EP3339508A1 - Verfahren zur bearbeitung von materialien enthaltend fasern - Google Patents

Verfahren zur bearbeitung von materialien enthaltend fasern Download PDF

Info

Publication number
EP3339508A1
EP3339508A1 EP17207499.9A EP17207499A EP3339508A1 EP 3339508 A1 EP3339508 A1 EP 3339508A1 EP 17207499 A EP17207499 A EP 17207499A EP 3339508 A1 EP3339508 A1 EP 3339508A1
Authority
EP
European Patent Office
Prior art keywords
mixture
paper
polymer
group
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17207499.9A
Other languages
English (en)
French (fr)
Other versions
EP3339508B1 (de
Inventor
Michael Ramin
Klaus Langerbeins
Christian Maier
Karlheinz SÜNKEL
Alexis Krupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSilk GmbH
Original Assignee
Nitrochemie Aschau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU93386A external-priority patent/LU93386B1/de
Application filed by Nitrochemie Aschau GmbH filed Critical Nitrochemie Aschau GmbH
Publication of EP3339508A1 publication Critical patent/EP3339508A1/de
Application granted granted Critical
Publication of EP3339508B1 publication Critical patent/EP3339508B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/02Chemical or biochemical treatment
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/25Cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/30Alginic acid or alginates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/18After-treatment of paper not provided for in groups D21H17/00 - D21H23/00 of old paper as in books, documents, e.g. restoring

Definitions

  • the invention relates to a method for processing materials containing fibers as well as materials and systems obtainable by this method.
  • the invention further relates to the use of a mixture containing a polymer for processing a material containing fibers, the use of dimethyl sulfoxide as an antioxidant in the processing of paper and the use of ionic liquids as an antimicrobial agent for processing paper.
  • Organic materials containing fibers, especially paper undergo mechanical destabilization by degrading the fiber-forming macromolecules, such as cellulose macromolecules, over time. Especially in the case of paper, this can lead to the paper being destabilized so much that the books from this paper can no longer be used.
  • the problems of destabilization, especially aging are not limited to paper and cellulosic materials in general, such as wood, but are generally a problem for materials containing fibers. In order to counteract this problem, appropriate processing methods for the material containing fibers needed. Paper, especially printed paper in books, as a material containing fibers makes this with the highest demands on the processing method, which is why the further discussion on the example of paper, especially of printed paper should be made.
  • the processing method should not only allow single-sheet processing.
  • the method should rather be able to process several sheets at once. In this case, gluing the sides together should be avoided.
  • the method should not damage the binding of a book and / or the binding or back gluing of the leaves. In this way, the process can be carried out more economically, since several sheets can be processed simultaneously or entire books at once and eliminates the separation of the leaves from books.
  • the method should not attack the paper in any other way, especially the paper should not swell irreversibly.
  • the ink and / or inks on the paper being processed should not be washed out by the process. At the same time, however, it is desirable that the processing of the paper is not only superficial, but ideally attaches to the entire paper.
  • the irradiation with gamma rays leads to a further damage to the paper, by impregnation with acrylic acid bleeding colors and inks on the paper, at least partially, and remaining in the paper residue monomers lead to an odor nuisance.
  • this method is difficult to combine with other common means of paper restoration.
  • the processing of paper by lamination is known, wherein a thin polymer film or a thin stabilizing paper is applied to one side or both sides of the paper.
  • the processed paper stack often does not fit in the book cover after processing because of increasing paper thickness.
  • the handle and the appearance of the paper are changed.
  • the contrast decreases due to the applied layers. Further is This method is difficult to combine with other common means of paper restoration.
  • a well-known method for processing paper is the so-called Viennese method, which is incorporated in the EP 0 273 9602 A2 is described.
  • Viennese method the material to be processed is impregnated in an aqueous solution containing methylcellulose to strengthen the paper.
  • the processing solution is pumped out, remnants of the processing solution are allowed to drip off the processed paper, and the paper is then snap-frozen and freeze-dried.
  • the disadvantage of this method is mainly that book covers are damaged, which is why the leaves of the book must be removed before editing.
  • a derivatized polymer must be used with methylcellulose.
  • the DE 100 57 554 A1 describes a process in which the paper to be processed is processed with a silylated polymer derivative such as silylated cellulose dissolved in a nonpolar solvent. The silyl groups are then cleaved off by the action of moisture or water.
  • a disadvantage of this method is the mandatory use of derivatized polymers.
  • the EP 3 072 933 A1 describes alkaline nanoparticles comprising at least one hydroxide or carbonate or an organic compound of an alkaline earth metal and optionally a hydrophilic cellulose derivative and a stabilizing outer layer of hydrophobic polymers for the deacidification and consolidation of cellulose-based artifacts.
  • the nanoparticles must first be synthesized.
  • the object of the invention is therefore to provide a process for processing, in particular for strengthening, of material containing fibers, in particular paper, which at least partially overcomes one or more disadvantages of the processes known from the prior art.
  • a method is desirable with which bulk processing of damaged paper can occur.
  • the paper to be processed should not be further harmed.
  • the paper to be processed should be consolidated. Any existing inks and inks should not bleed on the paper being processed.
  • the covers and / or the paper back sizing should not be damaged by the process.
  • a particular advantage of the process according to the invention is that by using a polar aprotic solvent it is also possible to use non-derivatized polymers such as, for example, cellulose as the at least one polymer in the process according to the invention. Furthermore, by the use of a polar aprotic solvent mixtures, in particular solutions, can be produced with a low viscosity, which are particularly suitable for processing books or similar substrates.
  • gluing of the sides can be avoided with the method according to the invention.
  • the use of the polar aprotic solvent further allows a wide range of possibilities to treat the mixture of the material to be processed containing fibers and the mixture, so that at least a part of the polymer is attached to the fibers of the material containing fibers.
  • the process according to the invention can be combined with other processes, in particular deacidification processes.
  • a solution of the substance in the solvent can be prepared which is at least 0.5 % By weight, in particular at least 1% by weight, 2% by weight, 3% by weight, 4% by weight, 5% by weight, 6% by weight, 7% by weight, 8% by weight, 9% by weight or at least 10% by weight, and at most 25% by weight, in particular at most 20% by weight, 15% by weight, 14% by weight, 13% by weight or at most 12% by weight, in each case based on the total weight of the solution, of the substance.
  • the polymer may be wholly or partly attached to the material containing fibers, in particular to the fibers of the material containing fibers. When the polymer is only partially attached to the fibers of the material containing fibers, a residual amount of polymer remains in the mixture. By attachment, the fibers of the material containing fibers are preferably completely or partially encased. As a result, a consolidation of the fiber can be achieved.
  • Derivatized polymers may be, in particular, those polymers obtained by a chemical modification of another polymer.
  • the derivatization can also be reversible, so that the original polymer can be recovered.
  • Derivatized polymers are made, for example, from naturally occurring polymers such as cellulose or starch.
  • the derivatized polymer methylcellulose can be obtained from underivatized cellulose by chemical modification.
  • Other examples of underivatized polymers are starch, chitosan, chitin, lignin, viscose, pulp, silk and alginate.
  • various chemical modifications are possible.
  • the derivatization can, for example, by partial or complete alkylation, partial or complete acylation, partial or complete silylation, or partial or complete sulfonylation.
  • Fiber containing fibers is also referred to hereinafter as “fibrous material” or “fiber-containing material”.
  • the fibrous material may contain a polymer having at least one polar group, in particular in a proportion of 50 wt.%, 60 wt.%, 70 wt.%, 80 wt.%, 90 wt.%, 95 wt.%, 99 wt .%, or consist of.
  • the at least one polar group may be contained in the polymer backbone and / or linked as a side chain with the polymer backbone. If several polar groups are included, they may be the same or different. Polar groups are known to the person skilled in the art.
  • polar groups include the hydroxyl group, acid groups such as the carboxyl group and the sulfonic acid group, the amide group, the amine group, the thiol group, the ether group, in particular the C1-C4- Alkyl ether group, the ester group and the urethane group.
  • the fibrous material may contain cellulose, microcrystalline cellulose, pulp, hemicellulose, viscose, chitin, chitosan, alginate, starch, lignin, polyvinyl alcohol, proteins or mixtures thereof.
  • the fibrous material may be further polymers, in particular further polymers having at least one polar group, but also, for example, fillers such as calcium carbonate or pigments such as titanium dioxide.
  • the fibrous material may be a cellulosic material, in particular paper, paperboard, cardboard, textiles or wood.
  • the fibrous material is paper, in particular paper sheets. Examples of paper are typewriter paper, printer paper, magazine paper, newsprint and book paper.
  • the polymer may be a copolymer or a homopolymer.
  • the polymer may have a weight-average molecular weight Mw of from 1000 to 10 000 000 g / mol, in particular from 3000 to 10 000 000 g / mol, of from 5000 to 500 000 g / mol or of from 10 000 to 100 000 g / mol. exhibit.
  • the polymer may further contain at least one polar group. The at least one polar group may be contained in the polymer backbone and / or linked as a side chain with the polymer backbone. If several polar groups are included, they may be the same or different.
  • Polar groups are known to the person skilled in the art. Examples of polar groups include the hydroxyl group, acid groups such as the carboxyl group and the sulfonic acid group, the amide group, the amine group, the thiol group, the ether group, in particular the C1-C4- Alkyl ether group, the ester group and the urethane group.
  • the polymer may contain at least one hydroxyl group, at least one amine group, at least one acid group, in particular a carboxyl group, at least one amide group, at least one thiol group, at least one ether group, in particular a C1- C4 alkyl ether group, at least one ester group and / or at least one urethane group, in particular at least one hydroxyl group, and / or be selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, pulp , Hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, natural silk, silk biopolymers, polyvinyl alcohol, polyvinyl acetate, polyurethanes, polyamides, proteins, polymers or copolymers based on acrylic acid and / or its ester and / or amide Derivatives, methacrylic acid and / or its ester and / or amide derivatives,
  • the polymer may be selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, pulp, hemicellulose, viscose, chitin, lignin, chitosan, alginate, starch, silk, silk biopolymers, polyvinyl alcohol and mixtures thereof.
  • the polymer is selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, pulp, silk, silk biopolymers, viscose, and mixtures thereof.
  • the polymer is selected from the group consisting of cellulose, alpha-cellulose, microcrystalline cellulose, pulp, viscose and mixtures thereof.
  • the polymer is alpha-cellulose.
  • the polymer is viscose, in particular substantially non-derivatized viscose. It has been shown that fiber-containing materials can be processed particularly well with the polymers mentioned above. In particular, by working with the above polymers good Consolidations, in particular of cellulose-containing materials such as paper, cardboard, cardboard and wood, can be achieved.
  • the polymer can be used in particular in the form of fibers.
  • Viscose is composed in particular of regenerated cellulose. Viscose may be present in particular in the form of fibers. Viscose may in particular be a regenerated cellulose fiber, as used in the EP 2 546 396 (see in particular paragraph [0026], [0028], [0029], [0030], [0031], [0032], [0033], [0034], [0035], [0036], [0037] and / or [0038]).
  • the viscose can be in the form of fibers which have a plurality of legs and in which at least one leg deviates in length from the other legs. In particular, it may be asymmetric cellulose fibers.
  • the titer of the asymmetric cellulose fibers may be from 1.3 dtex to 10 dtex, in particular 3.3 dtex.
  • the titre indicates the fineness, with 1 dtex in particular corresponding to a weight of one gram per 10000 meters of the cellulose fibers.
  • Silk biopolymers may, in particular, be silk biopolymers, as described in US Pat WO 2014/037453 or in the WO 2011/113446 are described. Accordingly, the silk biopolymers may in particular consist of polypeptides consisting essentially of one or more repeating polypeptide units and one or more non-repeating polypeptide units. The repeating polypeptide units may in particular contain oligoalanine units.
  • the repeating polypeptide units may comprise the modules A C (GPYGPGASAAAAAAGGYGPGCGQQ), A K (GPYGPGASAAAAAAGGYGPGKGQQ), C C (GSSAAAAAAAASGPGGYGPENQGPCGPGGYGPGGP), C K1 (GSSAAAAAAAASGPGGYGPENQGPKGPGGYGPGGP), C K2 (GSSAAAAAAAASGPGGYGPKNQGPSGPGGYGPGGP) or C KC (GSSAAAAAAAASGPGGYGPKNQGPCGPGGYGPGGP) or consist thereof, wherein the sequences in parentheses represent amino acids in one-letter code as described, for example, in the book " Enzymes - A Practical Introduction to Structure, Mechanism, and Data Analysis ", 2nd Edition by Robert A.
  • non-repeating polypeptide units may be derived from those described in U.S. Pat WO 2014/037453 , in particular on page 16 described "non-repetitive (NR)" units NR3, NR4, NR5, NR6 or in the WO 2014/037453 be selected from variants thereof.
  • the process of the invention may be the same or different than the polymer having at least one polar group which may be included in the fibrous material.
  • a cellulosic material may be contacted as a fibrous material with a mixture which also contains cellulose as a polymer.
  • a cellulosic material may be brought into contact as a fibrous material, for example with a mixture containing polyvinyl alcohol as a polymer.
  • the polar group of the polymer having at least one polar group which may be contained in the fibrous material and the polar group of the at least one polymer contained in the mixture may be the same or different.
  • the fibrous material may be a cellulosic material and the polar polymer may be a polyurethane.
  • Suitable polar aprotic solvents in the process according to the invention are various solvents.
  • the molecules may have a dipole moment and / or the polar aprotic solvent may be composed of ions.
  • polar aprotic solvents can be free of groups, in particular polar groups, from which protons can be split off. Examples of such groups are the OH group, acid groups such as the carboxyl group, the sulfonic acid group and hydrogen halide groups, the thiol group, and primary and secondary amines.
  • Suitable polar aprotic solvents are, in particular, ketones, lactones, lactams, in particular N-alkylated lactams, nitriles, tertiary carboxylic acid amides, urea derivatives, in particular alkylated urea derivatives, sulfoxides, sulfones, carbonic esters, ionic liquids and / or mixtures thereof.
  • ketones are acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclohexanone and their C1- to C4-alkylated derivatives.
  • lactones examples include propriolactone, gamma-butyrolactone, delta-valerolactone, epsilon-caprolactone and their C1- to C4-alkylated derivatives.
  • lactams are propiolactam, gamma-butyrolactam and their C1- to C4-alkylated derivatives.
  • alkylated lactams are N-methyl-propiolactam, N-methyl-2-pyrrolidone and their C1- to C4-alkylated derivatives.
  • nitriles examples include acetonitrile, propionitrile, butyronitrile, valeronitrile and their C1- to C4-alkylated derivatives.
  • tertiary carboxylic acid amides such as dimethylformamide, dimethylacetamide, dimethylpropionamide and their C1- to C4-alkylated derivatives.
  • urea derivatives in particular alkylated urea derivatives, are dimethylpropyleneurea, tetramethylurea and their C1- to C4-alkylated derivatives.
  • sulfoxides are dimethylsulfoxide, ethylmethylsulfoxide, diethylsulfoxide and their C1- to C4-alkylated derivatives.
  • sulphones are sulfolane, ethylmethylsulfone and their C1- to C4-alkylated derivatives.
  • carbonic acid esters are dimethyl carbonate, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate and their C1- to C4-alkylated derivatives.
  • the polar aprotic solvent is selected from the group consisting of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate, ethylene carbonate, ionic liquids, and mixtures thereof.
  • the polar aprotic solvent is selected from the group consisting of dimethylacetamide, dimethyl sulfoxide, acetonitrile, ionic liquids and mixtures thereof.
  • Polar aprotic solvents which are a mixture of an ionic liquid and at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gamma-butyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate contain one ionic liquid.
  • the polar aprotic solvent may contain one or more ionic compounds, for example salts, inorganic salts and / or ionic liquids or in particular consist of one or more ionic liquids.
  • Suitable inorganic salts are, for example, lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, potassium bromide or potassium iodide, in particular lithium chloride or lithium bromide and mixtures thereof.
  • Inorganic salts may be present in an amount of 1 to 10% by weight, 3 to 8% by weight or 4 to 6% by weight, based in each case on the total amount of polar aprotic solvent and inorganic salt or inorganic salts.
  • a polar aprotic solvent may be, for example, dimethylacetamide containing 5% by weight of lithium chloride.
  • the polar aprotic solvent contains an ionic liquid. Suitable ionic liquids are described in detail below.
  • the polar aprotic solvent is preferably a mixture of an ionic liquid and at least one of dimethylacetamide, dimethyl sulfoxide and acetonitrile.
  • the polar aprotic solvent is a mixture of an ionic liquid and dimethylacetamide or dimethyl sulfoxide.
  • the polar aprotic solvent is a mixture of an ionic liquid and dimethylacetamide.
  • the polar aprotic solvent is a mixture of an ionic liquid and dimethyl sulfoxide.
  • polar aprotic solvents mixtures, in particular solutions, can be prepared with a wide variety of polymers.
  • many poorly soluble polymers in particular polymers containing at least one polar group, can readily dissolve in these polar aprotic solvents.
  • the polar aprotic solvent contains one or more ionic compounds, polymers comprising at least one polar group, in particular cellulose, can be better dissolved in them.
  • mixtures, in particular solutions with a content of, for example, 0.5 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, 5 wt.%, 6 wt.
  • the polar aprotic solvent may contain or consist of one or more ionic liquids.
  • Particularly suitable ionic liquids are organic salts whose ions impede the formation of a stable crystal lattice through charge delocalization and steric effects.
  • Ionic liquids have the particular advantage that many poorly soluble polymers such as cellulose dissolve well in them. Furthermore, ionic liquids can be well modified and adapted to different requirements.
  • the polar aprotic solvent comprises an ionic liquid
  • the ionic liquid contains in particular a cation selected from a 1,3-dialkylimidazolium cation, an alkylpyridinium cation, a tetraalkylammonium cation and a phosphonium cation, and an anion selected from fluoride, chloride, bromide, iodide, formate, Acetate, propionate, butyrate, hydrogensulfate, tosylate, trifluoromethanesulfonate, bis (trifluoromethanesulfonyl) imide, hexafluorophosphate, tetrafluoroborate, benzoate, glycolate, thioglycolate, lactate and glycinate, or consists thereof.
  • the ionic liquid contains or consists of a dialkylimidazolium cation and an anion selected from chloride, bromide and acetate.
  • the alkyl groups of the dialkylimidazolium cation may in particular be identical or different.
  • the alkyl groups of the dialkylimidazolium cation may in particular be C1 to C10, in particular C1 to C5, alkyl groups.
  • the alkyl groups of the dialkylimidazolium cation may be selected independently of one another preferably from the group consisting of methyl, ethyl, propyl and butyl.
  • the ionic liquid contains or consists of 1-butyl-3-methylimidazolium chloride and / or 1-butyl-3-methylimidazolium acetate.
  • the abovementioned cations and anions have the particular advantage that many polymers, in particular also sparingly soluble polymers such as cellulose, are readily soluble in ionic liquids which contain or consist of these cations and anions.
  • the acetate anion has the advantage that the pH of fibrous materials having an acidic pH, which is brought into contact with a mixture in which the polar aprotic solvent contains an acetate anion-containing ionic liquid were, can be raised. This is particularly important in the processing of paper, as can be slowed down by an increase in the pH in the paper degradation of the cellulose fibers or even prevented.
  • the mixture containing at least one polymer and a polar aprotic solvent is preferably a homogeneous mixture, in particular a solution.
  • the polymer may be solubilized or swollen by the polar aprotic solvent.
  • a mixture containing a polar aprotic solvent has, inter alia, the advantage that mixtures, in particular solutions, with a low viscosity can be obtained thereby.
  • Such mixtures, in particular solutions are particularly suitable for processing fibrous materials, in particular cellulosic materials such as paper.
  • the mixture, in particular the solution, with which the fiber-containing material to be processed is brought into contact, in particular a viscosity of 0.01 to 100 mPa ⁇ s, preferably 0.1 to 70 mPa ⁇ s, preferably 0.5 to 50 mPa ⁇ s, more preferably 1 to 30 mPa ⁇ s, still more preferably 1 to 15 mPa ⁇ s.
  • Mixtures, in particular solutions, having such viscosities are particularly suitable for processing fibrous materials, in particular cellulose-containing materials such as paper, since they can penetrate deeply into the fiber-containing material and thus not only a superficial attachment of the polymer is made possible.
  • Methods for determining the viscosity of mixtures, in particular of solutions are known to the person skilled in the art.
  • the viscosity can be determined with a rotational viscometer "Gemini" from Bohlin at 25 ° C.
  • the contacting of the fibrous material with the mixture containing at least one polymer and a polar aprotic solvent can be carried out in various ways.
  • the fiber-containing material, in particular paper may be sprayed or coated with the mixture, or the fiber-containing material, in particular paper, may be soaked in the mixture.
  • the fibrous material is soaked in the mixture. If the fiber-containing material is soaked in the mixture, this may be for a period of 0.1 to 10 minutes, in particular 0.2 to 8 minutes, 0.2 to 7 minutes, 0.4 to 6 minutes, 0.5 to 5 Minutes, 0.5 to 4 minutes, 0.5 to 3 minutes or 0.5 to 2 minutes.
  • the impregnated fibrous material with a polar aprotic solvent, in particular with dimethylacetamide and / or dimethyl sulfoxide, rinsed, in particular for a period of 10 to 60 seconds, 20 to 50 seconds or 25 to 40 seconds. By rinsing excess polymer can be removed.
  • a polar aprotic solvent in particular with dimethylacetamide and / or dimethyl sulfoxide
  • the method of the invention comprises the step of treating the mixture of the fibrous material and the mixture containing at least one polymer and a polar aprotic solvent such that at least a portion of the polymer attaches to the fibers of the material.
  • the treatment of the mixture can be designed in different ways. In particular, the treatment of the mixture in step c.
  • contacting the mixture with an ionic compound, especially a salt contacting the mixture with a nonionic compound, contacting the mixture with an acid, contacting the mixture with a base contacting the mixture with a polar solvent, contacting the mixture with a non-polar solvent, contacting the mixture with a solvent mixture, freeze-drying, lowering the temperature, evaporating the solvent, increasing the temperature, reducing the pressure and combinations thereof.
  • ionic compounds are salts or polymers having at least one ionic side group.
  • salts consist of at least one cation and at least one anion, where the cation may be selected from cations selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba , Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag , Au, Zn, Cd, Hg, Al, Ga, In, Ti, Ge, Sn, Pb, and wherein the anion may be selected from anions consisting of elements of the group consisting of F, Cl, Br, I , O, S, Se, Te.
  • cations are ammonium ions.
  • anions are hydride, hydroxide, phosphates, phosphites, sulfates, sulfites, sulfides and carboxylates such as formate, acetate, proprionate, salicylate and benzoate.
  • the salt may in particular contain ammonium sulfate or potassium sulfate or a mixture thereof.
  • polymers having ionic side groups are polymers having at least one deprotonated acid group, in particular a deprotonated carboxyl group such as deprotonated polyacrylate, deprotonated polymethacrylate, polymers having at least one quaternary ammonium compound such as quaternized polydimethylaminoethyl methacrylate.
  • the mixture can be brought into contact with the ionic compound by adding the salt directly or in the form of a solution, in particular an aqueous solution.
  • nonionic compounds are water, alcohols such as methanol, ethanol, propanol, butanol, octane, nonane, isocyanate-containing compounds, hydrocarbons having 1 to 20, in particular 5 to 18, carbon atoms, polymers such as polyether, polyester, Polyamides, polyurethanes. These can be directly linked to the one in step b. obtained mixture, for example by adding the respective non-ionic compound.
  • acids are hydrochloric acid, sulfuric acid, nitric acid, carboxylic acids having 1 to 20, in particular 1 to 10, carbon atoms, in particular formic acid, acetic acid, propionic acid and benzoic acid, and mixtures thereof.
  • the acid may be selected from hydrochloric acid and carboxylic acids having 1 to 10 carbon atoms. These can be directly linked to the one in step b. be brought into contact with the resulting mixture, for example by adding the respective acid, or by immersing the mixture in acid.
  • the acid may be concentrated or diluted, for example as a dilute aqueous solution.
  • bases examples include hydroxide bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide, amine bases such as, primary amines, secondary amines, tertiary amines, especially triethylamine, pyridine and dimethylaminopyridine, and mixtures thereof.
  • hydroxide bases such as sodium hydroxide, potassium hydroxide, calcium hydroxide
  • amine bases such as, primary amines, secondary amines, tertiary amines, especially triethylamine, pyridine and dimethylaminopyridine, and mixtures thereof.
  • the particular base can also be used as a solution, in particular as an aqueous solution, with the same in step b. be brought into contact with the resulting mixture, for example by adding a solution, or by immersing the mixture in the solution.
  • polar solvents are water and alcohols such as methanol, ethanol, propanol and butanol, primary and secondary amines, carboxylic acids and mixtures thereof.
  • the polar solvent may be water, an alcohol or a mixture thereof. These can be directly linked to the one in step b. be brought into contact with the resulting mixture, for example by adding the polar solvent, or by immersing the mixture in the polar solvent.
  • non-polar solvents are hydrocarbons having 5 to 16 carbon atoms, benzene, toluene, pentane, hexane, heptane, cyclohexane, carbon tetrachloride, tetrachloroethene, trichloroethene, carbon disulfide, tetramethylsilane and hexamethyldisiloxane.
  • the nonpolar solvent may in particular be hexamethyldisiloxane.
  • Solvent mixtures comprise, in particular, mixtures of the abovementioned polar and nonpolar solvents, in particular mixtures of hexamethyldisiloxane with other solvents, such as ethanol, methanol, propanol and butanol. These can be directly linked to the one in step b. be brought into contact with the resulting mixture, for example by adding the solvent mixture, or by immersing the mixture in the solvent mixture.
  • the mixture from step b. are first flash frozen and then dried at temperatures equal to or less than 0 ° C by applying a vacuum.
  • a temperature reduction can be carried out in particular to below the temperature at which polymer is poor or no longer soluble in the polar aprotic solvent.
  • the temperature reduction may include a reduction to temperatures of -5 ° C to 15 ° C, especially 0 ° C to 10 ° C.
  • the temperature can be increased so that the polar aprotic solvent completely evaporates and leaves the polymer on the fibers of the material.
  • the evaporation can be carried out at temperatures of 50 ° C to 250 ° C, in particular from 70 ° C to 200 ° C.
  • a temperature increase can be carried out at temperatures of 50 ° C to 200 ° C, in particular from 70 ° C to 150 ° C.
  • the temperature increase can be gradual or abrupt.
  • the pressure reduction can be carried out at pressures of 0.1 mbar to 900 mbar, in particular from 1 mbar to 800 mbar, 10 mbar to 700 mbar or 50 mbar to 500 mbar.
  • the pressure reduction can be combined in particular with the temperature increase and the temperature reduction.
  • the lowering of the temperature may particularly be brought into contact with an ionic compound which may be contacted with a nonionic compound which may be contacted with an acid which may be contacted with a base which is in contact with a polar solvent which may be combined with a non-polar solvent and contacted with a solvent mixture.
  • the treatment of the mixture in step c contacting or containing a nonpolar solvent, especially dipping in a nonpolar solvent, especially hexamethyldisiloxane.
  • a nonpolar solvent especially hexamethyldisiloxane.
  • the aforementioned treatment options allow an attachment of the polymer to the fibers of the material containing fibers. Better results were achieved when the attachment was as slow as possible.
  • This can be achieved in particular by treating the mixture of the fibrous material and the mixture containing at least one polymer and a polar aprotic solvent for at least a period of 15 seconds, in particular 30 seconds, 1 minute, 5 minutes, 15 minutes, 30 Minutes, 45 minutes, 1 hour, 5 hours, 10 hours, 15 hours or 24 hours and at most for a period of 150 hours, in particular 144 hours, 120 hours, 100 hours, 96 hours, 90 hours or 85 hours.
  • Optimal results were obtained when the treatment in step c. over a period of 24 to 85 hours, in particular 50 to 80 hours or 65 to 75 hours or 72 hours. As a result, a slow attachment of the polymer to the fibers of the material containing fibers is achieved.
  • the treatment of the mixture of the fibrous material and the mixture containing at least one polymer and a polar aprotic solvent by contacting with a nonpolar solvent, in particular the immersion in a non-polar solvent, in particular hexamethyldisiloxane, over a period of 65 to 75 hours , especially 72 hours.
  • the process according to the invention may preferably also be carried out after the treatment in step c. the additional step of drying in step c. obtained fibrous material.
  • the fibrous material obtained according to the method of the invention is preferably carried out at 20 ° C to 100 ° C, in particular 30 ° C to 90 ° C, 40 ° C to 80 ° C, or 45 ° C to 65 ° C.
  • the fibrous material obtained by the process according to the invention preferably for 1 to 25 hours, in particular for 5 to 20 hours, 8 to 16 hours, 9 to 15 hours, 10 to 14 hours or 11 to 13 hours dried.
  • the method according to the invention can also be carried out before step a. the further step that the material containing fibers, especially paper, at a temperature of 40 to 80 ° C, in particular 45 to 70 ° C or 45 to 65 ° C is predried.
  • the predrying can be carried out for a period of 1 minute to 60 hours, in particular 1 hour to 50 hours or 12 to 48 hours.
  • the mixture containing at least one polymer and a polar aprotic solvent can be prepared in different ways.
  • the mixture may be prepared at room temperature or at lower or higher temperature, for example at 10 ° C to 150 ° C.
  • the mixture can also be prepared in several steps.
  • the polar aprotic solvent contains an ionic liquid or if the polar aprotic solvent is a mixture of an ionic liquid and at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gamma-butyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea , Sulfolane, dimethyl carbonate and ethylene carbonate, in particular at least one of dimethylacetamide, dimethylsulfoxide and acetonitrile, the mixture containing at least one polymer and a polar aprotic solvent can be prepared in particular by first dissolving the polymer in the ionic liquid and then dissolving the resulting solution with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gammabut
  • the ionic liquid may be mixed with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate, especially dimethylsulfoxide, and then desired amount of the polymer can be added.
  • the mixture containing at least one polymer and a polar aprotic solvent can in particular 1 to 30 wt.%, In particular 3 to 30 wt.%, 5 to 30 wt.%, 10 to 30 wt.%, 12 to 25 wt.% Or 15 to 20% by weight or 17 to 19% by weight of ionic liquid contained, in each case based on the total weight of the mixture.
  • Mixtures with the above-mentioned contents of ionic liquids can be prepared well, in particular, solutions can easily be obtained in this way, which allow effective processing of the fibrous material.
  • the mixing, in particular the swelling, dissolving or dissolving, of the polymer and / or the subsequent dilution can take place at temperatures from 10 ° C to 150 ° C, in particular from 20 ° C to 140 ° C, 30 ° C to 130 ° C, 40 ° C to 120 ° C, 50 ° C to 110 ° C or 60 ° C to 100 ° C are performed.
  • This solution can then be treated in particular with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gammabutyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate, in particular at least one of dimethylacetamide, dimethylsulfoxide and acetonitrile , diluted to the desired concentration.
  • the ionic liquid may also be reacted at the abovementioned temperatures with at least one of acetonitrile, dimethylformamide, dimethylacetamide, tetrahydrofuran, dimethylsulfoxide, acetone, gamma-butyrolactone, N-methyl-2-pyrrolidone, tetramethylurea, dimethylpropyleneurea, sulfolane, dimethyl carbonate and ethylene carbonate, in particular dimethylsulfoxide, with a concentration of the ionic liquid of 1 to 30 wt.%, in particular 3 to 30 wt.% or 5 to 30 wt.% or 10 to 30 wt.% or 12 to 25 wt.% or 15 to 20 wt.% or 17 to 19% by weight, in each case based on the total weight of the mixture, in particular of the ionic liquid and dimethyl sulfoxide, are mixed.
  • This solution can then be added to the polymer in the desired amount. In this way,
  • the mixture containing at least one polymer and a polar aprotic solvent 0.1 to 10 wt.%, In particular 0.5 to 8 wt.% Or 1 to 5 wt.%, Based in each case on the total weight of the mixture of polymer. Solutions with these concentrations have in particular a suitable viscosity for the process according to the invention.
  • the invention further provides a material containing fibers, in particular paper, which is obtainable by the process according to the invention.
  • the invention further provides a system comprising at least two materials containing fibers obtainable by the process according to the invention, in particular a book.
  • the materials of the system of the invention may be the same or different.
  • the fiber-containing materials may have been processed simultaneously or at different times by the process of the present invention.
  • the system may further comprise materials, in particular materials containing fibers, which have not been processed by the method according to the invention.
  • the system may, in particular, be a book, a magazine, a journal or a newspaper.
  • the fiber-containing material may in particular be paper.
  • other fibers containing material in particular cardboard, cardboard, textiles or wood, may be included.
  • the system according to the invention contains materials containing various fibers, these can be processed separately or together by the process according to the invention.
  • the paper may be edited separately from the rest of the book, especially separately from the cover.
  • the book can also be edited without separating components beforehand, especially with its cover. Whether a separate processing of the components takes place can be decided in particular on the basis of how the fibers containing materials in the system, especially in the book, are held together. Examples of ways in which the fiber-containing materials can be held together in the system include thread stitching and adhesive binding.
  • the invention also provides the use of a mixture comprising at least one polymer and a polar aprotic solvent for processing material containing fibers, in particular paper, in particular in the process according to the invention.
  • the invention further provides the use of dimethyl sulfoxide as an antioxidant for processing paper, in particular in the process according to the invention.
  • the invention also provides the use of an ionic liquid containing a quaternary ammonium cation, in particular an ionic liquid containing a Dialkylimidazoliumkation, in particular 1-butyl-3-methylimidazoliumchlorid or 1-butyl-3-methylimidazoliumacetat, as an antimicrobial agent for processing paper, in particular inventive method.
  • an ionic liquid containing a quaternary ammonium cation in particular an ionic liquid containing a Dialkylimidazoliumkation, in particular 1-butyl-3-methylimidazoliumchlorid or 1-butyl-3-methylimidazoliumacetat, as an antimicrobial agent for processing paper, in particular inventive method.
  • BMIM-Cl 1-butyl-3-methylimidazolium chloride
  • BMIM-OAc 1-butyl-3-methylimidazolium acetate
  • Viscose danufil, 3.3 dtex / 0.3 mm, hereafter: "Danufil”
  • DMAc Dimethylacetamide
  • DMSO Dimethyl sulfoxide
  • HMDO Hexamethyldisiloxane
  • MCC microcrystalline cellulose
  • ENO PINE ECF Pulp
  • Stora Enso Oyj alpha-cellulose, Sigma-Aldrich.
  • Example 1 Provides of paper with viscose in a mixture of DMAc and BMIM-OAc
  • a solution containing 10% by weight Danufil in BMIM-OAc was prepared, which was then diluted to a viscose content of 2% by weight based on the total weight of the solution by adding DMAc, the solution of BMIM-OAc and DMAc 18 wt% BMIM-OAc and 82 wt% DMAc, each based on the weight of BMIM-OAc and DMAc.
  • the viscosity of the solution was 10 mPa ⁇ s.
  • the paper to be processed was soaked in the prepared solution for one minute and then rinsed with DMAc for 30 seconds.
  • Table 2 shows that the fracture strength, the elongation at break and the pH can be significantly increased when using mixtures containing viscose and mixtures of BMIM-OAc and DMAc by the inventive treatment compared to unprocessed paper.
  • the processed paper was the optical and haptic impression equivalent to unprocessed paper. In particular, no bleeding of the ink was observed.
  • a solution containing 10% by weight of Danufil in BMIM-CI was prepared, which was subsequently diluted to a viscose content of 2% by weight, based on the total weight of the solution, of DMAc, the solution of BMIM-CI and DMAc 18 wt% BMIM-CI and 82 wt% DMAc, each based on the weight of BMIM-CI and DMAc.
  • the viscosity of the solution was 10 mPa ⁇ s.
  • the paper to be processed was soaked in the prepared solution for one minute and then rinsed with DMAc for 30 seconds.
  • Table 3 shows that the breaking strength and elongation at break when using mixtures containing viscose and mixtures of BMIM-Cl and DMAc can be significantly increased by the inventive treatment compared to unprocessed paper.
  • the processed paper was the optical and haptic impression equivalent to unprocessed paper. In particular, no bleeding of the ink was observed. Furthermore, the pH of the processed paper increased.
  • a solution containing 2% by weight of microcrystalline cellulose in DMAc (containing 5% by weight of LiCl based on the total weight of LiCl and DMAc) based on the total weight of the solution was prepared.
  • the viscosity of the solution was 13 mPa ⁇ s.
  • the paper to be processed was soaked in the prepared solution for five minutes.
  • the resulting paper was then immersed in HMDO (500 g) for 72 hours, whereby the viscose adhered to the paper fibers. After treatment in HMDO, the paper was heated at 55 ° C for 12 hours.
  • Table 4 shows that the breaking strength as well as the elongation at break when using mixtures containing MCC and DMAc (containing 5 wt.% LiCl) by the inventive processing in comparison with paper that has not come into contact with a polymer such as MCC, is significantly higher ,
  • the processed paper was the optical and haptic impression equivalent to unprocessed paper. In particular, no bleeding of the ink was observed.
  • Test papers were impregnated with a solution according to Example 1 using MCC instead of viscose. After soaking in the solution, the papers were rinsed with DMAc as in Example 1 and dipped in the solvents listed in Table 5 for the indicated time. Table 5: Treatments sample Solvent (duration of impregnation) Test paper 4 HMDO (72 h) Test paper 5 5% by weight EtOH / 95% by weight HMDO (24 h) Test paper 6 EtOH ( ⁇ 1 min)
  • Test Papers 4 to 6 were heated at 55 ° C for 12 hours. While test paper 4 had a matte appearance, was flexible and was still stable even after repeated folding, test papers 5 and 6 partially showed a gloss. This indicates that in test paper 4, the MCC was deposited as above on the paper fibers, whereas in test papers 5 and 6 an inhomogeneous, rather superficial deposition of the MCC took place.
  • the choice of treatment in particular by the choice of the solvent is immersed in it, the duration of the treatment and the addition of the polymer can be influenced.
  • Test papers were first soaked in the solution for five minutes. The respective test papers were then for 72 Hours immersed in HMDO (500 g), whereby the polymers indicated in Table 6 were each attached to the paper fibers. After treatment in HMDO, the test papers were heated at 55 ° C for 12 hours. The breaking force and breaking elongation of the processed papers were then determined.
  • Example 7 Application of various polymers to deacidified and non-deacidified substrate
  • the reference paper was subjected to substantially the same processing as the other papers, except that the solution in the first step contained no polymer but only dimethylacetamide and BMIM-Cl.
  • Table 8 Mechanical properties of processed non-deacidified papers reference chitin Strength PVA Breaking force [N] 17 ⁇ 2 16 ⁇ 1N 25 ⁇ 2 26 ⁇ 2 elongation 1.00 ⁇ 0.12 0.93 ⁇ 0.19 1.24 ⁇ 0.07 0.99 ⁇ 0.12 [%] reference chitin Strength PVA Breaking force [N] 17 ⁇ 2 26 ⁇ 2 N 32 ⁇ 1 35 ⁇ 3 Elongation at break [%] 1.00 ⁇ 0.12 1.12 ⁇ 0.12 0.74 ⁇ 0.07 0.86 ⁇ 1.12
  • Tables 8 and 9 show that, in particular, a higher breaking strength for deacidified and non-deacidified papers can be achieved by processing according to the process of the invention.
  • a higher breaking strength for deacidified and non-deacidified papers can be achieved by processing according to the process of the invention.
  • For starch in the case of non-deacidified paper, an increase in elongation at break is also observed (see Table 8).
  • Tables 8 and 9 show that the mechanical properties of the papers can be improved by the process according to the invention.
  • Example 2 It was prepared according to Example 2, a solution. This solution was applied to one side of a wooden board with a brush, rinsed with water and dried at 25 ° C for 16 hours. The surface of the wood shows at the machined places a clear smoothing of the surface. Paints can also be applied well on the processed areas.
  • fluorescently labeled cellulose is off W. Helbert et al. Biomacromolecules 2003, 4, 481-471 , known.
  • a fluorescent marker a DTAF marker was used, which is excited at 488 nm, the emission being measured at 515 nm.
  • Two test papers were soaked in this solution for one minute and then rinsed with DMSO for 30 seconds. The first of these papers (Test Paper 7) was then dipped for 72 hours in HMDO containing 1 vol.% Ethanol (total 500 g). The second of these papers (Test Paper 8) was dipped in HMDO (500 g) for 72 hours.
  • test paper 10 After treatment in HDMO or HMDO / ethanol, the papers were heated at 55 ° C for 12 hours. A blank was also prepared by first soaking a third test paper (Test Paper 9) in a mixture of DMSO containing 13% by weight BMIM-OAc without polymer, then immersing it in HMDO (500 g) for 72 hours and then at 55 ° C ° C was heated for 12 hours. The reference was a fourth test paper (test paper 10) which was not processed.
  • test papers 7 to 10 Of the test papers 7 to 10, several layers were successively removed with adhesive film at one point, wherein eight layers could be removed from the unprocessed reference and ten layers could be removed from the remaining processed test papers.
  • the images were taken under the same microscope (Nikon FN-C LWD with Nikon lens 10x / 0.25) at 488 nm with the same exposure time (220 ms with Q-IMAGING RETIGA 200 RV). Representative images of the layers are in the figures Fig. 1 to Fig. 4 shown.
  • Fig. 1 shows a recording of layer 3 of test paper 7. It can be clearly seen that the fibers of the paper stand out very high contrast from the background.
  • Fig. 2 shows a recording of layer 3 of test paper 8. It can be clearly seen that the fibers of the paper stand out very high contrast from the background.
  • Fig. 3 shows a recording of layer 3 of the reference.
  • the cellulose fibers are to be distinguished from the background, but do not stand out so contrasting from the background as in Fig. 1 and Fig. 2
  • Fig. 4 shows a picture of layer 3 of the blank.
  • the cellulose fibers are to be distinguished from the background, but do not stand out as contrasting from the background as in Fig. 1 and Fig. 2 ,
  • the figures are consistent with an attachment of the fluorescently-labeled cellulose from the mixture to the fibers of the paper. So there was a kind of sheathing of paper fibers by the fluorescence-labeled cellulose, whereby the paper fibers and thus the paper are strengthened.
  • the substrate used was a 16-page 1943 book titled "Metalworking Table Book” which had been dried in a desiccator over orange gel over a period of one week, the moisture content of the book being 6.9% by weight. had fallen to 1.2 wt.%.
  • the book was divided into three nearly equal parts by two horizontal cuts.
  • the middle part of the book was then fanned out in a vessel, after which the vessel was filled and closed with the solution described above containing 1% by weight of alpha-cellulose.
  • the middle part of the book would be soaked in solution for 1 minute.
  • the middle section of the book was then fanned out in a second vessel and rinsed with DMSO for 30 seconds.
  • the middle part of the book was fanned out in a third vessel, after which the vessel was filled with HMDO and sealed. After 72 hours, the middle part of the book was taken, 6 hours at 55 ° C and dried for a week over orange gel in a desiccator.
  • the upper part of the book was processed like the middle part of the book with the difference that instead of the solution containing 1% by weight of alpha-cellulose, the solution containing 2% by weight of alpha-cellulose was used.
  • the lower part of the book was not edited and served as a reference.
  • the cover sheet which is the sheet forming the first and the last page
  • a center leaf which in this case is the arch, which forms the 4th side from the front and the 4th side from the rear
  • the inner leaf which is the arch that forms the two innermost sides. None of the components of the parts of the edited book showed any impairments due to the processing according to the invention. The color impression was almost unchanged.
  • the mechanical properties of the various components of the processed book and the reference are listed in Tables 10 below (1% by weight of alpha-cellulose) and 11 (2% by weight of alpha-cellulose).
  • Tables 10 and 11 show more than a doubling of both breaking strength and elongation at break for all components of the machined parts of the book as compared to the unprocessed reference.
  • books can be processed as a whole with the method according to the invention.
  • DMSO solution a solution containing 1% by weight of Danufil in a mixture of DMAc and BMIM-CI, wherein the DMAc contained 9.9 wt% BMIM-CI (hereinafter: "DMAc solution”).
  • Test paper 11 was soaked in the DMSO solution for one minute, then rinsed with DMSO for 30 seconds, dipped in HMDO (500 g) for 72 hours and then heated at 55 ° C for 12 hours.
  • Test paper 12 (blank test without Danufil) was soaked for one minute in DMSO containing 9.9 wt.% BMIM-CI, then rinsed with DMSO for 30 seconds, immersed in HMDO (500 g) for 72 hours and then at 55 ° C. for Heated for 12 hours.
  • Test paper 13 was soaked in DMSO for 1.5 minutes, then immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C for 12 hours.
  • Test paper 14 was soaked in the DMAc solution for one minute, then rinsed with DMAc for 30 seconds, dipped in HMDO (500 g) for 72 hours and then heated at 55 ° C for 12 hours.
  • Test paper 15 (blank test without Danufil) was soaked for one minute in DMAc containing 9.9 wt.% BMIM-CI, then rinsed with DMAc for 30 seconds, immersed in HMDO (500 g) for 72 hours and then at 55 ° C for Heated for 12 hours.
  • Test paper 16 was soaked in DMAc for 1.5 minutes, then immersed in HMDO (500 g) for 72 hours and then heated at 55 ° C for 12 hours.
  • the reference was an unprocessed test paper.
  • test papers 11 to 16 and the reference were determined and are listed in Tables 12 below.
  • Table 12 Mechanical properties of test papers 11 to 13 and the reference substratum Breaking force [N] Elongation at break [%] Test paper 11 8.1 ⁇ 0.9 0.55 ⁇ 0.10 Test paper 12 5.0 ⁇ 1.6 0.65 ⁇ 0.36 Test paper 13 5.9 ⁇ 1.1 0.55 ⁇ 0.19 Test paper 14 7.1 ⁇ 1.2 0.52 ⁇ 0.11 Test paper 15 5.8 ⁇ 1.0 0.60 ⁇ 0.12 Test paper 16 6.1 ⁇ 1.5 0.59 ⁇ 0.20 reference 3.5 ⁇ 0.64 0.16 ⁇ 0.03
  • test papers 11 and 14 which were contacted with a solution containing Danufil, had a higher breaking strength than test papers 12, 13, 15 and 16 and the reference not containing a solution containing Danufil® Were brought in contact.
  • the values of the elongation at break of the test papers 11 to 16 differed only slightly.
  • the test paper 11 to 16 compared to the reference both a significantly increased breaking strength and a significantly increased Elongation at break, wherein the increase in the breaking force in the test papers 11 and 14, in which the test paper in each case with a solution containing Danufil was brought into contact, turned out to be the highest.
  • this example also shows that by machining with the method according to the invention, the mechanical properties can be improved.
  • Table 12 shows that the breaking strength of test paper 11 is slightly higher than that of test paper 14. Accordingly, DMSO, in particular in combination with BMIM-CI and Danufil, appears to be somewhat better suited than DMAc in the process according to the invention, especially in combination with BMIM-CI and Danufil. For the elongation at break there was no significant difference between the test papers 11 and 14.
  • the above embodiments show that the mechanical properties of substrates such as paper can be improved by the method according to the invention. Furthermore, the pH of paper can be increased.
  • the inventive method is, for example, for the preservation of books. Furthermore, other substrates such as wood can be subjected to the method according to the invention. This can be achieved, inter alia, a smoothing of surface irregularities, especially in massive material application.
  • various polymers can be used in the process according to the invention.
  • the process of the invention can be combined with paper deacidification processes such as the papersave process.
  • the method is also suitable for editing books as a whole.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Dargestellt und beschrieben wird ein Verfahren zur Bearbeitung eines Materials enthaltend Fasern, umfassend die Schritte (a) Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel, (b) in Kontakt bringen des zu bearbeitenden Materials mit dem in (a) bereitgestellten Gemisch, um eine Mischung aus dem Material und dem in (a) bereitgestellten Gemisch zu erhalten, (c) Behandeln der in Schritt (b) erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert.

Description

  • Die Erfindung betrifft ein Verfahren zur Bearbeitung von Materialien enthaltend Fasern sowie mit diesem Verfahren erhältliche Materialien und Systeme. Die Erfindung betrifft ferner die Verwendung eines Gemischs enthaltend ein Polymer zur Bearbeitung von einem Material enthaltend Fasern, die Verwendung von Dimethylsulfoxid als Antioxidationsmittel in der Bearbeitung von Papier und die Verwendung von ionischen Flüssigkeiten als antimikrobielles Mittel zur Bearbeitung von Papier.
  • Organische Materialien enthaltend Fasern, insbesondere Papier, erfahren eine mechanische Destabilisierung, indem die die Faser bildenden Makromoleküle wie zum Beispiel Cellulosemakromoleküle im Laufe der Zeit abgebaut werden. Speziell im Falle von Papier kann das dazu führen, dass das Papier so stark destabilisiert wird, dass die Bücher aus diesem Papier nicht mehr verwendet werden können. Die Probleme der Destabilisierung, insbesondere durch Alterung, bestehen jedoch nicht nur bei Papier und cellulosehaltigen Materialien allgemein wie zum Beispiel Holz, sondern stellen generell für Materialien enthaltend Fasern ein Problem dar. Um diesem Problem entgegen zu wirken, werden entsprechende Bearbeitungsverfahren für das Material enthaltend Fasern benötigt. Papier, insbesondere bedrucktes Papier in Büchern, als Material enthaltend Fasern stellt hierbei mit die höchsten Anforderungen an das Bearbeitungsverfahren, weshalb die weitere Diskussion am Beispiel von Papier, insbesondere von bedrucktem Papier erfolgen soll.
  • Bei Dokumenten aus Papier, zum Beispiel alten Handschriften oder alten Büchern, kann die Destabilisierung dazu führen, dass das Papier brüchig wird. Dieses Papier muss gefestigt werden, um seine Brüchigkeit zu reduzieren.
  • Bei der Bearbeitung von Papier, speziell von bedrucktem Papier in Büchern, ist es wünschenswert, dass das Bearbeitungsverfahren mehrere Anforderungen erfüllt. Zum einen sollte das Bearbeitungsverfahren nicht nur eine Einzelblattbearbeitung erlauben. Mit dem Verfahren sollten vielmehr mehrere Blätter auf einmal bearbeitet werden können. Dabei sollte ein Verkleben der Seiten miteinander vermieden werden. Zudem sollte das Verfahren nach Möglichkeit auch den Einband eines Buchs und/oder die Bindung oder Rückenleimung der Blätter nicht beschädigen. Auf diese Weise kann das Verfahren wirtschaftlicher durchgeführt werden, da mehrere Blätter gleichzeitig bzw. ganze Bücher auf einmal bearbeitet werden können und das Heraustrennen der Blätter aus Büchern entfällt. Ferner sollte das Verfahren das Papier nicht auf andere Weise angreifen, insbesondere sollte das Papier nicht irreversibel aufquellen. Ebenfalls sollten die Tinte und/oder Druckfarben auf dem zu bearbeitenden Papier durch das Verfahren nicht ausgewaschen werden. Gleichzeitig ist es aber wünschenswert, dass die Bearbeitung des Papiers nicht nur oberflächlich erfolgt, sondern idealerweise im gesamten Papier ansetzt.
  • Für die Bearbeitung von Papier sind verschiedene Verfahren entwickelt worden. Eine gute Festigung von Papier kann beispielsweise dadurch erreicht werden, dass das geschädigte Papier gespalten wird und zusammen mit einer dünnen Zwischenlage und einem speziellen Klebstoff, der Celluloseether und Entsäuerungsmittel enthält, wieder verklebt wird. Diese Bearbeitung ist jedoch mit einem hohen handwerklichen Aufwand verbunden und somit kostenintensiv.
  • Ebenfalls ist ein Verfahren zur Verfestigung von Papier bekannt, bei dem man das Papier mit Acrylsäurederivaten tränkt, die durch Bestrahlung mit Gammastrahlen zur Polymerisation gebracht werden. Die Bestrahlung mit Gammastrahlen führt allerdings zu einer weiteren Schädigung des Papiers, durch die Tränkung mit Acrylsäure bluten Farben und Tinten auf dem Papier zumindest teilweise aus, und im Papier verbleibende Rückstandsmonomere führen zur einer Geruchsbelästigung. Außerdem ist dieses Verfahren nur schwer mit weiteren üblichen Mitteln der Papierrestaurierung kombinierbar.
  • Ebenso ist die Bearbeitung von Papier durch Laminieren bekannt, wobei eine dünne Polymerfolie oder ein dünnes Stabilisierungspapier einseitig oder beidseitig auf das Papier aufgebracht wird. Bei diesem mit einzelnen Blättern durchgeführten Verfahren passt der bearbeitete Papierstapel nach der Bearbeitung aufgrund der zunehmenden Papierdicke oft nicht mehr in den Bucheinband. Außerdem werden der Griff und das Aussehen des Papiers geändert. Weiterhin nimmt der Kontrast durch die aufgebrachten Schichten ab. Ferner ist dieses Verfahren nur schwer mit weiteren üblichen Mitteln der Papierrestaurierung kombinierbar.
  • Ein bekanntes Verfahren zur Bearbeitung von Papier ist das sogenannte Wiener Verfahren, das in der EP 0 273 9602 A2 beschrieben ist. In diesem Verfahren wird das Bearbeitungsgut in einer wässrigen Lösung, die zur Festigung des Papiers Methylcellulose enthält, getränkt. Anschließend wird die Bearbeitungslösung abgepumpt, Reste der Bearbeitungslösung lässt man vom bearbeiteten Papier abtropfen, und das Papier wird danach schockgefroren und gefriergetrocknet. Nachteilig an diesem Verfahren ist vor allem, dass Bucheinbände geschädigt werden, weshalb die Blätter des Buches vor der Bearbeitung herausgenommen werden müssen. Außerdem muss mit Methylcellulose ein derivatisiertes Polymer verwendet werden.
  • Die DE 100 57 554 A1 beschreibt ein Verfahren, in dem das zu bearbeitende Papier mit einem silylierten Polymerderivat wie z.B. siliylierter Cellulose, das in einem unpolaren Lösungsmittel gelöst ist, bearbeitet wird. Die Silylgruppen werden anschließend durch Einwirkung von Feuchtigkeit oder Wasser abgespalten. Nachteilig an diesem Verfahren ist der zwingende Einsatz von derivatisierten Polymeren.
  • Die EP 3 072 933 A1 beschreibt alkalische Nanopartikel enthaltend mindestens ein Hydroxid oder Carbonat oder eine organische Verbindung eines Erdalkalimetalls und wahlweise ein hydrophiles Cellulosederivat sowie eine stabilisierende Außenschicht aus hydrophoben Polymeren zur Entsäuerung und Festigung von cellulosebasierten Artefakten. Die Nanopartikel müssen jedoch zunächst synthetisiert werden.
  • Die im Stand der Technik bekannten Verfahren weisen verschiedene Nachteile wie zum Beispiel die notwendige Einzelblattbearbeitung, Verkleben von Seiten, Ausbluten von Farben und/oder Tinten, Geruchsbelästigung, starke Zunahme der Papierdicke, Verwendung von derivatisierten Polymeren, mangelnde Kompatibilität mit anderen üblichen Mitteln der Papierrestaurierung sowie Schädigung von Bucheinbänden und/oder Rückenleimungen auf.
  • Aufgabe der Erfindung ist es daher, ein Verfahren zur Bearbeitung, insbesondere zur Festigung, von Material enthaltend Fasern, insbesondere Papier, bereit zu stellen, das einen oder mehrere Nachteile der aus dem Stand der Technik bekannten Verfahren zumindest teilweise überwindet. Insbesondere ist ein Verfahren wünschenswert, mit dem eine Massenbearbeitung von geschädigtem Papier erfolgen kann. Das zu bearbeitende Papier sollte dabei nicht weiter geschädigt werden. Insbesondere sollte das zu bearbeitende Papier gefestigt werden. Auf dem zu bearbeitenden Papier etwaige vorhandene Tinten und Druckerfarben sollten nicht ausbluten. Ferner sollten die Einbände und/oder die Papierrückenleimungen durch das Verfahren nicht geschädigt werden. Außerdem ist es wünschenswert, wenn einfach zu erhaltende Substanzen wie Polymere, die insbesondere nicht derivatisiert sind, im Verfahren eingesetzt werden können.
  • Diese Aufgabe wird erfindungsgemäß durch das Verfahren nach Anspruch 1, das Material enthaltend Fasern nach Anspruch 19, das System nach Anspruch 20, die Verwendung nach Anspruch 21, die Verwendung nach Anspruch 23 sowie die Verwendung nach Anspruch 24 gelöst.
  • Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben und werden nachfolgend im Einzelnen erläutert.
  • Das erfindungsgemäße Verfahren zur Bearbeitung eines Materials enthaltend Fasern umfasst die folgenden Schritte:
    1. a. Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel,
    2. b. in Kontakt bringen des zu bearbeitenden Materials mit dem in Schritt a. bereitgestellten Gemisch, um eine Mischung aus dem Material und dem in Schritt a. bereitgestellten Gemisch zu erhalten,
    3. c. Behandeln der in Schritt b. erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert.
  • Überraschend wurde gefunden, dass Materialien enthaltend Fasern mit dem erfindungsgemäßen Verfahren sehr effizient, effektiv und sicher zur Materialfestigung und/oder Oberflächenglättung, insbesondere bei massivem Materialauftrag, bearbeitet werden können.
  • Dabei liegt ein besonderer Vorteil des erfindungsgemäßen Verfahrens darin, dass durch den Einsatz eines polar aprotischen Lösemittels auch nicht derivatisierte Polymere wie z.B. Cellulose als das mindestens eine Polymer im erfindungsgemäßen Verfahren eingesetzt werden können. Ferner können durch den Einsatz eines polar aprotischen Lösemittels Gemische, insbesondere Lösungen, mit einer geringen Viskosität hergestellt werden, welche sich insbesondere zur Bearbeitung von Büchern oder ähnlichen Substraten eignen.
  • Überraschenderweise kann mit dem erfindungsgemäßen Verfahren trotz des Einsatzes von Polymeren ein Verkleben der Seiten vermieden werden. Der Einsatz des polar aprotischen Lösemittels erlaubt weiterhin ein großes Spektrum an Möglichkeiten, um die Mischung aus dem zu bearbeitenden Material enthaltend Fasern und dem Gemisch zu behandeln, so dass sich zumindest ein Teil des Polymers an den Fasern des Materials enthaltend Fasern anlagert. Ferner kann das erfindungsgemäße Verfahren mit anderen Verfahren, insbesondere Entsäuerungsverfahren, kombiniert werden.
  • Wenn hier oder an anderer Stelle von "Lösen" die Rede ist, insbesondere davon, dass sich ein Stoff in einem Lösemittel löst, so kann damit insbesondere gemeint sein, dass eine Lösung des Stoffs in dem Lösemittel hergestellt werden kann, die mindestens 0,5 Gew.%, insbesondere mindestens 1 Gew.%, 2 Gew.%, 3 Gew.%, 4 Gew.%, 5 Gew.%, 6 Gew.%, 7 Gew.%, 8 Gew.%, 9 Gew.% oder mindestens 10 Gew.%, und höchstens 25 Gew.%, insbesondere höchstens 20 Gew.%, 15 Gew.%, 14 Gew.%, 13 Gew.% oder höchstens 12 Gew.%, jeweils bezogen auf das Gesamtgewicht der Lösung, des Stoffs enthält.
  • Wenn hier oder an anderer Stelle von "Anlagern", insbesondere von Anlagern eines Stoffs an einem anderen Substrat, die Rede ist, so kann damit insbesondere das Ausfallen, Auskristallisieren, Abscheiden, Aufwachsen und/oder Absetzen, insbesondere an dem anderen Substrat, gemeint sein. Das Polymer kann sich vollständig oder zum Teil an das Material enthaltend Fasern, insbesondere an die Fasern des Materials enthaltend Fasern, anlagern. Wenn sich das Polymer nur zum Teil an die Fasern des Materials enthaltend Fasern anlagert, verbleibt eine Restmenge an Polymer in dem Gemisch. Durch Anlagerung werden die Fasern des Materials enthaltend Fasern vorzugsweise ganz oder teilweise ummantelt. Dadurch kann eine Festigung der Faser erreicht werden.
  • "Derivatisierte Polymere" können insbesondere solche Polymere sein, die durch eine chemische Modifizierung eines anderen Polymers erhalten wurden. Die Derivatisierung kann dabei auch reversibel sein, so dass das ursprüngliche Polymer zurückerhalten werden kann. Derivatisierte Polymere werden zum Beispiel von natürlich vorkommenden Polymeren wie Cellulose oder Stärke hergestellt. Beispielsweise kann aus nicht derivatisierter Cellulose durch chemische Modifizierung das derivatisierte Polymer Methylcellulose erhalten werden. Weitere Beispiele für nicht derivatisierte Polymere sind Stärke, Chitosan, Chitin, Lignin, Viskose, Zellstoff, Seide und Alginat. Für die Derivatisierung kommen verschiedene chemische Modifizierungen in Betracht. Die Derivatisierung kann beispielsweise durch teilweise oder vollständige Alkylierung, teilweise oder vollständige Acylierung, teilweise oder vollständige Silylierung oder teilweise oder vollständige Sulfonylierung erreicht werden.
  • "Material enthaltend Fasern" wird nachfolgend auch als "faserhaltiges Material" oder "Fasern enthaltendes Material" bezeichnet.
  • Die Schritte a. bis c. des erfindungsgemäßen Verfahrens werden vorteilhafterweise in der angegebenen Reihenfolge durchgeführt.
  • Mit dem erfindungsgemäßen Verfahren können die verschiedensten faserhaltigen Materialien bearbeitet werden. Das faserhaltige Material kann ein Polymer mit mindestens einer polaren Gruppe enthalten, insbesondere in einem Anteil von 50 Gew.%, 60 Gew.%, 70 Gew.%, 80 Gew.%, 90 Gew.%, 95 Gew.%, 99 Gew.%, oder daraus bestehen. Die mindestens eine polare Gruppe kann im Polymerrückgrat enthalten sein und/oder als Seitenkette mit dem Polymerrückgrat verknüpft sein. Sind mehrere polare Gruppen enthalten, können diese gleich oder verschieden sein. Polare Gruppen sind dem Fachmann bekannt. Beispiele für polare Gruppen sind unter anderem die Hydroxyl-Gruppe, Säure-Gruppen wie die Carboxyl-Gruppe und die Sulfonsäuregruppe, die Amid-Gruppe, die Amin-Gruppe, die Thiol-Gruppe, die Ether-Gruppe, insbesondere die C1-C4-Alkyl-Ether-Gruppe, die Ester-Gruppe sowie die Urethan-Gruppe. Insbesondere kann das faserhaltige Material Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Chitosan, Alginat, Stärke, Lignin, Polyvinylalkohol, Proteine oder Mischungen davon enthalten. Weitere Bestandteile des faserhaltigen Materials können weitere Polymere, insbesondere weitere Polymere mit mindestens einer polaren Gruppe, aber auch zum Beispiel Füllstoffe wie Calciumcarbonat oder Pigmente wie Titandioxid sein. Insbesondere kann es sich bei dem faserhaltigen Material um ein cellulosehaltiges Material handeln, insbesondere um Papier, Pappe, Karton, Textilien oder Holz. Gemäß einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem faserhaltigen Material um Papier, insbesondere um Papierblätter. Beispiele für Papier sind Schreibmaschinenpapier, Druckerpapier, Zeitschriftenpapier, Zeitungspapier und Buchpapier.
  • In dem erfindungsgemäßen Verfahren wird ein Gemisch enthaltend ein Polymer bereitgestellt. Als Polymer kommen verschiedene Polymere in Frage. Das Polymer kann ein Copolymer oder ein Homopolymer sein. Das Polymer kann insbesondere ein massenmittleres Molekulargewicht Mw von 1000 bis 10000000 g/mol, insbesondere von 3000 bis 1000000 g/mol, von 5000 bis 500000 g/mol oder von 10000 bis 100000 g/mol, aufweisen. Das Polymer kann ferner mindestens eine polare Gruppe enthalten. Die mindestens eine polare Gruppe kann im Polymerrückgrat enthalten sein und/oder als Seitenkette mit dem Polymerrückgrat verknüpft sein. Sind mehrere polare Gruppen enthalten, können diese gleich oder verschieden sein. Polare Gruppen sind dem Fachmann bekannt. Beispiele für polare Gruppen sind unter anderem die Hydroxyl-Gruppe, Säure-Gruppen wie die Carboxyl-Gruppe und die Sulfonsäuregruppe, die Amid-Gruppe, die Amin-Gruppe, die Thiol-Gruppe, die Ether-Gruppe, insbesondere die C1-C4-Alkyl-Ether-Gruppe, die Ester-Gruppe sowie die Urethan-Gruppe. Insbesondere kann das Polymer mindestens eine Hydroxyl-Gruppe, mindestens eine Amin-Gruppe, mindestens eine Säure-Gruppe, insbesondere eine Carboxyl-Gruppe, mindestens eine Amid-Gruppe, mindestens eine Thiol-Gruppe, mindestens eine Ether-Gruppe, insbesondere eine C1-C4-Alkyl-Ether-Gruppe, mindestens eine Ester-Gruppe und/oder mindestens eine Urethan-Gruppe, insbesondere mindestens eine Hydroxyl-Gruppe, enthalten und/oder ausgewählt sein aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, natürliche Seide, Seidenbiopolymere, Polyvinylalkohol, Polyvinylacetat, Polyurethane, Polyamide, Proteine, Polymere oder Copolymere auf Basis von Acrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Methacrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Vinylacetat, Itaconsäure, Maleinsäure, Fumarsäure, Acryloxypropionsäure, Methacryloxypropionsäure, Styrolsulfonsäure, Ethylmethacrylat-2-sulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Phosphoethylmethacrylat, Celluloseether und Mischungen davon. Vorzugsweise ist das Polymer ein nicht derivatisiertes Polymer wie zum Beispiel Cellulose und/oder Viskose. Bevorzugt enthält das Polymer mindestens eine Hydroxylgruppe.
  • Insbesondere kann das Polymer ausgewählt sein aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, Seidenbiopolymere, Polyvinylalkohol und Mischungen davon. Vorzugsweise ist das Polymer ausgewählt aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Seide, Seidenbiopolymere, Viskose und Mischungen davon. Vorteilhafterweise ist das Polymer ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Viskose und Mischungen davon. Gemäß einer bevorzugten Ausführungsform ist das Polymer alpha-Cellulose. Gemäß einer weiteren bevorzugten Ausführungsform ist das Polymer Viskose, insbesondere im Wesentlichen nicht derivatisierte Viskose. Es hat sich gezeigt, dass sich mit den vorstehend genannten Polymeren faserhaltige Materialien besonders gut bearbeiten ließen. Insbesondere konnten durch eine Bearbeitung mit den vorstehenden Polymeren gute Festigungen, insbesondere von cellulosehaltigen Materialien wie Papier, Pappe, Karton und Holz, erreicht werden.
  • Das Polymer kann insbesondere in Form von Fasern eingesetzt werden.
  • Viskose ist insbesondere aus regenerierter Cellulose aufgebaut. Viskose kann dabei insbesondere in Form von Fasern vorliegen. Bei Viskose kann es sich insbesondere um eine regenerierte Cellulosefaser handeln, wie sie in der EP 2 546 396 (siehe insbesondere Absatz [0026], [0028], [0029], [0030], [0031], [0032], [0033], [0034], [0035], [0036], [0037] und/oder [0038]) beschrieben ist. Entsprechend kann die Viskose in Form von Fasern, die mehrere Schenkel aufweisen und bei denen zumindest ein Schenkel hinsichtlich seiner Länge von den anderen Schenkeln abweicht, vorliegen. Insbesondere kann es sich um asymmetrische Cellulosefasern handeln. Der Titer der asymmetrischen Cellulosefasern kann von 1,3 dtex bis 10 dtex, insbesondere 3,3 dtex, betragen. Der Titer gibt dabei die Feinheit an, wobei 1 dtex insbesondere einem Gewicht von einem Gramm pro 10000 Meter der Cellulosefasern entspricht.
  • Bei Seidenbiopolymeren kann es sich insbesondere um Seidenbiopolymere handeln, wie sie in der WO 2014/037453 oder in der WO 2011/113446 beschrieben sind. Entsprechend können die Seidenbiopolymere insbesondere aus Polypeptiden bestehen, die im Wesentlichen aus einer oder mehreren sich wiederholenden Polypeptid-Einheiten und einer oder mehreren sich nicht wiederholenden Polypeptid-Einheiten aufgebaut sind. Die sich wiederholenden Polypeptid-Einheiten können insbesondere Oligoalanin-Einheiten enthalten. Die sich wiederholenden Polypeptid-Einheiten können die Module AC (GPYGPGASAAAAAAGGYGPGCGQQ), AK (GPYGPGASAAAAAAGGYGPGKGQQ), CC (GSSAAAAAAAASGPGGYGPENQGPCGPGGYGPGGP), CK1 (GSSAAAAAAAASGPGGYGPENQGPKGPGGYGPGGP), CK2 (GSSAAAAAAAASGPGGYGPKNQGPSGPGGYGPGGP) oder CKC (GSSAAAAAAAASGPGGYGPKNQGPCGPGGYGPGGP) umfassen oder daraus bestehen, wobei die in Klammern angegebenen Sequenzen Aminosäuren im Einbuchstaben-Code darstellen, wie er beispielsweise in dem Buch "Enzymes - A Practical Introduction to Structure, Mechanism, and Data Analysis", 2nd Edition von Robert A. Copeland, Wiley-VCH, 2000, in Tabelle 3.1 auf Seite 45 beschrieben ist. Die sich nicht wiederholenden Polypeptid-Einheiten können aus den in der WO 2014/037453 , insbesondere auf Seite 16, beschriebenen "non-repetitive (NR)" Einheiten NR3, NR4, NR5, NR6 oder den in der WO 2014/037453 beschriebenen Varianten davon ausgewählt sein.
  • Das Polymer in Schritt a. des erfindungsgemäßen Verfahrens kann gleich oder verschieden sein von dem Polymer mit mindestens einer polaren Gruppe, welches in dem faserhaltigen Material enthalten sein kann. Beispielsweise kann ein cellulosehaltiges Material als faserhaltiges Material mit einem Gemisch in Kontakt gebracht werden, das ebenfalls Cellulose als Polymer enthält. Ebenso kann aber auch ein cellulosehaltiges Material als faserhaltiges Material zum Beispiel mit einem Gemisch in Kontakt gebracht werden, das Polyvinylalkohol als Polymer enthält. Enthält das im Gemisch enthaltene Polymer eine polare Gruppen, so können die polare Gruppe des Polymers mit mindestens einer polaren Gruppe, das in dem faserhaltigen Material enthalten sein kann, und die polare Gruppe des im Gemisch enthaltenen mindestens einen Polymers gleich oder verschieden sein. So kann das faserhaltige Material ein cellulosehaltiges Material sein und das polare Polymer kann ein Polyurethan sein.
  • Als polar aprotisches Lösemittel kommen in dem erfindungsgemäßen Verfahren die verschiedensten Lösemittel in Frage. In polar aprotischen Lösemitteln können die Moleküle ein Dipolmoment aufweisen und/oder das polar aprotische Lösemittel kann aus Ionen aufgebaut sein. Ferner können polar aprotische Lösemittel frei von Gruppen, insbesondere polaren Gruppen, sein, von denen Protonen abgespalten werden können. Beispiele für derartige Gruppen sind die OH-Gruppe, Säure-Gruppen wie die Carboxylgruppe, die Sulfonsäuregruppe und Halogenwasserstoffgruppen, die Thiol-Gruppe, sowie primäre und sekundäre Amine. Als polar aprotische Lösemittel kommen insbesondere Ketone, Lactone, Lactame, insbesondere N-alkylierte Lactame, Nitrile, Tertiäre Carbonsäureamide, Harnstoffderivate, insbesondere alkylierte Harnstoffderivate, Sulfoxide, Sulfone, Kohlensäureester, ionische Flüssigkeiten und/oder Mischungen davon in Frage.
  • Beispiele für Ketone sind Aceton, Methylethylketon, 2-Pentanon, 3-Pentanon, 2-Hexanon, 3-Hexanon, Cyclohexanon und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Lactone sind Propriolacton, Gammabutyrolacton, Deltavalerolacton, Epsiloncaprolacton und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Lactame sind Propiolactam, Gammabutyrolactam und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für alkylierte Lactame sind N-Methyl-Propiolactam, N-Methyl-2-pyrrolidon und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Nitrile sind Acetonitril, Propionitril, Butyronitril, Valeronitril und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Tertiäre Carbonsäureamide wie Dimethylformamid, Dimethylacetamid, Dimethylpropionamid und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Harnstoffderivate, insbesondere alkylierte Harnstoffderivate, sind Dimethylpropylenharnstoff, Tetramethylharnstoff und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Sulfoxide sind Dimethylsulfoxid, Ethylmethylsulfoxid, Diethylsulfoxid und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Sulfone sind Sulfolan, Ethylmethylsulfon und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für Kohlensäureester sind Dimethylcarbonat, Ethylencarbonat, Propylencarbonat, 1,2-Butylencarbonat, 1,3-Butylencarbonat und deren C1- bis C4-alkylierte Derivate.
  • Beispiele für ionische Flüssigkeiten sind weiter unten angegeben.
  • Vorzugsweise ist das polar aprotische Lösemittel ausgewählt aus der Gruppe bestehend aus Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat, Ethylencarbonat, ionischen Flüssigkeiten und Mischungen davon. Insbesondere ist das polar aprotische Lösemittel ausgewählt aus der Gruppe bestehend aus Dimethylacetamid, Dimethylsulfoxid, Acetonitril, ionischen Flüssigkeiten und Mischungen davon. Polar aprotische Lösemittel, die eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat sind, enthalten eine ionische Flüssigkeit.
  • Das polar aprotische Lösemittel kann eine oder mehrere ionische Verbindungen, beispielsweise Salze, anorganische Salze und/oder ionische Flüssigkeiten enthalten oder insbesondere aus einer oder mehreren ionischen Flüssigkeiten bestehen.
  • Als anorganische Salze kommen beispielsweise Lithiumfluorid, Lithiumchlorid, Lithiumbromid, Lithiumiodid, Natriumfluorid, Natriumchlorid, Natriumbromid, Natriumiodid, Kaliumfluorid, Kaliumchlorid, Kaliumbromid oder Kaliumiodid, insbesondere Lithiumchlorid oder Lithiumbromid und Mischungen davon in Frage. Anorganische Salze können in einer Menge von 1 bis 10 Gew.%, 3 bis 8 Gew.% oder 4 bis 6 Gew.%, jeweils bezogen auf die Gesamtmenge an polar aprotischem Lösemittel und anorganischem Salz oder anorganischen Salzen, enthalten sein. Dementsprechend kann ein polar aprotisches Lösemittel beispielsweise Dimethylacetamid enthaltend 5 Gew.% Lithiumchlorid sein.
  • Besonders gute Ergebnisse lassen sich erzielen, wenn das polar aprotische Lösemittel eine ionische Flüssigkeit enthält. Geeignete ionische Flüssigkeiten werden weiter unten im Detail beschrieben. Bevorzugt ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril. Gemäß einer bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylacetamid oder Dimethylsulfoxid. Gemäß einer weiteren bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylacetamid. Gemäß einer weiteren bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylsulfoxid.
  • Mit den vorstehend genannten polar aprotischen Lösemitteln können Gemische, insbesondere Lösungen, mit den verschiedensten Polymeren hergestellt werden. Insbesondere können sich viele schlecht lösliche Polymere, insbesondere Polymere enthaltend mindestens eine polare Gruppe, gut in diesen polar aprotischen Lösemitteln lösen. Enthält das polar aprotische Lösemittel eine oder mehrere ionische Verbindungen, können Polymere enthaltend mindestens eine polare Gruppe, insbesondere Cellulose, besser in ihnen gelöst werden. Auf diese Weise können Gemische, insbesondere Lösungen, mit einem Gehalt von beispielsweise 0,5 Gew.%, 1 Gew.%, 2 Gew.%, 3 Gew.%, 4 Gew.%, 5 Gew.%, 6 Gew.%, 7 Gew.%, 8 Gew.%, 9 Gew.%, 10 Gew.%, 11 Gew.%, 12 Gew.%, 13 Gew.%, 14 Gew.% oder 15 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer erhalten werden. Dadurch kann die Konzentration des Polymers in einem weiten Bereich an die Bedürfnisse des zu bearbeitenden faserhaltigen Materials angepasst werden, was eine effektive Bearbeitung des faserhaltigen Materials erlaubt.
  • Das polar aprotische Lösemittel kann eine oder mehrere ionische Flüssigkeiten enthalten oder daraus bestehen. Als ionische Flüssigkeiten kommen insbesondere organische Salze in Betracht, deren Ionen durch Ladungsdelokalisation und sterische Effekte die Bildung eines stabilen Kristallgitters behindern. Ionische Flüssigkeiten haben insbesondere den Vorteil, dass sich viele schwer lösliche Polymere wie zum Beispiel Cellulose in ihnen gut lösen. Ferner können ionische Flüssigkeiten gut modifiziert und so an unterschiedliche Anforderungen angepasst werden.
  • Enthält das polar aprotische Lösemittel eine ionische Flüssigkeit, so enthält die ionische Flüssigkeit insbesondere ein Kation ausgewählt aus einem 1,3-Dialkylimidazoliumkation, einem Alkylpyridiniumkation, einem Tetraalkylammoniumkation und einem Phosphoniumkation, und ein Anion ausgewählt aus Fluorid, Chlorid, Bromid, Iodid, Formiat, Acetat, Propionat, Butyrat, Hydrogensulfat, Tosylat, Trifluormethansulfonat, Bis(trifluoromethansulfonyl)imid, Hexafluorophosphat, Tetrafluoroborat, Benzoat, Glykolat, Thioglykolat, Lactat und Glycinat, oder sie besteht daraus. Vorzugsweise enthält die ionische Flüssigkeit ein Dialkylimidazoliumkation und ein Anion ausgewählt aus Chlorid, Bromid und Acetat oder sie besteht daraus. Die Alkylgruppen des Dialkylimidazoliumkations können insbesondere gleich oder verschieden sein. Die Alkylgruppen des Dialkylimidazoliumkations können insbesondere C1- bis C10-, insbesondere C1- bis C5-Alkylgruppen, sein. Die Alkylgruppen des Dialkylimidazoliumkations können unabhängig voneinander bevorzugt ausgewählt sein aus der Gruppe bestehend aus Methyl, Ethyl, Propyl und Butyl. Gemäß einer bevorzugten Ausführungsform enthält die ionische Flüssigkeit 1-Butyl-3-methylimidazoliumchlorid und/oder 1-Butyl-3-methylimidazoliumacetat oder besteht daraus.
  • Die vorstehend angeführten Kationen und Anionen haben insbesondere den Vorteil, dass viele Polymere, insbesondere auch schwer lösliche Polymere wie Cellulose, in ionischen Flüssigkeiten, die diese Kationen und Anionen enthalten oder daraus bestehen, gut löslich sind. Ferner weist insbesondere das Acetat-Anion den Vorteil auf, dass der pH-Wert von faserhaltigen Materialien mit einem sauren pH-Wert, die mit einem Gemisch, in dem das polar aprotische Lösemittel eine Acetat-Anionen-haltige ionische Flüssigkeit enthält, in Kontakt gebracht wurden, angehoben werden kann. Dies ist insbesondere bei der Bearbeitung von Papier von Bedeutung, da durch eine Anhebung des pH-Werts im Papier der Abbau der Cellulosefasern verlangsamt oder sogar unterbunden werden kann.
  • Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel ist vorzugsweise ein homogenes Gemisch, insbesondere eine Lösung. Alternativ kann in dem Gemisch das Polymer durch das polar aprotische Lösemittel angelöst oder gequollen sein.
  • Das Bereitstellen eines Gemischs enthaltend ein polar aprotisches Lösemittel hat unter anderem den Vorteil, dass dadurch Gemische, insbesondere Lösungen, mit einer geringen Viskosität erhalten werden können. Derartige Gemische, insbesondere Lösungen, sind besonders gut zur Bearbeitung von faserhaltigen Materialien, insbesondere cellulosehaltigen Materialien wie Papier, geeignet. Dabei kann das Gemisch, insbesondere die Lösung, mit dem das zu bearbeitende faserhaltige Material in Kontakt gebracht wird, insbesondere eine Viskosität von 0,01 bis 100 mPa·s, vorzugsweise 0,1 bis 70 mPa·s, bevorzugt 0,5 bis 50 mPa·s, weiter bevorzugt 1 bis 30 mPa·s, noch weiter bevorzugt 1 bis 15 mPa·s, aufweisen. Gemische, insbesondere Lösungen, mit derartigen Viskositäten eignen sich besonders gut zur Bearbeitung von faserhaltigen Materialien, insbesondere cellulosehaltigen Materialien wie Papier, da sie tief in das faserhaltige Material eindringen können und somit nicht nur eine oberflächliche Anlagerung des Polymers ermöglicht wird. Methoden zur Bestimmung der Viskosität von Gemischen, insbesondere von Lösungen, sind dem Fachmann bekannt. Insbesondere kann die Viskosität mit einem Rotationsviskosimeter "Gemini" der Firma Bohlin bei 25°C bestimmt werden.
  • Das in Kontakt bringen des faserhaltigen Materials mit dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann auf verschiedene Weisen durchgeführt werden. Beispielsweise kann das faserhaltige Material, insbesondere Papier, mit dem Gemisch besprüht oder beschichtet werden oder das faserhaltige Material, insbesondere Papier, kann in dem Gemisch getränkt werden. Vorteilhafterweise wird das faserhaltige Material in dem Gemisch getränkt. Wird das faserhaltige Material in dem Gemisch getränkt, so kann dies für einen Zeitraum von 0,1 bis 10 Minuten, insbesondere 0,2 bis 8 Minuten, 0,2 bis 7 Minuten, 0,4 bis 6 Minuten, 0,5 bis 5 Minuten, 0,5 bis 4 Minuten, 0,5 bis 3 Minuten oder 0,5 bis 2 Minuten erfolgen. Dadurch kann das mindestens eine Polymer gut in das faserhaltige Material eindringen, so dass es sich gut an die Fasern des Materials anlagern kann. Anschließend kann das getränkte faserhaltige Material mit einem polar aprotischen Lösemittel, insbesondere mit Dimethylacetamid und/oder Dimethylsulfoxid, abgespült werden, insbesondere für einen Zeitraum von 10 bis 60 Sekunden, 20 bis 50 Sekunden oder 25 bis 40 Sekunden. Durch das Abspülen kann überschüssiges Polymer entfernt werden.
  • Das erfindungsgemäße Verfahren umfasst den Schritt des Behandelns der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert. Dabei kann die Behandlung der Mischung auf unterschiedliche Weise ausgestaltet sein. Insbesondere kann die Behandlung der Mischung in Schritt c. ausgewählt sein aus der Gruppe bestehend aus in Kontakt bringen der Mischung mit einer ionischen Verbindung, insbesondere einem Salz, in Kontakt bringen der Mischung mit einer nicht-ionischen Verbindung, in Kontakt bringen der Mischung mit einer Säure, in Kontakt bringen der Mischung mit einer Base, in Kontakt bringen der Mischung mit einem polaren Lösemittel, in Kontakt bringen der Mischung mit einem unpolaren Lösemittel, in Kontakt bringen der Mischung mit einem Lösemittelgemisch, Gefriertrocknen, Temperaturerniedrigung, Eindampfen des Lösemittels, Temperaturerhöhung, Druckerniedrigung und Kombinationen davon.
  • Beispiele für ionische Verbindungen sind Salze oder Polymere mit mindestens einer ionischen Seitengruppe. Salze bestehen insbesondere aus mindestens einem Kation und mindestens einem Anion, wobei das Kation ausgewählt sein kann aus Kationen die sich von Metallen ausgewählt aus der Gruppe bestehend aus, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, TI, Ge, Sn, Pb ableiten lassen, und wobei das Anion ausgewählt sein kann aus Anionen, die sich von Elementen der Gruppe bestehend aus F, Cl, Br, I, O, S, Se, Te. Weitere Beispiele für Kationen sind Ammoniumionen. Weitere Beispiele für Anionen sind Hydrid, Hydroxid, Phosphate, Phosphite, Sulfate, Sulfite, Sulfide und Carboxylate wie Formiat, Acetat, Proprionat, Salicylat und Benzoat. Das Salz kann insbesondere Ammoniumsulfat oder Kaliumsulfat oder eine Mischung davon enthalten. Beispiele für Polymere mit ionischen Seitengruppen sind Polymere mit mindestens einer deprotonierten Säuregruppe, insbesondere einer deprotonierten Carboxylgruppe wie deprotoniertes Polyacrylat, deprotoniertes Polymethacrylat, Polymere mit mindestens einer quartären Ammoniumverbindung wie quatärnisiertes Polydimethylaminoethylmethacrylat. Die Mischung kann dabei mit der ionischen Verbindung in Kontakt gebracht werden, indem das Salz direkt oder in Form einer Lösung, insbesondere einer wässrigen Lösung, zugegeben wird.
  • Beispiele für nicht-ionische Verbindungen sind Wasser, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Octan, Nonan, isocyanathaltige Verbindungen, Kohlenwasserstoffe mit 1 bis 20, insbesondere 5 bis 18, Kohlenstoffatomen, Polymere wie Polyether, Polyester, Polyamide, Polyurethane. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der jeweiligen nicht-ionischen Verbindung.
  • Beispiele für Säuren sind Salzsäure, Schwefelsäure, Salpetersäure, Carbonsäuren mit 1 bis 20, insbesondere 1 bis 10, Kohlenstoffatomen, insbesondere Ameisensäure, Essigsäure, Propionsäure und Benzoesäure, und Mischungen davon. Insbesondere kann die Säure ausgewählt sein aus Salzsäure und Carbonsäuren mit 1 bis 10 Kohlenstoffatomen. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der jeweiligen Säure, oder indem die Mischung in Säure getaucht wird. Die Säure kann dabei konzentriert oder verdünnt sein, beispielsweise als verdünnte wässrige Lösung.
  • Beispiele für Basen sind Hydroxid-Basen wie Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, Aminbasen wie, primäre Amine, sekundäre Amine, tertiäre Amine, insbesondere Triethylamin, Pyridin und Dimethylaminopyridin und Mischungen davon. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch direkte Zugabe der jeweiligen Base. Alternativ kann die jeweilige Base auch als Lösung, insbesondere als wässrige Lösung, mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe einer Lösung, oder indem die Mischung in die Lösung getaucht wird.
  • Beispiele für polare Lösemittel sind Wasser und Alkohole wie Methanol, Ethanol, Propanol und Butanol, primäre und sekundäre Amine, Carbonsäuren und Mischungen davon. Insbesondere kann das polare Lösemittel Wasser, ein Alkohol oder eine Mischung davon sein. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe des polaren Lösemittels, oder indem die Mischung in das polare Lösemittel getaucht wird.
  • Beispiele für unpolare Lösemittel sind Kohlenwasserstoffe mit 5 bis 16 Kohlenstoffatomen, Benzol, Toluol, Pentan, Hexan, Heptan, Cyclohexan, Tetrachlorkohlenstoff, Tetrachlorethen, Trichlorethen, Kohlenstoffdisulfid, Tetramethylsilan und Hexamethyldisiloxan. Das unpolare Lösemittel kann insbesondere Hexamethyldisiloxan sein. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe des polaren Lösemittels, oder indem die Mischung in das unpolare Lösemittel getaucht wird.
  • Lösemittelgemische umfassen insbesondere Mischungen aus den vorgenannten polaren und unpolaren Lösemitteln, insbesondere Mischungen von Hexamethyldisiloxan mit anderen Lösemitteln wie Ethanol, Methanol, Propanol und Butanol. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der Lösemittelmischung, oder indem die Mischung in die Lösemittelmischung getaucht wird.
  • Beim Gefriertrocknen kann die Mischung aus Schritt b. zunächst schockgefroren werden und anschließend bei Temperaturen von gleich oder weniger als 0°C durch Anlegen von Vakuum getrocknet werden.
  • Eine Temperaturerniedrigung kann insbesondere bis unter die Temperatur erfolgen, bei der Polymer schlecht oder nicht mehr löslich im polar aprotischen Lösemittel ist. Die Temperaturerniedrigung kann eine Erniedrigung auf Temperaturen von -5°C bis 15°C, insbesondere 0°C bis 10°C, beinhalten.
  • Beim Eindampfen kann die Temperatur so erhöht werden, dass das polar aprotische Lösemittel vollständig verdampft und das Polymer an den Fasern des Materials zurücklässt. Das Eindampfen kann bei Temperaturen von 50°C bis 250°C, insbesondere von 70°C bis 200°C, durchgeführt werden.
  • Eine Temperaturerhöhung kann auf Temperaturen von 50°C bis 200°C, insbesondere von 70°C bis 150°C, erfolgen. Die Temperaturerhöhung kann schrittweise oder schlagartig erfolgen.
  • Die Druckerniedrigung kann auf Drücke von 0,1 mbar bis 900 mbar, insbesondere von 1 mbar bis 800 mbar, 10 mbar bis 700 mbar oder 50 mbar bis 500 mbar, erfolgen. Die Druckerniedrigung kann insbesondere mit der Temperaturerhöhung und der Temperaturerniedrigung kombiniert werden.
  • Ebenfalls kann die Temperaturerniedrigung insbesondere mit dem in Kontakt bringen mit einer ionischen Verbindung, dem in Kontakt bringen mit einer nicht-ionische Verbindung, dem in Kontakt bringen mit einer Säure, dem in Kontakt bringen mit einer Base, dem in Kontakt bringen mit einem polaren Lösemittel, dem in Kontakt bringen mit einem unpolaren Lösemittel und dem in Kontakt bringen mit einem Lösemittelgemisch kombiniert werden.
  • Vorzugsweise umfasst die Behandlung der Mischung in Schritt c. das in Kontakt Bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, oder besteht daraus. Optimale Ergebnisse haben sich eingestellt, wenn die Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel mit Hexamethyldisiloxan in Kontakt gebracht, insbesondere in Hexamethyldisiloxan getaucht, wurde.
  • Die vorgenannten Behandlungsmöglichkeiten erlauben eine Anlagerung des Polymers an den Fasern des Materials enthaltend Fasern. Dabei wurden bessere Ergebnisse erzielt, wenn die Anlagerung möglichst langsam erfolgte. Dies kann insbesondere dadurch erreicht werden, dass die Behandlung der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel mindestens für einen Zeitraum von 15 Sekunden, insbesondere 30 Sekunden, 1 Minute, 5 Minuten, 15 Minuten, 30 Minuten, 45 Minuten, 1 Stunde, 5 Stunden, 10 Stunden, 15 Stunden oder 24 Stunden und höchstens für einen Zeitraum von 150 Stunden, insbesondere 144 Stunden, 120 Stunden, 100 Stunden, 96 Stunden, 90 Stunden oder 85 Stunden durchgeführt wird. Optimale Ergebnisse wurden erzielt, wenn die Behandlung in Schritt c. über einen Zeitraum von 24 bis 85 Stunden, insbesondere 50 bis 80 Stunden oder 65 bis 75 Stunden oder 72 Stunden, erfolgt. Dadurch wird eine langsame Anlagerung des Polymers an die Fasern des Materials enthaltend Fasern erreicht.
  • Vorteilhafterweise erfolgt die Behandlung der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel durch in Kontakt bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, über einen Zeitraum von 65 bis 75 Stunden, insbesondere 72 Stunden.
  • Das erfindungsgemäße Verfahren kann vorzugsweise ferner nach dem Behandeln in Schritt c. den zusätzlichen Schritt des Trocknens des in Schritt c. erhaltenen faserhaltigen Materials umfassen.
  • Das Trocknen des in Schritt c. des erfindungsgemäßen Verfahrens erhaltenen faserhaltigen Materials wird vorzugsweise bei 20°C bis 100°C, insbesondere 30°C bis 90°C, 40°C bis 80°C, oder 45°C bis 65°C durchgeführt. Dabei wird das in Schritt c. des erfindungsgemäßen Verfahrens erhaltene faserhaltige Material bevorzugt für 1 bis 25 Stunden, insbesondere für 5 bis 20 Stunden, 8 bis 16 Stunden, 9 bis 15 Stunden, 10 bis 14 Stunden oder 11 bis 13 Stunden getrocknet.
  • Das erfindungsgemäße Verfahren kann ferner vor dem Schritt a. den weiteren Schritt umfassen, dass das Material enthaltend Fasern, insbesondere Papier, bei einer Temperatur von 40 bis 80°C, insbesondere 45 bis 70°C oder 45 bis 65°C vorgetrocknet wird. Die Vortrocknung kann für einen Zeitraum von 1 Minute bis 60 Stunden, insbesondere 1 Stunde bis 50 Stunden oder 12 bis 48 Stunden erfolgen.
  • Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann auf unterschiedliche Weisen hergestellt werden. Beispielsweise kann das Gemisch bei Raumtemperatur oder bei tieferer oder höherer Temperatur, zum Beispiel bei 10°C bis 150°C hergestellt werden. Das Gemisch kann auch in mehreren Schritten hergestellt werden. Enthält das polar aprotische Lösemittel eine ionische Flüssigkeit bzw. ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem vom Dimethylacetamid, Dimethylsulfoxid und Acetonitril, so kann das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel insbesondere hergestellt werden, indem zunächst das Polymer in der ionischen Flüssigkeit gelöst wird und anschließend die so erhaltene Lösung mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, verdünnt wird. Alternativ kann zunächst die ionische Flüssigkeit mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere Dimethylsulfoxid, vermischt werden und anschließend die gewünschte Menge des Polymers zugegeben werden.
  • Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann insbesondere 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.%, 5 bis 30 Gew.%, 10 bis 30 Gew.%, 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.% ionische Flüssigkeit enthalten, jeweils bezogen auf das Gesamtgewicht des Gemischs. Gemische mit den vorgenannten Gehalten an ionischen Flüssigkeiten lassen sich gut herstellen, insbesondere können auf diese Weise einfach Lösungen erhalten werden, die eine effektive Bearbeitung des faserhaltigen Materials erlauben.
  • Das Mischen, insbesondere das Quellen, Anlösen oder Lösen, des Polymers und/oder das anschließende Verdünnen kann bei Temperaturen von 10°C bis 150°C, insbesondere von 20°C bis 140°C, 30°C bis 130°C, 40°C bis 120°C, 50°C bis 110°C oder 60°C bis 100°C durchgeführt werden. Auf diese Weise kann zunächst ein Gemisch, insbesondere eine Lösung, mit einer Konzentration des Polymers von 5 bis 20 Gew.%, insbesondere von 7 bis 15 Gew.%, 8 bis 13 Gew.% oder 9 bis 11 Gew.%, jeweils bezogen auf das Gesamtgewicht des Polymers und der ionischen Flüssigkeit, in der ionischen Flüssigkeit hergestellt werden. Diese Lösung kann anschließend insbesondere mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, auf die gewünschte Konzentration verdünnt werden. Ferner kann die ionische Flüssigkeit bei den vorstehend genannten Temperaturen auch mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere Dimethylsulfoxid, mit einer Konzentration der ionischen Flüssigkeit von 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.% oder 5 bis 30 Gew.% oder 10 bis 30 Gew.% oder 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.%, jeweils bezogen auf das Gesamtgewicht der Mischung insbesondere der ionischen Flüssigkeit und Dimethylsulfoxid, vermischt werden. Dieser Lösung kann anschließend das Polymer in der gewünschten Menge zugefügt werden. Auf diese Weise kann das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel einfach hergestellt werden. Ferner kann so die Konzentration des Polymers im Gemisch gut eingestellt werden.
  • Vorteilhafterweise enthält das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel 0,1 bis 10 Gew.%, insbesondere 0,5 bis 8 Gew.% oder 1 bis 5 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer. Lösungen mit diesen Konzentrationen weisen insbesondere eine geeignete Viskosität für das erfindungsgemäße Verfahren auf.
  • Gegenstand der Erfindung ist ferner ein Material enthaltend Fasern, insbesondere Papier, das nach dem erfindungsgemäßen Verfahren erhältlich ist.
  • Gegenstand der Erfindung ist weiterhin ein System umfassend mindestens zwei Materialien enthaltend Fasern, die nach dem erfindungsgemäßen Verfahren erhältlich sind, insbesondere ein Buch.
  • Die Materialien des erfindungsgemäßen Systems können gleich oder verschieden sein. Die Fasern enthaltenden Materialien können gleichzeitig oder zu verschiedenen Zeiten nach dem erfindungsgemäßen Verfahren bearbeitet worden sein. Das System kann ferner auch Materialien, insbesondere Materialien enthaltend Fasern, umfassen, die nicht mit dem erfindungsgemäßen Verfahren bearbeitet worden sind.
  • Das System kann insbesondere ein Buch, ein Heft, eine Zeitschrift oder eine Zeitung sein. Das Fasern enthaltende Material kann insbesondere Papier sein. Insbesondere in einem Buch kann neben dem Papier noch weiteres Fasern enthaltendes Material, insbesondere Karton, Pappe, Textilien oder Holz, enthalten sein.
  • Enthält das erfindungsgemäße System verschiedene Fasern enthaltende Materialien, so können diese getrennt oder zusammen nach dem erfindungsgemäßen Verfahren bearbeitet werden. So kann im Falle eines Buches zum Beispiel das Papier getrennt vom Rest des Buches, insbesondere getrennt vom Einband, bearbeitet werden. Das Buch kann aber auch bearbeitet werden, ohne dass vorher Bestandteile abgetrennt werden, insbesondere mit seinem Einband. Ob eine getrennte Bearbeitung der Bestandteile erfolgt, kann insbesondere aufgrund der Weise entschieden werden, wie die Fasern enthaltenden Materialien im System, insbesondere im Buch, zusammengehalten werden. Beispiele für Weisen, wie die Fasern enthaltenden Materialien im System zusammengehalten werden können, umfassen Fadenheftung und Klebebindung.
  • Gegenstand der Erfindung ist außerdem die Verwendung eines Gemischs enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel zur Bearbeitung von Material enthaltend Fasern, insbesondere Papier, insbesondere im erfindungsgemäßen Verfahren.
  • Dabei gilt für die Verwendung des Gemischs das vorstehend für das polar aprotische Lösemittel, für das Material enthaltend Fasern und/oder für das Polymer Gesagte analog.
  • Gegenstand der Erfindung ist ferner die Verwendung von Dimethylsulfoxid als Antioxidationsmittel zur Bearbeitung von Papier, insbesondere im erfindungsgemäßen Verfahren.
  • Gegenstand der Erfindung ist außerdem die Verwendung einer ionischen Flüssigkeit enthaltend ein quartäres Ammoniumkation, insbesondere einer ionischen Flüssigkeit enthaltend ein Dialkylimidazoliumkation, insbesondere 1-Butyl-3-methylimidazoliumchlorid oder 1-Butyl-3-methylimidazoliumacetat, als antimikrobielles Mittel zur Bearbeitung von Papier, insbesondere im erfindungsgemäßen Verfahren.
  • Die beigefügten Figuren zeigen:
  • Fig. 1
    zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das erfindungsgemäß bearbeitet wurde, wobei als Polymer fluoreszenzmarkierte Cellulose verwendet wurde und wobei die Behandlung durch Tauchen des mit dem Gemisch getränkten Papiers in eine Mischung aus Hexamethyldisiloxan enthaltend 1 Vol.% Ethanol erfolgte. Die Cellulosefasern des Substrats heben sich sehr kontrastreich vom dunklen Hintergrund ab.
    Fig. 2
    zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das erfindungsgemäß bearbeitet wurde, wobei als Polymer fluoreszenzmarkierte Cellulose verwendet wurde und wobei die Behandlung durch Tauchen des mit dem Gemisch getränkten Papiers in Hexamethyldisiloxan erfolgte. Die Cellulosefasern des Substrats heben sich sehr kontrastreich vom dunklen Hintergrund ab.
    Fig. 3
    zeigt als Referenz eine fluoreszenzmikroskopische Aufnahme einer Schicht eines nicht bearbeiteten Papiers. Die Cellulosefasern des Substrats sind vom Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie die Cellulosefasern in Fig. 1 oder Fig. 2.
    Fig. 4
    zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das mit einem Gemisch bearbeitet wurde, das kein Polymer enthielt. Die Cellulosefasern des Substrats sind vom Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie die Cellulosefasern in Fig. 1 oder Fig. 2.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben, die jedoch nur der Veranschaulichung dienen und nicht beschränkend sind.
  • Ausführungsbeispiele Chemikalien
  • 1-Butyl-3-methylimidazoliumchlorid (BMIM-Cl), Sigma-Aldrich; 1-Butyl-3-methylimidazoliumacetat (BMIM-OAc), erhalten durch Anionenaustausch ausgehend von BMIM-CI; Viskose (danufil, 3,3 dtex/0,3 mm, nachfolgend: "Danufil"), Kelheim Fibres GmbH; Dimethylacetamid (DMAc), CSC Jäklechemie GmbH & Co. KG; Dimethylsulfoxid (DMSO), CSC Jäklechemie GmbH & Co. KG; Hexamethyldisiloxan (HMDO), Chemische Fabrik Karl Bucher GmbH; mikrokristalline Cellulose (MCC), Sigma-Aldrich; Zellstoff (ENO PINE ECF); Stora Enso Oyj; alpha-Cellulose, Sigma-Aldrich.
  • Messmethoden
  • Messungen wurden gemäß der nachfolgenden Tabelle durchgeführt. Tabelle 1: Messmethoden
    Eigenschaft Messmethode
    Bruchkraft von Papier EN ISO 1924-2:2008 D
    Bruchdehnung von Papier EN ISO 1924-2:2008 D
    pH Wert ISO 6588-1:2012
    Viskosität Bestimmung mit einem Rotationsviskosimeter "Gemini" der Firma Bohlin bei 25°C
  • Alle Substrate bzw. Papiere wurden in einem vorgeschalteten Schritt bei 55°C für 24 Stunden erhitzt soweit nicht anders angegeben. Da in den verschiedenen Beispielen verschiedene Papiere verwendet wurden, können die in verschiedenen Beispielen verwendeten Papiere Abweichungen in den gemessenen Werten voneinander aufweisen, weshalb nur die Werte innerhalb eines Beispiels unmittelbar miteinander verglichen werden können.
  • Beispiel 1 (Bearbeitung von Papier mit Viskose in einer Mischung aus DMAc und BMIM-OAc)
  • Zunächst wurde eine Lösung enthaltend 10 Gew.% Danufil in BMIM-OAc hergestellt, welche anschließend durch Zugabe von DMAc auf einen Viskosegehalt von 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung, verdünnt wurde, wobei die Lösung aus BMIM-OAc und DMAc 18 Gew.% BMIM-OAc und 82 Gew.% DMAc, jeweils bezogen auf das Gewicht von BMIM-OAc und DMAc, enthielt. Die Viskosität der Lösung betrug 10 mPa·s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für eine Minute getränkt und danach für 30 Sekunden mit DMAc abgespült. Das so erhaltene Papier wurde anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HMDO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft, die Bruchdehnung sowie der pH Wert des bearbeiteten Papiers 1 wurden anschließend bestimmt und mit einem nicht bearbeiteten Papier als Referenz verglichen. Tabelle 2: Mechanische Eigenschaften und pH Wert
    Probe pH Wert Bruchkraft [N] Bruchdehnung [%]
    Referenz 4,57 23 ± 2 0,76 ± 0,20
    Papier 1 6,64 28 ± 2 0,85 ± 0,07
  • Tabelle 2 zeigt, dass die Bruchkraft, die Bruchdehnung sowie der pH-Wert bei Einsatz von Gemischen enthaltend Viskose sowie Mischungen aus BMIM-OAc und DMAc durch die erfindungsgemäße Bearbeitung im Vergleich zu nicht bearbeitetem Papier deutlich gesteigert werden können. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet.
  • Beispiel 2 (Bearbeitung von Papier mit Viskose in einer Mischung aus DMAc und BMIM-CI)
  • Zunächst wurde eine Lösung enthaltend 10 Gew.% Danufil in BMIM-CI hergestellt, welche anschließend durch Zugabe von DMAc auf einen Viskosegehalt von 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung, verdünnt wurde, wobei die Lösung aus BMIM-CI und DMAc 18 Gew.% BMIM-CI und 82 Gew.% DMAc, jeweils bezogen auf das Gewicht von BMIM-CI und DMAc, enthielt. Die Viskosität der Lösung betrug 10 mPa·s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für eine Minute getränkt und danach für 30 Sekunden mit DMAc abgespült. Das so erhaltene Papier wurde anschließend für 72 Stunden in HDMO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HDMO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft, die Bruchdehnung sowie der pH Wert des bearbeiteten Papiers 2 wurden anschließend bestimmt und mit einem nicht bearbeiteten Papier als Referenz verglichen. Tabelle 3: Mechanische Eigenschaften und pH Wert
    Probe pH Wert Bruchkraft [N] Bruchdehnung [%]
    Referenz 4,14 29 ± 2 0,66 ± 0,10
    Papier 2 4,24 36 ± 3 0,84 ± 0,10
  • Tabelle 3 zeigt, dass die Bruchkraft und die Bruchdehnung bei Einsatz von Gemischen enthaltend Viskose sowie Mischungen aus BMIM-Cl und DMAc durch die erfindungsgemäße Bearbeitung im Vergleich zu nicht bearbeitetem Papier deutlich gesteigert werden können. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet. Ferner stieg der pH Wert des bearbeiteten Papiers an.
  • Beispiel 3 (Bearbeitung von Papier mit MCC in 5% LiCl in DMAc)
  • Zunächst wurde eine Lösung enthaltend 2 Gew.% mikrokristalline Cellulose in DMAc (enthaltend 5 Gew.% LiCl, bezogen auf das Gesamtgewicht aus LiCl und DMAc), bezogen auf das Gesamtgewicht der Lösung, hergestellt. Die Viskosität der Lösung betrug 13 mPa·s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für fünf Minuten getränkt. Das so erhaltene Papier wurde anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HMDO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft sowie die Bruchdehnung des bearbeiteten Papiers 3 wurden anschließend bestimmt und mit einem Papier als Referenz verglichen, das in DMAc (enthaltend 5 Gew.% LiCl, bezogen auf das Gesamtgewicht aus LiCl und DMAc) für eine Minute getränkt wurde, anschließend für 72 Stunden in HMDO (500 g) getaucht wurde und zuletzt bei 60°C für 12 Stunden erhitzt wurde. Tabelle 4: Mechanische Eigenschaften
    Probe Bruchkraft [N] Bruchdehnung [%]
    Referenz 22 ± 4 0,67 ± 0,2
    Papier 3 41 ±3 0,76 ± 0,3
  • Tabelle 4 zeigt, dass die Bruchkraft sowie die Bruchdehnung bei Einsatz von Gemischen enthaltend MCC sowie DMAc (enthaltend 5 Gew.% LiCl) durch die erfindungsgemäße Bearbeitung im Vergleich zu Papier, das nicht mit einem Polymer wie MCC in Kontakt gekommen ist, deutlich höher ist. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet.
  • Beispiel 4 (Anlagern durch unterschiedliche Behandlungen (Schritt c.))
  • Testpapiere wurden mit einer Lösung gemäß Beispiel 1 getränkt, wobei anstelle von Viskose MCC verwendet wurde. Nach der Tränkung in der Lösung wurden die Papiere wie in Beispiel 1 mit DMAc abgespült und für die angegebene Dauer in die in Tabelle 5 aufgeführten Lösemittel getaucht. Tabelle 5: Behandlungen
    Probe Lösemittel (Dauer der Tränkung)
    Testpapier 4 HMDO (72 h)
    Testpapier 5 5 Gew.% EtOH/ 95 Gew.% HMDO (24 h)
    Testpapier 6 EtOH (< 1 min)
  • Nach dem Tauchen in die in Tabelle 5 aufgeführten Lösemittel wurden die Testpapiere 4 bis 6 bei 55°C für 12 Stunden erhitzt. Während Testpapier 4 ein mattes Erscheinungsbild aufwies, flexibel war und auch nach mehrmaligem Falzen noch stabil war, zeigten die Testpapiere 5 und 6 teilweise einen Glanz. Dies spricht dafür, dass in Testpapier 4 die Anlagerung der MCC wie oben an den Papierfasern erfolgte, während in Testpapieren 5 und 6 eine inhomogene, eher oberflächliche Anlagerung der MCC stattfand. Somit kann durch die Wahl der Behandlung, insbesondere durch die Wahl des Lösemittels in das getaucht wird, die Dauer der Behandlung und die Anlagerung des Polymers beeinflusst werden.
  • Beispiel 5 (Vergleich verschiedener Polymere)
  • Es wurden gemäß Beispiel 2 Lösungen hergestellt, wobei als Polymer die in Tabelle 6 angegebenen Polymere eingesetzt wurden. Testpapiere wurden zunächst für fünf Minuten in der Lösung getränkt. Die jeweils erhaltenen Testpapiere wurden anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die in Tabelle 6 angegebenen Polymere jeweils an den Papierfasern anlagerten. Nach der Behandlung in HMDO wurden die Testpapiere bei 55°C für 12 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere wurden anschließend bestimmt. Tabelle 6: Mechanische Eigenschaften
    Referenz MCC MCC + ENO PINE ENO PINE Viskose PVA
    Bruchkraft [N] 17 ± 2 23 ± 6 22 ± 2 23 ± 5 28 ± 1 26 ± 2
    Bruchdehnung [%] 1,00 ± 0,12 0,72 ± 0,27 0,81 ± 0,15 0,84 ± 0,33 1,11 ± 0,10 0,99 ± 0,12
  • Die Referenzprobe in Tabelle 6 wurde in einem Gemisch aus BMIM-Cl und DMAc ohne das Polymer für fünf Minuten getränkt und anschließend für 72 Stunden in HMDO getaucht und danach bei 55°C für 12 Stunden erhitzt. Aus Tabelle 6 fällt auf, dass die Bruchkraft durch die erfindungsgemäße Bearbeitung im Vergleich zum Referenzpapier deutlich gestiegen ist, während die Bruchdehnung etwas gesunken ist. Somit eignen sich die oben genannten Polymere für die Festigung von Papier im erfindungsgemäßen Verfahren.
  • Beispiel 6 (Kombinierbarkeit mit Entsäuerungsverfahren)
  • Es wurden gemäß Beispiel 1 Lösungen hergestellt, in denen jeweils ein nach dem papersave Verfahren entsäuertes Papier und ein nicht entsäuertes Papier für eine Minute getränkt wurden. Nach der Tränkung wurden die Papiere für 30 Sekunden mit DMAc abgespült und die so erhaltenen Papiere jeweils für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an die Papierfasern anlagerte. Nach der Behandlung in HMDO wurden die Papiere bei 55°C für 12 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere ("verfestigt" bzw. "entsäuert/verfestigt" in Tabelle 7) und eines nach dem papersave Verfahren entsäuerten Papiers ("entsäuert" in Tabelle 7) wurden anschließend bestimmt. Ebenfalls wurden die Bruchkraft und die Bruchdehnung des Ausgangspapiers bestimmt ("Referenz" in Tabelle 7), das also weder nach dem papersave Verfahren entsäuert noch gemäß dem erfindungsgemäßen Verfahren bearbeitet wurde. Tabelle 7: Mechanische Eigenschaften
    Referenz entsäuert verfestigt entsäuert/ verfestigt
    Bruchkraft [N] 29 ± 3 32 ± 4 28 ± 1 35 ± 4
    Bruchdehnung [%] 0,66 ± 0,11 0,55 ± 0,01 1,11 ± 0,09 0,84 ± 0,11
  • Im direkten Vergleich nimmt bei der Entsäuerung nach dem papersave Verfahren die Bruchkraft zu, während die Bruchdehnung abnimmt. Bei dem erfindungsgemäßen Verfahren wurde in diesem Versuch keine deutliche Veränderung der Bruchkraft beobachtet, während die Bruchdehnung deutlich anstieg. Bei der Probe, die sowohl entsäuert als auch verfestigt wurde, stiegen sowohl die Bruchkraft als auch die Bruchdehnung deutlich an. Tabelle 6 zeigt, dass das erfindungsgemäße Verfahren mit Entsäuerungsverfahren wie dem papersave Verfahren kombinierbar ist. Dabei ist insbesondere die Erhöhung der Bruchdehnung durch das erfindungsgemäße Verfahren von Bedeutung, da so die Brüchigkeit von Papieren reduziert werden kann.
  • Beispiel 7 (Anwendung verschiedener Polymere bei entsäuertem und nicht entsäuertem Substrat)
  • Es wurden gemäß Beispiel 1 Lösungen hergestellt, wobei jeweils als Polymer die in Tabelle 8 (nicht entsäuerte Papiere) und Tabelle 9 (nach dem papersave Verfahren entsäuerte Papiere) angegebenen Polymere eingesetzt wurden und als ionische Flüssigkeit BMIM-CI verwendet wurde. Die Testpapiere wurden eine Minute in der jeweiligen Lösung getränkt und anschließend für 30 Sekunden mit DMAc abgespült. Die so erhaltenen Papiere wurde für72 Stunden in HMDO getaucht, wodurch sich die in Tabelle 8 bzw. 9 angegebenen Polymere jeweils an die Papierfasern anlagerten. Nach der Behandlung in HMDO wurden die Papiere bei 55°C für 24 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere wurden anschließend bestimmt. Das Referenzpapier wurde im Wesentlichen derselben Bearbeitung unterzogen wie die anderen Papiere, mit dem Unterschied, dass die Lösung im ersten Schritt kein Polymer enthielt, sondern nur Dimethylacetamid und BMIM-Cl. Tabelle 8: Mechanische Eigenschaften der bearbeiteten, nicht entsäuerten Papiere
    Referenz Chitin Stärke PVA
    Bruchkraft [N] 17 ± 2 16 ± 1N 25 ± 2 26 ± 2
    Bruchdehnung 1,00 ± 0,12 0,93 ± 0,19 1,24 ± 0,07 0,99 ± 0,12
    [%]
    Tabelle 9: Mechanische Eigenschaften der bearbeiteten, entsäuerten Papiere
    Referenz Chitin Stärke PVA
    Bruchkraft [N] 17 ± 2 26 ± 2 N 32 ± 1 35 ± 3
    Bruchdehnung [%] 1,00 ± 0,12 1,12 ± 0,12 0,74 ± 0,07 0,86 ± 1,12
  • Die Tabellen 8 und 9 zeigen, dass durch die Bearbeitung nach dem erfindungsgemäßen Verfahren insbesondere eine höhere Bruchkraft für entsäuerte und nicht entsäuerte Papiere erreicht werden kann. Für Stärke ist im Falle des nicht entsäuerten Papiers auch eine Erhöhung der Bruchdehnung zu beobachten (vgl. Tabelle 8). Gleiches gilt für Chitin im Falle des entsäuerten Papiers (vgl. Tabelle 9). Neben der Kombinierbarkeit mit dem papersave Verfahren geht aus den Tabellen 8 und 9 somit hervor, dass durch das erfindungsgemäße Verfahren die mechanischen Eigenschaften der Papiere verbessert werden können.
  • Beispiel 8 (Bearbeitung von Holz)
  • Es wurde gemäß Beispiel 2 eine Lösung hergestellt. Diese Lösung wurde auf einer Seite eines Holzbretts mit einem Pinsel aufgetragen, mit Wasser abgespült und für 16 Stunden bei 25°C getrocknet. Die Oberfläche des Holzes zeigt an den bearbeiteten Stellen eine deutliche Glättung der Oberfläche. Lacke lassen sich auch auf den bearbeiteten Stellen gut aufbringen.
  • Beispiel 9 (Fluoreszenzmikroskopische Aufnahmen)
  • Es wurde eine Lösung enthaltend 2 Gew.% fluoreszenzmarkierte Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 20 Gew.% BMIM-OAc enthielt, hergestellt. Fluoreszenzmarkierte Cellulose ist beispielsweise aus W. Helbert et al. Biomacromolecules 2003, 4, 481-471, bekannt. Als Fluoreszenzmarker wurde ein DTAF-Marker verwendet, der bei 488 nm angeregt wird, wobei die Emission bei 515 nm gemessen wird. Zwei Testpapiere wurden in dieser Lösung für eine Minute getränkt und anschließend für 30 Sekunden mit DMSO abgespült. Das erste dieser Papiere (Testpapier 7) wurde anschließend für 72 Stunden in HMDO enthaltend 1 Vol.% Ethanol (insges. 500 g) getaucht. Das zweite dieser Papiere (Testpapier 8) wurde für 72 Stunden in HMDO (500 g) getaucht.
  • Nach der Behandlung in HDMO bzw. in HMDO/Ethanol wurden die Papiere bei 55°C für 12 Stunden erhitzt. Ebenfalls wurde eine Blindprobe erstellt, indem ein drittes Testpapier (Testpapier 9) zunächst in einer Mischung aus DMSO enthaltend 13 Gew.% BMIM-OAc jedoch ohne Polymer getränkt wurde, danach für 72 Stunden in HMDO (500 g) getaucht wurde und anschließend bei 55°C für 12 Stunden erhitzt wurde. Als Referenz diente ein viertes Testpapier (Testpapier 10), das nicht bearbeitet wurde.
  • Von den Testpapieren 7 bis 10 wurden mit Klebefilm an einer Stelle nacheinander mehrere Schichten abgenommen, wobei von der nicht bearbeiteten Referenz acht Schichten abgenommen werden konnten und von den übrigen bearbeiteten Testpapieren zehn Schichten abgenommen werden konnten. Von den Schichten wurden unter einem Mikroskop (Nikon FN-C LWD mit Objektiv Nikon 10x/0.25) bei 488 nm eine Aufnahme mit gleicher Belichtungszeit gemacht (220 ms mit Q-IMAGING RETIGA 200 RV). Repräsentative Abbildungen der Schichten sind in den Figuren Fig. 1 bis Fig. 4 gezeigt.
  • Fig. 1 zeigt eine Aufnahme von Schicht 3 von Testpapier 7. Es ist deutlich zu erkennen, dass sich die Fasern des Papiers sehr kontrastreich vom Hintergrund abheben. Fig. 2 zeigt eine Aufnahme von Schicht 3 von Testpapier 8. Es ist deutlich zu erkennen, dass sich die Fasern des Papiers sehr kontrastreich vom Hintergrund abheben. Fig. 3 zeigt eine Aufnahme von Schicht 3 der Referenz. Die Cellulosefasern sind von dem Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie in Fig. 1 und Fig. 2. Fig. 4 zeigt eine Aufnahme von Schicht 3 der Blindprobe. Auch hier sind die Cellulosefasern von dem Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie in Fig. 1 und Fig. 2.
  • Die Figuren stehen im Einklang mit einer Anlagerung der fluoreszenzmarkierten Cellulose aus dem Gemisch an den Fasern des Papiers. Es erfolgte also eine Art Ummantelung der Papierfasern durch die fluoreszenzmarkierte Cellulose, wodurch die Papierfasern und damit das Papier gefestigt werden.
  • Beispiel 10 (Bearbeitung eines Buchs)
  • Es wurden eine Lösung enthaltend 1 Gew.% alpha-Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 6,5 Gew.% BMIM-OAc enthielt, sowie eine Lösung enthaltend 2 Gew.% alpha-Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 11,3 Gew.% BMIM-OAc enthielt, hergestellt.
  • Als Substrat wurde ein 16-seitiges Buch aus dem Jahre 1943 mit dem Titel "Tabellenbuch für Metallgewerbe" verwendet, das in einem Exsikkator über Orangegel über einen Zeitraum von einer Woche getrocknet worden war, wobei der Feuchtigkeitsgehalt des Buchs von 6,9 Gew.% auf 1,2 Gew.% gesunken war. Das Buch wurde durch zwei horizontale Schnitte in drei nahezu gleich große Teile geteilt.
  • Der mittlere Teile des Buchs wurde anschließend aufgefächert in einem Gefäß aufgestellt, wonach das Gefäß mit der voranstehend beschriebenen Lösung enthaltend 1 Gew.% alpha-Cellulose gefüllt und geschlossen wurde. Der mittlere Teil des Buchs würde für 1 Minute in der Lösung getränkt. Daraufhin wurde der mittlere Teil des Buchs aufgefächert in einem zweiten Gefäß aufgestellt und mit DMSO für 30 Sekunden abgespült. Anschließend wurde der mittlere Teil des Buchs aufgefächert in einem dritten Gefäß aufgestellt, wonach das Gefäß mit HMDO gefüllt und verschlossen wurde. Nach 72 Stunden wurde der mittlere Teil des Buchs entnommen, 6 Stunden bei 55°C und für eine Woche über Orangegel im Exsikkator getrocknet.
  • Der obere Teil des Buchs wurde wie der mittlere Teil des Buchs bearbeitet mit dem Unterschied, dass anstelle der Lösung enthaltend 1 Gew.% alpha-Cellulose die Lösung enthaltend 2 Gew.% alpha-Cellulose eingesetzt wurde. Der untere Teil des Buchs wurde nicht bearbeitet und diente als Referenz.
  • Bei der Analyse der bearbeiteten Teile des Buches wurden die folgenden Bestandteile der Teile des Buchs untersucht: das Deckblatt, welches der Bogen ist, der die erste und die letzte Seite bildet; ein Mittelblatt, welches in diesem Fall der Bogen ist, der die 4. Seite von vorn und die 4. Seite von hinten bildet; das Innenblatt, welches der Bogen ist, der die beiden innersten Seiten bildet. Keiner der Bestandteile der Teile des bearbeiteten Buchs zeigte Beeinträchtigungen durch die erfindungsgemäße Bearbeitung. Der Farbeindruck war nahezu unverändert. Die mechanischen Eigenschaften der verschiedenen Bestandteile des bearbeiteten Buches sowie der Referenz (des unteren, nicht bearbeiteten Teils des Buchs) sind in den nachfolgenden Tabellen 10 (1 Gew.% alpha-Cellulose) und 11 (2 Gew.% alpha-Cellulose) aufgeführt. Tabelle 10: Mechanische Eigenschaften der Bestandteile des mittleren Teils des bearbeiteten Buchs (1 Gew.% alpha-Cellulose) sowie des nicht bearbeiteten unteren Teils des Buchs (Referenz)
    Bruchkraft Referenz [N] Bruchkraft bearbeitet [N] Bruchdehnung Referenz [%] Bruchdehnung bearbeitet [%]
    Deckblatt 3,5 ± 0,64 9,3 ± 2,5 0,16 ± 0,03 0,61 ± 0,23
    Mittelblatt 3,5 ± 0,64 8,7 ± 2,4 0,16 ± 0,03 0,61 ± 0,28
    Innenblatt 3,5 ± 0,64 10 ± 2 0,16 ± 0,03 0,74 ± 0,21
    Tabelle 11: Mechanische Eigenschaften der Bestandteile des oberen Teils des bearbeiteten Buchs (2 Gew.% alpha-Cellulose) sowie des nicht bearbeiteten unteren Teils des Buchs (Referenz)
    Bruchkraft Referenz [N] Bruchkraft bearbeitet [N] Bruchdehnung Referenz [%] Bruchdehnung bearbeitet [%]
    Deckblatt 3,5 ± 0,64 9,3 ± 1,1 0,16 ± 0,03 0,52 ± 0,11
    Mittelblatt 3,5 ± 0,64 8,1 ± 2,2 0,16 ± 0,03 0,49 ± 0,21
    Innenblatt 3,5 ± 0,64 9,4 ± 2,1 0,16 ± 0,03 0,63 ± 0,26
  • Die Tabellen 10 und 11 zeigen für alle Bestandteile der bearbeiteten Teile des Buchs mehr als eine Verdopplung sowohl der Bruchkraft als auch der Bruchdehnung im Vergleich zur nicht bearbeiteten Referenz. Somit können mit dem erfindungsgemäßen Verfahren Bücher als Ganzes bearbeitet werden.
  • Beispiel 11 (Vergleich von DMSO und DMAc)
  • Es wurden eine Lösung enthaltend 1 Gew.% Danufil in einer Mischung aus DMSO und BMIM-CI, wobei das DMSO 9,9 Gew.% BMIM-CI enthielt, (nachfolgend: "DMSO-Lösung") sowie eine Lösung enthaltend 1 Gew.% Danufil in einer Mischung aus DMAc und BMIM-CI, wobei das DMAc 9,9 Gew.% BMIM-CI enthielt, (nachfolgend: "DMAc-Lösung") hergestellt.
  • Testpapier 11 wurde für eine Minute in der DMSO-Lösung getränkt, anschließend für 30 Sekunden mit DMSO abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
  • Testpapier 12 (Blindversuch ohne Danufil) wurde für eine Minute in DMSO enthaltend 9,9 Gew.% BMIM-CI getränkt, anschließend für 30 Sekunden mit DMSO abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
  • Testpapier 13 wurde für 1,5 Minuten in DMSO getränkt, anschließend für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
  • Testpapier 14 wurde für eine Minute in der DMAc-Lösung getränkt, anschließend für 30 Sekunden mit DMAc abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
  • Testpapier 15 (Blindversuch ohne Danufil) wurde für eine Minute in DMAc enthaltend 9,9 Gew.% BMIM-CI getränkt, anschließend für 30 Sekunden mit DMAc abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
  • Testpapier 16 wurde für 1,5 Minuten in DMAc getränkt, anschließend für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
  • Als Referenz diente ein unbearbeitetes Testpapier.
  • Die mechanischen Eigenschaften der Testpapiere 11 bis 16 sowie der Referenz wurden bestimmt und sind in den nachfolgenden Tabellen 12 aufgeführt. Tabelle 12: Mechanische Eigenschaften der Testpapiere 11 bis 13 sowie der Referenz
    Substrat Bruchkraft [N] Bruchdehnung [%]
    Testpapier 11 8,1 ± 0,9 0,55 ± 0,10
    Testpapier 12 5,0 ± 1,6 0,65 ± 0,36
    Testpapier 13 5,9 ± 1,1 0,55 ± 0,19
    Testpapier 14 7,1 ± 1,2 0,52 ± 0,11
    Testpapier 15 5,8 ± 1,0 0,60 ± 0,12
    Testpapier 16 6,1 ± 1,5 0,59 ± 0,20
    Referenz 3,5 ± 0,64 0,16 ± 0,03
  • Aus Tabelle 12 geht hervor, dass die Testpapiere 11 und 14, die mit einer Lösung enthaltend Danufil in Kontakt gebracht wurden, eine höhere Bruchkraft aufwiesen als die Testpapiere 12, 13, 15 und 16 sowie die Referenz, die nicht mit eine Lösung enthaltend Danufil in Kontakt gebracht wurden. Die Werte der Bruchdehnung der Testpapiere 11 bis 16 unterschieden sich nur geringfügig. Ferner wiesen die Testpapier 11 bis 16 gegenüber der Referenz sowohl eine deutlich gesteigerte Bruchkraft als auch eine deutlich gesteigerte Bruchdehnung auf, wobei die Steigerung der Bruchkraft bei den Testpapieren 11 und 14, in denen das Testpapier jeweils mit einer Lösung enthaltend Danufil in Kontakt gebracht wurde, am höchsten ausfiel. Somit zeigt auch dieses Beispiel, dass durch die Bearbeitung mit dem erfindungsgemäßen Verfahren die mechanischen Eigenschaften verbessert werden können.
  • Ferner geht aus Tabelle 12 hervor, dass die Bruchkraft von Testpapier 11 geringfügig höher ist als für Testpapier 14. Dementsprechend scheint DMSO, insbesondere in Kombination mit BMIM-CI und Danufil, im erfindungsgemäßen Verfahren etwas besser geeignet zu sein als DMAc, insbesondere in Kombination mit BMIM-CI und Danufil. Für die Bruchdehnung war kein deutlicher Unterschied zwischen den Testpapieren 11 und 14 auszumachen.
  • Die obigen Ausführungsbeispiele zeigen, dass durch das erfindungsgemäße Verfahren die mechanischen Eigenschaften von Substraten wie Papier verbessert werden können. Ferner kann der pH von Papier erhöht werden. Somit eignet sich das erfindungsgemäße Verfahren beispielsweise für die Konservierung von Büchern. Ferner können auch andere Substrate wie beispielsweise Holz dem erfindungsgemäßen Verfahren unterzogen werden. Damit kann, insbesondere bei massivem Materialauftrag, unter anderem eine Glättung von Oberflächenunebenheiten erreicht werden. Außerdem lassen sich im erfindungsgemäßen Verfahren verschiedene Polymere einsetzen. Ferner kann das erfindungsgemäße Verfahren mit Papierentsäuerungsverfahren wie dem papersave Verfahren kombiniert werden. Schließlich eignet sich das Verfahren auch zur Bearbeitung von Büchern als Ganzes.

Claims (24)

  1. Verfahren zur Bearbeitung eines Materials enthaltend Fasern umfassend die folgenden Schritte:
    a. Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel,
    b. in Kontakt bringen des zu bearbeitenden Materials mit dem in Schritt a. bereitgestellten Gemisch, um eine Mischung aus dem Material und dem in Schritt a. bereitgestellten Gemisch zu erhalten,
    c. Behandeln der in Schritt b. erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Material Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Chitosan, Alginat, Stärke, Lignin, Polyvinylalkohol, Proteine oder Mischungen davon enthält.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Material ein cellulosehaltiges Material, insbesondere Papier, Pappe, Textilien oder Holz, insbesondere Papier, ist.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer mindestens eine Hydroxyl-Gruppe, mindestens eine Amin-Gruppe, mindestens eine Säure-Gruppe, insbesondere eine Carboxyl-Gruppe, mindestens eine Amid-Gruppe, mindestens eine Thiol-Gruppe, mindestens eine Ether-Gruppe, insbesondere eine C1-C4-Alkyl-Ether-Gruppe, mindestens eine Ester-Gruppe und/oder mindestens eine Urethan-Gruppe, insbesondere mindestens eine Hydroxyl-Gruppe, enthält und/oder ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, natürliche Seide, Seidenbiopolymere, Polyvinylalkohol, Polyvinylacetat, Polyurethane, Polyamide, Proteine, Polymere oder Copolymere auf Basis von Acrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Methacrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Vinylacetat, Itaconsäure, Maleinsäure, Fumarsäure, Acryloxypropionsäure, Methacryloxypropionsäure, Styrolsulfonsäure, Ethylmethacrylat-2-sulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Phosphoethylmethacrylat, Celluloseether und Mischungen davon.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Viskose und Mischungen davon.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer Viskose, insbesondere im Wesentlichen nicht derivatisierte Viskose, ist.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das polar aprotische Lösemittel ausgewählt ist aus der Gruppe bestehend aus Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat, Ethylencarbonat, ionischen Flüssigkeiten und Mischungen davon.
  8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das polar aprotische Lösemittel ausgewählt ist aus der Gruppe bestehend aus Dimethylacetamid, Dimethylsulfoxid, Acetonitril, ionischen Flüssigkeiten und Mischungen davon.
  9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass polar aprotische Lösemittel eine ionische Flüssigkeit enthält.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril ist.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die ionische Flüssigkeit ein Kation ausgewählt aus einem 1,3-Dialkylimidazoliumkation, einem Alkylpyridiniumkation, einem Tetraalkylammoniumkation und einem Phosphoniumkation, und ein Anion ausgewählt aus Fluorid, Chlorid, Bromid, Iodid, Formiat, Acetat, Propionat, Butyrat, Hydrogensulfat, Tosylat, Trifluormethansulfonat, Bis(trifluoromethansulfonyl)imid, Hexafluorophosphat, Tetrafluoroborat, Benzoat, Glykolat, Thioglykolat, Lactat und Glycinat, enthält oder daraus besteht.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die ionische Flüssigkeit ein Dialkylimidazoliumkation und ein Anion ausgewählt aus Chlorid, Bromid und Acetat enthält oder daraus besteht.
  13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Behandlung der Mischung in Schritt c. ausgewählt ist aus der Gruppe bestehend aus in Kontakt bringen der Mischung mit einer ionischen Verbindung, insbesondere einem Salz, in Kontakt bringen der Mischung mit einer nicht-ionischen Verbindung, in Kontakt bringen der Mischung mit einer Säure, in Kontakt bringen der Mischung mit einer Base, in Kontakt bringen der Mischung mit einem polaren Lösemittel, in Kontakt bringen der Mischung mit einem unpolaren Lösemittel, in Kontakt bringen der Mischung mit einem Lösemittelgemisch, Gefriertrocknen, Temperaturerniedrigung, Eindampfen des Lösemittels, Temperaturerhöhung, Druckerniedrigung und Kombinationen davon.
  14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Behandlung der Mischung in Schritt c. das in Kontakt Bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, umfasst oder daraus besteht.
  15. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren nach dem Behandeln in Schritt c. den zusätzlichen Schritt des Trocknens des in Schritt c. erhaltenen faserhaltigen Materials umfasst.
  16. Verfahren nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass das Gemisch enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel hergestellt wird, indem zunächst das Polymer in der ionischen Flüssigkeit gelöst wird und anschließend die so erhaltene Lösung mit mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, insbesondere Dimethylacetamid, verdünnt wird.
  17. Verfahren nach einem der Ansprüche 9 bis 16, dadurch gekennzeichnet, dass das Gemisch enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.% oder 5 bis 30 Gew.% oder 10 bis 30 Gew.% oder 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.% ionische Flüssigkeit enthält, jeweils bezogen auf das Gesamtgewicht des Gemischs.
  18. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Gemisch enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel 0,1 bis 10 Gew.%, insbesondere 0,5 bis 8 Gew.% oder 1 bis 5 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer enthält.
  19. Material enthaltend Fasern, insbesondere Papier, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 18.
  20. System umfassend mindestens zwei Materialien enthaltend Fasern gemäß Anspruch 19, insbesondere ein Buch.
  21. Verwendung eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel zur Bearbeitung von Material enthaltend Fasern, insbesondere Papier, insbesondere in einem Verfahren gemäß einem der Ansprüche 1 bis 18.
  22. Verwendung nach Anspruch 21, dadurch gekennzeichnet, dass das polar aprotische Lösemittel durch mindestens ein Merkmal der Ansprüche 7 bis 12 charakterisiert ist und/oder das Polymer durch mindestens ein Merkmal der Ansprüche 4 bis 6 charakterisiert ist.
  23. Verwendung von Dimethylsulfoxid als Antioxidationsmittel zur Bearbeitung von Papier, insbesondere in einem Verfahren gemäß einem der Ansprüche 1 bis 18.
  24. Verwendung einer ionischen Flüssigkeit enthaltend ein quartäres Ammoniumkation, insbesondere einer ionischen Flüssigkeit enthaltend ein Dialkylimidazoliumkation, insbesondere 1-Butyl-3-methylimidazoliumchlorid oder 1-Butyl-3-methylimidazoliumacetat, als antimikrobielles Mittel zur Bearbeitung von Papier, insbesondere in einem Verfahren gemäß einem der Ansprüche 1 bis 18.
EP17207499.9A 2016-12-20 2017-12-14 Verfahren zur bearbeitung von materialien enthaltend fasern Active EP3339508B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU93386A LU93386B1 (de) 2016-12-20 2016-12-20 Verfahren zur Bearbeitung von Materialien enthaltend Fasern
EP16205513 2016-12-20

Publications (2)

Publication Number Publication Date
EP3339508A1 true EP3339508A1 (de) 2018-06-27
EP3339508B1 EP3339508B1 (de) 2021-02-24

Family

ID=60915216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17207499.9A Active EP3339508B1 (de) 2016-12-20 2017-12-14 Verfahren zur bearbeitung von materialien enthaltend fasern

Country Status (1)

Country Link
EP (1) EP3339508B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957993A (zh) * 2019-02-20 2019-07-02 常州苏达欧包装材料有限公司 一种防水抗拉伸砂纸原纸
CN114113361A (zh) * 2021-10-15 2022-03-01 中科院广州化学有限公司 一种萃取纸及其制备方法以及在检测酸性药物中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529925A (en) * 1967-09-25 1970-09-22 Itt Rayonier Inc Process for interfiber bonding of cellulosic fibrous webs
EP0285227A1 (de) * 1987-04-01 1988-10-05 B.V.B.A. Technische Handelsonderneming Jezet International Verfahren zur Konservierung von Bogen und Bahnen aus Papier und Vorrichtung zur Ausführung dieses Verfahrens
WO2014201544A1 (en) * 2013-06-18 2014-12-24 Chemgreen Innovation Inc. Antimicrobial polymer incorporating a quaternary ammonium group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3529925A (en) * 1967-09-25 1970-09-22 Itt Rayonier Inc Process for interfiber bonding of cellulosic fibrous webs
EP0285227A1 (de) * 1987-04-01 1988-10-05 B.V.B.A. Technische Handelsonderneming Jezet International Verfahren zur Konservierung von Bogen und Bahnen aus Papier und Vorrichtung zur Ausführung dieses Verfahrens
WO2014201544A1 (en) * 2013-06-18 2014-12-24 Chemgreen Innovation Inc. Antimicrobial polymer incorporating a quaternary ammonium group

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109957993A (zh) * 2019-02-20 2019-07-02 常州苏达欧包装材料有限公司 一种防水抗拉伸砂纸原纸
CN114113361A (zh) * 2021-10-15 2022-03-01 中科院广州化学有限公司 一种萃取纸及其制备方法以及在检测酸性药物中的应用

Also Published As

Publication number Publication date
EP3339508B1 (de) 2021-02-24

Similar Documents

Publication Publication Date Title
DE1720106B2 (de) Kollagenhaltige beschichtungsmassen fuer die herstellung von selbstklebenden ueberzuegen auf beliebigen substraten
AT403296B (de) Verfahren zur herstellung eines celluloseformkörpers
EP2984127B1 (de) Polysaccharidfilm und verfahren zu seiner herstellung
AT511624B1 (de) Cellulose ii suspension, deren herstellung und daraus gebildete strukturen
DE102012106801A1 (de) In Wasser rasch zerfallendes Filterpapier
EP3339508B1 (de) Verfahren zur bearbeitung von materialien enthaltend fasern
EP3827026B1 (de) Verfahren zum isolieren von cellulose- oder chitinnanokristallen durch periodatoxidation
WO2004007818A1 (de) Verfahren zur herstellung cellulosischer formkörper
EP0097968B1 (de) Rauchbare, zusammenhängende Folie und Verfahren zu ihrer Herstellung
LU93386B1 (de) Verfahren zur Bearbeitung von Materialien enthaltend Fasern
DE2614869B2 (de) Vernetzungsmittel und Verfahren zu seiner Herstellung
EP0796358B1 (de) Cellulosefaser
DE10057554B4 (de) Festigungs- und/oder Stabilisierungsmittel, Verfahren zur Festigung/Stabilisierung und Verwendung
DE1918415B2 (de) Verfahren zum Oberflachenleimen einer Cellulosebahn
DE2801820A1 (de) Verfahren zur verbesserung des loesungszustandes von viskosen
DE2616695B2 (de) Mittel auf der Basis dispergierter Cellulose zur Behandlung cellulosehaltiger Faserstoffe
DE19646213A1 (de) Verfahren zur Herstellung von Cellulosederivaten
EP0550879B1 (de) Verfahren zum Beschichten cellulosischer Membranen
EP0261316B1 (de) Verfahren zur Herstellung vergilbungsresistenter Papiere, insbesondere gegenüber Hitzeeinwirkung
EP1663444B1 (de) Verfahren zum herstellen eines filtermaterials
DE1696266A1 (de) Verfahren zur Behandlung von Papier
DE1720106C3 (de) Kollagenh*»ige Beschichtungsmassen für °&#34;e Herstellung von selbstklebender&gt; Überzügen auf beliebigen Substratef1
DE102022119507A1 (de) Verfahren zur Herstellung eines Papiers mit einer verbesserten Fett- und Öldichtigkeit, hergestelltes Papier und dessen Verwendung
DE102020103195A1 (de) Herstellen von regenerierten Polysacchariden
DE2660381C3 (de) Papier

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190717

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200414

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMSILK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009455

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1364581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009455

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

26N No opposition filed

Effective date: 20211125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171214

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 7

Ref country code: DE

Payment date: 20231213

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1364581

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210224

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 7