuit having a dummy transimpedance amplifier | |
| US9882638B2 (en) | Optical receiver signal strength indicator (RSSI) circuit having a variable supply voltage filter impedance | |
| US8901475B1 (en) | Avalanche photodiode biasing system including a current mirror, voltage-to-current converter circuit, and a feedback path sensing an avalanche photodiode voltage | |
| US7761013B2 (en) | Optical receiver having bias circuit for avalanche photodiode with wide dynamic range | |
| US7939790B1 (en) | Method and apparatus for controlling the gain of an avalanche photodiode with fluctuations in temperature | |
| US20080129369A1 (en) | Current multiplexing circuit for optical power monitoring | |
| JP2008251770A (ja) | 光電変換回路 | |
| US20030029991A1 (en) | Temperature compensating circuit, temperature compensating logarithm conversion circuit and light receiver | |
| US6919716B1 (en) | Precision avalanche photodiode current monitor | |
| EP1551917B1 (en) | Method and apparatus for compensating a photo-detector | |
| US8450676B2 (en) | Optical receiver | |
| EP1510828B1 (en) | Photoelectric current and voltage converting circuit | |
| JP2001068943A (ja) | 温度補償回路、温度補償対数変換回路、および、光受信器 | |
| US7792434B2 (en) | Optical receiver | |
| KR20240124926A (ko) | 클램핑 회로를 갖는 엔벨로프 검출기 | |
| US7313333B2 (en) | Apparatus for controlling decision threshold voltage to optical receiver | |
| KR100331982B1 (ko) | 송신기의 출력전력 검출회로 | |
| US9191104B2 (en) | Direct reference subtraction system for control of optical transmitters | |
| CN115777068B (zh) | 电流检测装置及电流检测方法 | |
| JP4389418B2 (ja) | 光受信回路 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20180905 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23N 5/08 20060101AFI20181121BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20181210 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1119199 Country of ref document: AT Kind code of ref document: T Effective date: 20190415 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602017003232 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1119199 Country of ref document: AT Kind code of ref document: T Effective date: 20190410 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190910 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190711 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2735213 Country of ref document: ES Kind code of ref document: T3 Effective date: 20191217 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190810 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602017003232 Country of ref document: DE |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| 26 | Opposition filed |
Opponent name: BFI AUTOMATION MINDERMANN GMBH Effective date: 20200110 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191117 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191117 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20171117 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20211112 Year of fee payment: 5 |
|
| PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220218 Year of fee payment: 5 |
|
| APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211117 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211117 |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230510 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20231229 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221118 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221118 |
|
| APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R100 Ref document number: 602017003232 Country of ref document: DE |
|
| PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
| 27O | Opposition rejected |
Effective date: 20240603 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221117 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241114 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241126 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250120 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20250210 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20251117 Year of fee payment: 9 |