LU93386B1 - Verfahren zur Bearbeitung von Materialien enthaltend Fasern - Google Patents
Verfahren zur Bearbeitung von Materialien enthaltend Fasern Download PDFInfo
- Publication number
- LU93386B1 LU93386B1 LU93386A LU93386A LU93386B1 LU 93386 B1 LU93386 B1 LU 93386B1 LU 93386 A LU93386 A LU 93386A LU 93386 A LU93386 A LU 93386A LU 93386 B1 LU93386 B1 LU 93386B1
- Authority
- LU
- Luxembourg
- Prior art keywords
- mixture
- paper
- polymer
- group
- cellulose
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/36—Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/25—Cellulose
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/30—Alginic acid or alginates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H25/00—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
- D21H25/02—Chemical or biochemical treatment
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H25/00—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
- D21H25/18—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00 of old paper as in books, documents, e.g. restoring
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Dargestellt und beschrieben wird ein Verfahren zur Bearbeitung eines Materials enthaltend Fasern, umfassend die Schritte (a) Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel, (b) in Kontakt bringen des zu bearbeitenden Materials mit dem in (a) bereitgestellten Gemisch, um eine Mischung aus dem Material und dem in (a) bereitgestellten Gemisch zu erhalten, (c) Behandeln der in Schritt (b) erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert. 93386
Description
Verfahren zur Bearbeitung von Materialien enthaltend Fasern
Die Erfindung betrifft ein Verfahren zur Bearbeitung von Materialien enthaltend Fasern sowie mit diesem Verfahren erhältliche Materialien und Systeme. Die Erfindung betrifft ferner die Verwendung eines Gemischs enthaltend ein Polymer zur Bearbeitung von einem Material enthaltend Fasern, die Verwendung von Dimethylsulfoxid als Antioxidationsmittel in der Bearbeitung von Papier und die Verwendung von ionischen Flüssigkeiten als antimikrobielles Mittel zur Bearbeitung von Papier.
Organische Materialien enthaltend Fasern, insbesondere Papier, erfahren eine mechanische Destabilisierung, indem die die Faser bildenden Makromoleküle wie zum Beispiel Cellulosemakromoleküle im Laufe der Zeit abgebaut werden. Speziell im Falie von Papier kann das dazu führen, dass das Papier so stark destabilisiert wird, dass die Bücher aus diesem Papier nicht mehr verwendet werden können. Die Probleme der Destabilisierung, insbesondere durch Alterung, bestehen jedoch nicht nur bei Papier und cellulosehaltigen Materialien allgemein wie zum Beispiel Holz, sondern stellen generell für Materialien enthaltend Fasern ein Problem dar. Um diesem Problem entgegen zu wirken, werden entsprechende Bearbeitungsverfahren für das Material enthaltend Fasern benötigt. Papier, insbesondere bedrucktes Papier in Büchern, als Material enthaltend Fasern stellt hierbei mit die höchsten Anforderungen an das Bearbeitungsverfahren, weshalb die weitere Diskussion am Beispiel von Papier, insbesondere von bedrucktem Papier erfolgen soil.
Bei Dokumenten aus Papier, zum Beispiel alten Handschriften oder alten Büchern, kann die Destabilisierung dazu führen, dass das Papier brüchig wird. Dieses Papier muss gefestigt werden, um seine Brüchigkeit zu reduzieren.
Bei der Bearbeitung von Papier, speziell von bedrucktem Papier in Büchern, ist es wünschenswert, dass das Bearbeitungsverfahren mehrere Anforderungen erfüllt. Zum einen sollte das Bearbeitungsverfahren nicht nur eine Einzelblattbearbeitung erlauben. Mit dem Verfahren sollten vielmehr mehrere Blätter auf einmal bearbeitet werden können. Dabei sollte ein Verkleben der Seiten miteinander vermieden werden. Zudem sollte das Verfahren nach Möglichkeit auch den Einband eines Buchs und/oder die Bindung oder Rückenleimung der Blätter nicht beschadigen. Auf diese Weise kann das Verfahren wirtschaftlicher durchgeführt werden, da mehrere Blätter gleichzeitig bzw. ganze Bücher auf einmal bearbeitet werden können und das Heraustrennen der Blatter aus Büchern entfällt. Ferner sollte das Verfahren das Papier nicht auf andere Weise angreifen, insbesondere sollte das Papier nicht irreversibel aufquellen. Ebenfalls sollten die Tinte und/oder Druckfarben auf dem zu bearbeitenden Papier durch das Verfahren nicht ausgewaschen werden. Gleichzeitig ist es aber wünschenswert, dass die Bearbeitung des Papiers nicht nur oberflächlich erfolgt, sondern idealerweise im gesamten Papier ansetzt. Für die Bearbeitung von Papier sind verschiedene Verfahren entwickelt worden. Eine gute Festigung von Papier kann beispielsweise dadurch erreicht werden, dass das geschädigte Papier gespalten wird und zusammen mit einer dünnen Zwischenlage und einem speziellen Klebstoff, der Celluloseether und Entsäuerungsmittel enthält, wieder verklebt wird. Diese Bearbeitung ist jedoch mit einem hohen handwerklichen Aufwand verbunden und somit kostenintensiv.
Ebenfalls ist ein Verfahren zur Verfestigung von Papier bekannt, bei dem man das Papier mit Acrylsäurederivaten tränkt, die durch Bestrahlung mit Gammastrahlen zur Polymerisation gebracht werden. Die Bestrahlung mit Gammastrahlen führt allerdings zu einer weiteren Schädigung des Papiers, durch die Tränkung mit Acrylsäure bluten Farben und Tinten auf dem Papier zumindest teilweise aus, und im Papier verbleibende Rückstandsmonomere führen zur einer Geruchsbelästigung. Außerdem ist dieses Verfahren nur schwer mit weiteren üblichen Mitteln der Papierrestaurierung kombinierbar.
Ebenso ist die Bearbeitung von Papier durch Laminieren bekannt, wobei eine dünne Polymerfolie oder ein dünnes Stabilisierungspapier einseitig oder beidseitig auf das Papier aufgebracht wird. Bei diesem mit einzelnen Blättern durchgeführten Verfahren passt der bearbeitete Papierstapel nach der Bearbeitung aufgrund der zunehmenden Papierdicke oft nicht mehr in den Bucheinband. Außerdem werden der Griff und das Aussehen des Papiers geändert. Weiterhin nimmt der Kontrast durch die aufgebrachten Schichten ab. Ferner ist dieses Verfahren nur schwer mit weiteren üblichen Mitteln der Papierrestaurierung kombinierbar.
Ein bekanntes Verfahren zur Bearbeitung von Papier ist das sogenannte Wiener Verfahren, das in der EP 0 273 9602 A2 beschrieben ist. In diesem Verfahren wird das Bearbeitungsgut in einer wässrigen Lösung, die zur Festigung des Papiers Methylcellulose enthält, getränkt. Anschließend wird die Bearbeitungslösung abgepumpt, Reste der Bearbeitungslösung lässt man vom bearbeiteten Papier abtropfen, und das Papier wird danach schockgefroren und gefriergetrocknet. Nachteilig an diesem Verfahren ist vor allem, dass Bucheinbände geschädigt werden, weshalb die Blätter des Buches vor der Bearbeitung herausgenommen werden müssen. Außerdem muss mit Methylcellulose ein derivatisiertes Polymer verwendet werden.
Die DE 100 57 554 A1 beschreibt ein Verfahren, in dem das zu bearbeitende Papier mit einem silylierten Polymerderivat wie z.B. siliylierter Cellulose, das in einem unpolaren Lösungsmittel gelost ist, bearbeitet wird. Die Silylgruppen werden anschließend durch Einwirkung von Feuchtigkeit Oder Wasser abgespalten. Nachteilig an diesem Verfahren ist der zwingende Einsatz von derivatisierten Polymeren.
Die EP 3 072 933 A1 beschreibt alkalische Nanopartikel enthaltend mindestens ein Hydroxid Oder Carbonat Oder eine organische Verbindung eines Erdalkalimetalls und wahlweise ein hydrophiles Cellulosederivat sowie eine stabilisierende Außenschicht aus hydrophoben Polymeren zur Entsäuerung und Festigung von cellulosebasierten Artefakten. Die Nanopartikel müssen jedoch zunächst synthetisiert werden.
Die im Stand der Technik bekannten Verfahren weisen verschiedene Nachteile wie zum Beispiel die notwendige Einzelblattbearbeitung, Verkleben von Seiten, Ausbluten von Farben und/oder Tinten, Geruchsbelästigung, starke Zunahme der Papierdicke, Verwendung von derivatisierten Polymeren, mangelnde Kompatibilität mit anderen üblichen Mitteln der Papierrestaurierung sowie Schädigung von Bucheinbänden und/oder Rückenleimungen auf.
Aufgabe der Erfindung ist es daher, ein Verfahren zur Bearbeitung, insbesondere zur Festigung, von Material enthaltend Fasern, insbesondere Papier, bereit zu stellen, das einen oder mehrere Nachteile der aus dem Stand der Technik bekannten Verfahren zumindest teilweise überwindet. Insbesondere ist ein Verfahren wünschenswert, mit dem eine Massenbearbeitung von geschädigtem Papier erfolgen kann. Das zu bearbeitende Papier sollte dabei nicht weiter geschädigt werden. Insbesondere sollte das zu bearbeitende Papier gefestigt werden. Auf dem zu bearbeitenden Papier etwaige vorhandene Tinten und Druckerfarben sollten nicht ausbluten. Ferner sollten die Einbände und/oder die Papierrückenleimungen durch das Verfahren nicht geschädigt werden. Außerdem ist es wünschenswert, wenn einfach zu erhaltende Substanzen wie Polymere, die insbesondere nicht derivatisiert sind, im Verfahren eingesetzt werden können.
Diese Aufgabe wird erfindungsgemäß durch das Verfahren nach Anspruch 1, das Material enthaltend Fasern nach Anspruch 19, das System nach Anspruch 20, die Verwendung nach Anspruch 21, die Verwendung nach Anspruch 23 sowie die Verwendung nach Anspruch 24 gelost.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben und werden nachfolgend im Einzelnen erläutert.
Das erfindungsgemäße Verfahren zur Bearbeitung eines Materials enthaltend Fasem umfasst die folgenden Schritte: a. Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel, b. in Kontakt bringen des zu bearbeitenden Materials mit dem in Schritt a. bereitgestellten Gemisch, urn eine Mischung aus dem Material und dem in Schritt a. bereitgestellten Gemisch zu erhalten, c. Behandeln der in Schritt b. erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert. Überraschend wurde gefunden, dass Materialien enthaltend Fasern mit dem erfindungsgemäßen Verfahren sehr effizient, effektiv und sicher zur Materialfestigung und/oder Oberflächenglättung, insbesondere bei massivem Materialauftrag, bearbeitet werden können.
Dabei liegt ein besonderer Vorteil des erfindungsgemäßen Verfahrens darin, dass durch den Einsatz eines polar aprotischen Lösemittels auch nicht derivatisierte Polymere wie z.B. Cellulose als das mindestens eine Polymer im erfindungsgemäßen Verfahren eingesetzt werden können. Ferner können durch den Einsatz eines polar aprotischen Lösemittels Gemische, insbesondere Lösungen, mit einer geringen Viskosität hergestellt werden, welche sich insbesondere zur Bearbeitung von Büchern oder ähnlichen Substraten eignen. Überraschenderweise kann mit dem erfindungsgemäßen Verfahren trotz des Einsatzes von Polymeren ein Verkleden der Seiten vermieden werden. Der Einsatz des polar aprotischen Lösemittels erlaubt weiterhin ein großes Spektrum an Möglichkeiten, urn die Mischung aus dem zu bearbeitenden Material enthaltend Fasern und dem Gemisch zu behandeln, so dass sich zumindest ein Teil des Polymers an den Fasern des Materials enthaltend Fasern anlagert. Ferner kann das erfindungsgemäße Verfahren mit anderen Verfahren, insbesondere Entsäuerungsverfahren, kombiniert werden.
Wenn hier Oder an anderer Stelle von „Lösen“ die Rede ist, insbesondere davon, dass sich ein Stoff in einem Lösemittel lost, so kann damit insbesondere gemeint sein, dass eine Lösung des Stoffs in dem Lösemittel hergestellt werden kann, die mindestens 0,5 Gew.%, insbesondere mindestens 1 Gew.%, 2 Gew.%, 3 Gew.%, 4 Gew.%, 5 Gew.%, 6 Gew.%, 7 Gew.%, 8 Gew.%, 9 Gew.% oder mindestens 10 Gew.%, und höchstens 25 Gew.%, insbesondere höchstens 20 Gew.%, 15 Gew.%, 14 Gew.%, 13 Gew.% oder höchstens 12 Gew.%, jeweils bezogen auf das Gesamtgewicht der Lösung, des Stoffs enthält.
Wenn hier Oder an anderer Stelle von „Anlagern“, insbesondere von Anlagern eines Stoffs an einem anderen Substrat, die Rede ist, so kann damit insbesondere das Ausfallen, Auskristallisieren, Abscheiden, Aufwachsen und/oder Absetzen, insbesondere an dem anderen Substrat, gemeint sein. Das Polymer kann sich vollständig oder zum Teil an das Material enthaltend Fasern, insbesondere an die Fasern des Materials enthaltend Fasern, anlagern. Wenn sich das Polymer nur zum Teil an die Fasern des Materials enthaltend Fasern anlagert, verbleibt eine Restmenge an Polymer in dem Gemisch. Durch Anlagerung werden die Fasern des Materials enthaltend Fasern vorzugsweise ganz oder teilweise ummantelt. Dadurch kann eine Festigung der Faser erreicht werden. „Derivatisierte Polymere“ können insbesondere solche Polymere sein, die durch eine chemische Modifizierung eines anderen Polymers erhalten wurden. Die Derivatisierung kann dabei auch reversibel sein, so dass das ursprüngliche Polymer zurückerhalten werden kann. Derivatisierte Polymere werden zum Beispiel von natürlich vorkommenden Polymeren wie Cellulose oder Stärke hergestellt. Beispielsweise kann aus nicht derivatisierter Cellulose durch chemische Modifizierung das derivatisierte Polymer Methylcellulose erhalten werden. Weitere Beispiele für nicht derivatisierte Polymere sind Stärke, Chitosan, Chitin, Lignin, Viskose, Zellstoff, Seide und Alginat. Für die Derivatisierung kommen verschiedene chemische Modifizierungen in Betracht. Die Derivatisierung kann beispielsweise durch teilweise Oder vollständige Alkylierung, teilweise oder vollständige Acylierung, teilweise oder vollständige Silylierung oder teilweise oder vollständige Sulfonylierung erreicht werden. „Material enthaltend Fasern“ wird nachfolgend auch als „faserhaltiges Material“ oder „Fasern enthaltendes Material“ bezeichnet.
Die Schritte a. bis c. des erfindungsgemäßen Verfahrens werden vorteilhafterweise in der angegebenen Reihenfolge durchgeführt.
Mit dem erfindungsgemäßen Verfahren können die verschiedensten faserhaltigen Materialien bearbeitet werden. Das faserhaltige Material kann ein Polymer mit mindestens einer polaren Gruppe enthalten, insbesondere in einem Anteil von 50 Gew.%, 60 Gew.%, 70 Gew.%, 80 Gew.%, 90 Gew.%, 95 Gew.%, 99 Gew.%, oder daraus bestehen. Die mindestens eine polare Gruppe kann im Polymerrückgrat enthalten sein und/oder als Seitenkette mit dem Polymerrückgrat verknüpft sein. Sind mehrere polare Gruppen enthalten, können diese gleich oder verschieden sein. Polare Gruppen sind dem Fachmann bekannt. Beispiele für polare Gruppen sind unter anderem die Hydroxyl-Gruppe, Säure-Gruppen wie die Carboxyl-Gruppe und die Sulfonsäuregruppe, die Amid-Gruppe, die Amin-Gruppe, die Thiol-Gruppe, die Ether-Gruppe, insbesondere die C1-C4-Alkyl-Ether-Gruppe, die Ester-Gruppe sowie die Urethan-Gruppe. Insbesondere kann das faserhaltige Material Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Chitosan, Alginat, Stärke, Lignin, Polyvinylalkohol, Proteïne oder Mischungen davon enthalten. Weitere Bestandteile des faserhaltigen Materials können weitere Polymere, insbesondere weitere Polymere mit mindestens einer polaren Gruppe, aber auch zum Beispiel Füllstoffe wie Calciumcarbonat oder Pigmente wie Titandioxid sein. Insbesondere kann es sich bei dem faserhaltigen Material urn ein cellulosehaltiges Material handeln, insbesondere um Papier, Pappe, Karton, Textilien oder Holz. Gemäß einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem faserhaltigen Material um Papier, insbesondere um Papierblätter. Beispiele für Papier sind Schreibmaschinenpapier, Druckerpapier, Zeitschriftenpapier, Zeitungspapier und Buchpapier.
In dem erfindungsgemäßen Verfahren wird ein Gemisch enthaltend ein Polymer bereitgestellt. Als Polymer kommen verschiedene Polymere in Frage. Das Polymer kann ein Copolymer oder ein Homopolymer sein. Das Polymer kann insbesondere ein massenmittleres Molekulargewicht Mw von 1000 bis 10000000 g/mol, insbesondere von 3000 bis 1000000 g/mol, von 5000 bis 500000 g/mol oder von 10000 bis 100000 g/mol, aufweisen. Das Polymer kann ferner mindestens eine polare Gruppe enthalten. Die mindestens eine polare Gruppe kann im Polymerrückgrat enthalten sein und/oder als Seitenkette mit dem Polymerrückgrat verknüpft sein. Sind mehrere polare Gruppen enthalten, können diese gleich oder verschieden sein. Polare Gruppen sind dem Fachmann bekannt. Beispiele für polare Gruppen sind unter anderem die Hydroxyl-Gruppe, Säure-Gruppen wie die Carboxyl-Gruppe und die Sulfonsäuregruppe, die Amid-Gruppe, die Amin-Gruppe, die Thiol-Gruppe, die Ether-Gruppe, insbesondere die C1-C4-Alkyl-Ether-Gruppe, die Ester-Gruppe sowie die Urethan-Gruppe. Insbesondere kann das Polymer mindestens eine Hydroxyl-Gruppe, mindestens eine Amin-Gruppe, mindestens eine Säure-Gruppe, insbesondere eine Carboxyl-Gruppe, mindestens eine Amid-Gruppe, mindestens eine Thiol-Gruppe, mindestens eine Ether-Gruppe, insbesondere eine C1-C4-Alkyl-Ether-Gruppe, mindestens eine Ester-Gruppe und/oder mindestens eine Urethan-Gruppe, insbesondere mindestens eine Hydroxyl-Gruppe, enthalten und/oder ausgewählt sein aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, natürliche Seide, Seidenbiopolymere, Polyvinylalkohol, Polyvinylacetat, Polyurethane, Polyamide, Proteïne, Polymere oder Copolymere auf Basis von Acrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Methacrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Vinylacetat, Itaconsäure, Maleinsäure, Fumarsäure, Acryloxypropionsäure, Methacryloxypropionsäure, Styrolsulfonsäure, Ethylmethacrylat-2-sulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Phosphoethylmethacrylat, Celluloseether und Mischungen davon. Vorzugsweise ist das Polymer ein nicht derivatisiertes Polymer wie zum Beispiel Cellulose und/oder Viskose. Bevorzugt enthält das Polymer mindestens eine Hydroxylgruppe.
Insbesondere kann das Polymer ausgewählt sein aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, Seidenbiopolymere, Polyvinylalkohol und Mischungen davon. Vorzugsweise ist das Polymer ausgewählt aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Seide, Seidenbiopolymere, Viskose und Mischungen davon. Vorteilhafterweise ist das Polymer ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Viskose und Mischungen davon. Gemäß einer bevorzugten Ausführungsform ist das Polymer alpha-Cellulose. Gemäß einer weiteren bevorzugten Ausführungsform ist das Polymer Viskose, insbesondere im Wesentlichen nicht derivatisierte Viskose. Es hat sich gezeigt, dass sich mit den vorstehend genannten Polymeren faserhaltige Materialien besonders gut bearbeiten ließen. Insbesondere konnten durch eine Bearbeitung mit den vorstehenden Polymeren gute
Festigungen, insbesondere von cellulosehaltigen Materialien wie Papier, Pappe, Karton und Holz, erreicht werden.
Das Polymer kann insbesondere in Form von Fasern eingesetzt werden.
Viskose ist insbesondere aus regenerierter Cellulose aufgebaut. Viskose kann dabei insbesondere in Form von Fasern vorliegen. Bei Viskose kann es sich insbesondere urn eine regenerierte Cellulosefaser handeln, wie sie in der EP 2 546 396 (siehe insbesondere Absatz [0026], [0028], [0029], [0030], [0031], [0032], [0033], [0034], [0035], [0036], [0037] und/oder [0038]) beschrieben ist. Entsprechend kann die Viskose in Form von Fasern, die mehrere Schenkel aufweisen und bei denen zumindest ein Schenkel hinsichtlich seiner Länge von den anderen Schenkeln abweicht, vorliegen. Insbesondere kann es sich um asymmetrische Cellulosefasern handeln. Der Titer der asymmetrischen Cellulosefasern kann von 1,3 dtex bis 10 dtex, insbesondere 3,3 dtex, betragen. Der Titer gibt dabei die Feinheit an, wobei 1 dtex insbesondere einem Gewicht von einem Gramm pro 10000 Meter der Cellulosefasern entspricht.
Bei Seidenbiopolymeren kann es sich insbesondere um Seidenbiopolymere handeln, wie sie in der WO 2014/037453 Oder in der WO 2011/113446 beschrieben sind. Entsprechend können die Seidenbiopolymere insbesondere aus Polypeptiden bestehen, die im Wesentlichen aus einer oder mehreren sich wiederholenden Polypeptid-Einheiten und einer oder mehreren sich nicht wiederholenden Polypeptid-Einheiten aufgebaut sind. Die sich wiederholenden Polypeptid-Einheiten können insbesondere Oligoalanin-Einheiten enthalten. Die sich wiederholenden Polypeptid-Einheiten können die Module Ac (GPYGPGASAAAAAAGGYGPGCGQQ), AK (GPYGPGASAAAAAAGGYGPGKGQQ), Cc (GSSAAAAAAAASGPGGYGPENQGPCGPGGYGPGGP), CK1 (GSSAAAAAAAASGPGGYGPENQGPKGPGGYGPGGP), CK2
(GSSAAAAAAAASGPGGYGPKNQGPSGPGGYGPGGP) oder CKC (GSSAAAAAAAASGPGGYGPKNQGPCGPGGYGPGGP) umfassen oder daraus bestehen, wobei die in Klammern angegebenen Sequenzen Aminosäuren im Einbuchstaben-Code darstellen, wie er beispielsweise in dem Buch „Enzymes - A Practical Introduction to Structure, Mechanism, and Data Analysis", 2nd Edition von Robert A. Copeland, Wiley-VCH, 2000, in Tabelle 3.1 auf Seite 45 beschrieben ist. Die sich nicht wiederholenden Polypeptid-Einheiten können aus den in der WO 2014/037453, insbesondere auf Seite 16, beschriebenen „ηοη-repetitive (NR)“ Einheiten NR3, NR4, NR5, NR6 oder den in der WO 2014/037453 beschriebenen Varianten davon ausgewählt sein.
Das Polymer in Schrift a. des erfindungsgemäßen Verfahrens kann gleich oder verschieden sein von dem Polymer mit mindestens einer polaren Gruppe, welches in dem faserhaltigen Material enthalten sein kann. Beispielsweise kann ein cellulosehaltiges Material als faserhaltiges Material mit einem Gemisch in Kontakt gebracht werden, das ebenfalls Cellulose als Polymer enthält. Ebenso kann aber auch ein cellulosehaltiges Material als faserhaltiges Material zum Beispiel mit einem Gemisch in Kontakt gebracht werden, das Polyvinylalkohol als Polymer enthält. Enthält das im Gemisch enthaltene Polymer eine polare Gruppen, so können die polare Gruppe des Polymers mit mindestens einer polaren Gruppe, das in dem faserhaltigen Material enthalten sein kann, und die polare Gruppe des im Gemisch enthaltenen mindestens einen Polymers gleich oder verschieden sein. So kann das faserhaltige Material ein cellulosehaltiges Material sein und das polare Polymer kann ein Polyurethan sein.
Als polar aprotisches Lösemittel kommen in dem erfindungsgemäßen Verfahren die verschiedensten Lösemittel in Frage. In polar aprotischen Lösemitteln können die Moleküle ein Dipolmoment aufweisen und/oder das polar aprotische Lösemittel kann aus lonen aufgebaut sein. Ferner können polar aprotische Lösemittel frei von Gruppen, insbesondere polaren Gruppen, sein, von denen Protonen abgespalten werden können. Beispiele für derartige Gruppen sind die OH-Gruppe, Säure-Gruppen wie die Carboxylgruppe, die Sulfonsäuregruppe und Halogenwasserstoffgruppen, die Thiol-Gruppe, sowie primäre und sekundäre Amine. Als polar aprotische Lösemittel kommen insbesondere Ketone, Lactone, Lactame, insbesondere N-alkylierte Lactame, Nitrile, Tertiäre Carbonsäureamide, Harnstoffderivate, insbesondere alkylierte Harnstoffderivate, Sulfoxide, Sulfone, Kohlensäureester, ionische Flüssigkeiten und/oder Mischungen davon in Frage.
Beispiele für Ketone sind Aceton, Methylethylketon, 2-Pentanon, 3-Pentanon, 2-Hexanon, 3-Hexanon, Cyclohexanon und deren C1- bis C4-alkylierte Derivate.
Beispiele für Lactone sind Propriolacton, Gammabutyrolacton, Deltavalerolacton, Epsiloncaprolacton und deren C1- bis C4-alkylierte Derivate.
Beispiele für Lactame sind Propiolactam, Gammabutyrolactam und deren C1- bis C4-alkylierte Derivate.
Beispiele für alkylierte Lactame sind N-Methyl-Propiolactam, N-Methyl-2-pyrrolidon und deren C1- bis C4-alkylierte Derivate.
Beispiele für Nitrile sind Acetonitril, Propionitril, Butyronitril, Valeronitril und deren C1- bis C4-alkylierte Derivate.
Beispiele für Tertiäre Carbonsäureamide wie Dimethylformamid, Dimethylacetamid, Dimethylpropionamid und deren C1- bis C4-alkylierte Derivate.
Beispiele für Harnstoffderivate, insbesondere alkylierte Harnstoffderivate, sind Dimethylpropylenharnstoff, Tetramethylharnstoff und deren C1- bis C4-alkylierte Derivate.
Beispiele für Sulfoxide sind Dimethylsulfoxid, Ethylmethylsulfoxid, Diethylsulfoxid und deren C1- bis C4-alkylierte Derivate.
Beispiele für Sulfone sind Sulfolan, Ethylmethylsulfon und deren C1- bis C4-alkylierte Derivate.
Beispiele für Kohlensäureester sind Dimethylcarbonat, Ethylencarbonat, Propylencarbonat, 1,2-Butylencarbonat, 1,3-Butylencarbonat und deren C1- bis C4-alkylierte Derivate.
Beispiele für ionische Flüssigkeiten sind weiter unten angegeben.
Vorzugsweise ist das polar aprotische Lösemittel ausgewählt aus der Gruppe bestehend aus Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff,
Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat, Ethylencarbonat, ionischen Flüssigkeiten und Mischungen davon. Insbesondere ist das polar aprotische Lösemittel ausgewählt aus der Gruppe bestehend aus Dimethylacetamid, Dimethylsulfoxid, Acetonitril, ionischen Flüssigkeiten und Mischungen davon. Polar aprotische Lösemittel, die eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff,
Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat sind, enthalten eine ionische Flüssigkeit.
Das polar aprotische Lösemittel kann eine oder mehrere ionische Verbindungen, beispielsweise Salze, anorganische Salze und/oder ionische Flüssigkeiten enthalten oder insbesondere aus einer oder mehreren ionischen Flüssigkeiten bestehen.
Als anorganische Salze kommen beispielsweise Lithiumfluorid, Lithiumchlorid, Lithiumbromid, Lithiumiodid, Natriumfluorid, Natriumchlorid, Natriumbromid, Natriumiodid, Kaliumfluorid, Kaliumchlorid, Kaliumbromid oder Kaliumiodid, insbesondere Lithiumchlorid oder Lithiumbromid und Mischungen davon in Frage. Anorganische Salze können in einer Menge von 1 bis 10 Gew.%, 3 bis 8 Gew.% oder 4 bis 6 Gew.%, jeweils bezogen auf die Gesamtmenge an polar aprotischem Lösemittel und anorganischem Salz oder anorganischen Salzen, enthalten sein. Dementsprechend kann ein polar aprotisches Lösemittel beispielsweise Dimethylacetamid enthaltend 5 Gew.% Lithiumchlorid sein.
Besonders gute Ergebnisse lassen sich erzielen, wenn das polar aprotische Lösemittel eine ionische Flüssigkeit enthält. Geeignete ionische Flüssigkeiten werden weiter unten im Detail beschrieben. Bevorzugt ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril. Gemäß einer bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylacetamid oder Dimethylsulfoxid. Gemäß einer weiteren bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylacetamid. Gemäß einer weiteren bevorzugten Ausführungsform ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und Dimethylsulfoxid.
Mit den vorstehend genannten polar aprotischen Lösemitteln können Gemische, insbesondere Lösungen, mit den verschiedensten Polymeren hergestellt werden. Insbesondere können sich viele schlecht lösliche Polymere, insbesondere Polymere enthaltend mindestens eine polare Gruppe, gut in diesen polar aprotischen Lösemitteln lösen. Enthält das polar aprotische Lösemittel eine oder mehrere ionische Verbindungen, können Polymere enthaltend mindestens eine polare Gruppe, insbesondere Cellulose, besser in ihnen gelost werden. Auf diese Weise können Gemische, insbesondere Lösungen, mit einem Gehalt von beispielsweise 0,5 Gew.%, 1 Gew.%, 2 Gew.%, 3 Gew.%, 4 Gew.%, 5 Gew.%, 6 Gew.%, 7 Gew.%, 8 Gew.%, 9 Gew.%, 10 Gew.%, 11 Gew.%, 12 Gew.%, 13 Gew.%, 14 Gew.% oder 15 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer erhalten werden. Dadurch kann die Konzentration des Polymers in einem weiten
Bereich an die Bedürfnisse des zu bearbeitenden faserhaltigen Materials angepasst werden, was eine effektive Bearbeitung des faserhaltigen Materials erlaubt.
Das polar aprotische Lösemittel kann eine oder mehrere ionische Flüssigkeiten enthalten oder daraus bestehen. Als ionische Flüssigkeiten kommen insbesondere organische Salze in Betracht, deren lonen durch Ladungsdelokalisation und sterische Effekte die Bildung eines stabilen Krista lig itters behindern. Ionische Flüssigkeiten haben insbesondere den Vorteil, dass sich viele schwer lösliche Polymere wie zum Beispiel Cellulose in ihnen gut lösen. Ferner können ionische Flüssigkeiten gut modifiziert und so an unterschiedliche Anforderungen angepasst werden.
Enthält das polar aprotische Lösemittel eine ionische Flüssigkeit, so enthält die ionische Flüssigkeit insbesondere ein Kation ausgewählt aus einem 1,3-Dialkylimidazoliumkation, einem Alkylpyridiniumkation, einem Tetraalkylammoniumkation und einem Phosphoniumkation, und ein Anion ausgewählt aus Fluorid, Chlorid, Bromid, lodid, Formiat, Acetat, Propionat, Butyrat, Hydrogensulfat, Tosylat, Trifluormethansulfonat, Bis(trifluoromethansulfonyl)imid, Hexafluorophosphat, Tetrafluoroborat, Benzoat, Glykolat, Thioglykolat, Lactat und Glycinat, oder sie besteht daraus. Vorzugsweise enthält die ionische Flüssigkeit ein Dialkylimidazoliumkation und ein Anion ausgewählt aus Chlorid, Bromid und Acetat oder sie besteht daraus. Die Alkylgruppen des Dialkylimidazoliumkations können insbesondere gleich oder verschieden sein. Die Alkylgruppen des Dialkylimidazoliumkations können insbesondere C1- bis C10-, insbesondere C1- bis C5-Alkylgruppen, sein. Die Alkylgruppen des Dialkylimidazoliumkations können unabhängig voneinander bevorzugt ausgewählt sein aus der Gruppe bestehend aus Methyl, Ethyl, Propyl und Butyl. Gemäß einer bevorzugten Ausführungsform enthält die ionische Flüssigkeit 1-Butyl-3-methylimidazoliumchlorid und/oder 1-Butyl-3-methylimidazoliumacetat oder besteht daraus.
Die vorstehend angeführten Kationen und Anionen haben insbesondere den Vorteil, dass viele Polymere, insbesondere auch schwer lösliche Polymere wie Cellulose, in ionischen Flüssigkeiten, die diese Kationen und Anionen enthalten oder daraus bestehen, gut löslich sind. Ferner weist insbesondere das Acetat-Anion den Vorteil auf, dass der pH-Wert von faserhaltigen Materialien mit einem sauren pH-Wert, die mit einem Gemisch, in dem das polar aprotische Lösemittel eine Acetat-Anionen-haltige ionische Flüssigkeit enthält, in Kontakt gebracht wurden, angehoben werden kann. Dies ist insbesondere bei der Bearbeitung von Papier von Bedeutung, da durch eine Anhebung des pH-Werts im Papier der Abbau der Cellulosefasern verlangsamt oder sogar unterbunden werden kann.
Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel ist vorzugsweise ein homogenes Gemisch, insbesondere eine Lösung. Alternativ kann in dem Gemisch das Polymer durch das polar aprotische Lösemittel angelöst oder gequollen sein.
Das Bereitstellen eines Gemischs enthaltend ein polar aprotisches Lösemittel hat unter anderem den Vorteil, dass dadurch Gemische, insbesondere Lösungen, mit einer geringen Viskosität erhalten werden können. Derartige Gemische, insbesondere Lösungen, sind besonders gut zur Bearbeitung von faserhaltigen Materialien, insbesondere cellulosehaltigen Materialien wie Papier, geeignet. Dabei kann das Gemisch, insbesondere die Lösung, mit dem das zu bearbeitende faserhaltige Material in Kontakt gebracht wird, insbesondere eine Viskosität von 0,01 bis 100 mPa-s, vorzugsweise 0,1 bis 70 mPa-s, bevorzugt 0,5 bis 50 mPas, weiter bevorzugt 1 bis 30 mPa-s, noch weiter bevorzugt 1 bis 15 mPa-s, aufweisen. Gemische, insbesondere Lösungen, mit derartigen Viskositäten eignen sich besonders gut zur Bearbeitung von faserhaltigen Materialien, insbesondere cellulosehaltigen Materialien wie Papier, da sie tief in das faserhaltige Material eindringen können und somit nicht nur eine oberflächliche Anlagerung des Polymers ermöglicht wird. Methoden zur Bestimmung der Viskosität von Gemischen, insbesondere von Lösungen, sind dem Fachmann bekannt. Insbesondere kann die Viskosität mit einem Rotationsviskosimeter „Gemini“ der Firma Bohlin bei 25°C bestimmt werden.
Das in Kontakt bringen des faserhaltigen Materials mit dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann auf verschiedene Weisen durchgeführt werden. Beispielsweise kann das faserhaltige Material, insbesondere Papier, mit dem Gemisch besprüht oder beschichtet werden oder das faserhaltige Material, insbesondere Papier, kann in dem Gemisch getränkt werden. Vorteilhafterweise wird das faserhaltige Material in dem Gemisch getränkt. Wird das faserhaltige Material in dem Gemisch getränkt, so kann dies für einen Zeitraum von 0,1 bis 10 Minuten, insbesondere 0,2 bis 8 Minuten, 0,2 bis 7 Minuten, 0,4 bis 6 Minuten, 0,5 bis 5 Minuten, 0,5 bis 4 Minuten, 0,5 bis 3 Minuten oder 0,5 bis 2 Minuten erfolgen. Dadurch kann das mindestens eine Polymer gut in das faserhaltige Material eindringen, so dass es sich gut an die Fasern des Materials anlagern kann. Anschließend kann das getränkte faserhaltige Material mit einem polar aprotischen Lösemittel, insbesondere mit Dimethylacetamid und/oder Dimethylsulfoxid, abgespült werden, insbesondere für einen Zeitraum von 10 bis 60 Sekunden, 20 bis 50 Sekunden oder 25 bis 40 Sekunden. Durch das Abspülen kann überschüssiges Polymer entfernt werden.
Das erfindungsgemäße Verfahren umfasst den Schritt des Behandelns der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert. Dabei kann die Behandlung der Mischung auf unterschiedliche Weise ausgestaltet sein. Insbesondere kann die Behandlung der Mischung in Schritt c. ausgewählt sein aus der Gruppe bestehend aus in Kontakt bringen der Mischung mit einer ionischen Verbindung, insbesondere einem Salz, in Kontakt bringen der Mischung mit einer nicht-ionischen Verbindung, in Kontakt bringen der Mischung mit einer Säure, in Kontakt bringen der Mischung mit einer Base, in Kontakt bringen der Mischung mit einem polaren Lösemittel, in Kontakt bringen der Mischung mit einem unpolaren Lösemittel, in Kontakt bringen der Mischung mit einem Lösemittelgemisch, Gefriertrocknen, Temperaturerniedrigung, Eindampfen des Lösemittels, Temperaturerhöhung, Druckerniedrigung und Kombinationen davon.
Beispiele für ionische Verbindungen sind Salze oder Polymere mit mindestens einer ionischen Seitengruppe. Salze bestehen insbesondere aus mindestens einem Kation und mindestens einem Anion, wobei das Kation ausgewählt sein kann aus Kationen die sich von Metallen ausgewählt aus der Gruppe bestehend aus, Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Ge, Sn, Pb ableiten lassen, und wobei das Anion ausgewählt sein kann aus Anionen, die sich von Elementen der Gruppe bestehend aus F, Cl, Br, I, O, S, Se, Te. Weitere Beispiele für Kationen sind Ammoniumionen. Weitere Beispiele für Anionen sind Hydrid, Hydroxid, Phosphate, Phosphite, Sulfate, Sulfite, Sulfide und Carboxylate wie Formiat, Acetat, Proprionat, Salicylat und Benzoat. Das Salz kann insbesondere Ammoniumsulfat Oder Kaliumsulfat oder eine Mischung davon enthalten. Beispiele für Polymere mit ionischen Seitengruppen sind Polymere mit mindestens einer deprotonierten Säuregruppe, insbesondere einer deprotonierten Carboxylgruppe wie deprotoniertes Polyacrylat, deprotoniertes Polymethacrylat, Polymere mit mindestens einer quartären Ammoniumverbindung wie quatärnisiertes Polydimethylaminoethylmethacrylat. Die Mischung kann dabei mit der ionischen Verbindung in Kontakt gebracht werden, indem das Salz direkt Oder in Form einer Lösung, insbesondere einer wässrigen Lösung, zugegeben wird.
Beispiele für nicht-ionische Verbindungen sind Wasser, Alkohole wie Methanol, Ethanol, Propanol, Butanol, Octan, Nonan, isocyanathaltige Verbindungen, Kohlenwasserstoffe mit 1 bis 20, insbesondere 5 bis 18, Kohlenstoffatomen, Polymere wie Polyether, Polyester,
Polyamide, Polyurethane. Diese können direkt mit der in Schrift b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der jeweiligen nicht-ionischen Verbindung.
Beispiele für Säuren sind Salzsäure, Schwefelsäure, Salpetersäure, Carbonsäuren mit 1 bis 20, insbesondere 1 bis 10, Kohlenstoffatomen, insbesondere Ameisensäure, Essigsäure, Propionsäure und Benzoesäure, und Mischungen davon. Insbesondere kann die Säure ausgewählt sein aus Salzsäure und Carbonsäuren mit 1 bis 10 Kohlenstoffatomen. Diese können direkt mit der in Schrift b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der jeweiligen Säure, oder indem die Mischung in Säure getaucht wird. Die Säure kann dabei konzentriert oder verdünnt sein, beispielsweise als verdünnte wässrige Lösung.
Beispiele für Basen sind Hydroxid-Basen wie Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, Aminbasen wie, primäre Amine, sekundäre Amine, tertiäre Amine, insbesondere Triethylamin, Pyridin und Dimethylaminopyridin und Mischungen davon. Diese können direkt mit der in Schrift b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch direkte Zugabe der jeweiligen Base. Alternativ kann die jeweilige Base auch als Lösung, insbesondere als wässrige Lösung, mit der in Schrift b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe einer Lösung, oder indem die Mischung in die Lösung getaucht wird.
Beispiele für polare Lösemittel sind Wasser und Alkohole wie Methanol, Ethanol, Propanol und Butanol, primäre und sekundäre Amine, Carbonsäuren und Mischungen davon. Insbesondere kann das polare Lösemittel Wasser, ein Alkohol oder eine Mischung davon sein. Diese können direkt mit der in Schrift b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe des polaren Lösemittels, Oder indem die Mischung in das polare Lösemittel getaucht wird.
Beispiele für unpolare Lösemittel sind Kohlenwasserstoffe mit 5 bis 16 Kohlenstoffatomen, Benzol, Toluol, Pentan, Hexan, Heptan, Cyclohexan, Tetrachlorkohlenstoff, Tetrachlorethen, Trichlorethen, Kohlenstoffdisulfid, Tetramethylsilan und Hexamethyldisiloxan. Das unpolare Lösemittel kann insbesondere Hexamethyldisiloxan sein. Diese können direkt mit der in Schrift b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe des polaren Lösemittels, Oder indem die Mischung in das unpolare Lösemittel getaucht wird. Lösemittelgemische umfassen insbesondere Mischungen aus den vorgenannten polaren und unpolaren Lösemitteln, insbesondere Mischungen von Hexamethyldisiloxan mit anderen Lösemitteln wie Ethanol, Methanol, Propanol und Butanol. Diese können direkt mit der in Schritt b. erhaltenen Mischung in Kontakt gebracht werden, beispielsweise durch Zugabe der Lösemittelmischung, Oder indem die Mischung in die Lösemittelmischung getaucht wird.
Beim Gefriertrocknen kann die Mischung aus Schritt b. zunächst schockgefroren werden und anschließend bei Temperaturen von gleich oder weniger als 0°C durch Anlegen von Vakuum getrocknet werden.
Eine Temperaturerniedrigung kann insbesondere bis unter die Temperatur erfolgen, bei der Polymer schlecht oder nicht mehr löslich im polar aprotischen Lösemittel ist. Die Temperaturerniedrigung kann eine Erniedrigung auf Temperaturen von -5°C bis 15°C, insbesondere 0°C bis 10°C, beinhalten.
Beim Eindampfen kann die Temperatur so erhöht werden, dass das polar aprotische Lösemittel vollständig verdampft und das Polymer an den Fasern des Materials zurücklässt. Das Eindampfen kann bei Temperaturen von 50°C bis 250°C, insbesondere von 70°C bis 200°C, durchgeführt werden.
Eine Temperaturerhöhung kann auf Temperaturen von 50°C bis 200°C, insbesondere von 70°C bis 150°C, erfolgen. Die Temperaturerhöhung kann schrittweise oder schlagartig erfolgen.
Die Druckerniedrigung kann auf Drücke von 0,1 mbar bis 900 mbar, insbesondere von 1 mbar bis 800 mbar, 10 mbar bis 700 mbar oder 50 mbar bis 500 mbar, erfolgen. Die Druckerniedrigung kann insbesondere mit der Temperaturerhöhung und der Temperaturerniedrigung kombiniert werden.
Ebenfalls kann die Temperaturerniedrigung insbesondere mit dem in Kontakt bringen mit einer ionischen Verbindung, dem in Kontakt bringen mit einer nicht-ionische Verbindung, dem in Kontakt bringen mit einer Säure, dem in Kontakt bringen mit einer Base, dem in Kontakt bringen mit einem polaren Lösemittel, dem in Kontakt bringen mit einem unpolaren Lösemittel und dem in Kontakt bringen mit einem Lösemittelgemisch kombiniert werden.
Vorzugsweise umfasst die Behandlung der Mischung in Schritt c. das in Kontakt Bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, Oder besteht daraus. Optimale Ergebnisse haben sich eingestellt, wenn die Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel mit Hexamethyldisiloxan in Kontakt gebracht, insbesondere in Hexamethyldisiloxan getaucht, wurde.
Die vorgenannten Behandlungsmöglichkeiten erlauben eine Anlagerung des Polymers an den Fasern des Materials enthaltend Fasern. Dabei wurden bessere Ergebnisse erzielt, wenn die Anlagerung möglichst langsam erfolgte. Dies kann insbesondere dadurch erreicht werden, dass die Behandlung der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel mindestens für einen Zeitraum von 15 Sekunden, insbesondere 30 Sekunden, 1 Minute, 5 Minuten, 15 Minuten, 30 Minuten, 45 Minuten, 1 Stunde, 5 Stunden, 10 Stunden, 15 Stunden oder 24 Stunden und höchstens für einen Zeitraum von 150 Stunden, insbesondere 144 Stunden, 120 Stunden, 100 Stunden, 96 Stunden, 90 Stunden oder 85 Stunden durchgeführt wird. Optimale Ergebnisse wurden erzielt, wenn die Behandlung in Schritt c. über einen Zeitraum von 24 bis 85 Stunden, insbesondere 50 bis 80 Stunden oder 65 bis 75 Stunden oder 72 Stunden, erfolgt. Dadurch wird eine langsame Anlagerung des Polymers an die Fasern des Materials enthaltend Fasern erreicht.
Vorteilhafterweise erfolgt die Behandlung der Mischung aus dem faserhaltigen Material und dem Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel durch in Kontakt bringen mit einem unpolaren Lösemittel, insbesondere das Tauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, über einen Zeitraum von 65 bis 75 Stunden, insbesondere 72 Stunden.
Das erfindungsgemäße Verfahren kann vorzugsweise ferner nach dem Behandeln in Schritt c. den zusätzlichen Schritt des Trocknens des in Schritt c. erhaltenen faserhaltigen Materials umf assen.
Das Trocknen des in Schritt c. des erfindungsgemäßen Verfahrens erhaltenen faserhaltigen Materials wird vorzugsweise bei 20°C bis 100°C, insbesondere 30°C bis 90°C, 40°C bis 80°C, oder 45eC bis 65°C durchgeführt. Dabei wird das in Schritt c. des erfindungsgemäßen Verfahrens erhaltene faserhaltige Material bevorzugt für 1 bis 25 Stunden, insbesondere für 5 bis 20 Stunden, 8 bis 16 Stunden, 9 bis 15 Stunden, 10 bis 14 Stunden Oder 11 bis 13 Stunden getrocknet.
Das erfindungsgemäße Verfahren kann ferner vor dem Schritt a. den weiteren Schritt umfassen, dass das Material enthaltend Fasern, insbesondere Papier, bei einer Temperatur von 40 bis 80°C, insbesondere 45 bis 70°C Oder 45 bis 65°C vorgetrocknet wird. Die Vortrocknung kann fiir einen Zeitraum von 1 Minute bis 60 Stunden, insbesondere 1 Stunde bis 50 Stunden Oder 12 bis 48 Stunden erfolgen.
Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann auf unterschiedliche Weisen hergestellt werden. Beispielsweise kann das Gemisch bei Raumtemperatur Oder bei tieferer Oder höherer Temperatur, zum Beispiel bei 10°C bis 150°C hergestellt werden. Das Gemisch kann auch in mehreren Schriften hergestellt werden. Enthält das polar aprotische Lösemittel eine ionische Flüssigkeit bzw. ist das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem vom Dimethylacetamid, Dimethylsulfoxid und Acetonitril, so kann das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel insbesondere hergestellt werden, indem zunächst das Polymer in der ionischen Flüssigkeit gelöst wird und anschließend die so erhaltene Lösung mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton,
Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff,
Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, verdünnt wird. Alternativ kann zunächst die ionische Flüssigkeit mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton,
Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff,
Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere Dimethylsulfoxid, vermischt werden und anschließend die gewünschte Menge des Polymers zugegeben werden.
Das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel kann insbesondere 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.%, 5 bis 30 Gew.%, 10 bis 30 Gew.%, 12 bis 25 Gew.% Oder 15 bis 20 Gew.% Oder 17 bis 19 Gew.% ionische Flüssigkeit enthalten, jeweils bezogen auf das Gesamtgewicht des Gemischs. Gemische mit den vorgenannten Gehalten an ionischen Flüssigkeiten lassen sich gut herstellen, insbesondere können auf diese Weise einfach Lösungen erhalten werden, die eine effektive Bearbeitung des faserhaltigen Materials erlauben.
Das Mischen, insbesondere das Quellen, Anlösen oder Lösen, des Polymers und/oder das anschließende Verdünnen kann bei Temperaturen von 10°C bis 150°C, insbesondere von 20°C bis 140°C, 30°C bis 130°C, 40°C bis 120°C, 50°C bis 110°C oder 60°C bis 100°C durchgeführt werden. Auf diese Weise kann zunächst ein Gemisch, insbesondere eine Lösung, mit einer Konzentration des Polymers von 5 bis 20 Gew.%, insbesondere von 7 bis 15 Gew.%, 8 bis 13 Gew.% oder 9 bis 11 Gew.%, jeweils bezogen auf das Gesamtgewicht des Polymers und der ionischen Flüssigkeit, in der ionischen Flüssigkeit hergestellt werden. Diese Lösung kann anschließend insbesondere mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton,
Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff,
Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, auf die gewünschte Konzentration verdünnt werden. Ferner kann die ionische Flüssigkeit bei den vorstehend genannten Temperaturen auch mit mindestens einem von Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton,
Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff,
Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat und Ethylencarbonat, insbesondere Dimethylsulfoxid, mit einer Konzentration der ionischen Flüssigkeit von 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.% oder 5 bis 30 Gew.% oder 10 bis 30 Gew.% oder 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.%, jeweils bezogen auf das Gesamtgewicht der Mischung insbesondere der ionischen Flüssigkeit und Dimethylsulfoxid, vermischt werden. Dieser Lösung kann anschließend das Polymer in der gewünschten Menge zugefügt werden. Auf diese Weise kann das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel einfach hergestellt werden. Ferner kann so die Konzentration des Polymers im Gemisch gut eingestellt werden.
Vorteilhafterweise enthält das Gemisch enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel 0,1 bis 10 Gew.%, insbesondere 0,5 bis 8 Gew.% oder 1 bis 5 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer. Lösungen mit diesen Konzentrationen weisen insbesondere eine geeignete Viskosität für das erfindungsgemäße Verfahren auf.
Gegenstand der Erfindung ist ferner ein Material enthaltend Fasern, insbesondere Papier, das nach dem erfindungsgemäßen Verfahren erhältlich ist.
Gegenstand der Erfindung ist weiterhin ein System umfassend mindestens zwei Materialien enthaltend Fasern, die nach dem erfindungsgemäßen Verfahren erhältlich sind, insbesondere ein Buch.
Die Materialien des erfindungsgemäßen Systems können gleich oder verschieden sein. Die Fasern enthaltenden Materialien können gleichzeitig oder zu verschiedenen Zeiten nach dem erfindungsgemäßen Verfahren bearbeitet worden sein. Das System kann ferner auch Materialien, insbesondere Materialien enthaltend Fasern, umfassen, die nicht mit dem erfindungsgemäßen Verfahren bearbeitet worden sind.
Das System kann insbesondere ein Buch, ein Heft, eine Zeitschrift oder eine Zeitung sein. Das Fasern enthaltende Material kann insbesondere Papier sein. Insbesondere in einem Buch kann neben dem Papier noch weiteres Fasern enthaltendes Material, insbesondere Karton, Pappe, Textilien oder Holz, enthalten sein.
Enthält das erfindungsgemäße System verschiedene Fasern enthaltende Materialien, so können diese getrennt oder zusammen nach dem erfindungsgemäßen Verfahren bearbeitet werden. So kann im Falie eines Buches zum Beispiel das Papier getrennt vom Rest des Buches, insbesondere getrennt vom Einband, bearbeitet werden. Das Buch kann aber auch bearbeitet werden, ohne dass vorher Bestandteile abgetrennt werden, insbesondere mit seinem Einband. Ob eine getrennte Bearbeitung der Bestandteile erfolgt, kann insbesondere aufgrund der Weise entschieden werden, wie die Fasern enthaltenden Materialien im System, insbesondere im Buch, zusammengehalten werden. Beispiele für Weisen, wie die Fasern enthaltenden Materialien im System zusammengehalten werden können, umfassen Fadenheftung und Klebebindung.
Gegenstand der Erfindung ist außerdem die Verwendung eines Gemischs enthaltend mindestens ein Polymer und ein polar aprotisches Lösemittel zur Bearbeitung von Material enthaltend Fasern, insbesondere Papier, insbesondere im erfindungsgemäßen Verfahren.
Dabei gilt für die Verwendung des Gemischs das vorstehend für das polar aprotische Lösemittel, für das Material enthaltend Fasern und/oder für das Polymer Gesagte analog.
Gegenstand der Erfindung ist ferner die Verwendung von Dimethylsulfoxid als Antioxidationsmittel zur Bearbeitung von Papier, insbesondere im erfindungsgemäßen Verfahren.
Gegenstand der Erfindung ist außerdem die Verwendung einer ionischen Flüssigkeit enthaltend ein quartäres Ammoniumkation, insbesondere einer ionischen Flüssigkeit enthaltend ein Dialkylimidazoliumkation, insbesondere 1-Butyl-3-methylimidazoliumchlorid Oder 1-Butyl-3-methylimidazoliumacetat, als antimikrobielles Mittel zur Bearbeitung von Papier, insbesondere im erfindungsgemäßen Verfahren.
Die beigefügten Figuren zeigen:
Fig. 1 zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das erfindungsgemäß bearbeitet wurde, wobei als Polymer fluoreszenzmarkierte
Cellulose verwendet wurde und wobei die Behandlung durch Tauchen des mit dem Gemisch getränkten Papiers in eine Mischung aus Hexamethyldisiloxan enthaltend 1 Vol.% Ethanol erfolgte. Die Cellulosefasern des Substrats heben sich sehr kontrastreich vom dunkien Hintergrund ab.
Fig. 2 zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das erfindungsgemäß bearbeitet wurde, wobei als Polymer fluoreszenzmarkierte
Cellulose verwendet wurde und wobei die Behandlung durch Tauchen des mit dem Gemisch getränkten Papiers in Hexamethyldisiloxan erfolgte. Die Cellulosefasern des Substrats heben sich sehr kontrastreich vom dunkien Hintergrund ab.
Fig. 3 zeigt als Referenz eine fluoreszenzmikroskopische Aufnahme einer Schicht eines nicht bearbeiteten Papiers. Die Cellulosefasern des Substrats sind vom Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie die Cellulosefasern in Fig. 1 oder Fig. 2.
Fig. 4 zeigt eine fluoreszenzmikroskopische Aufnahme einer Schicht eines Papiers, das mit einem Gemisch bearbeitet wurde, das kein Polymer enthielt. Die Cellulosefasern des Substrats sind vom Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie die Cellulosefasern in Fig. 1 oder Fig. 2.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben, die jedoch nur der Veranschaulichung dienen und nicht beschränkend sind.
Ausführungsbeispiele
Chemikalien 1-Butyl-3-methylimidazoliumchlorid (BMIM-CI), Sigma-Aldrich; 1-Butyl-3-methylimidazoliumacetat (BMIM-OAc), erhalten durch Anionenaustausch ausgehend von BMIM-CI; Viskose (danufil, 3,3 dtex/0,3 mm, nachfolgend: „Danufil“), Kelheim Fibres GmbH; Dimethylacetamid (DMAc), CSC Jäklechemie GmbH & Co. KG; Dimethylsulfoxid (DMSO), CSC Jäklechemie GmbH & Co. KG; Hexamethyldisiloxan (HMDO), Chemische Fabrik Karl Bucher GmbH; mikrokristalline Cellulose (MCC), Sigma-Aldrich; Zellstoff (ENO PINE ECF); Stora Enso Oyj; alpha-Cellulose, Sigma-Aldrich.
Messmethoden
Messungen wurden gemäß der nachfolgenden Tabelle durchgeführt.
Tabelle 1: Messmethoden
Alle Substrate bzw. Papiere wurden in einem vorgeschalteten Schritt bei 55°C für 24 Stunden erhitzt soweit nicht anders angegeben. Da in den verschiedenen Beispielen verschiedene Papiere verwendet wurden, können die in verschiedenen Beispielen verwendeten Papiere Abweichungen in den gemessenen Werten voneinander aufweisen, weshalb nur die Werte innerhalb eines Beispiels unmittelbar miteinander verglichen werden können.
Beispiel 1 (Bearbeitung von Papier mit Viskose in einer Mischung aus DMAc und BMIM-OAc)
Zunächst wurde eine Lösung enthaltend 10 Gew.% Danufil in BMIM-OAc hergestellt, welche anschließend durch Zugabe von DMAc auf einen Viskosegehalt von 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung, verdünnt wurde, wobei die Lösung aus BMIM-OAc und DMAc 18 Gew.% BMIM-OAc und 82 Gew.% DMAc, jeweils bezogen auf das Gewicht von BMIM-OAc und DMAc, enthielt. Die Viskosität der Lösung betrug 10 mPa-s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für eine Minute getränkt und danach für 30 Sekunden mit DMAc abgespült. Das so erhaltene Papier wurde anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HMDO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft, die Bruchdehnung sowie der pH Wert des bearbeiteten Papiers 1 wurden anschließend bestimmt und mit einem nicht bearbeiteten Papier als Referenz verglichen.
Tabelle 2: Mechanische Eigenschaften und pH Wert
Tabelle 2 zeigt, dass die Bruchkraft, die Bruchdehnung sowie der pH-Wert bei Einsatz von Gemischen enthaltend Viskose sowie Mischungen aus BMIM-OAc und DMAc durch die erfindungsgemäße Bearbeitung im Vergleich zu nicht bearbeitetem Papier deutlich gesteigert werden können. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet.
Beispiel 2 (Bearbeitung von Papier mit Viskose in einer Mischung aus DMAc und BMIM-CI)
Zunächst wurde eine Lösung enthaltend 10 Gew.% Danufil in BMIM-CI hergestellt, welche anschließend durch Zugabe von DMAc auf einen Viskosegehalt von 2 Gew.%, bezogen auf das Gesamtgewicht der Lösung, verdünnt wurde, wobei die Lösung aus BMIM-CI und DMAc 18 Gew.% BMIM-CI und 82 Gew.% DMAc, jeweils bezogen auf das Gewicht von BMIM-CI und DMAc, enthielt. Die Viskosität der Lösung betrug 10 mPa-s. Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für eine Minute getränkt und danach für 30 Sekunden mit DMAc abgespült. Das so erhaltene Papier wurde anschließend für 72 Stunden in HDMO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HDMO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft, die Bruchdehnung sowie der pH Wert des bearbeiteten Papiers 2 wurden anschließend bestimmt und mit einem nicht bearbeiteten Papier als Referenz verglichen.
Tabelle 3: Mechanische Eigenschaften und pH Wert
Tabelle 3 zeigt, dass die Bruchkraft und die Bruchdehnung bei Einsatz von Gemischen enthaltend Viskose sowie Mischungen aus BMIM-CI und DMAc durch die erfindungsgemäße Bearbeitung im Vergleich zu nicht bearbeitetem Papier deutlich gesteigert werden können. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet. Ferner stieg der pH Wert des bearbeiteten Papiers an.
Beispiel 3 (Bearbeitung von Papier mit MCC in 5% LiCI in DMAc)
Zunächst wurde eine Lösung enthaltend 2 Gew.% mikrokristalline Cellulose in DMAc (enthaltend 5 Gew.% LiCI, bezogen auf das Gesamtgewicht aus LiCI und DMAc), bezogen auf das Gesamtgewicht der Lösung, hergestellt. Die Viskosität der Lösung betrug 13 mPa-s . Anschließend wurde das zu bearbeitende Papier in der hergestellten Lösung für fünf Minuten getränkt. Das so erhaltene Papier wurde anschließend für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an den Papierfasern anlagerte. Nach der Behandlung in HMDO wurde das Papier bei 55°C für 12 Stunden erhitzt. Die Bruchkraft sowie die Bruchdehnung des bearbeiteten Papiers 3 wurden anschließend bestimmt und mit einem Papier als Referenz verglichen, das in DMAc (enthaltend 5 Gew.% LiCI, bezogen auf das Gesamtgewicht aus LiCI und DMAc) für eine Minute getränkt wurde, anschließend für 72 Stunden in HMDO (500 g) getaucht wurde und zuletzt bei 60°C für 12 Stunden erhitzt wurde.
Tabelle 4: Mechanische Eigenschaften
Tabelle 4 zeigt, dass die Bruchkraft sowie die Bruchdehnung bei Einsatz von Gemischen enthaltend MCC sowie DMAc (enthaltend 5Gew.% LiCI) durch die erfindungsgemäße Bearbeitung im Vergleich zu Papier, das nicht mit einem Polymer wie MCC in Kontakt gekommen ist, deutlich höher ist. Das bearbeitete Papier war vom optischen und haptischen Eindruck gleichwertig zu nicht bearbeitetem Papier. Insbesondere wurde kein Ausbluten der Tinte bzw. der Druckerfarben beobachtet.
Beispiel 4 (Anlagern durch unterschiedliche Behandlungen (Schritt c.))
Testpapiere wurden mit einer Lösung gemäß Beispiel 1 getränkt, wobei anstelle von Viskose MCC verwendet wurde. Nach der Tränkung in der Lösung wurden die Papiere wie in Beispiel 1 mit DMAc abgespült und für die angegebene Dauer in die in Tabelle 5 aufgeführten Lösemittel getaucht.
Tabelle 5: Behandlungen
Nach dem Tauchen in die in Tabelle 5 aufgeführten Lösemittel wurden die Testpapiere 4 bis 6 bei 55°C für 12 Stunden erhitzt. Während Testpapier 4 ein mattes Erscheinungsbild aufwies, flexibel war und auch nach mehrmaligem Falzen noch stabil war, zeigten die Testpapiere 5 und 6 teilweise einen Glanz. Dies spricht dafür, dass in Testpapier 4 die Anlagerung der MCC wie oben an den Papierfasern erfolgte, während in Testpapieren 5 und 6 eine inhomogene, eher oberflächliche Anlagerung der MCC stattfand. Somit kann durch die Wahl der Behandlung, insbesondere durch die Wahl des Lösemittels in das getaucht wird, die Dauer der Behandlung und die Anlagerung des Polymers beeinflusst werden.
Beispiel 5 (Vergleich verschiedener Polymere)
Es wurden gemäß Beispiel 2 Lösungen hergestellt, wobei als Polymer die in Tabelle 6 angegebenen Polymere eingesetzt wurden. Testpapiere wurden zunächst fürfünf Minuten in der Lösung getränkt. Die jeweils erhaltenen Testpapiere wurden anschließend für 72
Stunden in HMDO (500 g) getaucht, wodurch sich die in Tabelle 6 angegebenen Polymere jeweils an den Papierfasern anlagerten. Nach der Behandlung in HMDO wurden die Testpapiere bei 55°C für 12 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere wurden anschließend bestimmt.
Tabelle 6: Mechanische Eigenschaften
Die Referenzprobe in Tabelle 6 wurde in einem Gemisch aus BMIM-CI und DMAc ohne das Polymer für fünf Minuten getränkt und anschließend für 72 Stunden in HMDO getaucht und danach bei 55°C für 12 Stunden erhitzt. Aus Tabelle 6 fällt auf, dass die Bruchkraft durch die erfindungsgemäße Bearbeitung im Vergleich zum Referenzpapier deutlich gestiegen ist, während die Bruchdehnung etwas gesunken ist. Somit eignen sich die oben genannten Polymere für die Festigung von Papier im erfindungsgemäßen Verfahren.
Beispiel 6 (Kombinierbarkeit mit Entsäuerungsverfahren)
Es wurden gemäß Beispiel 1 Lösungen hergestellt, in denen jeweils ein nach dem papersave Verfahren entsäuertes Papier und ein nicht entsäuertes Papier für eine Minute getränkt wurden. Nach der Tränkung wurden die Papiere für 30 Sekunden mit DMAc abgespült und die so erhaltenen Papiere jeweils für 72 Stunden in HMDO (500 g) getaucht, wodurch sich die Viskose an die Papierfasern anlagerte. Nach der Behandlung in HMDO wurden die Papiere bei 55°C für 12 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere („verfestigt“ bzw. „entsäuert/verfestigt“ in Tabelle 7) und eines nach dem papersave Verfahren entsäuerten Papiers („entsäuert“ in Tabelle 7) wurden anschließend bestimmt. Ebenfalls wurden die Bruchkraft und die Bruchdehnung des Ausgangspapiers bestimmt („Referenz“ in Tabelle 7), das also weder nach dem papersave Verfahren entsäuert noch gemäß dem erfindungsgemäßen Verfahren bearbeitet wurde.
Tabelle 7: Mechanische Eigenschaften
lm direkten Vergleich nimmt bei der Entsäuerung nach dem papersave Verfahren die Bruchkraft zu, während die Bruchdehnung abnimmt. Bei dem erfindungsgemäßen Verfahren wurde in diesem Versuch keine deutliche Veränderung der Bruchkraft beobachtet, während die Bruchdehnung deutlich anstieg. Bei der Probe, die sowohl entsäuert als auch verfestigt wurde, stiegen sowohl die Bruchkraft als auch die Bruchdehnung deutlich an. Tabelle 6 zeigt, dass das erfindungsgemäße Verfahren mit Entsäuerungsverfahren wie dem papersave Verfahren kombinierbar ist. Dabei ist insbesondere die Erhöhung der Bruchdehnung durch das erfindungsgemäße Verfahren von Bedeutung, da so die Brüchigkeit von Papieren reduziert werden kann.
Beispiel 7 (Anwendung verschiedener Polymere bei entsäuertem und nicht entsäuertem Substrat)
Es wurden gemäß Beispiel 1 Lösungen hergestellt, wobei jeweils als Polymer die in Tabelle 8 (nicht entsäuerte Papiere) und Tabelle 9 (nach dem papersave Verfahren entsäuerte Papiere) angegebenen Polymere eingesetzt wurden und als ionische Flüssigkeit BMIM-CI verwendet wurde. Die Testpapiere wurden eine Minute in der jeweiligen Lösung getränkt und anschließend für 30 Sekunden mit DMAc abgespült. Die so erhaltenen Papiere wurde für72 Stunden in HMDO getaucht, wodurch sich die in Tabelle 8 bzw. 9 angegebenen Polymere jeweils an die Papierfasern anlagerten. Nach der Behandlung in HMDO wurden die Papiere bei 55°C für 24 Stunden erhitzt. Die Bruchkraft und die Bruchdehnung der bearbeiteten Papiere wurden anschließend bestimmt. Das Referenzpapier wurde im Wesentlichen derselben Bearbeitung unterzogen wie die anderen Papiere, mit dem Unterschied, dass die Lösung im ersten Schritt kein Polymer enthielt, sondern nur Dimethylacetamid und BMIM-CI.
Tabelle 8: Mechanische Eigenschaften der bearbeiteten, nicht entsäuerten Papiere
Tabelle 9: Mechanische Eigenschaften der bearbeiteten, entsäuerten Papiere
Die Tabellen 8 und 9 zeigen, dass durch die Bearbeitung nach dem erfindungsgemäßen Verfahren insbesondere eine höhere Bruchkraft für entsäuerte und nicht entsäuerte Papiere erreicht werden kann. Für Stärke ist im Falie des nicht entsäuerten Papiers auch eine Erhöhung der Bruchdehnung zu beobachten (vgl. Tabelle 8). Gleiches gilt für Chitin im Falie des entsäuerten Papiers (vgl. Tabelle 9). Neben der Kombinierbarkeit mit dem papersave Verfahren geht aus den Tabellen 8 und 9 somit hervor, dass durch das erfindungsgemäße Verfahren die mechanischen Eigenschaften der Papiere verbessert werden können.
Beispiel 8 (Bearbeitung von Holz)
Es wurde gemäß Beispiel 2 eine Lösung hergestellt. Diese Lösung wurde auf einer Seite eines Holzbretts mit einem Pinsel aufgetragen, mit Wasser abgespült und für 16 Stunden bei 25°C getrocknet. Die Oberfläche des Holzes zeigt an den bearbeiteten Stellen eine deutliche Glättung der Oberfläche. Lacke lassen sich auch auf den bearbeiteten Stellen gut aufbringen.
Beispiel 9 (Fluoreszenzmikroskopische Aufnahmen)
Es wurde eine Lösung enthaltend 2 Gew.% fluoreszenzmarkierte Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 20 Gew.% BMIM-OAc enthielt, hergestellt. Fluoreszenzmarkierte Cellulose ist beispielsweise aus W. Helbert et al. Biomacromolecules 2003, 4, 481-471, bekannt. Als Fluoreszenzmarker wurde ein DTAF-Marker verwendet, der bei 488 nm angeregt wird, wobei die Emission bei 515 nm gemessen wird. Zwei Testpapiere wurden in dieser Lösung für eine Minute getränkt und anschließend für 30 Sekunden mit DMSO abgespült. Das erste dieser Papiere (Testpapier 7) wurde anschließend für 72 Stunden in HMDO enthaltend 1 Vol.% Ethanol (insges. 500 g) getaucht. Das zweite dieser Papiere (Testpapier 8) wurde für 72 Stunden in FIMDO (500 g) getaucht.
Nach der Behandlung in HDMO bzw. in HMDO/Ethanol wurden die Papiere bei 55°C für 12 Stunden erhitzt. Ebenfalls wurde eine Blindprobe erstellt, indem ein drittes Testpapier (Testpapier 9) zunächst in einer Mischung aus DMSO enthaltend 13 Gew.% BMIM-OAc jedoch ohne Polymer getränkt wurde, danach für 72 Stunden in HMDO (500 g) getaucht wurde und anschließend bei 55°C für 12 Stunden erhitzt wurde. Als Referenz diente ein viertes Testpapier (Testpapier 10), das nicht bearbeitet wurde.
Von den Testpapieren 7 bis 10 wurden mit Klebefilm an einer Stelle nacheinander mehrere Schichten abgenommen, wobei von der nicht bearbeiteten Referenz acht Schichten abgenommen werden konnten und von den übrigen bearbeiteten Testpapieren zehn Schichten abgenommen werden konnten. Von den Schichten wurden unter einem Mikroskop (Nikon FN-C LWD mit Objektiv Nikon 10x/0.25) bei 488 nm eine Aufnahme mit gleicher Belichtungszeit gemacht (220 ms mit Q-IMAGING RETIGA 200 RV). Repräsentative Abbildungen der Schichten sind in den Figuren Fig. 1 bis Fig. 4 gezeigt.
Fig. 1 zeigt eine Aufnahme von Schicht 3 von Testpapier 7. Es ist deutlich zu erkennen, dass sich die Fasern des Papiers sehr kontrastreich vom Hintergrund abheben. Fig. 2 zeigt eine Aufnahme von Schicht 3 von Testpapier 8. Es ist deutlich zu erkennen, dass sich die Fasern des Papiers sehr kontrastreich vom Hintergrund abheben. Fig. 3 zeigt eine Aufnahme von Schicht 3 der Referenz. Die Cellulosefasern sind von dem Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie in Fig. 1 und Fig. 2. Fig. 4 zeigt eine Aufnahme von Schicht 3 der Blindprobe. Auch hier sind die Cellulosefasern von dem Hintergrund zu unterscheiden, heben sich jedoch nicht so kontrastreich vom Hintergrund ab wie in Fig. 1 und Fig. 2.
Die Figuren stehen im Einklang mit einer Anlagerung der fluoreszenzmarkierten Cellulose aus dem Gemisch an den Fasern des Papiers. Es erfolgte also eine Art Ummantelung der Papierfasern durch die fluoreszenzmarkierte Cellulose, wodurch die Papierfasern und damit das Papier gefestigt werden.
Beispiel 10 (Bearbeitung eines Buchs)
Es wurden eine Lösung enthaltend 1 Gew.% alpha-Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 6,5 Gew.% BMIM-OAc enthielt, sowie eine Lösung enthaltend 2 Gew.% alpha-Cellulose in einer Mischung aus DMSO und BMIM-OAc, wobei das DMSO 11,3 Gew.% BMIM-OAc enthielt, hergestellt.
Als Substrat wurde ein 16-seitiges Buch aus dem Jahre 1943 mit dem Titel „Tabellenbuch für Metallgewerbe“ verwendet, das in einem Exsikkator über Orangegel über einen Zeitraum von einer Woche getrocknet worden war, wobei der Feuchtigkeitsgehalt des Buchs von 6,9 Gew.% auf 1,2 Gew.% gesunken war. Das Buch wurde durch zwei horizontale Schnitte in drei nahezu gleich große Teile geteilt.
Der mittlere Teile des Buchs wurde anschließend aufgefächert in einem Gefäß aufgestellt, wonach das Gefäß mit der voranstehend beschriebenen Lösung enthaltend 1 Gew.% alpha-Cellulose gefüllt und geschlossen wurde. Der mittlere Teil des Buchs würde für 1 Minute in der Lösung getränkt. Daraufhin wurde der mittlere Teil des Buchs aufgefächert in einem zweiten Gefäß aufgestellt und mit DMSO für 30 Sekunden abgespült. Anschließend wurde der mittlere Teil des Buchs aufgefächert in einem dritten Gefäß aufgestellt, wonach das Gefäß mit HMDO gefüllt und verschlossen wurde. Nach 72 Stunden wurde der mittlere Teil des Buchs entnommen, 6 Stunden bei 55°C und für eine Woche über Orangegel im Exsikkator getrocknet.
Der obere Teil des Buchs wurde wie der mittlere Teil des Buchs bearbeitet mit dem Unterschied, dass anstelle der Lösung enthaltend 1 Gew.% alpha-Cellulose die Lösung enthaltend 2 Gew.% alpha-Cellulose eingesetzt wurde. Der untere Teil des Buchs wurde nicht bearbeitet und diente als Referenz.
Bei der Analyse der bearbeiteten Teile des Buches wurden die folgenden Bestandteile der Teile des Buchs untersucht: das Deckblatt, welches der Bogen ist, der die erste und die letzte Seite bildet; ein Mittelblatt, welches in diesem Fall der Bogen ist, der die 4. Seite von vorn und die 4. Seite von hinten bildet; das Innenblatt, welches der Bogen ist, der die beiden innersten Seiten bildet. Keiner der Bestandteile der Teile des bearbeiteten Buchs zeigte Beeinträchtigungen durch die erfindungsgemäße Bearbeitung. Der Farbeindruck war nahezu unverändert. Die mechanischen Eigenschaften der verschiedenen Bestandteile des bearbeiteten Buches sowie der Referenz (des unteren, nicht bearbeiteten Teils des Buchs) sind in den nachfolgenden Tabellen 10 (1 Gew.% alpha-Cellulose) und 11 (2 Gew.% alpha-Cellulose) aufgeführt.
Tabelle 10: Mechanische Eigenschaften der Bestandteile des mittleren Teils des bearbeiteten Buchs (1 Gew.% alpha-Cellulose) sowie des nicht bearbeiteten unteren Teils des Buchs (Referenz)
Tabelle 11: Mechanische Eigenschaften der Bestandteile des oberen Teils des bearbeiteten Buchs (2 Gew.% alpha-Cellulose) sowie des nicht bearbeiteten unteren Teils des Buchs (Referenz)
Die Tabellen 10 und 11 zeigen für alle Bestandteile der bearbeiteten Teile des Buchs mehr als eine Verdopplung sowohl der Bruchkraft als auch der Bruchdehnung im Vergleich zur nicht bearbeiteten Referenz. Somit können mit dem erfindungsgemäßen Verfahren Bücher als Ganzes bearbeitet werden.
Beispiel 11 (Vergleich von DMSO und DMAc)
Es wurden eine Lösung enthaltend 1 Gew.% Danufil in einer Mischung aus DMSO und BMIM-CI, wobei das DMSO 9,9 Gew.% BMIM-CI enthielt, (nachfolgend: „DMSO-Lösung“) sowie eine Lösung enthaltend 1 Gew.% Danufil in einer Mischung aus DMAc und BMIM-CI, wobei das DMAc 9,9 Gew.% BMIM-CI enthielt, (nachfolgend: „DMAc-Lösung“) hergestellt.
Testpapier 11 wurde für eine Minute in der DMSO-Lösung getränkt, anschließend für 30 Sekunden mit DMSO abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55eC für 12 Stunden erhitzt.
Testpapier 12 (Blindversuch ohne Danufil) wurde für eine Minute in DMSO enthaltend 9,9 Gew.% BMIM-CI getränkt, anschließend für 30 Sekunden mit DMSO abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
Testpapier 13 wurde für 1,5 Minuten in DMSO getränkt, anschließend für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
Testpapier 14 wurde für eine Minute in der DMAc-Lösung getränkt, anschließend für 30 Sekunden mit DMAc abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
Testpapier 15 (Blindversuch ohne Danufil) wurde für eine Minute in DMAc enthaltend 9,9 Gew.% BMIM-CI getränkt, anschließend für 30 Sekunden mit DMAc abgespült, für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
Testpapier 16 wurde für 1,5 Minuten in DMAc getränkt, anschließend für 72 Stunden in HMDO (500 g) getaucht und danach bei 55°C für 12 Stunden erhitzt.
Als Referenz diente ein unbearbeitetes Testpapier.
Die mechanischen Eigenschaften der Testpapiere 11 bis 16 sowie der Referenz wurden bestimmt und sind in den nachfolgenden Tabellen 12 aufgeführt.
Tabelle 12: Mechanische Eigenschaften der Testpapiere 11 bis 13 sowie der Referenz
Aus Tabelle 12 geht hervor, dass die Testpapiere 11 und 14, die mit einer Lösung enthaltend Danufil in Kontakt gebracht wurden, eine höhere Bruchkraft aufwiesen als die Testpapiere 12, 13, 15 und 16 sowie die Referenz, die nicht mit eine Lösung enthaltend Danufil in Kontakt gebracht wurden. Die Werte der Bruchdehnung der Testpapiere 11 bis 16 unterschieden sich nur geringfügig. Ferner wiesen die Testpapier 11 bis 16 gegenüber der Referenz sowohl eine deutlich gesteigerte Bruchkraft als auch eine deutlich gesteigerte
Bruchdehnung auf, wobei die Steigerung der Bruchkraft bei den Testpapieren 11 und 14, in denen das Testpapier jeweils mit einer Lösung enthaltend Danufil in Kontakt gebracht wurde, am höchsten ausfiel. Somit zeigt auch dieses Beispiel, dass durch die Bearbeitung mit dem erfindungsgemäßen Verfahren die mechanischen Eigenschaften verbessert werden können.
Ferner geht aus Tabelle 12 hervor, dass die Bruchkraft von Testpapier 11 geringfügig höher ist als für Testpapier 14. Dementsprechend scheint DMSO, insbesondere in Kombination mit BMIM-CI und Danufil, im erfindungsgemäßen Verfahren etwas besser geeignet zu sein als DMAc, insbesondere in Kombination mit BMIM-CI und Danufil. Für die Bruchdehnung war kein deutlicher Unterschied zwischen den Testpapieren 11 und 14 auszumachen.
Die obigen Ausführungsbeispiele zeigen, dass durch das erfindungsgemäße Verfahren die mechanischen Eigenschaften von Substraten wie Papier verbessert werden können. Ferner kann der pH von Papier erhöht werden. Somit eignet sich das erfindungsgemäße Verfahren beispielsweise für die Konservierung von Büchern. Ferner können auch andere Substrate wie beispielsweise Holz dem erfindungsgemäßen Verfahren unterzogen werden. Damit kann, insbesondere bei massivem Materialauftrag, unter anderem eine Glättung von Oberflächenunebenheiten erreicht werden. Außerdem lassen sich im erfindungsgemäßen Verfahren verschiedene Polymere einsetzen. Ferner kann das erfindungsgemäße Verfahren mit Papierentsäuerungsverfahren wie dem papersave Verfahren kombiniert werden. Schließlich eignet sich das Verfahren auch zur Bearbeitung von Büchern als Ganzes.
L
Claims (24)
1. Verfahren zur Bearbeitung eines Materials enthaltend Fasern umfassend die folgenden Schritte: a. Bereitstellen eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel, b. in Kontakt bringen des zu bearbeitenden Materials mit dem in Schritt a. bereitgestellten Gemisch, um eine Mischung aus dem Material und dem in Schritt a. bereitgestellten Gemisch zu erhalten, c. Behandeln der in Schritt b. erhaltenen Mischung, so dass sich mindestens ein Teil des Polymers an den Fasern des Materials anlagert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Material Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Chitosan, Alginat, Stärke, Lignin, Polyvinylalkohol, Proteïne Oder Mischungen davon enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Material ein cellulosehaltiges Material, insbesondere Papier, Pappe, Textilien oder Holz, insbesondere Papier, ist.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer mindestens eine Hydroxyl-Gruppe, mindestens eine Amin-Gruppe, mindestens eine Säure-Gruppe, insbesondere eine Carboxyl-Gruppe, mindestens eine Amid-Gruppe, mindestens eine Thiol-Gruppe, mindestens eine Ether-Gruppe, insbesondere eine C1 -C4-Alkyl-Ether-Gruppe, mindestens eine Ester-Gruppe und/oder mindestens eine Urethan-Gruppe, insbesondere mindestens eine Hydroxyl-Gruppe, enthält und/oder ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalline Cellulose, Zellstoff, Hemicellulose, Viskose, Chitin, Lignin, Chitosan, Alginat, Stärke, Seide, natürliche Seide, Seidenbiopolymere, Polyvinylalkohol, Polyvinylacetat, Polyurethane, Polyamide, Proteïne, Polymere oder Copolymere auf Basis von Acrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Methacrylsäure und/oder ihren Ester- und/oder Amid-Derivaten, Vinylacetat, Itaconsäure, Maleinsäure, Fumarsäure, Acryloxypropionsäure, Methacryloxypropionsäure, Styrolsulfonsäure, Ethylmethacrylat-2-sulfonsäure, 2-Acrylamido-2-methylpropansulfonsäure, Phosphoethylmethacrylat, Celluloseether und Mischungen davon.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer ausgewählt ist aus der Gruppe bestehend aus Cellulose, alpha-Cellulose, mikrokristalliner Cellulose, Zellstoff, Viskose und Mischungen davon.
) 6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer Viskose, insbesondere im Wesentlichen nicht derivatisierte Viskose, ist.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, ) dass das polar aprotische Lösemittel ausgewählt ist aus der Gruppe bestehend aus Acetonitril, Dimethylformamid, Dimethylacetamid, Tetrahydrofuran, Dimethylsulfoxid, Aceton, Gammabutyrolacton, N-Methyl-2-pyrrolidon, Tetramethylharnstoff, Dimethylpropylenharnstoff, Sulfolan, Dimethylcarbonat, Ethylencarbonat, ionischen Flüssigkeiten und Mischungen davon. )
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das polar aprotische Lösemittel ausgewählt ist aus der Gruppe bestehend aus Dimethylacetamid, Dimethylsulfoxid, Acetonitril, ionischen Flüssigkeiten und Mischungen davon.
9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass polar aprotische Lösemittel eine ionische Flüssigkeit enthält.
10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, > dass das polar aprotische Lösemittel eine Mischung aus einer ionischen Flüssigkeit und mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril ist.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die ionische Flüssigkeit ein Kation ausgewählt aus einem 1,3-Dialkylimidazoliumkation, > einem Alkylpyridiniumkation, einem Tetraalkylammoniumkation und einem Phosphoniumkation, und ein Anion ausgewählt aus Fluorid, Chlorid, Bromid, lodid, Formiat, Acetat, Propionat, Butyrat, Hydrogensulfat, Tosylat, Trifluormethansulfonat, Bis(trifluoromethansulfonyl)imid, Hexafluorophosphat, Tetrafluoroborat, Benzoat, Glykolat, Thioglykolat, Lactat und Glycinat, enthält oder daraus besteht.
12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die ionische Flüssigkeit ein Dialkylimidazoliumkation und ein Anion ausgewählt aus Chlorid, Bromid und Acetat enthält Oder daraus besteht.
13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Behandlung der Mischung in Schritt c. ausgewählt ist aus der Gruppe bestehend aus in Kontakt bringen der Mischung mit einer ionischen Verbindung, insbesondere einem Salz, in Kontakt bringen der Mischung mit einer nicht-ionischen Verbindung, in Kontakt bringen der Mischung mit einer Säure, in Kontakt bringen der Mischung mit einer Base, in Kontakt bringen der Mischung mit einem polaren Lösemittel, in Kontakt bringen der Mischung mit einem unpoiaren Lösemittel, in Kontakt bringen der Mischung mit einem Lösemittelgemisch, Gefriertrocknen, Temperaturerniedrigung, Eindampfen des Lösemittels, Temperaturerhöhung, Druckerniedrigung und Kombinationen davon.
14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Behandlung der Mischung in Schritt c. das in Kontakt Bringen mit einem unpoiaren Lösemittel, insbesondere dasTauchen in ein unpolares Lösemittel, insbesondere Hexamethyldisiloxan, umfasst oder daraus besteht.
15. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren nach dem Behandeln in Schritt c. den zusätzlichen Schritt des Trocknens des in Schritt c. erhaltenen faserhaltigen Materials umfasst.
16. Verfahren nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass das Gemisch enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel hergestellt wird, indem zunächst das Polymer in der ionischen Flüssigkeit gelost wird und anschließend die so erhaltene Lösung mit mindestens einem von Dimethylacetamid, Dimethylsulfoxid und Acetonitril, insbesondere Dimethylacetamid, verdünnt wird.
17. Verfahren nach einem der Ansprüche 9 bis 16, dadurch gekennzeichnet, dass das Gemisch enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel 1 bis 30 Gew.%, insbesondere 3 bis 30 Gew.% Oder 5 bis 30 Gew.% oder 10 bis 30 Gew.% oder 12 bis 25 Gew.% oder 15 bis 20 Gew.% oder 17 bis 19 Gew.% ionische Flüssigkeit enthält, jeweils bezogen auf das Gesamtgewicht des Gemischs.
18. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Gemisch enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel 0,1 bis 10 Gew.%, insbesondere 0,5 bis 8 Gew.% oder 1 bis 5 Gew.%, jeweils bezogen auf das Gesamtgewicht des Gemischs, an Polymer enthält.
19. Material enthaltend Fasern, insbesondere Papier, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 18.
20. System umfassend mindestens zwei Materialien enthaltend Fasern gemäß Anspruch 19, insbesondere ein Buch.
21. Verwendung eines Gemischs enthaltend (i) mindestens ein Polymer und (ii) ein polar aprotisches Lösemittel zur Bearbeitung von Material enthaltend Fasern, insbesondere Papier, insbesondere in einem Verfahren gemäß einem der Ansprüche 1 bis 18.
22. Verwendung nach Anspruch 21, dadurch gekennzeichnet, dass das polar aprotische Lösemittel durch mindestens ein Merkmal der Ansprüche 7 bis 12 charakterisiert ist und/oder das Polymer durch mindestens ein Merkmal der Ansprüche 4 bis 6 charakterisiert ist.
23. Verwendung von Dimethylsulfoxid als Antioxidationsmittel zur Bearbeitung von Papier, insbesondere in einem Verfahren gemäß einem der Ansprüche 1 bis 18.
24. Verwendung einer ionischen Flüssigkeit enthaltend ein quartäres Ammoniumkation, insbesondere einer ionischen Flüssigkeit enthaltend ein Dialkylimidazoliumkation, insbesondere 1-Butyl-3-methylimidazoliumchlorid oder 1-Butyl-3-methylimidazoliumacetat, als antimikrobielles Mittel zur Bearbeitung von Papier, insbesondere in einem Verfahren gemäß einem der Ansprüche 1 bis 18. [λ.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU93386A LU93386B1 (de) | 2016-12-20 | 2016-12-20 | Verfahren zur Bearbeitung von Materialien enthaltend Fasern |
EP17207499.9A EP3339508B1 (de) | 2016-12-20 | 2017-12-14 | Verfahren zur bearbeitung von materialien enthaltend fasern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU93386A LU93386B1 (de) | 2016-12-20 | 2016-12-20 | Verfahren zur Bearbeitung von Materialien enthaltend Fasern |
Publications (1)
Publication Number | Publication Date |
---|---|
LU93386B1 true LU93386B1 (de) | 2018-07-24 |
Family
ID=57963401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
LU93386A LU93386B1 (de) | 2016-12-20 | 2016-12-20 | Verfahren zur Bearbeitung von Materialien enthaltend Fasern |
Country Status (1)
Country | Link |
---|---|
LU (1) | LU93386B1 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3529925A (en) * | 1967-09-25 | 1970-09-22 | Itt Rayonier Inc | Process for interfiber bonding of cellulosic fibrous webs |
EP0285227A1 (de) * | 1987-04-01 | 1988-10-05 | B.V.B.A. Technische Handelsonderneming Jezet International | Verfahren zur Konservierung von Bogen und Bahnen aus Papier und Vorrichtung zur Ausführung dieses Verfahrens |
WO2014201544A1 (en) * | 2013-06-18 | 2014-12-24 | Chemgreen Innovation Inc. | Antimicrobial polymer incorporating a quaternary ammonium group |
-
2016
- 2016-12-20 LU LU93386A patent/LU93386B1/de not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3529925A (en) * | 1967-09-25 | 1970-09-22 | Itt Rayonier Inc | Process for interfiber bonding of cellulosic fibrous webs |
EP0285227A1 (de) * | 1987-04-01 | 1988-10-05 | B.V.B.A. Technische Handelsonderneming Jezet International | Verfahren zur Konservierung von Bogen und Bahnen aus Papier und Vorrichtung zur Ausführung dieses Verfahrens |
WO2014201544A1 (en) * | 2013-06-18 | 2014-12-24 | Chemgreen Innovation Inc. | Antimicrobial polymer incorporating a quaternary ammonium group |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1720106B2 (de) | Kollagenhaltige beschichtungsmassen fuer die herstellung von selbstklebenden ueberzuegen auf beliebigen substraten | |
EP2761085B1 (de) | In wasser rasch zerfallendes filterpapier | |
EP3339508B1 (de) | Verfahren zur bearbeitung von materialien enthaltend fasern | |
DE2018088C3 (de) | ||
DE102018118271A1 (de) | Leichtes trennbasispapier | |
EP3827026B1 (de) | Verfahren zum isolieren von cellulose- oder chitinnanokristallen durch periodatoxidation | |
LU93386B1 (de) | Verfahren zur Bearbeitung von Materialien enthaltend Fasern | |
DE1468735A1 (de) | Verfahren zur Entalkalisierung von Polysaccharidxanthogenatloesungen und entalkalisierte Polysaccharidxanthogenate | |
DE2614869A1 (de) | Vernetzungsmittel, verfahren zu seiner herstellung und unter seiner verwendung erhaltenes papier | |
AT402740B (de) | Cellulosefaser | |
DE112006003232T5 (de) | Nanostrukturiertes Trägerpapier | |
DE2616695C3 (de) | Mittel auf der Basis dispergierter Cellulose zur Behandlung cellulosehaltiger Faserstoffe | |
DE1918415A1 (de) | Verfahren zum Leimen von Papier und dadurch geleimtes Papier | |
DE10057554B4 (de) | Festigungs- und/oder Stabilisierungsmittel, Verfahren zur Festigung/Stabilisierung und Verwendung | |
DE2801820A1 (de) | Verfahren zur verbesserung des loesungszustandes von viskosen | |
EP0261316B1 (de) | Verfahren zur Herstellung vergilbungsresistenter Papiere, insbesondere gegenüber Hitzeeinwirkung | |
DE1696266A1 (de) | Verfahren zur Behandlung von Papier | |
DE1720106C3 (de) | Kollagenh*»ige Beschichtungsmassen für °"e Herstellung von selbstklebender> Überzügen auf beliebigen Substratef1 | |
DE102022119507A1 (de) | Verfahren zur Herstellung eines Papiers mit einer verbesserten Fett- und Öldichtigkeit, hergestelltes Papier und dessen Verwendung | |
DE251159C (de) | ||
DE69005302T2 (de) | Papierleimungszusammensetzungen. | |
DE2660381C3 (de) | Papier | |
DE102013112048A1 (de) | Photoreaktive Polymere, Verfahren zur Herstellung von nassfesten Papierprodukten und nassfestes Papierprodukt | |
EP1663444A1 (de) | Verfahren zum herstellen eines filtermaterials | |
DE19958182A1 (de) | Verfahren zum Leimen von Papier in der Masse und der Oberfläche |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG | Patent granted |
Effective date: 20180724 |
|
MA | Patent totally renounced (lapsed due to resignation by the proprietor) |
Effective date: 20180921 |