EP3310499B1 - Verfahren zum mechanischen klassieren von polysilicium - Google Patents

Verfahren zum mechanischen klassieren von polysilicium Download PDF

Info

Publication number
EP3310499B1
EP3310499B1 EP16711200.2A EP16711200A EP3310499B1 EP 3310499 B1 EP3310499 B1 EP 3310499B1 EP 16711200 A EP16711200 A EP 16711200A EP 3310499 B1 EP3310499 B1 EP 3310499B1
Authority
EP
European Patent Office
Prior art keywords
polysilicon
size
area
slots
screen plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16711200.2A
Other languages
English (en)
French (fr)
Other versions
EP3310499A1 (de
Inventor
Andreas Bergmann
Thomas Buschhardt
Simon Ehrenschwendtner
Christian Fraunhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Wacker Chemie AG
Original Assignee
Siltronic AG
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG, Wacker Chemie AG filed Critical Siltronic AG
Publication of EP3310499A1 publication Critical patent/EP3310499A1/de
Application granted granted Critical
Publication of EP3310499B1 publication Critical patent/EP3310499B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • B07B13/07Apparatus in which aggregates or articles are moved along or past openings which increase in size in the direction of movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/12Apparatus having only parallel elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens

Definitions

  • the invention relates to a method for the mechanical classification of polysilicon.
  • Polycrystalline silicon serves as the starting material for the production of single-crystal silicon for semiconductors according to the Czochralski (CZ) or zone melting (FZ) process, as well as for the production of single or multicrystalline silicon using various drawing and casting processes Production of solar cells for photovoltaics.
  • Polycrystalline silicon is usually produced using the Siemens process.
  • support bodies usually thin filament rods made of silicon
  • a bell-shaped reactor ("Siemens reactor") and a reaction gas containing hydrogen and one or more silicon-containing components are introduced, the polycrystalline silicon being deposited on the support bodies.
  • the polycrystalline silicon rods produced in this way are broken into small fragments, which are then usually classified according to size. Screening machines are usually used to sort or classify polycrystalline silicon into different size classes after comminution.
  • polycrystalline silicon granulate is produced in a fluidized bed reactor. This is done by fluidizing silicon particles by means of a gas flow in a fluidized bed, which is heated to high temperatures by a heating device. By adding a silicon-containing reaction gas, a pyrolysis reaction takes place on the hot particle surface. Elemental silicon is deposited on the silicon particles and the individual particles increase in diameter.
  • the polysilicon granulate is usually divided into two or more fractions or classes (classification) by means of a screening system.
  • the smallest sieve fraction (undersized sieve) can then be processed into seed particles in a grinding system and added to the reactor.
  • the target fraction is usually packaged and transported to the customer.
  • the customer uses the polysilicon granulate i.a. for growing single crystals according to the Czochralski method.
  • a sieving machine is generally a machine for sieving, i.e. the separation (separation) of solid mixtures according to grain size.
  • plane vibrating screening machines i.e. the separation (separation) of solid mixtures according to grain size.
  • the screening machines are mostly driven electromagnetically or by unbalance motors or gears.
  • the movement of the screen lining is used to transport the feed material in the longitudinal direction of the screen and to allow the fine fraction to pass through the screen openings.
  • throwing screening machines also have a vertical screening acceleration in addition to the horizontal.
  • a special type is the multi-deck screening machine, which can fractionate several grain sizes at the same time. They are designed for a variety of sharp separations in the medium to fine grain range.
  • the drive principle is based on two unbalance motors working in opposite directions, which generate a linear vibration.
  • the material to be sieved moves in a straight line over the horizontal dividing surface.
  • the machine works with low vibration acceleration. Thanks to a modular system, a large number of screen decks can be put together to form a screen stack. This means that, if necessary, different grain sizes can be produced in a single machine without having to change the screen linings. By repeating the same screen deck sequences several times, the material to be screened can be offered a large screen area.
  • US 8021483 B2 or DE60310627 T2 discloses an apparatus for sorting polycrystalline silicon pieces including a vibration motor assembly and a stepped tray classifier attached to the vibration motor assembly.
  • the vibration motor arrangement ensures that the silicon pieces move over a first base containing grooves.
  • dust is removed by a stream of air through a perforated plate.
  • the silicon pieces are deposited in holes of grooves or remain on ridges of the grooves.
  • pieces of silicon that are smaller than a gap between the first and the following floor fall through this onto a conveyor belt. Larger pieces of silicon move across the gap and fall onto the second tray.
  • US 2007/0235574 A1 discloses an apparatus for comminuting and sorting polycrystalline silicon, comprising a feed device for a polysilicon coarse fraction into a crusher system, the crusher system, and a sorting system for sorting the polysilicon fragments, the apparatus being provided with a control which has a variable setting at least a crushing parameter in the crushing system and / or at least one sorting parameter in the sorting system.
  • the sorting system particularly preferably consists of a multi-stage mechanical screening system and a multi-stage optoelectronic separation system.
  • US 2009/0120848 A1 describes a device that enables flexible classification of broken polycrystalline silicon, characterized in that it comprises a mechanical screening system and an optoelectronic sorting system, the polycrystalline being separated by the mechanical screening system into a fine silicon fraction and a residual silicon fraction and the silicon -Residual fraction is separated into further fractions via an optoelectronic sorting system.
  • the mechanical screening system is preferably a vibrating screening machine that is driven by an unbalance motor. Mesh and perforated screens are preferred as screen covering.
  • US 2012/0198793 A1 discloses a method for metering and packaging polysilicon fragments, wherein a product stream of polysilicon fragments is transported over a conveyor chute, separated into coarse and fine fragments by means of at least one sieve, weighed by means of a metering scale and adjusted to a target weight is metered, the at least one sieve and the metering scales at least partially comprise a hard metal on their surfaces.
  • US 2014/0130455 A1 discloses, in the context of a method for packaging polycrystalline silicon fragments, that in a metering system fine components, that is to say the finest particles and chippings of the polysilicon, are separated off by means of a sieve.
  • the screen can be a perforated plate, a bar screen or an optopneumatic sorting system.
  • the screens used comprise at least partially a low-contamination material such.
  • the screens can be partially or fully provided with a coating of titanium nitride, titanium carbide, aluminum titanium nitride or DLC (Diamond Like Carbon).
  • Bar screens usually comprise bars running in parallel, the screen passage being determined by the distance between the bars and the screen overflow emerging at the free end of the bars.
  • the sieve bars are arranged in one plane and the material to be sieved is transported in that the sieve bars are inclined downward at their free end.
  • Separating devices tend to clog when separating fines in the packaging machines.
  • This also applies to the well-known step floor classifiers in which fractions are attempted to be separated using gaps between the floors.
  • step floor classifiers in which fractions are attempted to be separated using gaps between the floors.
  • separation devices have to be cleaned cyclically and thus do not achieve a continuous, constant separation accuracy.
  • this requires system downtimes and additional effort for cleaning.
  • no exact separation is achieved, especially since, in addition to the fraction to be separated, a considerable proportion of oversizes is also separated off. This also leads to an undesired reduction in the yield of the target fraction.
  • DE19822996 C1 discloses a separation device for elongated solid parts, which has a vibrating base with a number of longitudinal grooves extending in the conveying direction, adjoining the sieve openings for separating the elongated solid parts (18), characterized in that the groove depth of the longitudinal grooves (12) in the conveying direction (6) decreases.
  • a further advantageous embodiment provides for the sieve openings to widen in the conveying direction.
  • the arrangement described allows metal wires to be removed from pyrolysis residues such as those from construction sites or municipal waste.
  • the groove depth is initially designed in such a way that particles collect in the grooves, especially the long wires from the waste to be recycled. Then the groove depth decreases up to a planar state clearly decreases. As a result, the long wires can be cut off.
  • the object of the invention resulted from the problem described.
  • the polysilicon on a sieve plate comprising a feed area for polysilicon, a profiled area with peaks and valleys, an area with slots, the slots adjoining the sinks, and a removal area, the slots opening in the direction of the removal area enlarge, is abandoned, wherein the sieve plate is set in vibration in such a way that the polysilicon executes a movement in the direction of the removal area, whereby small-scale polysilicon collects in the depressions of the sieve plate and falls through the slots of the sieve plate and is thereby separated from the applied polysilicon,
  • the sieve plate is inclined at an angle of 5 to 20 ° to the horizontal, the tips of the profiled area also continuing into the area with slots so that the entire sieve plate is profiled, but the sieve plate at its rear end in the conveying direction Has slots instead of sinks where the depth and angle of the depressions of the profiled area and the size of the slots are designed so that either finely divided silicon, which can be separated by means of
  • the polysilicon is polycrystalline fragments.
  • Small-sized polysilicon is to be understood as a subset of the applied amount of polysilicon that is to be separated off by means of the screening system.
  • the small-sized polysilicon thus corresponds to the fraction to be separated.
  • the abandoned polysilicon is polysilicon fragments with a fine fraction. The fine fraction should be separated with the sieve plate.
  • the sieve plate includes a feed area in which the polysilicon is fed.
  • the polysilicon is conveyed to the screening system by means of a conveyor trough and delivered to the feed area of the screen plate.
  • the sieve plate also comprises a profiled area with grooves or grooves or generally depressions and elevations, so that the profiled area has depressions and peaks.
  • the abandoned polysilicon comprises fragments of size classes 3 to 5 and fines according to the above definition. During the movement of the polysilicon on the profiled area, fines collect in the depressions of the profiled area.
  • the applied polysilicon comprises fragments of size classes 0 to 2 and fine fraction according to the above. Definition. During the movement of the polysilicon on the profiled area, the fine fraction contained in the polysilicon collects in the depressions of the profiled area.
  • the sieve plate comprises - adjoining the profiled area - an area with slots.
  • the slots are arranged directly behind the depressions of the profiled area in the conveying direction.
  • the tips of the profiled area continue into the area with slots, so that the entire screen plate is profiled, but the screen plate has slots instead of depressions at its rear end in the conveying direction.
  • the fine fraction or small fragments / particles are thus separated off via the slots in the sieve plate.
  • the separated fines or small fragments / particles are taken up by a collecting container arranged below the slots in the sieve plate.
  • the removal area is connected to a conveyor trough through which the larger fragments are removed.
  • another sieve plate can then follow in order to separate a further fraction from the polysilicon.
  • the separation accuracy is significantly higher than with bar screens, which means that significantly less faulty grain is separated and thus the yield increases.
  • the disclosure therefore provides a sieve plate that can be used in all types of sieve systems, in which the fine fraction or small-sized silicon collects in depressions in the first area of the sieve plate and is deliberately separated in the last area of the sieve plate by widening sieve slots.
  • the sieve plate consists of one or more materials selected from the group consisting of plastic, ceramic, glass, diamond, amorphous carbon, silicon or metal.
  • the sieve plate is lined or coated with one or more materials selected from the group consisting of plastic, polyurethane, ceramic, glass, diamond, amorphous carbon and silicon.
  • the parts of the screen plate which come into contact with the polysilicon are lined or coated with one or more materials selected from the group consisting of plastic, polyurethane, ceramic, glass, diamond, amorphous carbon and silicon.
  • the sieve plate consists of hard metal or is coated or lined with a hard metal.
  • the sieve plate comprises a metallic base body and a coating or lining made of one or more materials selected from the group consisting of plastic, ceramic, glass, diamond, amorphous carbon and silicon.
  • the plastic used in the aforementioned embodiments is selected from the group consisting of PVC (polyvinyl chloride), PP (polypropylene), PE (polyethylene), PU (polyurethane), PFA (perfluoroalkoxy), PVDF (polyvinylidene fluoride) and PTFE (polytetrafluoroethylene).
  • PVC polyvinyl chloride
  • PP polypropylene
  • PE polyethylene
  • PU polyurethane
  • PFA perfluoroalkoxy
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the sieve plate comprises a coating of titanium nitride, titanium carbide, aluminum titanium nitride or DLC (Diamond Like Carbon).
  • the size of the slots depends on the fraction to be separated and can be up to 200 mm.
  • a separation step should take place at 10 mm (sieving off polysilicon smaller than 10 mm), the slots having a width of 10 mm at their end (beginning of the removal area).
  • the design of the profiled area of the sieve plate depends on the fraction to be separated.
  • the depth and angle of the depressions in the profiled area must be designed so that the fraction to be separated, e.g. the fine fraction collects there.
  • the angles of the depressions can be flat to extremely acute and be larger than 1 ° and smaller than 180 °.
  • the depth of the depressions can be from 1 to 200 mm.
  • an angle of 45 ° and a depth of 20 mm are suitable for the separation of a 10 mm fraction.
  • the excitation of the sieve plate can be done either with a plane vibrating or throwing sieve machine. Vibration drives (such as magnetic drives) or unbalance drives can also be provided.
  • the sieve plate is inclined to the horizontal.
  • the angle of inclination is between 5 and 20 °, since gravity supports the conveyance via the sieve plate.
  • Fig. 1 shows the schematic structure of a sieve plate.
  • the sieve plate 1 comprises a feed area 2 in which the polysilicon is fed.
  • the polysilicon can, for example, be conveyed to the screening system by means of a conveyor trough and delivered to the feed area 2 of the screen plate 1.
  • the sieve plate 1 also comprises a profiled area 3.
  • This profiled area 3 provides grooves or grooves or depressions of a different type so that the profiled area 3 has depressions 31 and peaks 32.
  • the fine fraction contained in the polysilicon collects during the movement of the polysilicon on the profiled region 3 in the depressions 31 of the profiled region 3.
  • the sieve plate 1 comprises - adjoining the profiled area 3 - an area 4 with slots 41.
  • the slots 41 are arranged immediately behind (in the conveying direction) the depressions 31 of the profiled area 3.
  • the fine fractions of the polysilicon located in the depressions 31 of the profiled region 3 are guided in a targeted manner to the slots 41 of the region 4.
  • the tips 32 of the profiled area 3 also continue in the area 4, so that the entire screen plate 1 is profiled, but has slots 41 instead of depressions 31 in the area 4.
  • the fine fraction is thus separated off via the slots 41 in the sieve plate 1.
  • the separated fines can be received, for example, by a collecting container arranged below the slots 41 in the sieve plate 1.
  • the slots 41 widen in the conveying direction. It has been shown that this can effectively avoid clogging of the openings.

Description

  • Gegenstand der Erfindung ist ein Verfahren zum mechanischen Klassieren von Polysilicium.
  • Polykristallines Silicium (kurz: Polysilicium) dient als Ausgangsmaterial zur Herstellung von einkristallinem Silicium für Halbleiter nach dem Czochralski(CZ)- oder Zonenschmelz(FZ)-Verfahren, sowie zur Herstellung von ein- oder multikristallinem Silicium nach verschiedenen Zieh- und Gieß-Verfahren zur Produktion von Solarzellen für die Photovoltaik.
  • Polykristallines Silicium wird in der Regel mittels des Siemens-Verfahrens hergestellt. Bei diesem Verfahren werden in einem glockenförmigen Reaktor ("Siemens-Reaktor") Trägerkörper, üblicherweise dünne Filamentstäbe aus Silicium, durch direkten Stromdurchgang erhitzt und ein Reaktionsgas enthaltend Wasserstoff und eine oder mehrere siliciumhaltige Komponenten eingeleitet, wobei sich das polykristalline Silicium auf den Trägerkörpern abscheidet.
  • Für die meisten Anwendungen werden die derart hergestellten polykristallinen Siliciumstäbe auf kleine Bruchstücke gebrochen, welche üblicherweise anschließend nach Größen klassiert werden. Üblicherweise werden Siebmaschinen eingesetzt, um polykristallines Silicium nach der Zerkleinerung in unterschiedliche Größenklassen zu sortieren bzw. zu klassieren.
  • Alternativ wird polykristallines Siliciumgranulat in einem Wirbelschichtreaktor produziert. Dies geschieht durch Fluidisierung von Siliciumpartikeln mittels einer Gasströmung in einer Wirbelschicht, wobei diese über eine Heizvorrichtung auf hohe Temperaturen aufgeheizt wird. Durch Zugabe eines siliciumhaltigen Reaktionsgases erfolgt eine Pyrolysereaktion an der heißen Partikeloberfläche. Dabei scheidet sich elementares Silicium auf den Siliciumpartikeln ab und die einzelnen Partikel wachsen im Durchmesser an.
  • Das Polysiliciumgranulat wird üblicherweise nach dessen Herstellung mittels einer Siebanlage in zwei oder mehr Fraktionen oder Klassen geteilt (Klassierung). Die kleinste Siebfraktion (Siebunterkorn) kann anschließend in einer Mahlanlage zu Keimpartikeln verarbeitet und dem Reaktor zugegeben werden. Die Siebzielfraktion wird üblicherweise verpackt und zum Kunden transportiert. Der Kunde verwendet das Polysiliciumgranulat u.a. zum Züchten von Einkristallen nach dem Czochralski-Verfahren.
  • Eine Siebmaschine ist allgemein eine Maschine zum Sieben, also der Trennung (Separation) von Feststoffgemischen nach Korngrößen. Nach Bewegungscharakteristik wird zwischen Planschwingsiebmaschinen und Wurfsiebmaschinen unterschieden. Der Antrieb der Siebmaschinen erfolgt meist elektromagnetisch bzw. durch Unwuchtmotoren oder -getriebe. Die Bewegung des Siebbelags dient dem Weitertransport des Aufgabeguts in Sieblängsrichtung und dem Durchtritt der Feinfraktion durch die Sieböffnungen. Im Gegensatz zu Planschwingsiebmaschinen tritt bei Wurfsiebmaschinen neben der horizontalen auch eine vertikale Siebbeschleunigung auf.
  • Eine spezielle Art ist die Mehrdecksiebmaschine, die gleichzeitig mehrere Korngrößen fraktionieren kann. Sie sind konzipiert für eine Vielzahl scharfer Trennungen im Mittelbis Feinstkornbereich. Das Antriebsprinzip beruht bei Mehrdeck-Plansiebmaschinen auf zwei gegenläufig arbeitenden Unwuchtmotoren, die eine lineare Schwingung erzeugen. Das Siebgut bewegt sich geradlinig über die horizontale Trennfläche. Dabei arbeitet die Maschine mit geringer Schwingbeschleunigung. Durch ein Baukastensystem können eine Vielzahl von Siebdecks zu einem Siebstapel zusammengestellt werden. Somit können im Bedarfsfall unterschiedliche Körnungen in einer einzigen Maschine hergestellt werden, ohne dass Siebbeläge gewechselt werden müssen. Durch mehrfache Wiederholung gleicher Siebdeckfolgen kann dem Siebgut viel Siebfläche angeboten werden.
  • US 8021483 B2 , bzw DE60310627 T2 , offenbart eine Vorrichtung zum Sortieren polykristalliner Siliciumstücke enthaltend eine Schwingungsmotoranordnung und einen Stufenbodenklassierer, befestigt an der Schwingungsmotoranordnung. Die Schwingungsmotoranordnung sorgt dafür, dass sich die Siliciumstücke über einen ersten Boden enthaltend Nuten bewegen. In einem Wirbelschichtbereich wird Staub durch einen Luftstrom durch eine perforierte Platte entfernt. In einem profilierten Bereich des ersten Bodens setzen sich die Siliciumstücke in Löchern von Nuten ab oder verbleiben auf Kämmen der Nuten. Am Ende des ersten Bodens fallen Siliciumstücke, die kleiner als ein Spalt zwischen erstem und nachfolgendem Boden sind, durch diesen auf ein Transportband. Größere Siliciumstücke bewegen sich über den Spalt hinweg und fallen auf den zweiten Boden.
  • US 2007/0235574 A1 offenbart eine Vorrichtung zum Zerkleinern und Sortieren von polykristallinem Silicium, umfassend eine Aufgabeeinrichtung für einen Polysilicium-Grobbruch in eine Brecheranlage, die Brecheranlage, und eine Sortieranlage zum Klassieren des Polysilicium-Bruchs, wobei die Vorrichtung mit einer Steuerung versehen ist, die eine variable Einstellung mindestens eines Brechparameters in der Brecheranlage und/oder mindestens eines Sortierparameters in der Sortieranlage ermöglicht. Besonders bevorzugt besteht die Sortieranlage aus einer mehrstufigen mechanischen Siebanlage und einer mehrstufigen optoelektronischen Trennanlage.
  • Auch US 2009/0120848 A1 beschreibt eine Vorrichtung, die eine flexible Klassierung von gebrochenem polykristallinem Silicium ermöglicht, dadurch gekennzeichnet, dass sie eine mechanische Siebanlage und eine optoelektronische Sortieranlage umfasst, wobei der Polybruch durch die mechanische Siebanlage in einen Silicium-Feinanteil und einen Silicium-Restanteil getrennt wird und der Silicium-Restanteil über eine optoelektronische Sortieranlagen in weitere Fraktionen aufgetrennt wird.
  • Die mechanische Siebanlage ist vorzugsweise eine Schwingsiebmaschine ist, die über einen Unwuchtmotor angetrieben wird. Als Siebbelag sind Maschen- und Lochsiebe bevorzugt.
  • US 2012/0198793 A1 offenbart ein Verfahren zum Dosieren und Verpacken von Polysiliciumbruchstücken, wobei ein Produktstrom an Polysiliciumbruchstücken über eine Förderrinne transportiert, mittels wenigstens eines Siebs in grobe und feine Bruchstücke getrennt, mittels einer Dosierwaage abgewogen und auf ein Zielgewicht dosiert wird, wobei das wenigstens eine Sieb und die Dosierwaage an ihren Oberflächen wenigstens teilweise ein Hartmetall umfassen.
  • US 2014/0130455 A1 offenbart im Rahmen eines Verfahrens zum Verpacken von polykristallinen Siliciumbruchstücken, dass in einem Dosiersystem Feinanteil, also feinste Partikel und Absplitterungen des Polysiliciums, mittels eines Siebs abgetrennt wird. Beim Sieb kann es sich um eine Lochplatte, ein Stangensieb oder eine optopneumatische Sortierung handeln.
    Die verwendeten Siebe umfassen an ihren Oberflächen wenigstens teilweise einen kontaminationsarmen Werkstoff wie z. B. ein Hartmetall oder Keramik/Carbide.. Die Siebe können teilweise oder vollflächig mit einer Beschichtung aus Titannitrid, Titancarbid, Aluminiumtitannitrid oder DLC (Diamond Like Carbon) versehen sein.
  • Stangensiebe umfassen üblicherweise parallel verlaufende Stangen, wobei der Siebdurchgang durch den Abstand der Stangen bestimmt ist und der Siebüberlauf am freien Ende der Stangen austritt. Bei den bekannten Stangensieben sind die Siebstangen in einer Ebene angeordnet und der Transport des Siebgutes erfolgt dadurch, dass die Siebstangen zu ihrem freien Ende abwärts geneigt sind.
  • Abtrennvorrichtungen nach dem Stand der Technik wie Stangensiebe neigen bei der Feinanteilabtrennung in den Verpackungsmaschinen zum Verstopfen. Dies gilt auch für die bekannten Stufenbodenklassierer, bei denen Fraktionen über Spalte zwischen den Böden abzutrennen versucht werden.
    Dies hat zur Folge, dass diese Abtrennvorrichtungen zyklisch gereinigt werden müssen und dadurch keine kontinuierliche, gleichbleibende Trenngenauigkeit erreichen.
    Zudem erfordert dies Anlagenstillständen und zusätzlichen Aufwand für die Reinigung.
    Nachteilig ist auch, dass keine exakte Trennung erreicht wird, zumal neben der abzutrennenden Fraktion stets ein erheblicher Anteil an Übergrößen mit abgetrennt wird. Somit kommt es auch zu einer ungewollten Reduzierung der Ausbeute der Zielfraktion.
  • DE19822996 C1 offenbart eine Abscheidevorrichtung für langgestreckte Feststoffteile, die einen Schwingboden mit einer Anzahl sich in Förderrichtung erstreckender Längsrillen aufweist, an die sich Sieböffnungen zum Abscheiden der langgestreckten Feststoffteile (18) anschließen, dadurch gekennzeichnet, dass die Rillentiefe der Längsrillen (12) in Förderrichtung (6) abnimmt. Zur Vermeidung von Verstopfungen und zur Gewährleistung eines möglichst flüssigen Feststoffflusses, ist in einer weiteren vorteilhaften Ausgestaltung vorgesehen, dass sich die Sieböffnungen in Förderrichtung auf weiten.
  • Durch die beschriebene Anordnung lassen sich Metalldrähte aus Pyrolyserückständen, wie sie beispielsweise von Baustellen oder Siedlungsabfällen stammen, entfernen.
  • Die Rillentiefe ist zunächst so ausgestaltet, dass sich in den Rillen Partikel ansammeln, insbesondere die langen Drähte aus dem zu recycelnden Abfall. Dann nimmt die Rillentiefe ab bis hin zu einem planaren Zustand deutlich abnimmt. Dies hat zur Folge, dass die langen Drähte abgetrennt werden können.
  • Aus der beschriebenen Problematik ergab sich die Aufgabenstellung der Erfindung. Die Aufgabe der Erfindung wird gelöst durch ein Verfahren zum mechanischen Klassieren von Polysilicium, bestehend aus Bruchstücken der Größenklassen
    Bruchgröße 0 0,1 bis 5 mm, oder
    Bruchgröße 1 3 bis 15 mm, oder
    Bruchgröße 2 10 bis 40 mm, oder
    Bruchgröße 3 20 bis 60 mm, oder
    Bruchgröße 4 45 bis 120 mm, oder
    Bruchgröße 5 100 bis 250 mm,
    wobei die Größenklasse von Polysiliciumbruchstücken als längste Entfernung zweier Punkte auf der Oberfläche eines Siliciumbruchstücks (=max. Länge) definiert ist, mit einer Siebanlage, wobei das Polysilicium auf eine Siebplatte, umfassend einen Aufgabebereich für Polysilicium, einen profilierten Bereich mit Spitzen und Senken, einen Bereich mit Schlitzen, wobei die Schlitze an die Senken anschließen, und einen Entnahmebereich, wobei sich die Schlitze in Richtung des Entnahmebereichs vergrößern, aufgegeben wird, wobei die Siebplatte derart in Schwingungen versetzt wird, dass das Polysilicium eine Bewegung in Richtung des Entnahmebereichs ausführt, wobei sich kleinteiliges Polysilicium in den Senken der Siebplatte sammelt und durch die Schlitze der Siebplatte fällt und dadurch vom aufgegebenen Polysilicium getrennt wird, wobei die Siebplatte um einen Winkel von 5 bis 20° gegen die Waagerechte geneigt ist, wobei sich die Spitzen des profilierten Bereichs auch in den Bereich mit Schlitzen fortsetzen, so dass die gesamte Siebplatte profiliert ist, wobei die Siebplatte jedoch an seinem in Förderrichtung hinteren Ende Schlitze statt Senken aufweist, wobei Tiefe und Winkel der Senken des profilierten Bereichs und Größe der Schlitze so ausgestaltet sind, dass entweder feinteiliges Silicium, das sich mittels eines Maschensiebs mit quadratischen Maschen einer Größe von 8 mm x 8 mm abtrennen lässt, vom aufgegebenen Polysilicium 3 bis 5 getrennt wird, oder feinteiliges Silicium, das sich mittels eines Maschensiebs mit quadratischen Maschen einer Größe von 1 mm x 1 mm abtrennen lässt, vom aufgegeben Polysilicium der Bruchgrößen 0 bis 2 getrennt wird.
  • Beim Polysilicium handelt es sich um polykristalline Bruchstücke.
  • Unter kleinteiligem Polysilicium ist eine Teilmenge aus der aufgegebenen Menge an Polysilicium zu verstehen, die mittels der Siebanlage abgetrennt werden soll. Das kleinteilige Polysilicium entspricht also der abzutrennenden Fraktion. Erfindungsgemäß handelt es sich bei dem aufgegebenen Polysilicium um Polysiliciumbruchstücke mit Feinanteil. Der Feinanteil soll mit der Siebplatte abgetrennt werden.
  • Die Größenklasse von Polysiliciumbruchstücken ist als längste Entfernung zweier Punkte auf der Oberfläche eines Siliciumbruchstücks (=max. Länge) definiert:
    Bruchgröße (BG) 0 0,1 bis 5 mm
    Bruchgröße 1 3 bis 15 mm
    Bruchgröße 2 10 bis 40 mm
    Bruchgröße 3 20 bis 60 mm
    Bruchgröße 4 45 bis 120 mm
    Bruchgröße 5 100 bis 250 mm
  • Nachfolgend sollen für die Bruchgrößen 3 bis 5 alle Bruchstücke oder Partikel aus Silicium, die eine solche Größe aufweisen, dass sie sich mittels eines Maschensiebs mit quadratischen Maschen einer Größe von 8 mm x 8 mm abtrennen lassen, als Feinanteil bezeichnet werden.
  • Für die Bruchgrößen 0 bis 2 gilt selbige Definition, wobei die Maschenweite hier mit 1 mm x 1 mm definiert ist.
  • Die Siebplatte umfasst einen Aufgabebereich, in dem das Polysilicium aufgegeben wird.
  • In einer Ausführungsform wird das Polysilicium mittels einer Förderrinne zur Siebanlage befördert und an den Aufgabebereich der Siebplatte abgegeben.
  • Die Siebplatte umfasst zudem einen profilierten Bereich mit Rillen oder Nuten oder allgemein Vertiefungen und Erhebungen, so dass der profilierte Bereich Senken und Spitzen aufweist.
  • Während der Bewegung des Polysiliciums auf dem profilierten Bereich sammeln sich kleine Bruchstücke oder kleine Siliciumpartikel (klein in Bezug auf die Zielfraktion) oder Feinanteil in den Senken des profilierten Bereichs.
  • In einer Ausführungsform umfasst das aufgegebene Polysilicium Bruchstücke der Größenklassen 3 bis 5 und Feinanteil gemäß o.g. Definition. Während der Bewegung des Polysiliciums auf dem profilierten Bereich sammelt sich Feinanteil in den Senken des profilierten Bereichs.
  • In einer Ausführungsform umfasst das aufgegebene Polysilicium Bruchstücke der Größenklassen 0 bis 2 und Feinanteil gemäß o.g. Definition. Während der Bewegung des Polysiliciums auf dem profilierten Bereich sammelt sich der im Polysilicium enthaltene Feinanteil in den Senken des profilierten Bereichs.
  • Die Siebplatte umfasst - an den profilierten Bereich anschließend - einen Bereich mit Schlitzen. Die Schlitze sind in Förderrichtung unmittelbar hinter den Senken des profilierten Bereichs angeordnet. Dadurch werden die in den Senken des profilierten Bereichs befindlichen Feinanteile des Polysiliciums gezielt zu den Schlitzen des Bereichs geführt.
  • Erfindungsgemäß setzen sich die Spitzen des profilierten Bereichs auch in den Bereich mit Schlitzen fort, so dass die gesamte Siebplatte profiliert ist, wobei die Siebplatte jedoch an seinem in Förderrichtung hinteren Ende Schlitze statt Senken aufweist.
  • Die Abtrennung des Feinanteils oder kleiner Bruchstücke/Partikel erfolgt somit über die Schlitze der Siebplatte.
  • In einer Ausführungsform werden die abgetrennten Feinanteile oder kleinen Bruchstücke/Partikel durch einen unterhalb der Schlitze der Siebplatte angeordneten Auffangbehälter aufgenommen.
  • Größere Bruchstücke werden im profilierten Bereich über die Spitzen zum Entnahmebereich geführt.
  • In einer Ausführungsform ist der Entnahmebereich mit einer Förderrinne verbunden, über die die größeren Bruchstücke abgeführt werden. Ebenso kann sich eine weitere Siebplatte anschließend, um einen weitere Fraktion vom Polysilicium abzutrennen.
  • Die Schlitze weiten sich in Förderrichtung. Überraschenderweise kann dadurch ein Verstopfen der Öffnungen / Schlitze effektiv vermieden werden. Somit treten die damit verbundenen und im Stand der Technik beobachteten Probleme, die einen hohen Aufwand bedeuteten, nicht auf.
  • Die Trenngenauigkeit ist deutlich höher als bei Stangensieben, womit deutlich weniger Fehlkorn abgetrennt wird und somit die Ausbeute steigt.
  • Die Offenbarung sieht also eine Siebplatte vor, die in allen Arten von Siebanlagen eingesetzt werden kann, bei welcher sich im ersten Bereich der Siebplatte der Feinanteil oder kleinteiliges Silicium in Senken sammelt und im letzten Bereich der Siebplatte gezielt durch sich weitende Siebschlitze abgetrennt wird.
  • In einer Ausführungsform besteht die Siebplatte aus einem oder mehreren Materialien ausgewählt aus der Gruppe bestehend aus Kunststoff, Keramik, Glas, Diamant, amorpher Kohlenstoff, Silicium oder Metall.
  • In einer Ausführungsform ist die Siebplatte mit einem oder mehreren Materialien ausgewählt aus der Gruppe bestehend aus Kunststoff, Polyurethan, Keramik, Glas, Diamant, amorpher Kohlenstoff und Silicium ausgekleidet oder beschichtet.
  • In einer Ausführungsform sind die mit dem Polysilicium in Berührung kommenden Teile der Siebplatte mit einem oder mehreren Materialien ausgewählt aus der Gruppe bestehend aus Kunststoff, Polyurethan, Keramik, Glas, Diamant, amorpher Kohlenstoff und Silicium ausgekleidet oder beschichtet.
  • In einer Ausführungsform besteht die Siebplatte aus Hartmetall oder ist mit einem Hartmetall beschichtet oder ausgekleidet.
  • In einer Ausführungsform umfasst die Siebplatte einen metallischen Grundkörper sowie eine Beschichtung oder Auskleidung aus einem oder mehreren Materialien ausgewählt aus der Gruppe bestehend aus Kunststoff, Keramik, Glas, Diamant, amorpher Kohlenstoff und Silicium.
  • In einer Ausführungsform der Erfindung wird der bei den zuvor genannten Ausführungen verwendete Kunststoff ausgewählt aus der Gruppe bestehend aus PVC (Polyvinylchlorid), PP (Polypropylen), PE (Polyethylen), PU (Polyurethan), PFA (Perfluoralkoxy), PVDF (Polyvinylidenfluorid) und PTFE (Polytetrafluorethylen).
  • In einer Ausführungsform umfasst die Siebplatte eine Beschichtung aus Titannitrid, Titancarbid, Aluminiumtitannitrid oder DLC (Diamond Like Carbon).
  • Die Größe der Schlitze ist abhängig von der abzutrennenden Fraktion und kann bis zu 200 mm betragen.
  • In einer Ausführungsform soll ein Trennschritt bei 10 mm erfolgen (Absieben von Polysilicium kleiner als 10 mm), wobei die Schlitze an ihrem Ende (Beginn des Entnahmebereichs) eine Weite von 10 mm aufweisen.
  • Die Ausführung des profilierten Bereichs der Siebplatte ist abhängig von der abzutrennenden Fraktion. Tiefe und Winkel der Senken des profilierten Bereichs sind so auszugestalten, dass sich die abzutrennende Fraktion, also z.B. der Feinanteil dort sammelt.
  • Die Winkel der Senken können dabei flach bis extrem spitz sein und größer als 1° und kleiner als180° betragen.
  • Die Tiefe der Senken kann von 1 bis 200 mm betragen.
  • Beispielweise sind für die Abtrennung einer 10 mm Fraktion ein Winkel von 45° und eine Tiefe von 20 mm geeignet.
  • Die Erregung der Siebplatte kann sowohl mit einer Planschwing- oder auch Wurfsiebmaschine erfolgen. Ebenso können Vibrationsantriebe (wie z.B. Magnetantriebe) oder Unwuchtantriebe vorgesehen sein.
  • Erfindungsgemäß ist die Siebplatte gegen die Waagerechte geneigt.
  • Der Neigungswinkel beträgt zwischen 5 und 20°, da dabei die Schwerkraft die Förderung über die Siebplatte unterstützt.
  • Kurzbeschreibung der Figuren
  • Fig. 1 zeigt den schematischen Aufbau einer Siebplatte.
  • Liste der verwendeten Bezugszeichen
  • 1
    Siebplatte
    2
    Aufgabebereich
    3
    Profilierter Bereich der Siebplatte
    31
    Senken des profilierten Bereichs
    32
    Spitzen des profilierten Bereichs
    4
    Bereich mit Schlitzen
    41
    Schlitz
    5
    Entnahmebereich
  • Die Siebplatte 1 umfasst einen Aufgabebereich 2, in dem das Polysilicium aufgegeben wird. Das Polysilicium kann beispielsweise mittels einer Förderrinne zur Siebanlage befördert und an den Aufgabebereich 2 der Siebplatte 1 abgegeben werden.
  • Die Siebplatte 1 umfasst zudem einen profilierten Bereich 3. Dieser profilierte Bereich 3 sieht Rillen oder Nuten oder Vertiefungen anderer Art vor, so dass der profilierte Bereich 3 Senken 31 und Spitzen 32 aufweist.
  • Der im Polysilicium enthaltene Feinanteil sammelt sich während der Bewegung des Polysiliciums auf dem profilierten Bereich 3 in den Senken 31 des profilierten Bereichs 3.
  • Die Siebplatte 1 umfasst - an den profilierten Bereich 3 anschließend - einen Bereich 4 mit Schlitzen 41. Die Schlitze 41 sind unmittelbar hinter (In Förderrichtung) den Senken 31 des profilierten Bereichs 3 angeordnet. Dadurch werden die in den Senken 31 des profilierten Bereichs 3 befindlichen Feinanteile des Polysiliciums gezielt zu den Schlitzen 41 des Bereichs 4 geführt.
  • Die Spitzen 32 des profilierten Bereichs 3 setzen sich auch im Bereich 4 fort, so dass die gesamte Siebplatte 1 profiliert ist, jedoch im Bereich 4 statt Senken 31 Schlitze 41 aufweist.
  • Die Abtrennung des Feinanteils erfolgt somit über die Schlitze 41 der Siebplatte 1. Die abgetrennten Feinanteile können beispielsweise durch einen unterhalb der Schlitze 41 der Siebplatte 1 angeordneten Auffangbehälter aufgenommen werden.
  • Größere Bruchstücke werden im profilierten Bereich über die Spitzen 32 zum Entnahmebereich 5 geführt.
  • Die Schlitze 41 weiten sich in Förderrichtung. Es hat sich gezeigt, dass dadurch ein Verstopfen der Öffnungen effektiv vermieden werden kann.

Claims (6)

  1. Verfahren zum mechanischen Klassieren von Polysilicium, bestehend aus Bruchstücken der Größenklassen Bruchgröße 0 0,1 bis 5 mm, oder Bruchgröße 1 3 bis 15 mm, oder Bruchgröße 2 10 bis 40 mm, oder Bruchgröße 3 20 bis 60 mm, oder Bruchgröße 4 45 bis 120 mm, oder Bruchgröße 5 100 bis 250 mm, wobei die Größenklasse von
    Polysiliciumbruchstücken als längste Entfernung zweier Punkte auf der Oberfläche eines Siliciumbruchstücks, d.h. max. Länge, definiert ist, mit einer Siebanlage, wobei das Polysilicium auf eine Siebplatte (1), umfassend einen Aufgabebereich (2) für Polysilicium, einen profilierten Bereich (3) mit Spitzen (32) und Senken (31), einen Bereich (4) mit Schlitzen (41), wobei die Schlitze (41) an die Senken (31) anschließen, und einen Entnahmebereich (5), wobei sich die Schlitze (41) in Richtung des Entnahmebereichs (5) vergrößern, aufgegeben wird, wobei die Siebplatte (1) derart in Schwingungen versetzt wird, dass das Polysilicium eine Bewegung in Richtung des Entnahmebereichs (5) ausführt, wobei sich kleinteiliges Polysilicium in den Senken (31) der Siebplatte (1) sammelt und durch die Schlitze (41) der Siebplatte (1) fällt und dadurch vom aufgegebenen Polysilicium getrennt wird, wobei die Siebplatte (1) um einen Winkel von 5 bis 20° gegen die Waagerechte geneigt ist, wobei sich die Spitzen (32) des profilierten Bereichs (3) auch in den Bereich (4) mit Schlitzen (41) fortsetzen, so dass die gesamte Siebplatte (1) profiliert ist, wobei die Siebplatte (1) jedoch an seinem in Förderrichtung hinteren Ende Schlitze (41) statt Senken (31) aufweist, wobei Tiefe und Winkel der Senken (31) des profilierten Bereichs (3) und Größe der Schlitze (41) so ausgestaltet sind, dass entweder feinteiliges Silicium, das sich mittels eines Maschensiebs mit quadratischen Maschen einer Größe von 8 mm x 8 mm abtrennen lässt, vom aufgegebenen Polysilicium der Bruchgrößen 3 bis 5 getrennt wird oder feinteiliges Silicium, das sich mittels eines Maschensiebs mit quadratischen Maschen einer Größe von 1 mm x 1 mm abtrennen lässt, vom aufgegebenen Polysilicium der Bruchgrößen 0 bis 2 getrennt wird.
  2. Verfahren nach Anspruch 1, wobei die Siebplatte (1) aus einem oder mehreren Materialien ausgewählt aus der Gruppe bestehend aus Kunststoff, Keramik, Glas, Diamant, amorpher Kohlenstoff, Silicium und Metall besteht.
  3. Verfahren nach einem der Ansprüche 1 bis 2, wobei die Siebplatte (1) einen metallischen Grundkörper sowie eine Beschichtung oder Auskleidung mit einem oder mehreren Materialien ausgewählt aus der Gruppe bestehend aus Kunststoff, Keramik, Glas, Diamant, amorpher Kohlenstoff und Silicium umfasst.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Siebplatte (1) eine Beschichtung aus Titannitrid, Titancarbid, Aluminiumtitannitrid oder DLC (Diamond Like Carbon) umfasst.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Siebplatte (1) aus Hartmetall besteht oder die mit einem Hartmetall ausgekleidet oder beschichtet ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Größe der Schlitze (41) bis zu 200 mm beträgt.
EP16711200.2A 2015-06-19 2016-03-15 Verfahren zum mechanischen klassieren von polysilicium Active EP3310499B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015211351.5A DE102015211351A1 (de) 2015-06-19 2015-06-19 Siebplatte für Siebanlagen zum mechanischen Klassieren von Polysilicium
PCT/EP2016/055538 WO2016202473A1 (de) 2015-06-19 2016-03-15 Siebplatte für siebanlagen zum mechanischen klassieren von polysilicium und verwenden dieser siebplatte

Publications (2)

Publication Number Publication Date
EP3310499A1 EP3310499A1 (de) 2018-04-25
EP3310499B1 true EP3310499B1 (de) 2020-11-25

Family

ID=55588236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16711200.2A Active EP3310499B1 (de) 2015-06-19 2016-03-15 Verfahren zum mechanischen klassieren von polysilicium

Country Status (10)

Country Link
US (1) US11059072B2 (de)
EP (1) EP3310499B1 (de)
JP (1) JP6851994B2 (de)
KR (1) KR20180030524A (de)
CN (1) CN107771105B (de)
DE (1) DE102015211351A1 (de)
MY (1) MY189236A (de)
SG (2) SG10201911360RA (de)
TW (1) TWI600473B (de)
WO (1) WO2016202473A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225248A1 (de) * 2016-12-16 2018-06-21 Siltronic Ag Abscheidevorrichtung für Polysilicium
US11833546B2 (en) 2018-02-20 2023-12-05 Style Ehf. In-feeding and rinsing device for grading systems
DE102018218252A1 (de) 2018-10-25 2020-04-30 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
WO2020180315A1 (en) * 2019-03-06 2020-09-10 Halliburton Energy Services, Inc. Coated shaker screen wire for use in oil and gas operations
KR20230038788A (ko) 2020-08-24 2023-03-21 와커 헤미 아게 벌크 재료 분류를 위한 분리 장치용 스크린 플레이트
CN113897682B (zh) * 2021-10-29 2024-02-20 大连弘源矿业有限公司 一种多晶硅洗选加工设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60310627T2 (de) * 2002-02-20 2007-10-11 Hemlock Semiconductor Corp., Hemlock Fliessfähige Späne, Verfahren und Vorrichtung zu ihrer Herstellung und ihrer Anwendung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784007A (en) * 1972-07-31 1974-01-08 R Skrmetta Dynamic shrimp grader and grading method
US4569446A (en) 1982-10-29 1986-02-11 Kelley-Perry, Incorporated Method and apparatus for feeding a product including fines
DD239957A1 (de) * 1985-08-06 1986-10-15 Halle Saat & Pflanzengut Verfahren und vorrichtung zur groessensortierung pflanzlicher produkte
SU1629113A1 (ru) 1988-04-05 1991-02-23 Украинский научно-исследовательский институт сельскохозяйственного машиностроения Устройство дл сепарации
JPH03262574A (ja) * 1990-03-12 1991-11-22 Shinko Electric Co Ltd 道床交換機におけるバラスの振動選別装置
DE19822996C1 (de) * 1998-05-22 1999-04-22 Siemens Ag Abscheidevorrichtung für langgestreckte Feststoffteile
DE19945037A1 (de) * 1999-09-20 2001-03-29 Hubertus Exner Vorrichtung zum Ausrichten und gegebenenfalls Sortieren von länglichen Partikeln
US7794783B2 (en) * 2005-02-07 2010-09-14 Kennametal Inc. Articles having wear-resistant coatings and process for making the same
DE102006016323A1 (de) 2006-04-06 2007-10-11 Wacker Chemie Ag Verfahren und Vorrichtung zum Zerkleinern und Sortieren von Polysilicium
DE102006016324A1 (de) 2006-04-06 2007-10-25 Wacker Chemie Ag Vorrichtung und Verfahren zum flexiblen Klassieren von polykristallinen Silicium-Bruchstücken
DE102006035081A1 (de) * 2006-07-28 2008-01-31 Wacker Chemie Ag Verfahren und Vorrichtung zur Herstellung von klassiertem polykristallinen Siliciumbruch in hoher Reinheit
DE102007027110A1 (de) * 2007-06-13 2008-12-18 Wacker Chemie Ag Verfahren und Vorrichtung zum Verpacken von polykristallinem Siliciumbruch
CN201337987Y (zh) 2009-01-06 2009-11-04 新疆农业大学 干鲜果品分级机
DE102011003875A1 (de) * 2011-02-09 2012-08-09 Wacker Chemie Ag Verfahren und Vorrichtung zum Dosieren und Verpacken von Polysiliciumbruchstücken sowie Dosier- und Verpackungseinheit
DE102012220422A1 (de) 2012-11-09 2014-05-15 Wacker Chemie Ag Verpackung von polykristallinem Silicium
CN203886778U (zh) 2014-05-24 2014-10-22 智胜化工股份有限公司 一种防堵塞的混料自流筛分装置
CN203991323U (zh) 2014-07-31 2014-12-10 张逊 土豆分选架

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60310627T2 (de) * 2002-02-20 2007-10-11 Hemlock Semiconductor Corp., Hemlock Fliessfähige Späne, Verfahren und Vorrichtung zu ihrer Herstellung und ihrer Anwendung

Also Published As

Publication number Publication date
CN107771105A (zh) 2018-03-06
WO2016202473A1 (de) 2016-12-22
SG11201710116QA (en) 2018-01-30
TW201700186A (zh) 2017-01-01
SG10201911360RA (en) 2020-02-27
KR20180030524A (ko) 2018-03-23
MY189236A (en) 2022-01-31
EP3310499A1 (de) 2018-04-25
US20180185882A1 (en) 2018-07-05
DE102015211351A1 (de) 2016-12-22
JP2018524163A (ja) 2018-08-30
TWI600473B (zh) 2017-10-01
JP6851994B2 (ja) 2021-03-31
US11059072B2 (en) 2021-07-13
CN107771105B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
EP3310499B1 (de) Verfahren zum mechanischen klassieren von polysilicium
EP3209422B1 (de) Recyclinganlage für gipskarton
EP3043929B1 (de) Klassieren von polykristallinem silicium
EP2055395B1 (de) Verfahren und Vorrichtung zum Aussieben von Partikeln
EP0876851B1 (de) Optoelektronische Klassiervorrichtung
EP2156904B1 (de) Verfahren und Vorrichtung zum Sortieren von Partikeln
DE102015206849A1 (de) Vorrichtung und Verfahren zur Klassierung und Entstaubung von Polysiliciumgranulat
DE202010006744U1 (de) Sortiermaschine zum schonenden Sortieren stoßgefährdeter Knollengewächse nach bestimmten Größenmaßen
EP3554723B1 (de) Vorrichtung zum abscheiden vom polysilicium und entsprechendes verfahren
WO2016139084A1 (de) Verfahren zur förderung und fraktionierung von polysiliciumgranulat in einer förderrinne sowie entsprechende vorrichtung
EP3115151A1 (de) Rückgewinnung von schleifmittel von abrasiv-wasserstrahl-schneidanlagen
EP4200085B1 (de) Siebplatte für eine trennvorrichtung zum klassieren von schüttgut
DE102008058998B4 (de) Verfahren zur Sichtung bzw. Klassifizierung von geschnittenem, pflanzlichen Schüttgut, insbesondere Tabak, sowie Vorrichtung zur Durchführung des Verfahrens
DE102023102854B3 (de) Vorrichtung und Verfahren zur flexiblen Klassierung von poly- und/oder monokristallinem Silizium
DE102015118056A1 (de) Gipsrecyclinganlage für Gipskarton mit pneumatischer Trenneinrichtung
DE4444235A1 (de) Verfahren zur Vereinzelung gemischter Verpackungsabfälle und Vorrichtung
EP2347833A1 (de) Entfüllerungsanlage mit regelbarer Materialbettstärke

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180711

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016011780

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B07B0001460000

Ipc: B07B0013070000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B07B 13/07 20060101AFI20200603BHEP

Ipc: B07B 1/46 20060101ALN20200603BHEP

Ipc: B07B 1/12 20060101ALI20200603BHEP

Ipc: B07B 13/04 20060101ALN20200603BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: B07B 13/04 20060101ALN20200611BHEP

Ipc: B07B 1/46 20060101ALN20200611BHEP

Ipc: B07B 13/07 20060101AFI20200611BHEP

Ipc: B07B 1/12 20060101ALI20200611BHEP

INTG Intention to grant announced

Effective date: 20200624

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BUSCHHARDT, THOMAS

Inventor name: BERGMANN, ANDREAS

Inventor name: EHRENSCHWENDTNER, SIMON

Inventor name: FRAUNHOFER, CHRISTIAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016011780

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1337686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SILTRONIC AG

Owner name: WACKER CHEMIE AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016011780

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210826

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1337686

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 9