EP3299165A1 - Corps creux multicouches tres resistant au lavage - Google Patents

Corps creux multicouches tres resistant au lavage Download PDF

Info

Publication number
EP3299165A1
EP3299165A1 EP16189917.4A EP16189917A EP3299165A1 EP 3299165 A1 EP3299165 A1 EP 3299165A1 EP 16189917 A EP16189917 A EP 16189917A EP 3299165 A1 EP3299165 A1 EP 3299165A1
Authority
EP
European Patent Office
Prior art keywords
layer
hollow body
multilayer hollow
weight
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16189917.4A
Other languages
German (de)
English (en)
Other versions
EP3299165B1 (fr
Inventor
Dr. Jasmin BERGER
Dr. Karl KUHMANN
Mario Resing
Dr. Jan HEIMINK
Olivier Farges
Stefan Altkemper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57003367&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3299165(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to EP16189917.4A priority Critical patent/EP3299165B1/fr
Priority to MX2017011842A priority patent/MX2017011842A/es
Priority to RU2017132709A priority patent/RU2745789C2/ru
Priority to US15/709,092 priority patent/US20180080586A1/en
Priority to CN201710850951.1A priority patent/CN107856386A/zh
Priority to KR1020170120901A priority patent/KR102412269B1/ko
Priority to BR102017020226-7A priority patent/BR102017020226B1/pt
Priority to JP2017181277A priority patent/JP7009129B2/ja
Publication of EP3299165A1 publication Critical patent/EP3299165A1/fr
Publication of EP3299165B1 publication Critical patent/EP3299165B1/fr
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/125Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting non-inflammable or heat-resistant hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • B29D22/003Containers for packaging, storing or transporting, e.g. bottles, jars, cans, barrels, tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0017Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor related to fuel pipes or their connections, e.g. joints or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the invention relates to a multilayer hollow body which has a very high washing resistance on the selection of the molding compositions of the individual layers used.
  • the multilayer hollow body is primarily a hollow profile, such as a pipe, or a container for passing or storing liquid or gaseous media.
  • polyamides are suitable as material both for the inner layer and for the outer layer.
  • EVOH is incompatible with polyamides such as PA11, PA12, PA1012 or PA1212 and poorly tolerated with PA612.
  • adhesion between the adjacent layers is indispensable and can thus be ensured only when an adhesion promoter layer is interposed.
  • Solutions containing a primer layer based on, for example, polyolefins are therefore unsuitable because of their low heat resistance.
  • an adhesion-promoting layer containing a polyamide selected from PA6, PA66 and PA6 / 66, optionally a polyamine-polyamide copolymer and a polyamide selected from PA11, PA12, PA612, PA1012 and PA1212.
  • the object of the invention is to provide a composite of an EVOH layer and at least two polyamide layers, which has a high heat resistance and a high impact strength and in which, moreover, a good layer adhesion is obtained, the entire multilayer composite a high Washout has, ie Both insoluble and soluble extracts are after fuel contact at a very low level.
  • the term "based on” here means that the respective molding composition at least 50 wt .-%, preferably at least 60 wt .-%, more preferably at least 65 wt .-% and particularly preferably at least 70 wt .-% of these polyamides or the polyamine Contains polyamide copolymers, each based on the total molding composition.
  • further additives are generally included, which are described in more detail below, so that a total of 100 wt .-% results.
  • the molding composition contains no further polyamides beyond.
  • Standard layer structure means that not only the layer sequence and the composition of the layers are the same, but also that with different wall thickness, the individual layer thicknesses are converted to 1 mm total wall thickness.
  • the inner layer (layer I) is intended to be in direct contact with the conveyed or stored medium.
  • the multilayer hollow body is preferably a component of a fuel-carrying system, for example a fuel line or a fuel tank, wherein the fuel is furthermore preferably gasoline.
  • the adhesion promoter layer (layer II) is especially optional if the molding compound of layer I contains PA610 and in particular if the polyamide of layer I consists of PA610, since in this case adhesion between layer I and layer III can be achieved sufficient for many applications. If layer I is based on one or more of the other polyamides claimed, layer II or an equivalent adhesion promoter layer is generally required.
  • the layer I consists of a molding composition based on PA612, PA610, PA1010, PA1012 and / or PA1212 and copolymers thereof and mixtures thereof.
  • the molding compound of layer II contains neither PA11 nor PA12.
  • the polyamide of layer I is more preferably PA612.
  • the molding compound of layer II contains as polyamide component a mixture of PA612 and PA6.
  • At least 0.5 parts by weight, particularly preferably at least 10 parts by weight, particularly preferably at least 20 parts by weight and very particularly preferably at least 30 parts by weight, are preferably in the molding compound of layer II while the upper limit is preferably 70 parts by weight, and more preferably 60 parts by weight.
  • component according to b) are in the molding composition of the layer II preferably at least 0.5 parts by weight, more preferably at least 2 parts by weight, more preferably at least 5 parts by weight and most preferably at least 10 parts by weight while the upper limit is preferably 80 parts by weight, more preferably 60 parts by weight, and most preferably 40 parts by weight.
  • component according to c) are in the molding material of the layer II preferably at least 0.5 parts by weight, more preferably at least 10 parts by weight, more preferably at least 20 parts by weight and most preferably at least 30 parts by weight while the upper limit is preferably 70 parts by weight, and more preferably 60 parts by weight.
  • the layers I, II and III directly follow one another.
  • further layers which preferably consist of polyamide molding compounds, follow the layer III outwards.
  • a layer IV connects to the outside, which contains the same polyamide combination as a layer II.
  • a layer V of a polyamide molding compound which is based on the same polyamides as a layer I .; In this way, the mechanical properties required for the application are ensured and at the same time the layer III is effectively protected from the ingress of atmospheric moisture, which would reduce the barrier effect.
  • a further layer of a polyamide molding compound which is based on a polyamide, which is good liable to EVOH.
  • This polyamide is, for example, PA6, PA66 or PA6 / 66.
  • Layer II is in the simplest case a blend of the components according to a) and c). Since these polymers are largely incompatible with each other, a sufficient adhesion promoter effect is achieved in the blend production under conventional processing temperatures, which leads to a physical mixture, only in a relatively narrow composition range. Better results are obtained when the polyamide blend is prepared under conditions where, to some extent, the two polyamides react with each other via the end groups or via transamidation reactions to block copolymers. For this purpose, temperatures above 250 ° C., preferably above 280 ° C. and more preferably above 300 ° C. and optionally the presence of catalysts such as hypophosphorous acid, dibutyltin oxide, triphenylphosphine or phosphoric acid are generally required.
  • catalysts such as hypophosphorous acid, dibutyltin oxide, triphenylphosphine or phosphoric acid are generally required.
  • polyamide blend prepared initially under customary processing conditions, which is subsequently subjected to solid phase postcondensation under conditions which are customary with polyamides.
  • These are generally temperatures from 140 ° C to about 5K below the crystallite melting point T m , preferably temperatures from 150 ° C to about 10K below T m , with reaction times of 2 to 48 hours, preferably 4 to 36 hours and more preferably 6 up to 24 hours.
  • one polyamide contains an excess of amino end groups and the other polyamide contains an excess of carboxyl end groups.
  • a linking of the components according to a) and c) can also be achieved by adding a reactive compound which preferably links the polyamide end groups together, for example a bisoxazoline, biscarbodiimide, bisanhydride, diisocyanate or the corresponding compounds having three or more functional groups.
  • a reactive compound which preferably links the polyamide end groups together for example a bisoxazoline, biscarbodiimide, bisanhydride, diisocyanate or the corresponding compounds having three or more functional groups.
  • Another way to make the components according to a) and c) compatible with each other is the addition of an effective amount of the component according to b).
  • PA6 is produced by ring-opening polymerization of caprolactam.
  • PA66 is made by polycondensation of hexamethylenediamine and adipic acid. It is just like PA6 in a variety of types commercially available.
  • PA6 / 66 is a copolycondensate starting from the monomers caprolactam, hexamethylenediamine and adipic acid.
  • the amino group concentration of the polyamine-polyamide copolymer is in the range of 100 to 2500 mmol / kg.
  • the polyamine has a number-average molecular weight M n of at most 20,000 g / mol, more preferably of not more than 10,000 g / mol and more preferably of not more than 5,000 g / mol.
  • Lactams or ⁇ -aminocarboxylic acids which are used as polyamide-forming monomers contain 4 to 19 and in particular 6 to 12 carbon atoms.
  • Caprolactam, ⁇ -aminocaproic acid, capryllactam, ⁇ -aminocaprylic acid, laurolactam, ⁇ -aminododecanoic acid and / or ⁇ -aminoundecanoic acid are particularly preferably used.
  • Combinations of diamine and dicarboxylic acid are, for example, hexamethylenediamine / adipic acid, hexamethylenediamine / dodecanedioic acid, octamethylenediamine / sebacic acid, decamethylenediamine / sebacic acid, decamethylenediamine / dodecanedioic acid, dodecamethylenediamine / dodecanedioic acid and dodecamethylenediamine / 2,6-naphthalenedicarboxylic acid.
  • decamethylenediamine / dodecanedioic acid / terephthalic acid hexamethylenediamine / adipic acid / terephthalic acid, hexamethylenediamine / adipic acid / caprolactam, decamethylenediamine / dodecanedioic acid / ⁇ -aminoundecanoic acid, decamethylenediamine / dodecanedioic acid / laurolactam, decamethylenediamine / terephthalic acid / laurolactam or dodecamethylene / 2,6-naphthalene dicarboxylic acid / laurolactam.
  • the composition of the polyamide moiety can vary within a very wide range, since the compatibility with the polyamides of the components according to a) and c) is obviously determined by other factors and is generally present.
  • the polyamine-polyamide copolymers can be prepared by various methods.
  • lactam cleavage and prepolymerization are optionally carried out first in the presence of water (alternatively, the corresponding ⁇ -aminocarboxylic acids or diamines and dicarboxylic acids are used directly and prepolymerized); in the second step, the polyamine is added. It is then expanded at temperatures between 200 and 290 ° C and polycondensed in a stream of nitrogen or in vacuo.
  • Another preferred method is the hydrolytic degradation of a polyamide to a prepolymer and simultaneous or subsequent reaction with the polyamine.
  • polyamides are used in which the end group difference is approximately zero.
  • Ultra-high-branched polyamides having acid numbers of less than 40 mmol / kg, preferably less than 20 mmol / kg and more preferably less than 10 mmol / kg, can be produced by these processes. Already after one to five hours reaction time at temperatures of 200 ° C to 290 ° C, a nearly complete conversion is achieved.
  • the polyamine-polyamide copolymers according to the prior art can also be post-condensed in solid phase.
  • PA11 is prepared by polycondensation of ⁇ -aminoundecanoic acid, while PA12 is obtained by ring-opening polymerization of laurolactam. Both polymers are commercially available in a variety of types.
  • PA610 is prepared in a known manner by polycondensation of an equivalent mixture of hexamethylenediamine and 1,10-decanedioic acid
  • PA612 is prepared in a known manner by polycondensation of an equivalent mixture of hexamethylenediamine and 1,12-dodecanedioic acid
  • PA1010 by polycondensation of an equivalent mixture of 1,10-decanediamine and 1.10-decanedioic acid is produced.
  • PA1012 is prepared by polycondensation of an equivalent mixture of 1.10-decanediamine and 1.12-dodecanedioic acid while PA1212 is similarly obtained from 1.12-dodecanediamine and 1.12-dodecanedioic acid.
  • mixtures of different polyamides can also be used here, for. PA12 / PA1012 or PA12 / PA1212.
  • Such mixtures are characterized by a particularly high low temperature impact toughness; for example, they are in the EP-A-0 388 583 described.
  • the molding compositions contain an effective amount of an oxidation stabilizer, and more preferably an effective amount of an oxidation stabilizer in combination with the effective amount of a copper-containing stabilizer.
  • Suitable oxidation stabilizers are, for example, aromatic amines, sterically hindered phenols, phosphites, phosphonites, thiosynergists, hydroxylamines, benzofuranone derivatives, acryloyl-modified phenols, etc.
  • oxidation stabilizers are commercially available in a variety of types, for example under the trade names Naugard 445, Irganox 1010, Irganox 1098, Irgafos 168, P-EPQ or Lowinox DSTDP.
  • the molding compositions contain from about 0.01 to about 2 weight percent, and preferably from about 0.1 to about 1.5 weight percent, of an oxidation stabilizer.
  • the molding compositions may also contain a UV stabilizer or a light stabilizer of the HALS type.
  • Suitable UV stabilizers are primarily organic UV absorbers, for example benzophenone derivatives, benzotriazole derivatives, oxalanilides or phenyltriazines.
  • HALS type light stabilizers are tetramethylpiperidine derivatives; these are inhibitors which act as radical scavengers. UV stabilizers and light stabilizers can advantageously be used in combination. Both are commercially available in a variety of types; in terms of dosage, the manufacturer's instructions can be followed.
  • the molding compositions may additionally contain a hydrolysis stabilizer such as a monomeric, oligomeric or polymeric carbodiimide or a bisoxazoline.
  • a hydrolysis stabilizer such as a monomeric, oligomeric or polymeric carbodiimide or a bisoxazoline.
  • polymers which may be included as an additive in the molding compositions are, for example, polyetheramides or polytetrafluoroethylene (PTFE).
  • Toughening rubbers for polyamide molding compounds are state of the art. They contain functional groups derived from unsaturated functional compounds, which have either been polymerized into the main chain or grafted onto the main chain. The most common are EPM or EPDM rubber which has been radically grafted with maleic anhydride. Such rubbers can also be used together with an unfunctionalized polyolefin such.
  • B. isotactic polypropylene are used, as in EP-A-0 683 210 described.
  • Plasticizers and their use in polyamides are known.
  • a general overview of plasticizers which are suitable for polyamides can be found in Gumbleter / Müller, Kunststoffadditive, C. Hanser Verlag, 2nd Edition, p. 296.
  • plasticizers suitable conventional compounds are, for. B. esters of p-hydroxybenzoic acid having 2 to 20 carbon atoms in the alcohol component or amides of arylsulfonic acids having 2 to 12 carbon atoms in the amine component, preferably amides of benzenesulfonic acid.
  • Suitable plasticizers include p-hydroxybenzoic acid ethyl ester, octyl p-hydroxybenzoate, i-hexadecyl p-hydroxybenzoate, n-octyltoluene sulfonamide, benzenesulfonic acid-n-butylamide or benzenesulfonic acid 2-ethylhexylamide.
  • Suitable pigments and / or dyes are, for example, carbon black, iron oxide, zinc sulfide, ultramarine, nigrosine, pearlescent pigments and metal flakes.
  • Additives which increase the electrical conductivity are, for example, conductivity black or carbon nanotubes.
  • Suitable processing aids are, for example, paraffins, fatty alcohols, fatty acid amides, stearates such as calcium stearate, paraffin waxes, montanates or polysiloxanes.
  • the molding compound is prepared from the individual components by mixing in the melt, as known to those skilled in the art.
  • the layer III EVOH is a copolymer of ethylene and vinyl alcohol.
  • the ethylene content in the copolymer is usually from 25 to 60 mol% and in particular from 28 to 45 mol%.
  • a variety of types are commercially available. For example, reference is made to the company publication "Introduction to Kuraray EVAL TM Resins", version 1.2 / 9810 of the company Kuraray EVAL Europe.
  • the molding compound may contain further additives in addition to the EVOH according to the prior art, such as they are common for barrier applications. Such additives are usually know-how of the EVOH supplier.
  • the claimed low extract content is achieved by the selection of the polyamide and by the measure that the molding compound of layer I and preferably also the molding compound of layer II contains no plasticizer. Moreover, it is advantageous if the molding compound of layer I and preferably also the molding compound of layer II contains only the amount of stabilizers and processing aids that is needed at the moment.
  • the multi-layer composite according to the invention When using the multi-layer composite according to the invention for the management or storage of combustible liquids, gases or dusts, such. As fuel or fuel vapor, it is advisable to equip one of the composite belonging layers electrically conductive. This can be done by compounding with an electrically conductive additive by all methods of the prior art.
  • an electrically conductive additive there may be used, for example, carbon black, metal flakes, metal powders, metallized glass beads, metallized glass fibers, metal fibers (for example, stainless steel), metallized whiskers, carbon fibers (also metallized), intrinsically conductive polymers or graphite fibrils. It is also possible to use mixtures of different conductive additives.
  • the electrically conductive layer is in direct contact with the medium to be fed or stored and has a surface resistivity of not more than 10 9 ⁇ / square, and preferably not more than 10 6 ⁇ / square.
  • the measurement method for determining the resistance of multilayer pipes is explained in SAE J 2260 of November 2004. In this case, either the layer I as a whole is electrically conductive or the layer I consists of two sub-layers, one of which is electrically conductive and the other is not equipped electrically conductive.
  • the sheath can be applied to the multi-layer composite both with and without the use of an additional adhesion promoter, for example by means of coextrusion, extrusion via a crosshead or in that a prefabricated elastomer hose is pushed over the finished extruded multilayer pipe.
  • the sheath has a thickness of 0.1 to 4 mm, and preferably from 0.2 to 3 mm.
  • Suitable elastomers are, for example, chloroprene rubber, ethylene / propylene rubber (EPM), ethylene / propylene / diene rubber (EPDM), epichlorohydrin rubber (ECO), chlorinated Polyethylene, acrylate rubber, chlorosulfonated polyethylene, silicone rubber, plasticized PVC, polyetheresteramides or polyetheramides.
  • the multilayer composite can be produced in one or more stages, for example by single-stage injection molding, co-extrusion, coextrusion blow molding (for example 3D blow molding, tube extrusion into an opened mold, 3D tube manipulation, suction blow molding, 3D suction blow molding, sequential injection molding) Blow molding) or by multi-stage process, such. B. in the US 5 554 425 described.
  • Comparative Example 1 (according to EP 1216826 A2, used in the automotive industry for fuel lines):
  • the tube according to the invention therefore meets the requirements placed on fuel lines and has an outstanding washout resistance compared to currently used pipes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Laminated Bodies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Polyamides (AREA)
EP16189917.4A 2016-09-21 2016-09-21 Corps creux multicouches tres resistant au lavage Active EP3299165B1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16189917.4A EP3299165B1 (fr) 2016-09-21 2016-09-21 Corps creux multicouches tres resistant au lavage
MX2017011842A MX2017011842A (es) 2016-09-21 2017-09-14 Cuerpo hueco multicapa que tiene alta resistencia a la lixiviacion.
RU2017132709A RU2745789C2 (ru) 2016-09-21 2017-09-19 Многослойный полый элемент, характеризующийся высокой устойчивостью к вымыванию
US15/709,092 US20180080586A1 (en) 2016-09-21 2017-09-19 Multilayer hollow body having high leaching resistance
CN201710850951.1A CN107856386A (zh) 2016-09-21 2017-09-20 具有高抗浸出性的多层中空体
KR1020170120901A KR102412269B1 (ko) 2016-09-21 2017-09-20 높은 내침출성을 갖는 다층 중공체
BR102017020226-7A BR102017020226B1 (pt) 2016-09-21 2017-09-21 Corpo oco de camadas múltiplas com alta resistência à lixiviação, uso do mesmo e sistema de combustível
JP2017181277A JP7009129B2 (ja) 2016-09-21 2017-09-21 高い耐浸出性を有する多層中空体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16189917.4A EP3299165B1 (fr) 2016-09-21 2016-09-21 Corps creux multicouches tres resistant au lavage

Publications (2)

Publication Number Publication Date
EP3299165A1 true EP3299165A1 (fr) 2018-03-28
EP3299165B1 EP3299165B1 (fr) 2020-08-12

Family

ID=57003367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16189917.4A Active EP3299165B1 (fr) 2016-09-21 2016-09-21 Corps creux multicouches tres resistant au lavage

Country Status (8)

Country Link
US (1) US20180080586A1 (fr)
EP (1) EP3299165B1 (fr)
JP (1) JP7009129B2 (fr)
KR (1) KR102412269B1 (fr)
CN (1) CN107856386A (fr)
BR (1) BR102017020226B1 (fr)
MX (1) MX2017011842A (fr)
RU (1) RU2745789C2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234265A1 (fr) 2020-05-19 2021-11-25 Arkema France Structure multicouche a base de polyamide recycle
WO2021234263A1 (fr) 2020-05-19 2021-11-25 Arkema France Structure multicouche a base de polyamide recycle
WO2021234264A1 (fr) 2020-05-19 2021-11-25 Arkema France Structure multicouche a base de polyamide recycle
WO2023281222A1 (fr) 2021-07-09 2023-01-12 Arkema France Structure tubulaire monocouche ou multicouche a base de polyamide recycle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3046826B1 (fr) 2016-01-15 2018-05-25 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
EP3299165B1 (fr) 2016-09-21 2020-08-12 Evonik Operations GmbH Corps creux multicouches tres resistant au lavage
EP3771460B1 (fr) * 2019-08-01 2022-10-12 SCHOTT Schweiz AG Récipient cul-de-sac et ensemble récipient comprennant un récipient cul-de-sac
US11987024B2 (en) 2020-09-25 2024-05-21 Carefusion 303, Inc. Multilayer tubing having intermediate layer with additives
US11643539B2 (en) * 2020-11-25 2023-05-09 Contitech Usa, Inc. Fire resistant rubber compositions and hose
FR3127435A1 (fr) 2021-09-27 2023-03-31 Arkema France Structure tubulaire multicouche présentant un faible taux d’extractibles pour le transport de l’hydrogène

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388583A1 (fr) 1989-03-18 1990-09-26 Hüls Aktiengesellschaft Masses à mouler façonnables à froid et thermoplastiques
EP0683210A2 (fr) 1994-05-20 1995-11-22 Ube Industries, Ltd. Resine composite comprenant une matrice en polyamide contenant des grains dispersés de polyoléfine
US5554425A (en) 1992-01-06 1996-09-10 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
DE19654058A1 (de) 1996-12-23 1998-06-25 Basf Ag Polymere Polyamine aus alternierenden Polyketonen
DE19654179A1 (de) 1996-12-23 1998-06-25 Basf Ag H-förmige Polyamide
EP1182345A1 (fr) * 2000-08-02 2002-02-27 Ti Group Automotive Systems (Fuldabrück) GmbH Conduite de carburant pour un véhicule automobile
EP1216826A2 (fr) 2000-12-21 2002-06-26 Degussa AG Film multicouche avec une couche d'EVOH
EP1216823A2 (fr) * 2000-12-23 2002-06-26 Degussa AG Produit multicouche à base de polyamide/polyoléfine
EP1216825A2 (fr) * 2000-12-21 2002-06-26 Degussa AG Produit laminé comprenant une résine polyamide
US6467508B1 (en) 2001-10-12 2002-10-22 Atofina Chemicals, Inc. Low precipitate polyamide based tubing
DE102005061530A1 (de) * 2005-12-22 2007-07-12 Ems-Chemie Ag Thermoplastischer Mehrschichtverbund in Form eines Hohlkörpers
US20080057246A1 (en) 2006-07-31 2008-03-06 Ems-Patent Ag Multilayer composite in form of extruded hollow sections
WO2015150687A1 (fr) 2014-04-02 2015-10-08 Arkema France Nouvelle composition thermoplastique modifiee choc presentant une plus grande fluidite a l'etat fondu
JP2016083908A (ja) 2014-10-29 2016-05-19 宇部興産株式会社 積層チューブ
WO2017121961A1 (fr) 2016-01-15 2017-07-20 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
US20180080586A1 (en) 2016-09-21 2018-03-22 Evonik Degussa Gmbh Multilayer hollow body having high leaching resistance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555243B2 (en) * 2000-06-09 2003-04-29 Ems-Chemie Ag Thermoplastic multilayer composites
US6619329B2 (en) * 2000-10-03 2003-09-16 Tokai Rubber Industries, Ltd. Hose
ATE421658T1 (de) 2001-03-23 2009-02-15 Arkema France Mehrschichtiges kunststoffrohr zum fördern von flüssigkeiten
KR101118818B1 (ko) 2003-02-28 2012-06-13 이엠에스-케미에 아게 중공 본체 형상의 열가소성 다층 복합물
FR2857430A1 (fr) * 2003-07-08 2005-01-14 Atofina Tube multicouche a base de polyamides pour le transfert de fluides
EP1884356B1 (fr) 2006-07-31 2017-04-12 Ems-Patent Ag Matériau composite pour profile creux
FR2928152B1 (fr) * 2008-03-03 2011-04-01 Arkema France Composition adhesive et structure comprenant au moins une couche de ladite composition
EP2772354B1 (fr) * 2013-03-01 2018-12-05 TI Automotive (Fuldabrück) GmbH Conduite de carburant multicouche

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388583A1 (fr) 1989-03-18 1990-09-26 Hüls Aktiengesellschaft Masses à mouler façonnables à froid et thermoplastiques
US5554425A (en) 1992-01-06 1996-09-10 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
EP0683210A2 (fr) 1994-05-20 1995-11-22 Ube Industries, Ltd. Resine composite comprenant une matrice en polyamide contenant des grains dispersés de polyoléfine
DE19654058A1 (de) 1996-12-23 1998-06-25 Basf Ag Polymere Polyamine aus alternierenden Polyketonen
DE19654179A1 (de) 1996-12-23 1998-06-25 Basf Ag H-förmige Polyamide
EP1182345A1 (fr) * 2000-08-02 2002-02-27 Ti Group Automotive Systems (Fuldabrück) GmbH Conduite de carburant pour un véhicule automobile
US20020033197A1 (en) * 2000-08-02 2002-03-21 Ti Group Automotive Systems (Fuldabruck) Gmbh Fuel line for a motor vehicle
EP1216825A2 (fr) * 2000-12-21 2002-06-26 Degussa AG Produit laminé comprenant une résine polyamide
EP1216826A2 (fr) 2000-12-21 2002-06-26 Degussa AG Film multicouche avec une couche d'EVOH
EP1216823A2 (fr) * 2000-12-23 2002-06-26 Degussa AG Produit multicouche à base de polyamide/polyoléfine
US6467508B1 (en) 2001-10-12 2002-10-22 Atofina Chemicals, Inc. Low precipitate polyamide based tubing
DE102005061530A1 (de) * 2005-12-22 2007-07-12 Ems-Chemie Ag Thermoplastischer Mehrschichtverbund in Form eines Hohlkörpers
US20080057246A1 (en) 2006-07-31 2008-03-06 Ems-Patent Ag Multilayer composite in form of extruded hollow sections
WO2015150687A1 (fr) 2014-04-02 2015-10-08 Arkema France Nouvelle composition thermoplastique modifiee choc presentant une plus grande fluidite a l'etat fondu
JP2016083908A (ja) 2014-10-29 2016-05-19 宇部興産株式会社 積層チューブ
WO2017121961A1 (fr) 2016-01-15 2017-07-20 Arkema France Structure tubulaire multicouche possedant une meilleure resistance a l'extraction dans la bio-essence et son utilisation
US20180080586A1 (en) 2016-09-21 2018-03-22 Evonik Degussa Gmbh Multilayer hollow body having high leaching resistance

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Römpp Chemie Lexikon, 9. Auflage", vol. 6, 1992, GEORG THIEME VERLAG, article "Polyvinylamine", pages: 4921
GÄCHTER; MÜLLER: "Kunststoffadditive, 2. Ausgabe", C. HANSER VERLAG, pages: 296
HOUBEN-WEYL: "Methoden der Organischen Chemie", vol. E20, 1987, GEORG THIEME VERLAG, pages: 1482 - 1487
J.M. WARAKOMSKI, CHEM. MAT., vol. 4, 1992, pages 1000 - 1004
MELVIN I. KOHAN: "Nylon Plastics Handbook", 1995, HANSER PUBLISHERS, MUNICH, VIENNA, NEW YORK, pages: 2pp, 273, 274, 380 - 381, XP055638850

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021234265A1 (fr) 2020-05-19 2021-11-25 Arkema France Structure multicouche a base de polyamide recycle
WO2021234263A1 (fr) 2020-05-19 2021-11-25 Arkema France Structure multicouche a base de polyamide recycle
WO2021234264A1 (fr) 2020-05-19 2021-11-25 Arkema France Structure multicouche a base de polyamide recycle
FR3110585A1 (fr) 2020-05-19 2021-11-26 Arkema France Structure multicouche a base de polyamide recycle
FR3110584A1 (fr) 2020-05-19 2021-11-26 Arkema France Structure multicouche a base de polyamide recycle
FR3110583A1 (fr) 2020-05-19 2021-11-26 Arkema France Structure multicouche a base de polyamide recycle
WO2023281222A1 (fr) 2021-07-09 2023-01-12 Arkema France Structure tubulaire monocouche ou multicouche a base de polyamide recycle
FR3125052A1 (fr) 2021-07-09 2023-01-13 Arkema France Structure tubulaire monocouche ou multicouche a base de polyamide recycle

Also Published As

Publication number Publication date
BR102017020226B1 (pt) 2023-01-31
JP2018047701A (ja) 2018-03-29
EP3299165B1 (fr) 2020-08-12
MX2017011842A (es) 2018-09-26
US20180080586A1 (en) 2018-03-22
JP7009129B2 (ja) 2022-01-25
RU2017132709A (ru) 2019-03-19
RU2745789C2 (ru) 2021-03-31
KR102412269B1 (ko) 2022-06-24
CN107856386A (zh) 2018-03-30
RU2017132709A3 (fr) 2020-10-21
BR102017020226A2 (pt) 2019-02-19
KR20180032189A (ko) 2018-03-29

Similar Documents

Publication Publication Date Title
EP3299165B1 (fr) Corps creux multicouches tres resistant au lavage
EP1216826B1 (fr) Film multicouche avec une couche d'EVOH
EP1216825B1 (fr) Produit laminé comprenant une résine polyamide
DE60004907T2 (de) Aus mehreren auf Polyamid basierenden Schichten zusammengesetzter Schlauch für den Kraftstofftransport
EP1162061B1 (fr) Stratifiés thermoplastiques
EP1065048B1 (fr) Structure multicouche
EP3069873B1 (fr) Composite multicouches comprenant des couches en polyamides partiellement aromatiques
EP1645409B1 (fr) Structure multicouche comprenant une couche de protection à base de polyester
KR101111370B1 (ko) 하나 이상의 안정화된 층을 포함하는 다중층 구조
EP1799452B1 (fr) Composite multicouche comportant une couche evoh et une couche de protection
EP3069871B1 (fr) Composite multicouches comprenant une couche evoh
EP1884356B1 (fr) Matériau composite pour profile creux
EP3069875B1 (fr) Composite multicouches comprenant une couche fluoropolymère
EP3069872B1 (fr) Composite multicouches comprenant des couches en polyamides partiellement aromatiques
DE202017006905U1 (de) Rohrförmige Mehrschichtstruktur mit besserer Widerstandsfähigkeit gegenüber Extraktion in Biokraftstoffen
EP2051847B1 (fr) Conduite de frein pneumatique
EP3069874B1 (fr) Composite multicouches comprenant une couche polyester
EP3069876A1 (fr) Composite multicouches comprenant une couche en polyamide partiellement aromatique
EP3069866B1 (fr) Tuyau chauffant
DE202016008382U1 (de) Mehrschichtiger Hohlkörper mit hoher Auswaschbeständigkeit
EP2998339B1 (fr) Tube metallique dote d'une couche hydrostabilisee a partir d'une masse moulee en polyamide
EP3867299A1 (fr) Matière à mouler conductrice
DE60211582T2 (de) Mehrschichtiges Rohr aus Polyamiden und Fluoropolymeren für den Kraftstofftransport
DE10005641A1 (de) Mehrschichtverbund

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17P Request for examination filed

Effective date: 20180927

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181203

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010812

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1301164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201112

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016010812

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

26 Opposition filed

Opponent name: ARKEMA FRANCE

Effective date: 20210511

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200921

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200921

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201112

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201212

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200812

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1301164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210921

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210921

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 8

Ref country code: DE

Payment date: 20230920

Year of fee payment: 8

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 8