EP3294800A1 - Verfahren zur herstellung einer funktionsbeschichtung - Google Patents
Verfahren zur herstellung einer funktionsbeschichtungInfo
- Publication number
- EP3294800A1 EP3294800A1 EP16767075.1A EP16767075A EP3294800A1 EP 3294800 A1 EP3294800 A1 EP 3294800A1 EP 16767075 A EP16767075 A EP 16767075A EP 3294800 A1 EP3294800 A1 EP 3294800A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- activating
- plasma
- textile
- functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 101
- 238000000576 coating method Methods 0.000 title claims abstract description 46
- 239000011248 coating agent Substances 0.000 title claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 94
- 239000000178 monomer Substances 0.000 claims abstract description 89
- 239000000463 material Substances 0.000 claims abstract description 58
- 229920000642 polymer Polymers 0.000 claims abstract description 31
- 238000000151 deposition Methods 0.000 claims abstract description 15
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011737 fluorine Substances 0.000 claims abstract description 10
- 229920001002 functional polymer Polymers 0.000 claims abstract description 10
- 239000012528 membrane Substances 0.000 claims description 30
- 239000004753 textile Substances 0.000 claims description 23
- 239000000835 fiber Substances 0.000 claims description 17
- 230000003213 activating effect Effects 0.000 claims description 15
- 230000036961 partial effect Effects 0.000 claims description 14
- 238000001704 evaporation Methods 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 5
- 229910001882 dioxygen Inorganic materials 0.000 claims description 5
- 230000000844 anti-bacterial effect Effects 0.000 claims description 4
- 239000002131 composite material Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000002861 polymer material Substances 0.000 claims description 4
- 238000009877 rendering Methods 0.000 claims description 2
- 229920006254 polymer film Polymers 0.000 claims 6
- 239000012209 synthetic fiber Substances 0.000 claims 3
- 229920002994 synthetic fiber Polymers 0.000 claims 3
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 18
- 239000001301 oxygen Substances 0.000 abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 abstract description 18
- 239000011261 inert gas Substances 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 50
- 239000007789 gas Substances 0.000 description 30
- -1 polypropylene Polymers 0.000 description 29
- 238000006116 polymerization reaction Methods 0.000 description 22
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- 150000003254 radicals Chemical class 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 238000007306 functionalization reaction Methods 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 238000001338 self-assembly Methods 0.000 description 5
- 238000007704 wet chemistry method Methods 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000006557 surface reaction Methods 0.000 description 4
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 3
- VPKQPPJQTZJZDB-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl prop-2-enoate Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CCOC(=O)C=C VPKQPPJQTZJZDB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000001994 activation Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 150000007519 polyprotic acids Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JLIDVCMBCGBIEY-UHFFFAOYSA-N 1-penten-3-one Chemical compound CCC(=O)C=C JLIDVCMBCGBIEY-UHFFFAOYSA-N 0.000 description 2
- YMOONIIMQBGTDU-UHFFFAOYSA-N 2-bromoethenylbenzene Chemical class BrC=CC1=CC=CC=C1 YMOONIIMQBGTDU-UHFFFAOYSA-N 0.000 description 2
- ZWKNLRXFUTWSOY-UHFFFAOYSA-N 3-phenylprop-2-enenitrile Chemical class N#CC=CC1=CC=CC=C1 ZWKNLRXFUTWSOY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical class CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- ORTVZLZNOYNASJ-UPHRSURJSA-N (z)-but-2-ene-1,4-diol Chemical compound OC\C=C/CO ORTVZLZNOYNASJ-UPHRSURJSA-N 0.000 description 1
- WVAFEFUPWRPQSY-UHFFFAOYSA-N 1,2,3-tris(ethenyl)benzene Chemical compound C=CC1=CC=CC(C=C)=C1C=C WVAFEFUPWRPQSY-UHFFFAOYSA-N 0.000 description 1
- SKYXLDSRLNRAPS-UHFFFAOYSA-N 1,2,4-trifluoro-5-methoxybenzene Chemical compound COC1=CC(F)=C(F)C=C1F SKYXLDSRLNRAPS-UHFFFAOYSA-N 0.000 description 1
- XPXMCUKPGZUFGR-UHFFFAOYSA-N 1-chloro-2-(1,2,2-trichloroethenyl)benzene Chemical class ClC(Cl)=C(Cl)C1=CC=CC=C1Cl XPXMCUKPGZUFGR-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical class ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- XXCVIFJHBFNFBO-UHFFFAOYSA-N 1-ethenoxyoctane Chemical compound CCCCCCCCOC=C XXCVIFJHBFNFBO-UHFFFAOYSA-N 0.000 description 1
- SXZSFWHOSHAKMN-UHFFFAOYSA-N 2,3,4,4',5-Pentachlorobiphenyl Chemical compound C1=CC(Cl)=CC=C1C1=CC(Cl)=C(Cl)C(Cl)=C1Cl SXZSFWHOSHAKMN-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- HVFZVIHIJNLIED-UHFFFAOYSA-N 2-ethenyl-1-benzofuran Chemical compound C1=CC=C2OC(C=C)=CC2=C1 HVFZVIHIJNLIED-UHFFFAOYSA-N 0.000 description 1
- QQBUHYQVKJQAOB-UHFFFAOYSA-N 2-ethenylfuran Chemical compound C=CC1=CC=CO1 QQBUHYQVKJQAOB-UHFFFAOYSA-N 0.000 description 1
- KTFJPMPXSYUEIP-UHFFFAOYSA-N 3-benzoylphthalic acid Chemical class OC(=O)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1C(O)=O KTFJPMPXSYUEIP-UHFFFAOYSA-N 0.000 description 1
- XHULUQRDNLRXPF-UHFFFAOYSA-N 3-ethenyl-1,3-oxazolidin-2-id-4-one Chemical compound C(=C)N1[CH-]OCC1=O XHULUQRDNLRXPF-UHFFFAOYSA-N 0.000 description 1
- ATVJXMYDOSMEPO-UHFFFAOYSA-N 3-prop-2-enoxyprop-1-ene Chemical compound C=CCOCC=C ATVJXMYDOSMEPO-UHFFFAOYSA-N 0.000 description 1
- PLLBRTOLHQQAQQ-UHFFFAOYSA-N 8-methylnonan-1-ol Chemical compound CC(C)CCCCCCCO PLLBRTOLHQQAQQ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004440 Isodecyl alcohol Substances 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YTIVTFGABIZHHX-UHFFFAOYSA-N butynedioic acid Chemical compound OC(=O)C#CC(O)=O YTIVTFGABIZHHX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 125000000490 cinnamyl group Chemical group C(C=CC1=CC=CC=C1)* 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- QAMFBRUWYYMMGJ-UHFFFAOYSA-N hexafluoroacetylacetone Chemical compound FC(F)(F)C(=O)CC(=O)C(F)(F)F QAMFBRUWYYMMGJ-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- JFZUABNDWZQLIJ-UHFFFAOYSA-N methyl 2-[(2-chloroacetyl)amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1NC(=O)CCl JFZUABNDWZQLIJ-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005232 molecular self-assembly Methods 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- BPCNEKWROYSOLT-UHFFFAOYSA-N n-phenylprop-2-enamide Chemical compound C=CC(=O)NC1=CC=CC=C1 BPCNEKWROYSOLT-UHFFFAOYSA-N 0.000 description 1
- CNPHCSFIDKZQAK-UHFFFAOYSA-N n-prop-2-enylprop-2-enamide Chemical compound C=CCNC(=O)C=C CNPHCSFIDKZQAK-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 229930015698 phenylpropene Natural products 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- QROGIFZRVHSFLM-UHFFFAOYSA-N prop-1-enylbenzene Chemical class CC=CC1=CC=CC=C1 QROGIFZRVHSFLM-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
- B05D5/083—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0093—Chemical modification
- B01D67/00931—Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/26—Polyalkenes
- B01D71/262—Polypropylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/301—Polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/14—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
- B05D3/141—Plasma treatment
- B05D3/142—Pretreatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/123—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/16—Chemical modification with polymerisable compounds
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M14/00—Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
- D06M14/18—Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0414—Surface modifiers, e.g. comprising ion exchange groups
- B01D2239/0421—Rendering the filter material hydrophilic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0414—Surface modifiers, e.g. comprising ion exchange groups
- B01D2239/0428—Rendering the filter material hydrophobic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0471—Surface coating material
- B01D2239/0478—Surface coating material on a layer of the filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/04—Hydrophobization
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0037—Organic membrane manufacture by deposition from the gaseous phase, e.g. CVD, PVD
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/60—Deposition of organic layers from vapour phase
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2201/00—Polymeric substrate or laminate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/14—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
- C08J2333/16—Homopolymers or copolymers of esters containing halogen atoms
Definitions
- the present invention relates to methods for functionalizing a material surface and, more particularly, to a method for self-assembly of a nanothick polymer layer achieved during the process that is devoid of the use a source of radiation and/or plasma and/or heat.
- a surface of a material may be treated to render this surface particularly i) hydrophobic and/or ii) oleophobic and hydrophilic and/or iii) oleophilic as may be desirable for a given use.
- surface functionalization has become common practice in the manufacture of many materials because it adds value to the end product.
- the surface functionalization may be carried out in a variety of ways ranging from gaseous and wet chemistry to vacuum and atmospheric plasma, as well as various vacuum chemical vapor and evaporation and sputtering deposition methods.
- porous materials include textiles, non-woven products and paper (all of which have inherent properties derived from the nature of the constituent fibers);
- various synthetic and natural fibers for example, polypropylene, nylon, polyethylene, polyester, cellulosic fibers, wool, silk, and other polymers and blends, to name just a few
- the porosity of these materials usually serves a necessary function, such as, for example, the ability to be permeated with a fluid (such as gas and/or liquid), filtration of particulates, or absorption of liquids
- any treatment of a surface of a porous material carried out with the purpose of further modifying the chemical properties of the constituent fibers by appropriately functionalizing them is preferably carried out, to the extent possible, without affecting the porosity of the material.
- the terms nonwoven, fabric, textile, porous, and media are used interchangeably to describe a material that has a porous character.
- various wet-coating chemical processes have been used traditionally to treat with polymers and functionalize a fibrous material (interchangeably referred to herein as a porous substrate) that is otherwise inert or have limited surface functionality.
- These wet chemical processes may involve the immersion of the fibrous material in liquids or fluid foams to coat individual fibers and impart specific functionalities onto surface(s) of the fibrous material while retaining the material's porosity and its property of being permeable to fluids.
- Practice proves that, in spite of many claims to the contrary, such wet-chemistry processes at best materially reduce the porosity of the fibrous material at hand and, in the worst cases, essentially cause plugging of the interstices between individual constituent fibers.
- Vacuum-plasma based deposition of polymers can be quite effective in coating and functionalization of porous surfaces, but that process has had limited commercial success in applications that require high speed treatment (such as web coating, for example).
- a plasma coating process functional molecules in the form of a gas or vapor are introduced into the plasma and are randomly activated by ionization, forming free radicals that lead to formation of a cross- linked coating on a substrate as the activated monomer molecules impinge on it. It is well recognized that the physical and chemical properties of the resulting coating are highly dependent on process parameters such as, for example, pressure, electrode geometry and type of applied voltage (DC, AC, HFAC, Microwave).
- this process utilizes flash evaporation of a monomer material that is then condensed on a several-meter wide substrate moving at speeds in excess of 1,000 ft/min, followed by radiation curing of the condensed material with the use of electron beam or UV radiation.
- US 8,840,970 disclosed another vacuum- based process of functionalization of a surface moving at a high speed that involved modification of the surface with self-assembly of specific functional monomer materials.
- this process can be used to create functional surfaces with different chemical properties, including low surface energy used to repel liquids such as water and organics and high surface energy used to enhance wettability of the surface.
- This process utilizes an oxygen plasma to activate the substrate surface via the formation of free radicals that form covalent bonds with monomers that have acrylate, vinyl, allyl or similar double-bond chemistry.
- the limitation of this process is that it can be used to form a monomolecular layer on the surface but not a polymer layer.
- Solution(s) provided by this invention address the functionalization of web substrates that are processed preferably at high speed in a roll-to-roll process, and although such solutions apply to various types of substrates (including 3D objects), the main focus is made on substrates that have certain level of porosity.
- An embodiment of the present invention provides a method for coating a substrate in a partial vacuum.
- Such method includes the steps of activating a surface of the substrate in the partial vacuum with the use of ionized gas; depositing a monomer material on the substrate in the absence of oxygen near said surface; maintaining contact between a deposited monomer material and said surface for an amount of time sufficient to form a self-assembled polymer layer on the surface from the deposited monomer material; and evaporating of excess of the monomer material from the surface.
- a related embodiment provides a process for rendering an electronic device oleophobic and hydrophobic in a partial vacuum environment.
- Such process includes a step of forming an activated layer on all surfaces of such device by exposure to an ionized gas in the partial vacuum environment.
- the method also includes condensing a monomer material on the activated layer in the absence of oxygen near the activated layer and maintaining contact between a condensed monomer material and the surfaces in the device for an amount of time sufficient to form a functional polymer layer on the device surfaces, and evaporating un-polymerized monomer material.
- a related implementation provides a method for forming an oleophobic and hydrophobic coating on a substrate in a partial vacuum, which method contains the steps of a) forming an activated layer on a surface of the substrate with the use of an ionized gas; b) condensing a fluorine containing monomer material on the activated layer in the absence of oxygen; and c) maintaining contact between a condensed monomer material and the activated layer for an amount of time sufficient to form a self-assembled polymer layer on the surface of the device surface. Additionally, the method may include evaporating excess of the monomer material from the surface of the device.
- Embodiments of the invention also provide a method for forming, on an activated substrate in a partial vacuum with the use of a fluorine-containing monomer characterized by a first CF 3 :CF 2 ratio, a fluorine-containing polymer coating characterized by a second CF 3 :CF 2 ratio under processing conditions that enable said first and second ratios to be equal.
- Fig. 1 A is an illustration of an attachment of a single molecule to the target surface
- Fig. IB is an illustration of an attachment followed by linear polymerization, corresponding to an embodiment of the process of the invention.
- Figs. 2A, 2B, and 2C are micrographs of membranes carrying corresponding polymer coatings according to an embodiment of the invention.
- Fig. 3 is a flow-chart illustrating one implementation of a method of the invention.
- Implementations of the present invention provide examples of a method for forming, in the absence of radiation (associated with, for example plasma, electron beam, UV light, microwave radiation, RF radiation and heat) a functional coating on a substrate, where the coating includes linear or cross-linked polymer chains that have at least two functional molecules per chain.
- radiation associated with, for example plasma, electron beam, UV light, microwave radiation, RF radiation and heat
- cure polymerization
- linear polymerization linear polymerization
- cross-linking may be used interchangeably to refer to the process by which at least part of a monomeric material is converted into a polymer.
- ionized gas is understood to refer to a collection of ionized atoms and/or molecules, electrons, radicals and neutrals.
- plasma means ionized gas generated in the immediate vicinity of the substrate, or in contact with the substrate using at least one of DC, AC, continuous RF, and pulsed RF voltages.
- remote plasma means a plasma generated away from the substrate such that the substrate is shielded from and/or not in contact with any species in the plasma except radicals that have longer life and can be carried onto the substrate by neutral gas.
- treatment by remote plasma means treatment by radical gas species generated by a remote plasma.
- treated and activated substrate or substrate surface are used interchangeably to mean a substrate surface that contains radical species generated by exposure of the surface to an ionized gas generated by a plasma or radical species generated by a remote plasma.
- reactive when used in reference to a monomer material, describe a monomer material that has a chemical structure with bonds allowing a reaction with an activated surface. Such bonds include, for example, acrylate, methacrylate, vinyl and allyl chemical groups characterized by a double bond that can open to react with the substrate or another monomer molecule, thus causing polymerization.
- oxygen gas means oxygen gas that is either adsorbed on the substrate surface, or is free in the gas volume in the immediate vicinity of and in contact with the substrate.
- radiation and “radiation source” as it relates to polymerization are used interchangeably and mean heat, UV, electron beam, plasma and various combinations of such energy sources used to polymerize monomelic materials
- self assembled and “self assembly” are used interchangeably to refer to monomer molecules that form a polymer layer without the use of a radiation source and a so-formed polymer layer.
- the terms "functional” and “surface functionalization” refer to the addition of functionality to a surface by depositing a coating that has functional properties. Such properties include at least some of oleophobic, hydrophobic, hydrophilic, and antibacterial properties, release- facilitating properties, color, metal chelating, electronic conductivity, and ionic conductivity.
- a problem of forming a polymer layer in the vacuum on a substrate surface without the use of radiation from a radiation source is solved by judiciously defining the process conditions to ensure the condensation of a reactive monomer on the activated substrate surface in an environment that precludes contact of radiation with the activated substrate surface and evaporation of excess of monomer from the surface.
- the disclosed solution to this problem enables a high-speed surface- functionalization process that can be used to functionalize various activated substrates such as films, textiles, membranes, metallized surfaces, and three-dimensional objects (made of, for example, metal, metal oxides, polymer and composite materials) including electronic assemblies such as circuit boards, as well as complete electronic devices such as cellular phones and portable computers.
- various activated substrates such as films, textiles, membranes, metallized surfaces, and three-dimensional objects (made of, for example, metal, metal oxides, polymer and composite materials) including electronic assemblies such as circuit boards, as well as complete electronic devices such as cellular phones and portable computers.
- the deposition of a functional self-assembled functional polymer layer in the vacuum environment is enabled at high speeds, without using a source of radiation such as plasma, electron beam and UV during the coating-formation process.
- a substrate that has to be functionalized includes electronic components that can be adversely affected by the presence of charged particles or radiation used to perform the polymerization process in accord with the currently-employed methods.
- the proposed solution includes a process of self-assembly of molecules containing reactive functional groups (such as acrylate and vinyl, for example) or other bonds that facilitate reaction with an activated surface.
- reactive functional groups such as acrylate and vinyl, for example
- an activated layer prior to the deposition of the functional monomer on a surface of the substrate, an activated layer must be formed on the substrate surface with the use of plasma.
- a reactive monomer is deposited on the activated surface and is allowed to react with the surface before the excess of the monomer is evaporated to leave behind a functional monomolecular layer of the monomer.
- the capture cross-section of the reactive molecules is proportional to the reactivity of the activated substrate, the reactivity of the monomer material and the time that a monomer molecule spends in contact with the activated layer.
- the reactivity of the activated substrate is a function of the type and density of free radical species created by exposure to the plasma.
- a polymer layer can be formed in the absence of radiation from a radiation source. This process is particularly evident when molecules that have one or more of acrylate, methacrylate, vinyl or other double bonds are used. An example of this mechanism is shown in Figures discussed below.
- a functional acrylate monomer molecule may be attached on the substrate on its own, as shown in Fig. 1A, where Ri is a functional group and R2 and R3 are activated groups on the substrate. In this manner, a monomolecular layer can be formed on the substrate surface.
- a side-branch polymerization may occur as shown in Fig. IB.
- the acrylate double bond opens and reacts with a free radical group R2 on the substrate and a linear polymerization is triggered, causing one or more additional acrylate molecules to attach.
- the process is terminated at X, which denotes a hydrogen atom or another active site on the substrate surface.
- the process parameters that allow the polymerization process to take place include monomer chemistry, partial vacuum pressure, substrate temperature, the quantity of monomer deposited on the substrate and the gas chemistry of plasma used to treat the substrate surface. It was empirically discovered that, unlike a single molecule self-assembly process that runs efficiently with an oxygen-based plasma, the linear polymerization process is most effective when the functional groups on the substrate are produced using an ionized gas created with an inert gas plasma (such as argon and/or nitrogen, for example).
- an oxygen-based plasma is an effective way of creating, on the target substrate, oxygen-based free radical functional groups such as hydroxyl and carboxyl that initiate the molecular self-assembly process.
- the idea of the present invention is founded on the concept of forming a functional polymer layer using a polymerizable monomer material without an external source of energy (such as a source of electromagnetic radiation, for example). As determined, an implementation of this idea requires activation of a substrate's surface with ionized and/or activated gas and condensation of a reactive monomer on the activated surface in an environment that has no oxygen in the gas volume or near the substrate surface and subsequent evaporation of excess monomer.
- an oxygen plasma is used to create the ionized gas, it is possible that some oxygen may be absorbed by the substrate and later be emitted during the monomer condensation process. In addition or alternatively, if the surface activation and monomer condensation steps take place inline in the same chamber, some oxygen will be present in the vacuum environment where the monomer is deposited.
- the idea of the invention stems from the empirically-supported realization that, that i) when the fabrication process is conducted in a vacuum environment with the residual pressure being as small as 1 mTorr to 1 Torr, the presence of even the residual ambient air (oxygen) molecules is sufficient to inhibit the process of polymerization of the condensed monomer, and that ii) in large commercial roll-to-roll vacuum systems, where the chamber isolation between the ionized gas zone and the monomer condensation zones is not possible, an inert gas such as argon and/or nitrogen can be used both to activate the chamber and to replace the ambient oxygen.
- an inert gas such as argon and/or nitrogen can be used both to activate the chamber and to replace the ambient oxygen.
- Fig. 2A shows an image of a nano-porous polypropylene (PP) membrane, obtained with a field emission scanning electron microscope (FESEM).
- FESEM field emission scanning electron microscope
- a formed monomolecular monomer layer is a layer that is virtually indiscernible by an FESEM.
- Fig. 2B shows an image of the membrane with a linearly-polymerized coating formed according to an embodiment of the invention, which coating partially covers the surface of the membrane
- Fig. 2C shows a membrane that is fully coated with such a polymer layer. What is unique about the polymer layers shown in Figs.
- 2B and 2C is that the polymerization process was conducted in the absence of a radiation source in each of these cases.
- the membrane is used to demonstrate the polymer-formation process because on a flat film substrate or even on a textile with micron size fibers such thin functional coatings are difficult to image.
- the usefulness of such process is particularly high when functionalizing a substrate with a coating that imparts hydrophobic and oleophobic properties on the surface. (Such coatings are useful for water-proofing and oleo-proofing membranes, textiles, films, apparel, footwear, etc, as well as electronic devices, such as cellular phones, hearing aids, watches, for example.)
- a remote plasma source is used to generate ionized gas upstream. Electrons and ions in the plasma have a short life time and are eliminated through recombination and collision with the walls of the plasma chamber. Plasma-generated radicals that have no charge, on the other hand, have life-times longer than those of the electrons and ions in the plasma. Such radicals can be swept with neutral gas onto the substrate, where they react without adding charge that can affect and damage sensitive electronic circuitry of the substrate.
- Such remote plasma treatment protects and shields the electronic circuitry from the voltage used to generate the plasma and from the charging effects, and can be used to activate the substrate surface followed by the monomer deposition, thereby leading to the formation of a self assembled coating via covalent bonding with the substrate and subsequent polymerization.
- the proposed method provides a unique and unanticipated arrangement for deposition of functional coatings on electronic circuitry.
- the process of formation of a self-assembled polymer coating according to the idea of this invention can be used for coating substrates sensitive to direct exposure to plasma and/or exposure to plasma for an extended period of time.
- the embodiments of the invention minimize the exposure of a substrate to an ionized gas created by a plasma (to times on the order of seconds and as low as a fraction of a second) thereby minimizing impact of plasma on the substrate properties.
- a roll of the polypropylene membrane (such as that shown in Fig. 2A) was placed to move at a speed of 150 ft/min in a vacuum chamber pumped to a pressure of 10 "4 Torn The chamber was then backfilled with a nitrogen gas to a pressure of 120 mTorr. Given that in this chamber there was no vacuum isolation between the plasma treatment zone and the monomer deposition zone, argon gas based plasma was used to activate the surface of the target membrane. The membrane was exposed to the ionized gas for a period of 0.2 seconds using 0.55 W per cm 2 of 40 KHz plasma.
- Example 3 Coating of an electronic device
- a printed circuit board with various surface-mounted active and passive components was pretreated and coated under the conditions described in reference to Example 2. After the removal from the vacuum chamber, the board could not be wetted by dipping into water and measurement of phobic properties on various surface-mounted chips showed 6 for oil and 80%> IPA for water.
- a self-assembled polymer layer is formed on a substrate that has a polymer chemistry identical to that of the monomer used to produce it, and the chemical composition and stoichiometry that are unaffected by parameters of plasma (such as power, electrode geometry, gas pressure, and RF frequency, for example).
- parameters of plasma such as power, electrode geometry, gas pressure, and RF frequency, for example.
- the monomer molecules are randomly activated, ionized and cleaved by the plasma. Some low molecular weight fractions are further propagated to the vacuum pump, and the coatings are the result of random cross-linking, with unpredictable chemistry that is highly dependent on the plasma conditions.
- the CF 3 :CF 2 ratio in the polymer layer is not random but is exactly represented by the precursor molecule which in the Examples 1 and 2, for the perfluorohexylethyl acrylate, is 0.2.
- the embodiments of the present invention can utilize a broad range of organic monomers with various reactive moieties.
- the formation of a self-assembled polymer layer according to an embodiment of the invention involves the selection of appropriate organic monomers with certain level of reactivity determined by the presence of bonds that can open to initiate polymerization (such as acrylate, methacrylate, vinyl and allyl double bonds, for example), that can then be evaporated, condensed onto an activated substrate, allowed to polymerize, and re- evaporated from the substrate.
- the resulting properties of the so-coated with the polymer substrate may include oleophobic, hydrophobic, hydrophilic, antibacterial, release, color, metal chelating, electronic conductivity, and ionic conductivity properties, to name just a few.
- a large variety of compounds can be used either as single monomers or in a formulation of one or more components for coating a substrate according to the idea of the invention. Examples of these compounds include:
- the monomer molecules can be, for example, aliphatic, cyclo-aliphatic, aromatic, halogenated, metalated.
- Alcohols such as allyl, methallyl, crotyl, 1-chloroallyl, 2-chloroallyl, cinnamyl, vinyl, methylvinyl, 1-phenallyl and butenyl alcohols; and esters of such alcohols with (i) saturated acids such as acetic, propionic, butyric, valeric, caproic and stearic, (ii) unsaturated acids such as acrylic, alpha-substituted acrylic (including alkylacrylic, e.g., methacrylic, ethylacrylic, propylacrylic, and the like, and arylacrylic such as phenylacrylic), crotonic, oleic, linoleic and linolenic; (iii) polybasic acids such as oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and sebacic; (i)
- Acids and esters with lower saturated alcohols such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 2-ethylhexyl and cyclohexyl alcohols, and with saturated lower polyhydric alcohols such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol and trimethylolpropane.
- saturated alcohols such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, 2-ethylhexyl and cyclohexyl alcohols
- saturated lower polyhydric alcohols such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol and trimethylolpropane.
- Lower polyhydric alcohols e.g., butenediol, and esters thereof with saturated and unsaturated aliphatic and aromatic, monobasic and polybasic acids, examples of which appear above.
- esters of the above-described unsaturated acids especially acrylic and methacrylic acids, with higher molecular weight monohydroxy and polyhydroxy materials such as decyl alcohol, isodecyl alcohol, oleyl alcohol, stearyl alcohol, epoxy resins and polybutadiene- derived polyols.
- Vinyl cyclic compounds including styrene, o-, m-, p-chlorostyrenes, bromostyrenes, fluorostyrenes, methyl sty renes, ethylstyrenes and cyanostyrenes; di-, tri-, and tetrachlorostyrenes, bromostyrenes, fluorostyrenes, methyl styrenes, ethylstyrenes, cyanostyrenes; vinylnapthalene, vinylcyclohexane, divinylbenzene, trivinylbenzene, allylbenzene, and heterocycles such as vinylfuran, vinylpridine, vinylbenzofuran, N-vinylcarbazole, N-vinylpyrrolidone and N- vinyloxazolidone.
- Ethers such as methyl vinyl ether, ethyl vinyl ether, cyclohexyl vinyl ether, octyl vinyl ether, diallyl ether, ethyl methallyl ether and allyl ethyl ether.
- Ketones e.g., methyl vinyl ketone and ethyl vinyl ketone.
- Amides such as acrylamide, methacrylamide, N-methylacrylamide, N- phenylacrylamide, N-allylacrylamide, N-methylolacrylamide, N-allylcaprolatam, diacetone acrylamide, hydroxymetholated diacetone acrylamide and 2-acrylamido-2-methylpropanesulfonic acid.
- Aliphatic hydrocarbons for instance, ethylene, propylene, butenes, butadiene, isoprene, 2-chlorobutadiene and alpha-olefins in general.
- Alkyl halides e.g., vinyl fluoride, vinyl chloride, vinyl bromide, vinylidene chloride, vinylidene bromide, allyl chloride and allyl bromide.
- Acid anhydrides e.g., maleic, citraconic, itaconic, cis-4-cyclohexene-l,2- dicarboxylic and bicyclo(2.2.1)-5-heptene-2,3-dicarboxylic anhydrides.
- Acid halides such as cinnamyl acrylyl, methacrylyl, crotonyl, oleyl and fumaryl chlorides or bromides.
- Nitriles e.g., acrylonitrile, methaciylonitrile and other substituted acrylonitriles.
- a formation of an activated layer on the target surface preceding the step of condensation of a monomer can be facilitated with the use of plasma that contains a mixture of inert gases and/or reactive vapors such as, for example, silanes, siloxanes, acetylene, oxygen and gases and vapors that contain active species, such as S, Si, CI, F and Br.
- plasma that contains a mixture of inert gases and/or reactive vapors such as, for example, silanes, siloxanes, acetylene, oxygen and gases and vapors that contain active species, such as S, Si, CI, F and Br.
- Fig. 3 presents a non-limiting example of a process implemented in the present invention, which includes the steps of activation of a substrate in a vacuum with the use of ionized gas / radicals, at 310, followed by a deposition of a layer of monomer material on the activated substrate in the absence of oxygen, at 314, as discussed above, and reaction of the monomer material with the substrate and polymerization of the monomer material, at 318. Additionally, the process may include a step 322 of evaporation of excess monomer material.
- references throughout this specification to "one embodiment,” “an embodiment,” “a related embodiment,” or similar language mean that a particular feature, structure, or characteristic described in connection with the referred to “embodiment” is included in at least one embodiment of the present invention.
- appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment. It is to be understood that no portion of disclosure, taken on its own and in possible connection with a figure, is intended to provide a complete description of all features of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Toxicology (AREA)
- Textile Engineering (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physical Vapour Deposition (AREA)
- Laminated Bodies (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/841,255 US9968963B2 (en) | 2015-08-31 | 2015-08-31 | Functional coating |
PCT/US2016/049525 WO2017040544A1 (en) | 2015-08-31 | 2016-08-30 | Method for making a functional coating |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3294800A1 true EP3294800A1 (de) | 2018-03-21 |
EP3294800B1 EP3294800B1 (de) | 2019-07-24 |
Family
ID=56943930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16767075.1A Active EP3294800B1 (de) | 2015-08-31 | 2016-08-30 | Verfahren zur herstellung einer funktionsbeschichtung |
Country Status (5)
Country | Link |
---|---|
US (1) | US9968963B2 (de) |
EP (1) | EP3294800B1 (de) |
CN (1) | CN107922659B (de) |
HK (1) | HK1247227B (de) |
WO (1) | WO2017040544A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111349974A (zh) * | 2020-03-12 | 2020-06-30 | 重庆大学 | 一种经等离子处理的纳米纤维氢气传感材料的制备方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US675069A (en) | 1899-05-03 | 1901-05-28 | Frederick G Sargent | Wool-washing machine. |
GB1168641A (en) * | 1966-05-19 | 1969-10-29 | British Iron Steel Research | Formation of Polymer Coatings on Substrates. |
US4382985A (en) * | 1980-10-11 | 1983-05-10 | Daikin Kogyo Co., Ltd. | Process for forming film of fluoroalkyl acrylate polymer on substrate and process for preparing patterned resist from the film |
US4954371A (en) | 1986-06-23 | 1990-09-04 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
US5075399A (en) | 1990-11-15 | 1991-12-24 | Phillips Petroleum Company | Superabsorbent crosslinked ampholytic ion pair copolymers |
US6083628A (en) * | 1994-11-04 | 2000-07-04 | Sigma Laboratories Of Arizona, Inc. | Hybrid polymer film |
KR19980033213A (ko) * | 1996-10-31 | 1998-07-25 | 조셉제이.스위니 | 스퍼터링 챔버내의 미립자 물질 발생 감소 방법 |
DE19748240C2 (de) | 1997-10-31 | 2001-05-23 | Fraunhofer Ges Forschung | Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten mittels Plasmapolymerisation und dessen Anwendung |
US6432175B1 (en) | 1998-07-02 | 2002-08-13 | 3M Innovative Properties Company | Fluorinated electret |
EP0985741A1 (de) * | 1998-09-07 | 2000-03-15 | The Procter & Gamble Company | Modulierte Plasma-Glimmentladung-Behandlungen zur Herstellung super-hydrophober Substrate |
US7300859B2 (en) | 1999-02-01 | 2007-11-27 | Sigma Laboratories Of Arizona, Llc | Atmospheric glow discharge with concurrent coating deposition |
DE10009856A1 (de) | 2000-03-01 | 2001-09-06 | Beiersdorf Ag | Verfahren zur Herstellung von antiadhäsiven Beschichtungen |
US6419871B1 (en) | 2000-05-25 | 2002-07-16 | Transweb, Llc. | Plasma treatment of filter media |
US6468595B1 (en) | 2001-02-13 | 2002-10-22 | Sigma Technologies International, Inc. | Vaccum deposition of cationic polymer systems |
US6652112B1 (en) | 2002-04-29 | 2003-11-25 | Michael J. Lucarelli | Decorative light strip for self-attaching to a rain gutter or a roof overhang |
US7157117B2 (en) * | 2002-06-26 | 2007-01-02 | Sigma Laboratories Of Arizona, Llc | Functionalization of porous materials by vacuum deposition of polymers |
ATE519886T1 (de) * | 2003-04-25 | 2011-08-15 | Sigma Lab Arizona Inc | Durch vakuumablagerung funtionalisierte poröse materialien |
US7244292B2 (en) | 2005-05-02 | 2007-07-17 | 3M Innovative Properties Company | Electret article having heteroatoms and low fluorosaturation ratio |
US7255291B1 (en) | 2006-10-06 | 2007-08-14 | Yuan Mei Corp. | Multifunctional sprinkler structure |
US8658258B2 (en) * | 2008-10-21 | 2014-02-25 | Aculon, Inc. | Plasma treatment of substrates prior to the formation a self-assembled monolayer |
US20120164901A1 (en) * | 2010-12-22 | 2012-06-28 | Kimberly-Clark Worldwide, Inc. | Nonwoven webs having improved barrier properties |
US8840970B2 (en) * | 2011-01-16 | 2014-09-23 | Sigma Laboratories Of Arizona, Llc | Self-assembled functional layers in multilayer structures |
US8852693B2 (en) | 2011-05-19 | 2014-10-07 | Liquipel Ip Llc | Coated electronic devices and associated methods |
-
2015
- 2015-08-31 US US14/841,255 patent/US9968963B2/en active Active
-
2016
- 2016-08-30 WO PCT/US2016/049525 patent/WO2017040544A1/en active Application Filing
- 2016-08-30 EP EP16767075.1A patent/EP3294800B1/de active Active
- 2016-08-30 CN CN201680050281.9A patent/CN107922659B/zh active Active
-
2018
- 2018-05-24 HK HK18106797.2A patent/HK1247227B/zh unknown
Also Published As
Publication number | Publication date |
---|---|
HK1247227B (zh) | 2020-01-17 |
WO2017040544A1 (en) | 2017-03-09 |
EP3294800B1 (de) | 2019-07-24 |
CN107922659A (zh) | 2018-04-17 |
US20170056920A1 (en) | 2017-03-02 |
CN107922659B (zh) | 2018-12-07 |
US9968963B2 (en) | 2018-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7336019B2 (ja) | 撥水ナノ膜及びその製造方法、応用、並びに製品 | |
EP0843599B1 (de) | Vakuumentspannungsverdampft polymer-zusammensetzungen | |
JP4664282B2 (ja) | 真空蒸着により機能化された多孔性材料 | |
US8642133B2 (en) | Structure and its method for hydrophobic and oleophobic modification of polymeric materials with atmospheric plasmas | |
JP2004524958A (ja) | 固体ポリマー構造体形成プロセス及び固体ポリマー構造体 | |
EP2523759A2 (de) | Flüssigkeitsabweisende oberflächen | |
CN105688687B (zh) | 双疏膜的制备工艺 | |
CA2383168A1 (en) | Process for hydrophobic treatment of water vapour permeable substrates | |
Cheng et al. | Surface modification of polytetrafluoroethylene by atmospheric pressure plasma-grafted polymerization | |
Saleem et al. | Functionality and applications of non-thermal plasma activated textiles: A review | |
EP3294800B1 (de) | Verfahren zur herstellung einer funktionsbeschichtung | |
CN109267040B (zh) | 一种丙烯酰胺纳米涂层及其制备方法 | |
Puliyalil et al. | Recent advances in the methods for designing superhydrophobic surfaces | |
CN111621208B (zh) | 防水膜层及其制备方法、应用和产品 | |
Marcandalli et al. | Plasma treatments of fibres and textiles | |
US20120184165A1 (en) | Self-assembled functional layers in multilayer structures | |
CN111690306A (zh) | 防水膜层及其制备方法和产品 | |
KR100964451B1 (ko) | 다층구조 고분자 전해질 및 다층구조 고분자 전해질코팅체와 그 제조방법 | |
US7288019B2 (en) | Method of changing the surface wettability of polymer materials | |
TWI400285B (zh) | 改質基材表面之方法 | |
EP1506335A1 (de) | Verfahren zur behandlung von materialien mit plasma | |
CN114438477B (zh) | 循环镀膜方法、膜层以及产品 | |
KR101124598B1 (ko) | 다층구조 고분자 전해질 및 다층구조 고분자 전해질 코팅체와 그 제조방법 | |
JP2024078421A (ja) | フッ素化ポリマーコーティングを有する物体を生成する方法 | |
Mikhael et al. | High Speed Dry Coating Process for Wide Webs: Integration for Plasma Treatment Metal Deposition with Polymer Coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20171212 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180529 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: D06M 14/18 20060101ALI20181213BHEP Ipc: C08J 7/16 20060101ALI20181213BHEP Ipc: C08J 7/12 20060101AFI20181213BHEP Ipc: B05D 5/08 20060101ALI20181213BHEP Ipc: B01D 67/00 20060101ALI20181213BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190118 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAR | Information related to intention to grant a patent recorded |
Free format text: ORIGINAL CODE: EPIDOSNIGR71 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
INTC | Intention to grant announced (deleted) | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
INTG | Intention to grant announced |
Effective date: 20190614 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016017445 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1158088 Country of ref document: AT Kind code of ref document: T Effective date: 20190815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190724 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1158088 Country of ref document: AT Kind code of ref document: T Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191125 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191024 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191024 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191124 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191025 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190830 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602016017445 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190830 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190924 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190724 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240702 Year of fee payment: 9 |