EP3280950B1 - Lighting device having light-guiding shield - Google Patents

Lighting device having light-guiding shield Download PDF

Info

Publication number
EP3280950B1
EP3280950B1 EP16720990.7A EP16720990A EP3280950B1 EP 3280950 B1 EP3280950 B1 EP 3280950B1 EP 16720990 A EP16720990 A EP 16720990A EP 3280950 B1 EP3280950 B1 EP 3280950B1
Authority
EP
European Patent Office
Prior art keywords
light
diaphragm
illumination device
optical system
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16720990.7A
Other languages
German (de)
French (fr)
Other versions
EP3280950A1 (en
Inventor
Lukas Taudt
Bettina REISINGER
Andreas Moser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZKW Group GmbH
Original Assignee
ZKW Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZKW Group GmbH filed Critical ZKW Group GmbH
Publication of EP3280950A1 publication Critical patent/EP3280950A1/en
Application granted granted Critical
Publication of EP3280950B1 publication Critical patent/EP3280950B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/24Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/255Lenses with a front view of circular or truncated circular outline
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses

Definitions

  • the invention relates to a lighting device for a motor vehicle headlight, comprising a light module with at least one light emission source, a primary optics and a secondary optics, the primary optics having at least one light-guiding attachment optics, which is set up to receive light received by the at least one light emission source through at least one light exit surface of the attachment optics to further point towards the secondary optics downstream in the optical longitudinal axis direction, and wherein the secondary optics is set up to map a light distribution that is set on the light exit surface of the front optics into a apron located in front of the lighting device, at least one radiation diaphragm being arranged between the primary optics and the secondary optics ,
  • the refractive index of lenses in an optical system also influences the imaging scale, which thus depends on the wavelength of the light. Differences in refractive index between the lens material as object space and the surrounding medium air as image space lead to different imaging scales for blue and red light components due to the wavelength dependence of the refractive index. Sub-images that are formed by light of different wavelengths are therefore of different sizes. This effect is called transverse color errors, which causes color fringes on edges of a picture subject, if these do not run radially, and which causes the picture to be blurred.
  • the width of the color fringes of the picture motif is proportional to the distance from the center of the picture.
  • the focal length of the optical system and thus the distance of the image from the last surface of the optical system also depend on the refractive index of the lenses and thus on the wavelength of the light. This effect is known as the longitudinal color error.
  • a motor vehicle headlight with a secondary optic which has an achromatic arrangement of two lenses with different refractive index or with different refractive index.
  • the achromatic lens combination of a diverging lens with a converging lens eliminates unwanted color fringes.
  • reflecting and / or absorbing diaphragm surfaces are arranged between a light source or a primary optics and the secondary optics in such a way that an incorrect light directed in secondary emission directions outside the main beam direction is prevented from influencing the light distribution in the apron of the headlight.
  • a disadvantage of this embodiment is at least that the achromatic lens arrangement of the secondary optics is complex and that the overall efficiency of the headlamp is reduced by the use of side diaphragm surfaces.
  • a radiation diaphragm is arranged between a light source with a reflector, which is designed as an ellipsoid of revolution, and a converging lens in such a way that the entire diaphragm is above the horizontal plane containing the optical axis, in which the focal length ranges of the reflector or the focal point of the converging lens lie , is located.
  • the radiation diaphragm has an edge profile with at least two shading areas, each forming an edge, which are spaced apart in the direction of the optical axis, either one of the edges being arranged perpendicular to a focal point of the converging lens or the edges behind or in front of the focal point of the lens are arranged in the direction of the optical axis.
  • a first, front shading area protrudes for this purpose with its edge in the upward light beam path, while a second shading area downstream in the direction of the optical axis projects with its edge in the downward light beam path.
  • the focal point of the converging lens is located near the second focal length range of the reflector.
  • a motor vehicle headlight is shown, with a radiation diaphragm being arranged between the primary optics and the secondary optics.
  • the positioning of the beam diaphragm at a greater distance from the primary optic is less sensitive to tolerances, since there is also a distance normal to the horizontal plane between the split red and blue light beams in the edge hem of the light beam , Disadvantage of the in DE 601 31 600 T3
  • the embodiment shown is at least that the position of the beam diaphragm with respect to the lens focal point or the focal length ranges of the reflector is fixed, which is why the position of the beam diaphragm can only be inadequately adapted to different lighting tasks. Since one and the same beam aperture protrudes both in the downward and in the upward light beam, the beam aperture must protrude comparatively far into the light beam cone for effective shading of undesired marginal edges or scattered light, thereby disadvantageously reducing the efficiency of the headlight.
  • a lighting device for a motor vehicle headlight, comprising a light module with at least one light emission source, a primary lens and a secondary lens, the primary lens having at least one light-guiding attachment lens, which is set up to pass light received by the at least one light emission source through at least one light exit surface of the attachment lens to be directed further towards the secondary optics downstream in the optical longitudinal axis direction, and wherein the secondary optics is set up to map a light distribution that is set on the light exit surface of the front optics into an apron located in front of the lighting device, at least one radiation diaphragm being arranged between the primary optics and the secondary optics, the at least one beam diaphragm is arranged to shade a light color fringe, the at least one beam diaphragm being an optically active first diaphragm forms ante for a lower light color fringe and an optically active second diaphragm edge for an upper light color fringe, and the optically active diaphragm edges are each arranged in the light
  • shorter-wave blue boundary light rays are understood to be those light rays whose radiation is in a wavelength range from 405 nm to 480 nm.
  • an emission wavelength of a laser diode is approximately 405 nm, which laser diode can also be used in the context of the invention in a lighting device.
  • segmented phosphor elements are applied to the entry surfaces and excited by corresponding laser diodes.
  • White light LEDs also have a primary emission at wavelengths of around 450 nm.
  • the beam diaphragm is particularly advantageously arranged in such a way that the blue boundary light beams of the Light color fringes are shaded, since in particular the blue light components in the color fringe of the headlights in the apron area are clearly perceptible to the driver and disrupt a desired light distribution as an unpleasantly irritating play of colors.
  • the at least one light emission source is in each case associated with an entry surface of a specific front lens and is dimmable. Different lighting tasks can thus be performed flexibly by the lighting device.
  • the optically active diaphragm edges are expediently arranged in the light beam in such a way that red boundary light beams reach the secondary optics without shadowing.
  • the beam diaphragm is arranged in such a way that red boundary light beams, the radiation of which lies in a wavelength range from 600 nm to 750 nm, reach the secondary optics without shading through the beam diaphragm, if possible.
  • the red light components in the color fringe of the headlights in the apron area are barely perceptible to the driver compared to the blue light components and interfere with a desired light distribution significantly less than is the case with blue light components.
  • the overall efficiency or luminous efficacy of the headlamp is advantageously reduced only slightly, since the red light components are not shaded or are only shaded to the smallest possible extent.
  • the real light beam path in the light-guiding front lens comprises both direct light beams and single or multiple deflected light beams, the difference in distance between the red and blue limit light beams perpendicular to the optical axis being different. It should also be noted that the difference between the red and blue boundary light rays also depends on the material of the light-guiding front lens.
  • the optically active diaphragm edges between the blue boundary light rays and the red boundary light rays of the light color fringe protrude particularly advantageously into the light beam.
  • blue boundary light beams in a wavelength range from 405 nm to 480 nm are advantageously shaded by the beam diaphragm, while red boundary light beams in a wavelength range from 600 nm to 750 nm pass through the beam diaphragm without shadowing.
  • the at least one radiation diaphragm can be arranged in a diaphragm plane substantially perpendicular to the optical longitudinal axis in a lighting device.
  • the diaphragm edges of the radiation diaphragm are in one and the same diaphragm plane.
  • the radiation diaphragm can be made in one part or in several parts.
  • the at least one radiation diaphragm preferably has smoothly encircling diaphragm edges without structured subdivisions such as, for example, webs, frames, reinforcements or the like, since structured or segment-like composed diaphragm plates with subdivided diaphragm edges are disadvantageously depicted as disruptive strips in the traffic area or on a roadway.
  • the arrangement of the beam diaphragm in a diaphragm plane makes the adjustment of the beam diaphragm in the direction of the optical longitudinal axis particularly simple.
  • the radiation diaphragm can be made in one piece in a lighting device and have a diaphragm recess which forms a continuous optically active diaphragm edge with a first diaphragm edge section for a lower light color fringe and a second diaphragm edge section for an upper light color fringe, the diaphragm edge in the installed position encloses optical longitudinal axis.
  • a one-piece radiation diaphragm is particularly simple to manufacture and to assemble within the lighting device.
  • a one-piece radiation diaphragm with a continuous, smooth all-round diaphragm edge without structured subdivisions such as webs or reinforcements has the advantage that the light distribution in front of the lighting device without disruptive Strip is mapped.
  • the continuous, smooth all-round diaphragm edge offers the advantage that the light distribution of all the front optics or all light guides together through one aperture recess is projected, which results in a particularly homogeneous light distribution without annoying stripes due to the smooth peripheral edge of the diaphragm.
  • the radiation diaphragm can be embodied in two parts in a lighting device according to the invention, a first diaphragm part with a first optically active diaphragm edge and a second diaphragm part with a second optically active diaphragm edge being arranged on opposite sides of the optical longitudinal axis.
  • the two optically active diaphragm edges on the first and on the second diaphragm part can be adapted particularly flexibly to the geometric conditions of the beam path within an illumination device.
  • the diaphragm edges can thus also be arranged asymmetrically with respect to a horizontal plane through the optical longitudinal axis.
  • the two optically active diaphragm edges are each preferably continuously smooth without structuring, webs or interruptions, in order to ensure that the light distribution in the run-up to the lighting device is reproduced without disruptive strips.
  • the first diaphragm part and the second diaphragm part can expediently be arranged in different diaphragm planes spaced apart from one another in the optical longitudinal axis direction.
  • the diaphragm edges can be arranged particularly flexibly in the beam path of the light beam in order to selectively shade blue boundary light beams of the light color fringe.
  • At least one optically active diaphragm edge can be a free-form curve. Since the geometries of motor vehicle headlights, in particular, are determined by numerous influencing factors, such as, for example, constructive specifications, the requirements of authorities and design requirements of the motor vehicle manufacturers, the geometries of the diaphragm edges of the radiation shield must also be able to be adapted to the respective geometric specifications of the motor vehicle headlight concerned. The easiest way to do this is by using an aperture edge that is designed as a free-form curve. As already stated above, the at least one optically active diaphragm edge is preferably a smooth free-form curve designed that has no structures such as webs, frames or similar interruptions.
  • Spline interpolation for example, can be used to define or calculate such a smooth free-form curve, with the aid of which predefined interpolation points are interpolated with the aid of piecewise continuous polynomials, so-called splines, in order to advantageously obtain a smooth, uninterrupted curve shape.
  • the at least one beam diaphragm in the optical longitudinal axis direction from a lens focal plane at a distance of 10% to 90%, preferably from 30% to 70%, particularly preferably 50%, of an intercept distance between the lens focal plane and a lens apex plane of the secondary optics spaced.
  • the radiation diaphragm is fixed between the lens focal plane and the lens apex plane of the secondary optics.
  • the distance of the at least one beam diaphragm from the lens focal plane by color sensor measurements and / or color simulation calculations as the difference between the relative difference between a red light component shielded by the beam diaphragm and the red light component in the light beam passing through without the beam diaphragm and the relative difference between one the blue light component shielded by the radiation diaphragm can be determined compared to the blue light component in the light beam which is continuous without a radiation diaphragm, an increased blue light component being shadowed if there is a positive difference and an increased red light component being shadowed by the radiation diaphragm if the difference is negative.
  • the relative differences between shielded red light components or blue light components due to the shielding of the corresponding light components on the radiation shield from the red light components or blue light components is advantageous for a diaphragm position of the beam diaphragm selected at a certain distance from the lens focal plane in the direction of the optical longitudinal axis determined without a diaphragm.
  • the radiation diaphragm or the diaphragm edges of the beam diaphragm are examined at different normal distances from the optical axis, each at the same distance from the lens diaphragm from the lens focal plane in the direction of the optical longitudinal axis, and an optimal position of the diaphragm edges with regard to the efficiency of the lighting device, selectively blue Shadow border light rays, determined.
  • an optimal position of the diaphragm edges with regard to the efficiency of the lighting device selectively blue Shadow border light rays
  • Experimental measurements can thus show a course of the difference in the relative difference between a red light component shielded by the radiation diaphragm and that without
  • the continuous red light component in the light beam and the relative difference between a blue light component shielded by the radiation shield compared to the blue light component in the light beam passing through without the radiation shield are determined as a function of the distance of the radiation shield from the lens focal plane in the direction of the optical longitudinal axis.
  • the preferred distance of the beam diaphragm or the diaphragm edges of the beam diaphragm normal to the optical longitudinal axis is determined in each case as a compromise between the desired shading of the blue boundary light rays and the overall efficiency of the lighting device to be achieved. Since the overall efficiency of the lighting device also decreases with greater shading, the respective position of the radiation diaphragm must therefore be selected such that the shielded blue light component is higher than the proportion of shielded red boundary light beams.
  • the difference between the relative difference between a red light component shielded by the beam diaphragm and the red light component passing through without the beam diaphragm in the light beam and the Relative difference between a blue light component shielded by the radiation diaphragm and the blue light component in the light beam which is continuous without a radiation diaphragm has a value of 0.1 to 0.2.
  • an increased proportion of blue light is advantageously shaded selectively, the overall efficiency of the lighting device nevertheless remaining high.
  • the at least one radiation diaphragm is expediently fastened on a primary optics holder together with the primary optics.
  • the radiation diaphragm and the primary optics are particularly conveniently attached together.
  • the at least one radiation diaphragm is integrated into the primary optics in a lighting device.
  • a difference between a blue border light beam and a red border light beam transverse to the optical longitudinal axis is advantageous depending on the distance in the optical longitudinal axis direction and depending on the material of the light-guiding front lens system.
  • polycarbonate as the light-conducting material has a particularly clear color splitting, and polycarbonate has particularly large difference distances between blue and red boundary light beams. Selective shading of blue boundary light beams is therefore particularly easy due to the large difference in distances transverse to the optical longitudinal axis direction in the case of a light-guiding front lens made of polycarbonate.
  • the secondary optics expediently comprises a projection lens with a lens entry surface, which can be flat or spherical, and a mostly aspherical lens exit surface.
  • This embodiment of a lighting device according to the invention can advantageously be used in headlights with imaging optics.
  • the light modules of such headlights are usually referred to as light modules with front optics and a downstream projection lens.
  • the lighting device is set up to generate a low beam or high beam distribution.
  • a dipped beam or high beam distribution can advantageously be achieved with the at least one beam diaphragm, in which in each case blue boundary light beams are selectively shaded in the light color fringe.
  • the change between low beam and high beam is usually carried out by appropriately designing the combination of one or more light sources with the front lens system.
  • the invention comprises a motor vehicle headlight with at least one lighting device according to the invention.
  • Motor vehicle headlights are thus advantageously provided with a lighting device according to the invention, which enable a "white” or color-neutral light distribution of the illuminated apron without disturbing blue colored light edges.
  • Motor vehicle headlights equipped with the lighting device according to the invention are therefore perceived as particularly high quality due to their uniform, color-neutral light distribution.
  • a motor vehicle with at least one motor vehicle headlight that is equipped with at least one lighting device according to the invention can be specified within the scope of the invention.
  • the aforementioned advantages of the lighting device according to the invention thus also apply to the motor vehicle equipped with at least one motor vehicle headlight.
  • Fig. 1 illustrates a schematic structure of a first embodiment of a lighting device 1 according to the invention with a light module 2 and with at least one light emission source 10 or with at least one light emission point 10.
  • a primary optic 100 which is connected here to the light emission sources 10, has a light-conducting material made of transparent material for this purpose
  • Front optics 102 with a plurality of light guides 102 each with light entry surfaces 101 and with light exit surfaces 103.
  • Light rays 50 which are indicated here by dashed lines, change from the light exit surfaces 103 of the front optics 102 to a secondary optics 300, which here is designed as a projection lens 303 with a lens entry surface 301 and a lens exit surface 302 and which is spaced apart from the primary optics in the direction of an optical longitudinal axis 150 , headed.
  • a beam diaphragm 200 is arranged in the light beam path in a diaphragm plane 210, with diaphragm edges 220 of the beam diaphragm 200 projecting into the light beam 50 in such a way that blue boundary light beams 51 or blue light components 51 of a light color fringe 250, 251, 252 of the light beam 50 are shadowed while red border light rays 52 or red light portions 52 pass through the beam diaphragm 200 unhindered and thus reach the secondary optics 300 without shadowing.
  • the radiation diaphragm 200 is made here in one piece with a diaphragm recess 215 and with a circumferential, smooth, continuous diaphragm edge 220.
  • the coordinate system used here is outlined in the drawing at the bottom left, to which reference is made below.
  • the z-axis direction is defined here by the direction of the optical longitudinal axis 150 of the lighting device 1.
  • the aperture plane 210 is arranged essentially perpendicular to the optical longitudinal axis 150 or perpendicular to the z-axis direction.
  • Fig. 2 shows a lighting device 1 according to the invention in a partial sectional view from the side.
  • the radiation diaphragm 200 is designed here in two parts, a first diaphragm part 201 being equipped with a first, smooth, continuous diaphragm edge 221 and a second diaphragm part 202 having a second diaphragm edge 222.
  • the second diaphragm edge 222 is also designed to be smooth and continuous without subdivisions or interruptions.
  • the first diaphragm part 201 and the second diaphragm part 202, which together form the radiation diaphragm 200, are each arranged in the same diaphragm plane 210.
  • the first diaphragm part 201 is attached below a horizontal plane by the optical longitudinal axis 150, while the second diaphragm part 202 provides the diaphragm edge 222 arranged above the horizontal plane by the optical longitudinal axis 150.
  • the lower or first diaphragm edge 221 is spaced from the optical longitudinal axis 150 at a normal distance y 1 in the negative y coordinate direction.
  • the upper or second diaphragm edge 222 is in here a normal distance y 2 in the positive y coordinate direction from the optical longitudinal axis 150.
  • Light rays 50 which pass through the beam diaphragm 200 and boundary light rays 51, 52, which form a light color fringe 250, are again illustrated as dashed arrows.
  • Blue border light rays 51 or blue light components 51 of an upper light color fringe 251 and a lower light color fringe 252 are in each case selectively shaded by the first diaphragm part 201 or by the second diaphragm part 202.
  • Red border light rays 52 or red light portions 52 of the upper light color fringe 251 and of the lower light color fringe 252 pass the shade edges 221, 222 to the secondary optics without shadowing.
  • the diaphragm plane 210 is arranged at a distance z from a lens focal plane 110. The entire distance between lens focal plane 110 and lens apex plane 310 is referred to as the focal intercept SW.
  • Fig. 3 shows a detailed view of the light beam path of a direct light beam 50 in the light-conducting optical attachment 102.
  • the optical attachment 102 here has a length 120 in the direction of the optical longitudinal axis 150.
  • Light which is generated in the light emission sources 10, arrives at the light entry surface 101 into the light-guiding attachment optics 102 and leaves it again at the opposite light exit surface 103.
  • the individual light guides of the light-guiding attachment optics 102 here have, for example, rectangular cross sections, which differ from the light entry face 101 expand substantially conically towards the light exit surface 103.
  • the front optics 102 or the individual light guides 102 have an opening angle ⁇ in the direction of the light exit surface 103.
  • the direct light rays 50 guided through the front optical system 102 are split into blue boundary light rays 51 or red boundary light rays 52 in the region of the light color fringe when they exit from the light-guiding front optical system 102.
  • the comparatively short-wave blue radiation or the blue light component 51 is refracted more than the comparatively long-wave red radiation or the red light component 52.
  • An exit angle ⁇ 1, B between the optical longitudinal axis 150 and the blue boundary light beam 51 is thus greater than an exit angle ⁇ 1, R between the optical axis 150 and the red boundary light beam 52.
  • Fig. 4 shows a schematic detailed view of the light beam path of a double-deflected light beam 55 in the front optics 102.
  • the redirected light beam 55 emerges at an exit angle ⁇ 0 in relation to the direction of the optical longitudinal axis 150 at the light exit surface 103 of the front optics 102.
  • the blue boundary light rays 51 or the blue light component 51 are in turn refracted more than the red boundary light rays 51 or the red light component 52.
  • An exit angle ⁇ 01, B between the optical axis 150 and the blue boundary light beam 51 is in turn larger than an exit angle ⁇ 01, R between the optical axis 150 and the red boundary light beam 52.
  • the diaphragm edge becomes in this way in the diaphragm plane 210 with its diaphragm edge positioned that the diaphragm edge is arranged at a normal distance from the optical longitudinal axis 150, which lies between the normal distance y (B) of the blue boundary light beam 51 and the normal distance y (R) of the red boundary light beam 52.
  • the difference distance ⁇ y between the red and blue limit light beams 51, 52 is in that in Fig. 4 shown beam path of a double-deflected light beam 55 slightly larger than in the case of the in Fig. 3 illustrated beam path of a direct light beam 50.
  • the illustrations 5 to 7 each show in a diagram for different materials of the light-conducting front lens system 102 the course of the differential distance ⁇ y between blue 51 and red 52 boundary light beams as a function of the exit angle ⁇ between the optical longitudinal axis 150 and the respective boundary light beam 51, 52.
  • Fig. 5 shows the courses of the differential distance ⁇ y for a light guide 102 made of polymethyl methacrylate (PMMA), the data series for different distances z being determined at 10 mm, 50 mm and 80 mm distance from the lens focal plane or from the primary optics 100. It can be seen that with a larger distance z of 80 mm from the primary optics, the difference distance ⁇ y is greater than with the same exit angle ⁇ with a smaller distance z. For example, with a light guide made of PMMA at a distance z of 80 mm with an exit angle ⁇ of 20 °, the difference ⁇ y is approximately 0.4 mm.
  • Fig. 6 in which the courses of the differential distance ⁇ y were determined for a light guide 102 made of silicone, the data series also being shown for different distances z in 10 mm, 50 mm and 80 mm distance from the lens focal plane or from the primary optics 100, for example in a distance z of 80 mm at an exit angle ⁇ of 20 °, the difference ⁇ y about 0.3 mm.
  • Fig. 7 illustrates the courses of the differential distance ⁇ y for a light guide 102 made of polycarbonate (PC).
  • the data series for different distances z are also shown here at 10 mm, 50 mm and 80 mm from the lens focal plane or from the primary optics 100.
  • the difference ⁇ y is approximately 1.0 mm.
  • a comparison of the three investigated materials PMMA, silicone and PC shows that a light guide made of polycarbonate (PC) is particularly well suited due to the comparatively large difference ⁇ y between emerging blue and red boundary light beams, in order to combine with an illumination device according to the invention in combination with one in the beam direction downstream shield to selectively shade disturbing blue border light beams.
  • PC polycarbonate
  • Fig. 8 shows a so-called "PixelLite" light module 2 with a diaphragm position 210 of the beam diaphragm 200 at half the focal length SW.
  • the aperture plane 210 is thus arranged exactly in the direction of the optical longitudinal axis 150 exactly between the plane 110 through the lens focal point and the lens apex plane 310.
  • Fig. 9 shows in diagram form the course of the selection criterion ⁇ (RB) as a function of the distance z of the beam diaphragm 200 from the lens focal plane 110 to determine a suitable diaphragm position 210 in the beam path between the primary optics 100 and the secondary optics 300.
  • the Radiation diaphragm 200 from the lens focal plane 110 from color sensor measurements a difference ⁇ (RB) of the relative difference between a red light component R shielded by the beam diaphragm 200 compared to the red light component R in the light beam 50 passing through without the beam diaphragm and the relative difference between a blue light component B shielded by the beam diaphragm 200 compared to the blue light component B in the light beam 50 which is continuous without a beam diaphragm.
  • an aperture position with a distance z of 20 mm to 25 mm is advantageously to be selected in order to achieve selective shading of the blue light component B on the one hand and to ensure high efficiency of the overall system on the other hand.
  • the difference ⁇ (RB) is from 0.1 to 0.2, the distance z and the difference ⁇ (RB) being directly proportional. In the case of greater shading, red light components R are also shaded, and consequently the overall efficiency drops or the measured difference ⁇ (RB) has negative values.
  • Fig. 10 shows an alternative position of a color-correcting radiation diaphragm 200 as part of an attachment optics holder 105.
  • the radiation diaphragm 200 is integrated in the primary optics 100 and is fastened together with the primary optics holder.
  • Fig. 11 puts the in diagonally from above Fig. 10 illustrated color-correcting diaphragm 200 as part of the optical attachment holder 105.
  • the diaphragm plane 210 of the diaphragm 200 is arranged here within a light exit cone 500 with a boundary edge 510.
  • Fig. 12 shows in a front view the in Fig. 11 arrangement shown, the diaphragm edges 221, 222 are shown in dashed lines.
  • the aperture edges 221, 222 each have courses of free-form curves 240 here.
  • Fig. 13 the primary optics holder 105 is shown partially cut away.
  • the diaphragm edges 221, 222 in the form of a free-form curve 240 are formed here by the primary optics holder 105.
  • the radiation diaphragm 200 is thus integrated in the primary optics holder 105.
  • Fig. 14 shows - comparable to Fig. 3 - In a detailed view from the side, the shadowing of limit light beams 51, 52 of a light beam 50 which is directly guided in the front optical system 102. However, here in Fig. 14 in contrast to Fig. 3 an aperture part 202 of a radiation diaphragm 200 is also shown. A blue border light beam 51 of the light color fringe 251 is shaded here by the beam diaphragm 200, while a red border light beam 52 passes through the diaphragm plane 210 without shading and thus advantageously contributes to the overall efficiency of the lighting device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

Die Erfindung betrifft eine Beleuchtungsvorrichtung für einen Kraftfahrzeugscheinwerfer, umfassend ein Lichtmodul mit zumindest einer Lichtemissionsquelle, einer Primäroptik und einer Sekundäroptik, wobei die Primäroptik zumindest eine lichtleitende Vorsatzoptik aufweist, die dazu eingerichtet ist, von der zumindest einen Lichtemissionsquelle aufgenommenes Licht durch mindestens eine Lichtaustrittsfläche der Vorsatzoptik hindurch weiter auf die in optischer Längsachsenrichtung nachgelagerte Sekundäroptik zu richten, und wobei die Sekundäroptik dazu eingerichtet ist, eine sich auf der Lichtaustrittsfläche der Vorsatzoptik einstellende Lichtverteilung in ein vor der Beleuchtungsvorrichtung liegendes Vorfeld abzubilden, wobei zumindest eine Strahlenblende zwischen der Primäroptik und der Sekundäroptik angeordnet ist.The invention relates to a lighting device for a motor vehicle headlight, comprising a light module with at least one light emission source, a primary optics and a secondary optics, the primary optics having at least one light-guiding attachment optics, which is set up to receive light received by the at least one light emission source through at least one light exit surface of the attachment optics to further point towards the secondary optics downstream in the optical longitudinal axis direction, and wherein the secondary optics is set up to map a light distribution that is set on the light exit surface of the front optics into a apron located in front of the lighting device, at least one radiation diaphragm being arranged between the primary optics and the secondary optics ,

Aus dem Stand der Technik ist bekannt, dass bei der Dispersion von Lichtstrahlen in einer optischen Linse bzw. in einem optischen Linsensystem an einer Austrittsfläche des optischen Systems kurzwellige elektromagnetische Strahlung stärker als langwellige Strahlung gebrochen wird. Abhängig von der Wechselwirkung mit dem jeweiligen optischen Medium kann es dabei bei polychromatischem Licht zu einer unerwünschten Aufspaltung von blauen und roten Lichtanteilen insbesondere an den Randbereichen der optischen Linsen kommen, da kurzwellige blaue Lichtanteile stärker als grüne und diese wiederum stärker als vergleichsweise langwellige rote Lichtanteile gebrochen werden.It is known from the prior art that, when light beams are dispersed in an optical lens or in an optical lens system, short-wave electromagnetic radiation is refracted more than long-wave radiation at an exit surface of the optical system. Depending on the interaction with the respective optical medium, polychromatic light can cause an undesirable splitting of blue and red light components, especially at the edge areas of the optical lenses, since short-wave blue light components are broken more strongly than green ones and these in turn are broken more than comparatively long-wave red light components become.

Der Brechungsindex von Linsen eines optischen Systems beeinflusst außerdem den Abbildungsmaßstab, der somit von der Wellenlänge des Lichts abhängt. Brechzahlunterschiede zwischen dem Linsenmaterial als Objektraum und dem umgebenden Medium Luft als Bildraum führen aufgrund der Wellenlängenabhängigkeit des Brechungsindex zu unterschiedlichen Abbildungsmaßstäben für blaue und rote Lichtanteile. Teilbilder, die vom Licht unterschiedlicher Wellenlänge gebildet werden, sind dadurch verschieden groß. Diesen Effekt nennt man Farbquerfehler, wodurch Farbsäume an Kanten eines Bildmotivs, falls diese nicht radial verlaufen, entstehen und wodurch eine Unschärfe des Bildes bewirkt wird. Die Breite der Farbsäume des Bildmotivs ist proportional zum Abstand von der Bildmitte.The refractive index of lenses in an optical system also influences the imaging scale, which thus depends on the wavelength of the light. Differences in refractive index between the lens material as object space and the surrounding medium air as image space lead to different imaging scales for blue and red light components due to the wavelength dependence of the refractive index. Sub-images that are formed by light of different wavelengths are therefore of different sizes. This effect is called transverse color errors, which causes color fringes on edges of a picture subject, if these do not run radially, and which causes the picture to be blurred. The width of the color fringes of the picture motif is proportional to the distance from the center of the picture.

Auch die Schnittweite des optischen Systems und damit der Abstand des Bildes von der letzten Fläche des optischen Systems sind vom Brechungsindex der Linsen und somit von der Wellenlänge des Lichts abhängig. Dieser Effekt wird als Farblängsfehler bezeichnet. Dadurch kann man die Teilbilder unterschiedlicher Farben nicht gleichzeitig scharf auffangen, weil sie an verschiedenen Positionen stehen. Rote Farbsäume liegen beispielsweise vor der gewählten Schärfeebene, blaue Farbsäume dahinter. Es entsteht dabei eine Unschärfe, die nicht von der Bildhöhe abhängt.The focal length of the optical system and thus the distance of the image from the last surface of the optical system also depend on the refractive index of the lenses and thus on the wavelength of the light. This effect is known as the longitudinal color error. Thereby you cannot sharply catch the drawing files of different colors at the same time because they are in different positions. For example, red color fringes are in front of the selected sharpness level, blue color fringes are behind. This creates a blur that does not depend on the image height.

Um derartige Abbildungsfehler, auch Aberrationen genannt, die bei der Abbildung eines Objektpunktes die Entstehung eines perfekten Bildpunktes verhindern, möglichst zu vermeiden, muss generell bei der Konstruktion optischer Systeme, insbesondere bei Scheinwerfern für Kraftfahrzeuge, ein Kompromiss zwischen den Anforderungen an die gewünschte optische Abbildungsqualität und dem konstruktiven Aufwand gefunden werden.In order to avoid such aberrations, also called aberrations, which prevent the formation of a perfect image point when imaging an object point, as far as possible, a compromise between the requirements for the desired optical image quality and must be made when designing optical systems, in particular for headlights for motor vehicles the constructive effort can be found.

Aus der Druckschrift EP 2 306 074 A2 ist ein Kraftfahrzeugscheinwerfer mit einer Sekundäroptik bekannt, welche eine achromatisch wirkende Anordnung aus zwei Linsen mit unterschiedlicher Brechzahl bzw. mit unterschiedlichem Brechungsindex aufweist. Durch die achromatische Linsenkombination einer Zerstreuungslinse mit einer Sammellinse werden unerwünschte Farbsäume beseitigt. Zusätzlich sind zwischen einer Lichtquelle bzw. einer Primäroptik und der Sekundäroptik reflektierende und/oder absorbierende Blendenflächen so angeordnet, dass ein in Nebenabstrahlrichtungen außerhalb der Hauptstrahlrichtung gerichtetes Fehllicht daran gehindert wird, die Lichtverteilung im Vorfeld des Scheinwerfers zu beeinflussen. Nachteilig an dieser Ausführung ist zumindest, dass die achromatische Linsenanordnung der Sekundäroptik aufwendig ist und dass durch den Einsatz von seitlichen Blendenflächen die Gesamteffizienz des Scheinwerfers reduziert wird.From the publication EP 2 306 074 A2 A motor vehicle headlight with a secondary optic is known, which has an achromatic arrangement of two lenses with different refractive index or with different refractive index. The achromatic lens combination of a diverging lens with a converging lens eliminates unwanted color fringes. In addition, reflecting and / or absorbing diaphragm surfaces are arranged between a light source or a primary optics and the secondary optics in such a way that an incorrect light directed in secondary emission directions outside the main beam direction is prevented from influencing the light distribution in the apron of the headlight. A disadvantage of this embodiment is at least that the achromatic lens arrangement of the secondary optics is complex and that the overall efficiency of the headlamp is reduced by the use of side diaphragm surfaces.

Im Dokument DE 601 31 600 T3 wird ein Projektionsscheinwerfer mit Ellipsoid-Reflektor für Kraftfahrzeuge beschrieben, der zum Erzeugen eines Fernlichts ausgebildet ist. Mit diesem Schweinwerfer wird bezweckt, im Vorfeld des Scheinwerfers ein Lichtfeld zu erzeugen, das allmählich umso schwächer wird, je näher die zu beleuchtenden Straßenbereiche vor dem Schweinwerfer sind. Weiters sollen unerwünschte Färbungen des Lichts vermieden werden. Dazu ist zwischen einer Lichtquelle mit einem Reflektor, der etwa als Rotationsellipsoid ausgeführt ist, und einer Sammellinse eine Strahlenblende solcherart angeordnet, dass sich die gesamte Strahlenblende oberhalb der die optische Achse enthaltende Horizontalebene, in welcher die Brennweitenbereiche des Reflektors bzw. der Brennpunkt der Sammellinse liegen, befindet. Die Strahlenblende weist dazu ein Kantenprofil mit zumindest zwei jeweils einen Rand bildenden Abschattungsbereichen auf, die in Richtung der optischen Achse voneinander beabstandet sind, wobei entweder einer der Ränder lotrecht zu einem Brennpunkt der Sammellinse angeordnet ist oder die Ränder hinter bzw. vor dem Brennpunkt der Linse in Richtung der optischen Achse angeordnet sind. Ein erster, vorderer Abschattungsbereich ragt dazu mit seiner Randkante in den nach oben gerichteten Lichtstrahlengang, während ein zweiter, in Richtung der optischen Achse nachgelagerter Abschattungsbereich mit seiner Randkante in den nach unten gerichteten Lichtstrahlengang ragt. Der Brennpunkt der Sammellinse befindet sich in der Nähe des zweiten Brennweitenbereichs des Reflektors. In dem Dokument DE-A1-102010029176 , bzw. WO-A-2013/020156 , wird ein Kraftfahrzeugscheinwerfer dargestellt, wobei eine Strahlenblende zwischen der Primäroptik und der Sekundäroptik angeordnet ist.In the document DE 601 31 600 T3 describes a projection headlight with an ellipsoidal reflector for motor vehicles, which is designed to generate a high beam. The purpose of this headlamp is to produce a light field in front of the headlamp, which gradually becomes weaker the closer the road areas to be illuminated are in front of the headlamp. Furthermore, undesirable colorations of the light should be avoided. For this purpose, a radiation diaphragm is arranged between a light source with a reflector, which is designed as an ellipsoid of revolution, and a converging lens in such a way that the entire diaphragm is above the horizontal plane containing the optical axis, in which the focal length ranges of the reflector or the focal point of the converging lens lie , is located. For this purpose, the radiation diaphragm has an edge profile with at least two shading areas, each forming an edge, which are spaced apart in the direction of the optical axis, either one of the edges being arranged perpendicular to a focal point of the converging lens or the edges behind or in front of the focal point of the lens are arranged in the direction of the optical axis. A first, front shading area protrudes for this purpose with its edge in the upward light beam path, while a second shading area downstream in the direction of the optical axis projects with its edge in the downward light beam path. The focal point of the converging lens is located near the second focal length range of the reflector. In the document DE-A1-102010029176 , respectively. WO-A-2013/020156 , A motor vehicle headlight is shown, with a radiation diaphragm being arranged between the primary optics and the secondary optics.

Generell gilt für die Anordnung einer Strahlenblende im Strahlengang zwischen einer Primäroptik und einer Sekundäroptik, dass die Positionierung der Strahlenblende in einem größeren Abstand zur Primäroptik toleranzunempfindlicher ist, da dort auch ein Abstand normal zur Horizontalebene zwischen aufgespaltenem rotem und blauem Lichtstrahl im Randsaum des Lichtstrahls größer ist. Nachteilig an der in DE 601 31 600 T3 gezeigten Ausführung ist zumindest, dass die Position der Strahlenblende in Bezug auf den Linsenbrennpunkt bzw. die Brennweitenbereiche des Reflektors festgelegt ist, weshalb die Position der Strahlenblende nur unzureichend an unterschiedliche Beleuchtungsaufgaben angepasst werden kann. Da ein und dieselbe Strahlenblende sowohl in den nach unten, als auch in den nach oben gerichteten Lichtstrahl ragt, muss die Strahlenblende zur wirksamen Abschattung von unerwünschten Randsäumen bzw. von Streulicht vergleichsweise weit in den Lichtstrahlenkegel ragen, wodurch die Effizienz des Scheinwerfers nachteilig verringert wird.In general, for the arrangement of a beam diaphragm in the beam path between a primary optic and a secondary optic, the positioning of the beam diaphragm at a greater distance from the primary optic is less sensitive to tolerances, since there is also a distance normal to the horizontal plane between the split red and blue light beams in the edge hem of the light beam , Disadvantage of the in DE 601 31 600 T3 The embodiment shown is at least that the position of the beam diaphragm with respect to the lens focal point or the focal length ranges of the reflector is fixed, which is why the position of the beam diaphragm can only be inadequately adapted to different lighting tasks. Since one and the same beam aperture protrudes both in the downward and in the upward light beam, the beam aperture must protrude comparatively far into the light beam cone for effective shading of undesired marginal edges or scattered light, thereby disadvantageously reducing the efficiency of the headlight.

Aus dem Dokument US 7,036,969 B2 ist eine Fahrzeugleuchte mit einer speziellen Blendengeometrie bekannt, um die Streulichtbildung eines Nebelscheinwerfers zu minimieren und um Eigenblendung zu vermeiden. Der Kantenverlauf einer Vorfeldblende weist dazu einen zentralen Bereich, Seitenbereiche und einen oberen Bereich auf, die gemeinsam eine Dreiecksform bilden. Die Vermeidung von chromatischen Aberrationen wird hier weder bezweckt noch ist diese angedacht. Auch in dieser Ausführung kann nicht vermieden werden, dass durch die Blendengeometrie die Effizienz des optischen Systems verringert wird.From the document US 7,036,969 B2 a vehicle lamp with a special aperture geometry is known in order to minimize the formation of stray light from a fog lamp and to avoid self-glare. For this purpose, the edge profile of an apron has a central area, side areas and an upper area, which together form a triangular shape. The avoidance of chromatic aberrations is neither intended nor is it considered here. In this embodiment, too, it cannot be avoided that the aperture geometry reduces the efficiency of the optical system.

Bei Tests an Kraftfahrzeugscheinwerfern, die sogenannte "abbildende Lichtmodule" mit einer Primäroptik und einer sekundären Abbildungslinse umfassen, wie dies beispielsweise aus der Literatur bekannte sogenannte PixelLite- oder MatrixLight-Systeme sind, hat sich gezeigt, dass insbesondere die blauen Lichtanteile im Farbsaum des Scheinwerfers zu vermeiden sind, da sie im Bereich des Vorfelds speziell im unteren Bereich der Lichtverteilung, also unterhalb der Linie des Horizonts, der sogenannten HH-Linie, für den Fahrer deutlich wahrnehmbar sind und als unangenehm irritierendes Farbenspiel eine gewünschte Lichtverteilung stören. Die Farbränder werden auch deshalb so störend wahrgenommen, da sie sich von der "weißen" Lichtverteilung des Vorfelds abheben. Das Vorfeld wird dabei meist mittels eines farbneutralen Reflektormoduls erzeugt.Tests on motor vehicle headlights, which include so-called "imaging light modules" with primary optics and a secondary imaging lens, such as so-called PixelLite or MatrixLight systems known from the literature, have shown that, in particular, the blue light components in the color fringe of the headlights increase Avoid, as they are clearly perceptible to the driver in the apron area, especially in the lower area of the light distribution, i.e. below the line of the horizon, the so-called HH line, and disrupt a desired light distribution as an unpleasantly irritating play of colors. The color borders are perceived so disturbingly because they stand out from the "white" light distribution of the apron. The apron is usually generated using a color-neutral reflector module.

Es ist somit die Aufgabe der vorliegenden Erfindung eine gattungsgemäße Beleuchtungsvorrichtung für einen Kraftfahrzeugscheinwerfer dahingehend zu verbessern, dass die geschilderten Nachteile des Standes der Technik möglichst vermieden werden und mit der Beleuchtungsvorrichtung sowohl die störenden Effekte von Farbsäumen reduziert und gleichzeitig eine Gesamteffizienz bzw. Lichtausbeute erhöht werden.It is therefore the object of the present invention to improve a generic lighting device for a motor vehicle headlight in such a way that the disadvantages of the prior art described are avoided as far as possible and with the lighting device both the disturbing effects of color fringes are reduced and at the same time an overall efficiency or luminous efficiency is increased.

Erfindungsgemäß wird diese Aufgabe bei einer gattungsgemäßen Beleuchtungsvorrichtung durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst. Besonders bevorzugte Ausführungsformen und Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.According to the invention, this object is achieved in a generic lighting device by the features specified in the characterizing part of patent claim 1. Particularly preferred embodiments and developments of the invention are the subject of the dependent claims.

Bei einer erfindungsgemäßen Beleuchtungsvorrichtung für einen Kraftfahrzeugscheinwerfer, umfassend ein Lichtmodul mit zumindest einer Lichtemissionsquelle, einer Primäroptik und einer Sekundäroptik, wobei die Primäroptik zumindest eine lichtleitende Vorsatzoptik aufweist, die dazu eingerichtet ist, von der zumindest einen Lichtemissionsquelle aufgenommenes Licht durch mindestens eine Lichtaustrittsfläche der Vorsatzoptik hindurch weiter auf die in optischer Längsachsenrichtung nachgelagerte Sekundäroptik zu richten, und wobei die Sekundäroptik dazu eingerichtet ist, eine sich auf der Lichtaustrittsfläche der Vorsatzoptik einstellende Lichtverteilung in ein vor der Beleuchtungsvorrichtung liegendes Vorfeld abzubilden, wobei zumindest eine Strahlenblende zwischen der Primäroptik und der Sekundäroptik angeordnet ist, ist die zumindest eine Strahlenblende zur Abschattung eines Lichtfarbsaums angeordnet, wobei die zumindest eine Strahlenblende eine optisch aktive erste Blendenkante für einen unteren Lichtfarbsaum sowie eine optisch aktive zweite Blendenkante für einen oberen Lichtfarbsaum bildet, und die optisch aktiven Blendenkanten jeweils derart im Lichtstrahl angeordnet sind, dass selektiv blaue Grenzlichtstrahlen des Lichtfarbsaums abschattbar sind.In a lighting device according to the invention for a motor vehicle headlight, comprising a light module with at least one light emission source, a primary lens and a secondary lens, the primary lens having at least one light-guiding attachment lens, which is set up to pass light received by the at least one light emission source through at least one light exit surface of the attachment lens to be directed further towards the secondary optics downstream in the optical longitudinal axis direction, and wherein the secondary optics is set up to map a light distribution that is set on the light exit surface of the front optics into an apron located in front of the lighting device, at least one radiation diaphragm being arranged between the primary optics and the secondary optics, the at least one beam diaphragm is arranged to shade a light color fringe, the at least one beam diaphragm being an optically active first diaphragm forms ante for a lower light color fringe and an optically active second diaphragm edge for an upper light color fringe, and the optically active diaphragm edges are each arranged in the light beam in such a way that blue boundary light beams of the light color fringe can be shaded selectively.

Im Rahmen der Erfindung werden unter kürzerwelligen blauen Grenzlichtstrahlen jene Lichtstrahlen verstanden, deren Strahlung in einem Wellenlängenbereich von 405 nm bis 480 nm liegt. Beispielsweise liegt eine Emissionswellenlänge einer Laserdiode bei etwa 405 nm, welche Laserdiode im Rahmen der Erfindung bei einer Beleuchtungsvorrichtung ebenfalls eingesetzt werden kann. Dazu werden beispielsweise an den Eintrittsflächen segmentierte Phosphorelemente aufgebracht und durch entsprechende Laserdioden angeregt. Ebenso haben Weißlicht-LEDs eine Primär-Emission bei Wellenlängen von rund 450 nm.In the context of the invention, shorter-wave blue boundary light rays are understood to be those light rays whose radiation is in a wavelength range from 405 nm to 480 nm. For example, an emission wavelength of a laser diode is approximately 405 nm, which laser diode can also be used in the context of the invention in a lighting device. For this purpose, for example, segmented phosphor elements are applied to the entry surfaces and excited by corresponding laser diodes. White light LEDs also have a primary emission at wavelengths of around 450 nm.

Besonders vorteilhaft ist die Strahlenblende bei einer erfindungsgemäßen Beleuchtungsvorrichtung so angeordnet, dass selektiv die blauen Grenzlichtstrahlen des Lichtfarbsaums abgeschattet werden, da insbesondere die blauen Lichtanteile im Farbsaum des Scheinwerfers im Bereich des Vorfelds für den Fahrer deutlich wahrnehmbar sind und als unangenehm irritierendes Farbenspiel eine gewünschte Lichtverteilung stören. In einer besonders vorteilhaften Ausführungsvariante ist die zumindest eine Lichtemissionsquelle jeweils einer Eintrittsfläche einer bestimmten Vorsatzoptik zugeordnet und dimmbar. Somit können flexibel unterschiedliche Beleuchtungsaufgaben von der Beleuchtungsvorrichtung erfüllt werden.In an illumination device according to the invention, the beam diaphragm is particularly advantageously arranged in such a way that the blue boundary light beams of the Light color fringes are shaded, since in particular the blue light components in the color fringe of the headlights in the apron area are clearly perceptible to the driver and disrupt a desired light distribution as an unpleasantly irritating play of colors. In a particularly advantageous embodiment variant, the at least one light emission source is in each case associated with an entry surface of a specific front lens and is dimmable. Different lighting tasks can thus be performed flexibly by the lighting device.

Zweckmäßig sind bei einer erfindungsgemäßen Beleuchtungsvorrichtung die optisch aktiven Blendenkanten jeweils derart im Lichtstrahl angeordnet, dass rote Grenzlichtstrahlen ohne Abschattung zur Sekundäroptik gelangen. In dieser Ausführung der Erfindung ist die Strahlenblende solcherart angeordnet, dass rote Grenzlichtstrahlen, deren Strahlung in einem Wellenlängenbereich von 600 nm bis 750 nm liegt, möglichst ohne Abschattung durch die die Strahlenblende hindurch zur Sekundäroptik gelangen. Wie bei Untersuchungen im Vorfeld überraschend festgestellt wurde sind die roten Lichtanteile im Farbsaum des Scheinwerfers im Bereich des Vorfelds für den Fahrer im Vergleich zu den blauen Lichtanteilen kaum wahrnehmbar und stören eine gewünschte Lichtverteilung deutlich weniger als dies bei blauen Lichtanteilen der Fall ist. Vorteilhaft wird in dieser Ausführung die Gesamteffizienz bzw. Lichtausbeute des Scheinwerfers nur geringfügig reduziert, da die roten Lichtanteile nicht oder nur in einem möglichst geringen Ausmaß abgeschattet werden.In an illumination device according to the invention, the optically active diaphragm edges are expediently arranged in the light beam in such a way that red boundary light beams reach the secondary optics without shadowing. In this embodiment of the invention, the beam diaphragm is arranged in such a way that red boundary light beams, the radiation of which lies in a wavelength range from 600 nm to 750 nm, reach the secondary optics without shading through the beam diaphragm, if possible. As was surprisingly found during examinations in advance, the red light components in the color fringe of the headlights in the apron area are barely perceptible to the driver compared to the blue light components and interfere with a desired light distribution significantly less than is the case with blue light components. In this embodiment, the overall efficiency or luminous efficacy of the headlamp is advantageously reduced only slightly, since the red light components are not shaded or are only shaded to the smallest possible extent.

Dabei ist allerdings zu beachten, dass der reale Lichtstrahlengang in der lichtleitenden Vorsatzoptik sowohl direkte Lichtstrahlen, als auch einfach bzw. mehrfach umgelenkte Lichtstrahlen umfasst, wobei deren Differenzabstand zwischen den roten und blauen Grenzlichtstrahlen senkrecht zur optischen Achse unterschiedlich ist. Weiters ist zu beachten, dass der Differenzabstand zwischen den roten und blauen Grenzlichtstrahlen auch vom Material der lichtleitenden Vorsatzoptik abhängt.However, it should be noted that the real light beam path in the light-guiding front lens comprises both direct light beams and single or multiple deflected light beams, the difference in distance between the red and blue limit light beams perpendicular to the optical axis being different. It should also be noted that the difference between the red and blue boundary light rays also depends on the material of the light-guiding front lens.

Ist die Position der optisch aktiven Blendenkanten beispielsweise anhand des Lichtstrahlengangs von direkten Lichtstrahlen ausgerichtet, so werden direkte Lichtstrahlen, welche einen geringeren Differenzabstand zwischen den roten und blauen Grenzlichtstrahlen senkrecht zur optischen Achse aufweisen als mehrfach umgelenkte Lichtstrahlen, ohne Abschattung ihrer roten Grenzlichtstrahlen zur Sekundäroptik gelangen. Wobei abhängig von der Position der Strahlenblende allerdings ein kleinerer Anteil von roten Grenzlichtstrahlen von mehrfach umgelenkten Lichtstrahlen möglicherweise am Lichtdurchtritt durch die Strahlenblende behindert werden kann. Für den umgekehrten Fall, dass die Position der optisch aktiven Blendenkanten beispielsweise anhand des Lichtstrahlengangs von mehrfach umgelenkten Lichtstrahlen ausgerichtet bzw. optimiert ist, werden mehrfach umgelenkte Lichtstrahlen, welche einen größeren Differenzabstand zwischen den roten und blauen Grenzlichtstrahlen senkrecht zur optischen Achse aufweisen als direkte Lichtstrahlen, ohne Abschattung ihrer roten Grenzlichtstrahlen zur Sekundäroptik gelangen. Aber auch in diesem Fall kann es zumindest in geringem Ausmaß zur Abschattung von roten Grenzlichtstrahlen der direkten Lichtstrahlen kommen. Somit gilt es bei der Positionierung der Blendenkanten ein Optimum zwischen einer möglichst vollständigen Abschattung der blauen Grenzlichtstrahlen und einem möglichst ungehinderten Blendendurchtritt der roten Grenzlichtstrahlen zu finden.If the position of the optically active diaphragm edges is aligned, for example, on the basis of the light beam path of direct light beams, then direct light beams which have a smaller difference between the red and blue boundary light beams perpendicular to the optical axis than multiple deflected light beams will reach the secondary optics without shadowing their red border light beams. However, depending on the position of the beam diaphragm, a smaller proportion of red boundary light beams from light beams that have been deflected several times can possibly be prevented from passing through the beam diaphragm. In the opposite case, in which the position of the optically active diaphragm edges is aligned or optimized, for example on the basis of the light beam path of light beams which have been deflected multiple times, multiple deflections are made Light rays which have a greater difference between the red and blue boundary light rays perpendicular to the optical axis than direct light rays reach the secondary optics without shadowing their red boundary light rays. But even in this case, there may be at least a slight degree of shadowing of red border light rays from the direct light rays. When positioning the diaphragm edges, it is therefore important to find an optimum between shading the blue boundary light rays as completely as possible and preventing the red boundary light rays from passing through as freely as possible.

Besonders vorteilhaft ragen bei einer Beleuchtungsvorrichtung gemäß der Erfindung die optisch aktiven Blendenkanten zwischen den blauen Grenzlichtstrahlen und den roten Grenzlichtstrahlen des Lichtfarbsaums in den Lichtstrahl. Vorteilhaft werden selektiv blaue Grenzlichtstrahlen in einem Wellenlängenbereich von 405 nm bis 480 nm von der Strahlenblende abgeschattet, während rote Grenzlichtstrahlen in einem Wellenlängenbereich von 600 nm bis 750 nm ohne Abschattung die Strahlenblende passieren.In a lighting device according to the invention, the optically active diaphragm edges between the blue boundary light rays and the red boundary light rays of the light color fringe protrude particularly advantageously into the light beam. Selectively, blue boundary light beams in a wavelength range from 405 nm to 480 nm are advantageously shaded by the beam diaphragm, while red boundary light beams in a wavelength range from 600 nm to 750 nm pass through the beam diaphragm without shadowing.

In einer besonders kompakten Ausführung der Erfindung kann bei einer Beleuchtungsvorrichtung die zumindest eine Strahlenblende in einer Blendenebene im Wesentlichen senkrecht zur optischen Längsachse angeordnet sein. In dieser Ausführung befinden sich die Blendenkanten der Strahlenblende in ein und derselben Blendenebene. Die Strahlenblende kann dabei einteilig oder mehrteilig ausgeführt sein. Vorzugsweise weist die zumindest eine Strahlenblende glatt umlaufende Blendenkanten ohne strukturierte Unterteilungen wie beispielsweise Stege, Rahmen, Verstärkungen oder ähnlichem auf, da strukturierte bzw. segmentartig zusammengesetzte Strahlenblenden mit unterteilten Blendenkanten nachteilig als störende Streifen in den Verkehrsraum bzw. auf eine Fahrbahn abgebildet werden. Durch die Anordnung der Strahlenblende in einer Blendenebene ist die Justierung der Strahlenblende in Richtung der optischen Längsachse besonders einfach.In a particularly compact embodiment of the invention, the at least one radiation diaphragm can be arranged in a diaphragm plane substantially perpendicular to the optical longitudinal axis in a lighting device. In this version, the diaphragm edges of the radiation diaphragm are in one and the same diaphragm plane. The radiation diaphragm can be made in one part or in several parts. The at least one radiation diaphragm preferably has smoothly encircling diaphragm edges without structured subdivisions such as, for example, webs, frames, reinforcements or the like, since structured or segment-like composed diaphragm plates with subdivided diaphragm edges are disadvantageously depicted as disruptive strips in the traffic area or on a roadway. The arrangement of the beam diaphragm in a diaphragm plane makes the adjustment of the beam diaphragm in the direction of the optical longitudinal axis particularly simple.

In einer vorteilhaften Ausführungsvariante der Erfindung kann bei einer Beleuchtungsvorrichtung die Strahlenblende einteilig ausgeführt sein und eine Blendenausnehmung aufweisen, die eine durchgehende optisch aktive Blendenkante mit einem ersten Blendenkantenabschnitt für einen unteren Lichtfarbsaum sowie einem zweiten Blendenkantenabschnitt für einen oberen Lichtfarbsaum bildet, wobei die Blendenkante in Einbaulage die optische Längsachse umschließt. Eine einteilige Strahlenblende ist besonders einfach in der Herstellung sowie in der Montage innerhalb der Beleuchtungsvorrichtung. Weiters bietet eine einteilige Strahlenblende mit einer durchgehenden, glatt umlaufenden Blendenkante ohne strukturierte Unterteilungen wie beispielsweise Stege oder Verstärkungen den Vorteil, dass die Lichtverteilung im Vorfeld der Beleuchtungsvorrichtung ohne störende Streifen abgebildet wird. Für den Fall, dass eine Primäroptik mit mehreren Vorsatzoptiken bzw. mit einer Vorsatzoptik mit mehreren Lichtleitern zum Einsatz kommt, bietet die durchgehende, glatt umlaufende Blendenkante überdies den Vorteil, dass die Lichtverteilung der Gesamtheit aller Vorsatzoptiken bzw. aller Lichtleiter gemeinsam durch die eine Blendenausnehmung hindurch projiziert wird, wodurch sich aufgrund der glatt umlaufenden Blendenkante eine besonders homogene Lichtverteilung ohne störende Streifen ergibt.In an advantageous embodiment variant of the invention, the radiation diaphragm can be made in one piece in a lighting device and have a diaphragm recess which forms a continuous optically active diaphragm edge with a first diaphragm edge section for a lower light color fringe and a second diaphragm edge section for an upper light color fringe, the diaphragm edge in the installed position encloses optical longitudinal axis. A one-piece radiation diaphragm is particularly simple to manufacture and to assemble within the lighting device. Furthermore, a one-piece radiation diaphragm with a continuous, smooth all-round diaphragm edge without structured subdivisions such as webs or reinforcements has the advantage that the light distribution in front of the lighting device without disruptive Strip is mapped. In the event that a primary optic with several front optics or with a front optic with several light guides is used, the continuous, smooth all-round diaphragm edge offers the advantage that the light distribution of all the front optics or all light guides together through one aperture recess is projected, which results in a particularly homogeneous light distribution without annoying stripes due to the smooth peripheral edge of the diaphragm.

In einer weiteren vorteilhaften Ausführungsvariante kann bei einer erfindungsgemäßen Beleuchtungsvorrichtung die Strahlenblende zweiteilig ausgeführt sein, wobei ein erster Blendenteil mit einer ersten optisch aktiven Blendenkante sowie ein zweiter Blendenteil mit einer zweiten optisch aktiven Blendenkante an gegenüberliegenden Seiten der optischen Längsachse angeordnet sind. In dieser zweiteiligen Ausführung der Strahlenblende können die beiden optisch aktiven Blendenkanten am ersten bzw. am zweiten Blendenteil besonders flexibel an die geometrischen Gegebenheiten des Strahlengangs innerhalb einer Beleuchtungsvorrichtung angepasst werden. Somit lassen sich die Blendenkanten auch asymmetrisch in Bezug auf eine Horizontalebene durch die optische Längsachse anordnen. Auch in dieser Ausführungsvariante mit einer zweiteiligen Strahlenblende sind die beiden optisch aktiven Blendenkanten jeweils vorzugsweise durchgehend glatt ohne Strukturierungen, Stege oder Unterbrechungen ausgeführt, um zu gewährleisten, dass die Lichtverteilung im Vorfeld der Beleuchtungsvorrichtung ohne störende Streifen abgebildet wird.In a further advantageous embodiment variant, the radiation diaphragm can be embodied in two parts in a lighting device according to the invention, a first diaphragm part with a first optically active diaphragm edge and a second diaphragm part with a second optically active diaphragm edge being arranged on opposite sides of the optical longitudinal axis. In this two-part design of the radiation diaphragm, the two optically active diaphragm edges on the first and on the second diaphragm part can be adapted particularly flexibly to the geometric conditions of the beam path within an illumination device. The diaphragm edges can thus also be arranged asymmetrically with respect to a horizontal plane through the optical longitudinal axis. In this embodiment variant with a two-part radiation diaphragm, the two optically active diaphragm edges are each preferably continuously smooth without structuring, webs or interruptions, in order to ensure that the light distribution in the run-up to the lighting device is reproduced without disruptive strips.

Zweckmäßig können in einer weiteren Ausführung einer erfindungsgemäßen Beleuchtungsvorrichtung der erste Blendenteil und der zweite Blendenteil in unterschiedlichen, in optischer Längsachsenrichtung voneinander beabstandeten Blendenebenen angeordnet sein. In dieser Ausführungsvariante der Erfindung können die Blendenkanten besonders flexibel im Strahlengang des Lichtstrahls angeordnet werden, um selektiv blaue Grenzlichtstrahlen des Lichtfarbsaums abzuschatten.In a further embodiment of a lighting device according to the invention, the first diaphragm part and the second diaphragm part can expediently be arranged in different diaphragm planes spaced apart from one another in the optical longitudinal axis direction. In this variant of the invention, the diaphragm edges can be arranged particularly flexibly in the beam path of the light beam in order to selectively shade blue boundary light beams of the light color fringe.

In einer vorteilhaften Weiterbildung der Erfindung kann zumindest eine optisch aktive Blendenkante eine Freiformkurve sein. Da die Geometrien insbesondere von Kraftfahrzeugscheinwerfern durch zahlreiche Einflussfaktoren wie beispielsweise durch konstruktive Vorgaben, durch Vorgaben von Behörden sowie durch Design-Anforderungen der Kraftfahrzeughersteller bestimmt sind, müssen auch die Geometrien der Blendenkanten der Strahlenblende an die jeweiligen geometrischen Vorgaben des betreffenden Kraftfahrzeugscheinwerfers angepasst werden können. Dies gelingt am einfachsten mittels einer Blendenkante, die als Freiformkurve gestaltet ist. Wie bereits zuvor festgehalten wurde ist die zumindest eine optisch aktive Blendenkante vorzugsweise als glatte Freiformkurve gestaltet, die keine Strukturierungen wie Stege, Rahmen oder vergleichbare Unterbrechungen aufweist. Zur Festlegung bzw. Berechnung einer solchen glatten Freiformkurve kann beispielsweise eine Spline-Interpolation dienen, mit deren Hilfe vordefinierte Stützstellen mit Hilfe stückweise stetiger Polynome, sogenannter Splines, interpoliert werden, um vorteilhaft einen glatten, unterbrechungsfreien Kurvenverlauf zu erhalten.In an advantageous development of the invention, at least one optically active diaphragm edge can be a free-form curve. Since the geometries of motor vehicle headlights, in particular, are determined by numerous influencing factors, such as, for example, constructive specifications, the requirements of authorities and design requirements of the motor vehicle manufacturers, the geometries of the diaphragm edges of the radiation shield must also be able to be adapted to the respective geometric specifications of the motor vehicle headlight concerned. The easiest way to do this is by using an aperture edge that is designed as a free-form curve. As already stated above, the at least one optically active diaphragm edge is preferably a smooth free-form curve designed that has no structures such as webs, frames or similar interruptions. Spline interpolation, for example, can be used to define or calculate such a smooth free-form curve, with the aid of which predefined interpolation points are interpolated with the aid of piecewise continuous polynomials, so-called splines, in order to advantageously obtain a smooth, uninterrupted curve shape.

Bevorzugt ist bei einer erfindungsgemäßen Beleuchtungsvorrichtung die zumindest eine Strahlenblende in optischer Längsachsenrichtung von einer Linsenbrennpunktebene in einem Abstand von 10% bis 90%, vorzugsweise von 30% bis 70%, besonders bevorzugt von 50%, eines Schnittweitenabstands zwischen der Linsenbrennpunktebene und einer Linsenapexebene der Sekundäroptik beabstandet. In dieser Ausführung ist die Strahlenblende zwischen der Linsenbrennpunktebene und der Linsenapexebene der Sekundäroptik befestigt.In an illumination device according to the invention, preference is given to the at least one beam diaphragm in the optical longitudinal axis direction from a lens focal plane at a distance of 10% to 90%, preferably from 30% to 70%, particularly preferably 50%, of an intercept distance between the lens focal plane and a lens apex plane of the secondary optics spaced. In this embodiment, the radiation diaphragm is fixed between the lens focal plane and the lens apex plane of the secondary optics.

Bei einer erfindungsgemäßen Beleuchtungsvorrichtung ist besonders vorteilhaft, dass der Abstand der zumindest einen Strahlenblende von der Linsenbrennpunktebene durch Farbsensormessungen und/oder Farbsimulationsberechnungen als Differenz des relativen Unterschieds zwischen einem durch die Strahlenblende abgeschirmten Rotlichtanteil gegenüber dem ohne Strahlenblende durchgehenden Rotlichtanteil im Lichtstrahl und des relativen Unterschieds zwischen einem durch die Strahlenblende abgeschirmten Blaulichtanteils gegenüber dem ohne Strahlenblende durchgehenden Blaulichtanteils im Lichtstrahl bestimmbar ist, wobei bei einer positiven Differenz ein erhöhter Blaulichtanteil abgeschattet wird und bei einer negativen Differenz ein erhöhter Rotlichtanteil durch die Strahlenblende abgeschattet wird. Vorteilhaft wird in dieser Ausführungsvariante für eine in einem bestimmten Abstand von der Linsenbrennpunktebene aus in Richtung der optischen Längsachse gewählte Blendenposition der Strahlenblende durch Farbsensormessungen die relativen Unterschiede zwischen abgeschirmten Rotlichtanteilen bzw. Blaulichtanteilen infolge der Abschirmung der entsprechenden Lichtanteile an der Strahlenblende gegenüber den Rotlichtanteilen bzw. Blaulichtanteilen ohne Strahlenblende bestimmt. Dazu wird die Strahlenblende bzw. werden die Blendenkanten der Strahlenblende jeweils mit unterschiedlichen Normalabständen zur optischen Achse jeweils in demselben Abstand der Strahlenblende von der Linsenbrennpunktebene aus in Richtung der optischen Längsachse untersucht und dabei eine jeweils optimale Position der Blendenkanten hinsichtlich der Effizienz der Beleuchtungsvorrichtung, selektiv blaue Grenzlichtstrahlen abzuschatten, ermittelt. Durch Iteration des Abstands der Strahlenblende von der Linsenbrennpunktebene aus in Richtung der optischen Längsachse werden diese Relativmessungen für unterschiedliche Abstände von der Linsenbrennpunktebene aus wiederholt. Somit kann durch Versuchsmessungen ein Verlauf der Differenz des relativen Unterschieds zwischen einem durch die Strahlenblende abgeschirmten Rotlichtanteil gegenüber dem ohne Strahlenblende durchgehenden Rotlichtanteil im Lichtstrahl und des relativen Unterschieds zwischen einem durch die Strahlenblende abgeschirmten Blaulichtanteils gegenüber dem ohne Strahlenblende durchgehenden Blaulichtanteils im Lichtstrahl als Funktion des Abstands der Strahlenblende von der Linsenbrennpunktebene aus in Richtung der optischen Längsachse ermittelt werden.In a lighting device according to the invention, it is particularly advantageous that the distance of the at least one beam diaphragm from the lens focal plane by color sensor measurements and / or color simulation calculations as the difference between the relative difference between a red light component shielded by the beam diaphragm and the red light component in the light beam passing through without the beam diaphragm and the relative difference between one the blue light component shielded by the radiation diaphragm can be determined compared to the blue light component in the light beam which is continuous without a radiation diaphragm, an increased blue light component being shadowed if there is a positive difference and an increased red light component being shadowed by the radiation diaphragm if the difference is negative. In this embodiment variant, the relative differences between shielded red light components or blue light components due to the shielding of the corresponding light components on the radiation shield from the red light components or blue light components is advantageous for a diaphragm position of the beam diaphragm selected at a certain distance from the lens focal plane in the direction of the optical longitudinal axis determined without a diaphragm. For this purpose, the radiation diaphragm or the diaphragm edges of the beam diaphragm are examined at different normal distances from the optical axis, each at the same distance from the lens diaphragm from the lens focal plane in the direction of the optical longitudinal axis, and an optimal position of the diaphragm edges with regard to the efficiency of the lighting device, selectively blue Shadow border light rays, determined. By iteration of the distance of the beam diaphragm from the lens focal plane in the direction of the optical longitudinal axis, these relative measurements are repeated for different distances from the lens focal plane. Experimental measurements can thus show a course of the difference in the relative difference between a red light component shielded by the radiation diaphragm and that without The continuous red light component in the light beam and the relative difference between a blue light component shielded by the radiation shield compared to the blue light component in the light beam passing through without the radiation shield are determined as a function of the distance of the radiation shield from the lens focal plane in the direction of the optical longitudinal axis.

In der Praxis werden in Ergänzung oder alternativ zu der vorhin beschriebenen "realen" Messmethode an einem realen Prototypen eines Scheinwerfers zunehmend auch "virtuelle" Messungen mittels Simulationsberechnung durchgeführt. Für solche "virtuellen" Bestimmungen bzw. Berechnungen wird beispielsweise ein Raytrace®-Simulationsprogramm eingesetzt.In practice, in addition to or as an alternative to the "real" measurement method described above, "virtual" measurements are increasingly being carried out on a real prototype of a headlight by means of simulation calculation. For example, a Raytrace® simulation program is used for such "virtual" determinations or calculations.

Der bevorzugte Abstand der Strahlenblende bzw. der Blendenkanten der Strahlenblende normal zur optischen Längsachse wird dabei jeweils als Kompromiss zwischen der erwünschten Abschattung der blauen Grenzlichtstrahlen und der zu erzielenden Gesamteffizienz der Beleuchtungsvorrichtung ermittelt. Da bei stärkerer Abschattung auch die Gesamteffizienz der Beleuchtungsvorrichtung sinkt, muss die jeweilige Position der Strahlenblende daher so gewählt werden, dass der abgeschirmte Blaulichtanteil höher ist als der Anteil an abgeschirmten roten Grenzlichtstrahlen.The preferred distance of the beam diaphragm or the diaphragm edges of the beam diaphragm normal to the optical longitudinal axis is determined in each case as a compromise between the desired shading of the blue boundary light rays and the overall efficiency of the lighting device to be achieved. Since the overall efficiency of the lighting device also decreases with greater shading, the respective position of the radiation diaphragm must therefore be selected such that the shielded blue light component is higher than the proportion of shielded red boundary light beams.

In einer bevorzugten Ausführung der Erfindung beträgt bei einer Beleuchtungsvorrichtung für Abstände der Strahlenblende von der Linsenbrennpunktebene in Richtung der optischen Achse von 20 mm bis 25 mm die Differenz des relativen Unterschieds zwischen einem durch die Strahlenblende abgeschirmten Rotlichtanteil gegenüber dem ohne Strahlenblende durchgehenden Rotlichtanteil im Lichtstrahl und des relativen Unterschieds zwischen einem durch die Strahlenblende abgeschirmten Blaulichtanteils gegenüber dem ohne Strahlenblende durchgehenden Blaulichtanteils im Lichtstrahl einen Wert von 0,1 bis 0,2. Bei den ermittelten positiven Differenzen mit Werten von 0,1 bis 0,2 wird vorteilhaft selektiv ein erhöhter Blaulichtanteil abgeschattet, wobei die Gesamteffizienz der Beleuchtungsvorrichtung dennoch hoch bleibt.In a preferred embodiment of the invention, in the case of an illumination device for distances of the beam diaphragm from the lens focal plane in the direction of the optical axis, the difference between the relative difference between a red light component shielded by the beam diaphragm and the red light component passing through without the beam diaphragm in the light beam and the Relative difference between a blue light component shielded by the radiation diaphragm and the blue light component in the light beam which is continuous without a radiation diaphragm has a value of 0.1 to 0.2. In the case of the determined positive differences with values of 0.1 to 0.2, an increased proportion of blue light is advantageously shaded selectively, the overall efficiency of the lighting device nevertheless remaining high.

Zweckmäßig ist bei einer Beleuchtungsvorrichtung gemäß der Erfindung die zumindest eine Strahlenblende auf einer Primäroptikhalterung gemeinsam mit der Primäroptik befestigt. In dieser Ausführung sind besonders komfortabel die Strahlenblende und die Primäroptik gemeinsam befestigt.In a lighting device according to the invention, the at least one radiation diaphragm is expediently fastened on a primary optics holder together with the primary optics. In this version, the radiation diaphragm and the primary optics are particularly conveniently attached together.

In einer besonders kompakten Ausführungsform der Erfindung ist bei einer Beleuchtungsvorrichtung die zumindest eine Strahlenblende in die Primäroptik integriert.In a particularly compact embodiment of the invention, the at least one radiation diaphragm is integrated into the primary optics in a lighting device.

Neben den Vorteilen einer besonders kompakten Bauweise der Einheit aus Primäroptik und Strahlenblende kann sich die Strahlenblende in ihrer Position in Bezug zur Primäroptik nicht unbeabsichtigt verstellen, was einen weiteren Vorteil dieser Ausführung darstellt.In addition to the advantages of a particularly compact construction of the unit consisting of primary optics and radiation diaphragm, the position of the radiation diaphragm cannot be unintentionally adjusted in relation to the primary optics, which represents a further advantage of this embodiment.

Von Vorteil ist bei einer erfindungsgemäßen Beleuchtungsvorrichtung ein Differenzabstand zwischen einem blauen Grenzlichtstrahl und einem roten Grenzlichtstrahl transversal zur optischen Längsachse abhängig vom Abstand in optischer Längsachsenrichtung sowie abhängig vom Material der lichtleitenden Vorsatzoptik. Bei Versuchen hat sich gezeigt, dass beispielsweise bei Polycarbonat als lichtleitendem Material eine besonders deutliche Farbaufspaltung ausgeprägt ist bzw. bei Polycarbonat besonders große Differenzabstände zwischen blauen und roten Grenzlichtstrahlen auftreten. Eine selektive Abschattung von blauen Grenzlichtstrahlen ist damit aufgrund der großen Differenzabstände transversal zur optischen Längsachsenrichtung bei einer lichtleitenden Vorsatzoptik aus Polycarbonat besonders einfach möglich.In a lighting device according to the invention, a difference between a blue border light beam and a red border light beam transverse to the optical longitudinal axis is advantageous depending on the distance in the optical longitudinal axis direction and depending on the material of the light-guiding front lens system. Experiments have shown that, for example, polycarbonate as the light-conducting material has a particularly clear color splitting, and polycarbonate has particularly large difference distances between blue and red boundary light beams. Selective shading of blue boundary light beams is therefore particularly easy due to the large difference in distances transverse to the optical longitudinal axis direction in the case of a light-guiding front lens made of polycarbonate.

Zweckmäßig umfasst bei einer Beleuchtungsvorrichtung gemäß der Erfindung die Sekundäroptik eine Projektionslinse mit einer Linseneintrittsfläche, die plan oder sphärisch geformt sein kann, und einer zumeist asphärischen Linsenaustrittsfläche. Vorteilhaft kann diese Ausführung einer erfindungsgemäßen Beleuchtungsvorrichtung bei Scheinwerfern mit einer abbildenden Optik eingesetzt werden. Die Lichtmodule derartiger Scheinwerfer werden üblicherweise als Lichtmodule mit Vorsatzoptik und nachgeschalteter Projektionslinse bezeichnet.In a lighting device according to the invention, the secondary optics expediently comprises a projection lens with a lens entry surface, which can be flat or spherical, and a mostly aspherical lens exit surface. This embodiment of a lighting device according to the invention can advantageously be used in headlights with imaging optics. The light modules of such headlights are usually referred to as light modules with front optics and a downstream projection lens.

In einer Weiterbildung der Erfindung ist die Beleuchtungsvorrichtung zur Erzeugung einer Abblendlicht- oder Fernlicht-Verteilung eingerichtet. Vorteilhaft kann mit einer Beleuchtungsvorrichtung mit der zumindest einen Strahlenblende wahlweise eine Abblendlicht- oder Fernlicht-Verteilung erzielt werden, bei der jeweils selektiv blaue Grenzlichtstrahlen im Lichtfarbsaum abgeschattet sind. Der Wechsel zwischen Abblendlicht und Fernlicht erfolgt dabei üblicherweise durch eine entsprechende Ausgestaltung der Kombination aus einer oder mehreren Lichtquellen mit der Vorsatzoptik.In a development of the invention, the lighting device is set up to generate a low beam or high beam distribution. Advantageously, a dipped beam or high beam distribution can advantageously be achieved with the at least one beam diaphragm, in which in each case blue boundary light beams are selectively shaded in the light color fringe. The change between low beam and high beam is usually carried out by appropriately designing the combination of one or more light sources with the front lens system.

Weiters umfasst die Erfindung einen Kraftfahrzeugscheinwerfer mit zumindest einer erfindungsgemäßen Beleuchtungsvorrichtung. Vorteilhaft werden somit Kraftfahrzeugscheinwerfer mit einer erfindungsgemäßen Beleuchtungsvorrichtung bereitgestellt, welche eine möglichst "weiße" bzw. farbneutrale Lichtverteilung des beleuchteten Vorfelds ohne störende blaue Farblichtränder ermöglichen. Mit der erfindungsgemäßen Beleuchtungsvorrichtung ausgestattete Kraftfahrzeugscheinwerfer werden somit aufgrund ihrer gleichmäßigen farbneutralen Lichtverteilung als besonders hochwertig empfunden.Furthermore, the invention comprises a motor vehicle headlight with at least one lighting device according to the invention. Motor vehicle headlights are thus advantageously provided with a lighting device according to the invention, which enable a "white" or color-neutral light distribution of the illuminated apron without disturbing blue colored light edges. Motor vehicle headlights equipped with the lighting device according to the invention are therefore perceived as particularly high quality due to their uniform, color-neutral light distribution.

Außerdem kann im Rahmen der Erfindung ein Kraftfahrzeug mit zumindest einem Kraftfahrzeugscheinwerfer, der mit zumindest einer erfindungsgemäßen Beleuchtungsvorrichtung ausgerüstet ist, angegeben werden. Die zuvor genannten Vorteile der erfindungsgemäßen Beleuchtungsvorrichtung gelten somit auch für das mit zumindest einem Kraftfahrzeugscheinwerfer ausgerüstete Kraftfahrzeug.In addition, a motor vehicle with at least one motor vehicle headlight that is equipped with at least one lighting device according to the invention can be specified within the scope of the invention. The aforementioned advantages of the lighting device according to the invention thus also apply to the motor vehicle equipped with at least one motor vehicle headlight.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Erläuterung eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels. In den Zeichnungen zeigen:

  • Fig. 1 in einer isometrischen Ansicht einen schematischen Aufbau einer ersten Ausführungsform einer erfindungsgemäßen Beleuchtungsvorrichtung;
  • Fig. 2 in einer teilweisen Schnittansicht von der Seite eine weitere Ausführungsvariante einer erfindungsgemäßen Beleuchtungsvorrichtung;
  • Fig. 3 eine Detailansicht von der Seite des Lichtstrahlengangs eines direkten Lichtstrahls in der Vorsatzoptik;
  • Fig. 4 eine Detailansicht von der Seite des Lichtstrahlengangs mit zweifach-umgelenktem Lichtstrahl in der Vorsatzoptik;
  • Fig. 5 bis 7 jeweils in Diagrammdarstellung für unterschiedliche Materialien der lichtleitenden Vorsatzoptik den Verlauf des Differenzabstands Δy zwischen Grenzlichtstrahlen als Funktion des Winkels ϕ zwischen optischer Achse und Grenzlichtstrahl;
  • Fig. 8 in einer Seitenansicht eine erfindungsgemäße Beleuchtungsvorrichtung mit einer Blendenposition der Strahlenblende bei halber Schnittweite;
  • Fig. 9 in Diagrammform den Verlauf des Auswahlkriteriums Δ(R-B) als Funktion des Abstands z der Strahlenblende von der Linsenbrennpunktebene zu Bestimmung einer geeigneten Blendenposition im Strahlengang;
  • Fig. 10 in einer schematischen isometrischen Ansicht von der Seite eine alternative Position einer farbkorrigierenden Strahlenblende als Teil der Vorsatzoptik-Halterung;
  • Fig. 11 in einer isometrischen Ansicht schräg von oben die in Fig. 10 veranschaulichte farbkorrigierende Strahlenblende als Teil der Vorsatzoptik-Halterung;
  • Fig. 12 in einer Frontalansicht die in Fig. 11 dargestellte Anordnung;
  • Fig. 13 in einer teilweisen Schnittansicht schräg von der Seite den Verlauf der Blendenkanten bei dem in Fig. 10 bis Fig. 12 gezeigten Beispiel samt der Primäroptikhalterung;
  • Fig. 14 eine Detailansicht von der Seite die Abschattung von Grenzlichtstrahlen eines in der Vorsatzoptik direkt geleiteten Lichtstrahls.
Further details, features and advantages of the invention result from the following explanation of an exemplary embodiment shown schematically in the drawing. The drawings show:
  • Fig. 1 an isometric view of a schematic structure of a first embodiment of a lighting device according to the invention;
  • Fig. 2 in a partial sectional view from the side a further embodiment variant of a lighting device according to the invention;
  • Fig. 3 a detailed view from the side of the light beam path of a direct light beam in the front optics;
  • Fig. 4 a detailed view from the side of the light beam path with double-deflected light beam in the front lens;
  • 5 to 7 in each case in a diagram for different materials of the light-guiding front lens, the course of the difference distance Δy between boundary light beams as a function of the angle ϕ between the optical axis and the boundary light beam;
  • Fig. 8 a side view of an illumination device according to the invention with an aperture position of the radiation diaphragm at half the focal length;
  • Fig. 9 in diagram form the course of the selection criterion Δ (RB) as a function of the distance z of the beam diaphragm from the lens focal plane to determine a suitable diaphragm position in the beam path;
  • Fig. 10 in a schematic isometric view from the side, an alternative position of a color-correcting radiation diaphragm as part of the optical attachment holder;
  • Fig. 11 in an isometric view obliquely from above the in Fig. 10 illustrated color-correcting diaphragm as part of the front lens mount;
  • Fig. 12 in a front view the in Fig. 11 arrangement shown;
  • Fig. 13 in a partial sectional view obliquely from the side, the course of the diaphragm edges in the in 10 to 12 shown example including the primary optics holder;
  • Fig. 14 a detailed view from the side of the shadowing of limit light rays of a light beam directly guided in the front optics.

Fig. 1 veranschaulicht einen schematischen Aufbau einer ersten Ausführung einer erfindungsgemäßen Beleuchtungsvorrichtung 1 mit einem Lichtmodul 2 sowie mit zumindest einer Lichtemissionsquelle 10 bzw. mit mindestens einem Lichtemissionspunkt 10. Eine Primäroptik 100, die hier mit den Lichtemissionsquellen 10 verbunden ist, weist dazu eine lichtleitende aus transparentem Material bestehende Vorsatzoptik 102 mit mehreren Lichtleitern 102 jeweils mit Lichteintrittsflächen 101 sowie mit Lichtaustrittsflächen 103 auf. Lichtstrahlen 50, die hier strichliert angedeutet sind, werden von den Lichtaustrittsflächen 103 der Vorsatzoptik 102 zu einer Sekundäroptik 300, die hier als Projektionslinse 303 mit einer Linseneintrittsfläche 301 und einer Linsenaustrittsfläche 302 ausgebildet ist und die in Richtung einer optischen Längsachse 150 von der Primäroptik beabstandet ist, geleitet. Im Lichtstrahlengang ist dazu eine Strahlenblende 200 in einer Blendenebene 210 angeordnet, wobei Blendenkanten 220 der Strahlenblende 200 derart in den Lichtstrahl 50 ragen, dass selektiv blaue Grenzlichtstrahlen 51 bzw. blaue Lichtanteile 51 eines Lichtfarbsaums 250, 251, 252 des Lichtstrahls 50 abgeschattet werden, während rote Grenzlichtstrahlen 52 bzw. rote Lichtanteile 52 die Strahlenblende 200 ungehindert passieren und somit ohne Abschattung zur Sekundäroptik 300 gelangen. Die Strahlenblende 200 ist hier einteilig mit einer Blendenausnehmung 215 sowie mit einer umlaufenden, glatt durchgehenden Blendenkante 220 ausgeführt. In der Zeichnung links unten ist das hier verwendete Koordinatensystem skizziert, auf das im Weiteren noch Bezug genommen wird. Die z-Achsenrichtung ist hier durch die Richtung der optischen Längsachse 150 der Beleuchtungsvorrichtung 1 festgelegt. Die Blendenebene 210 ist im Wesentlichen senkrecht zur optischen Längsachse 150 bzw. senkrecht zur z-Achsenrichtung angeordnet. Fig. 1 illustrates a schematic structure of a first embodiment of a lighting device 1 according to the invention with a light module 2 and with at least one light emission source 10 or with at least one light emission point 10. A primary optic 100, which is connected here to the light emission sources 10, has a light-conducting material made of transparent material for this purpose Front optics 102 with a plurality of light guides 102 each with light entry surfaces 101 and with light exit surfaces 103. Light rays 50, which are indicated here by dashed lines, change from the light exit surfaces 103 of the front optics 102 to a secondary optics 300, which here is designed as a projection lens 303 with a lens entry surface 301 and a lens exit surface 302 and which is spaced apart from the primary optics in the direction of an optical longitudinal axis 150 , headed. For this purpose, a beam diaphragm 200 is arranged in the light beam path in a diaphragm plane 210, with diaphragm edges 220 of the beam diaphragm 200 projecting into the light beam 50 in such a way that blue boundary light beams 51 or blue light components 51 of a light color fringe 250, 251, 252 of the light beam 50 are shadowed while red border light rays 52 or red light portions 52 pass through the beam diaphragm 200 unhindered and thus reach the secondary optics 300 without shadowing. The radiation diaphragm 200 is made here in one piece with a diaphragm recess 215 and with a circumferential, smooth, continuous diaphragm edge 220. The coordinate system used here is outlined in the drawing at the bottom left, to which reference is made below. The z-axis direction is defined here by the direction of the optical longitudinal axis 150 of the lighting device 1. The aperture plane 210 is arranged essentially perpendicular to the optical longitudinal axis 150 or perpendicular to the z-axis direction.

Fig. 2 zeigt eine erfindungsgemäße Beleuchtungsvorrichtung 1 in einer teilweisen Schnittansicht von der Seite. Die Strahlenblende 200 ist hier zweiteilig ausgeführt, wobei ein erster Blendenteil 201 mit einer ersten, glatt durchgehenden Blendenkante 221 sowie ein zweiter Blendenteil 202 mit einer zweiten Blendenkante 222 ausgerüstet ist. Auch die zweite Blendenkante 222 ist ebenfalls ohne Unterteilungen oder Unterbrechungen glatt durchgehend gestaltet. Der erste Blendenteil 201 sowie der zweite Blendenteil 202, die gemeinsam die Strahlenblende 200 bilden, sind jeweils in derselben Blendenebene 210 angeordnet. Der erste Blendenteil 201 ist hier unterhalb einer Horizontalebene durch die optische Längsachse 150 befestigt, während der zweite Blendenteil 202 die oberhalb der Horizontalebene durch die optische Längsachse 150 angeordnete Blendenkante 222 bereitstellt. Die untere bzw. erste Blendenkante 221 ist hier in einem Normalabstand y1 in negativer y-Koordinatenrichtung von der optischen Längsachse 150 beabstandet. Die obere bzw. zweite Blendenkante 222 ist hier in einem Normalabstand y2 in positiver y-Koordinatenrichtung von der optischen Längsachse 150 beabstandet. Lichtstrahlen 50, welche die Strahlenblende 200 passieren sowie Grenzlichtstrahlen 51, 52, welche einen Lichtfarbsaum 250 bilden, sind wiederum als strichlierte Pfeile veranschaulicht. Blaue Grenzlichtstrahlen 51 bzw. blaue Lichtanteile 51 eines oberen Lichtfarbsaums 251 sowie eines unteren Lichtfarbsaums 252 werden dabei jeweils selektiv vom ersten Blendenteil 201 bzw. vom zweiten Blendenteil 202 abgeschattet. Rote Grenzlichtstrahlen 52 bzw. rote Lichtanteile 52 des oberen Lichtfarbsaums 251 sowie des unteren Lichtfarbsaums 252 gelangen ohne Abschattung an den Blendenkanten 221, 222 vorbei zur Sekundäroptik. Die Blendenebene 210 ist hier in einem Abstand z von einer Linsenbrennpunktebene 110 entfernt angeordnet. Der gesamte Abstand zwischen Linsenbrennpunktebene 110 und Linsenapexebene 310 ist als Schnittweite SW bezeichnet. Fig. 2 shows a lighting device 1 according to the invention in a partial sectional view from the side. The radiation diaphragm 200 is designed here in two parts, a first diaphragm part 201 being equipped with a first, smooth, continuous diaphragm edge 221 and a second diaphragm part 202 having a second diaphragm edge 222. The second diaphragm edge 222 is also designed to be smooth and continuous without subdivisions or interruptions. The first diaphragm part 201 and the second diaphragm part 202, which together form the radiation diaphragm 200, are each arranged in the same diaphragm plane 210. The first diaphragm part 201 is attached below a horizontal plane by the optical longitudinal axis 150, while the second diaphragm part 202 provides the diaphragm edge 222 arranged above the horizontal plane by the optical longitudinal axis 150. The lower or first diaphragm edge 221 is spaced from the optical longitudinal axis 150 at a normal distance y 1 in the negative y coordinate direction. The upper or second diaphragm edge 222 is in here a normal distance y 2 in the positive y coordinate direction from the optical longitudinal axis 150. Light rays 50, which pass through the beam diaphragm 200 and boundary light rays 51, 52, which form a light color fringe 250, are again illustrated as dashed arrows. Blue border light rays 51 or blue light components 51 of an upper light color fringe 251 and a lower light color fringe 252 are in each case selectively shaded by the first diaphragm part 201 or by the second diaphragm part 202. Red border light rays 52 or red light portions 52 of the upper light color fringe 251 and of the lower light color fringe 252 pass the shade edges 221, 222 to the secondary optics without shadowing. The diaphragm plane 210 is arranged at a distance z from a lens focal plane 110. The entire distance between lens focal plane 110 and lens apex plane 310 is referred to as the focal intercept SW.

Fig. 3 zeigt in einer Detailansicht den Lichtstrahlengang eines direkten Lichtstrahls 50 in der lichtleitenden Vorsatzoptik 102. Die Vorsatzoptik 102 weist hier eine Länge 120 in Richtung der optischen Längsachse 150 auf. Licht, welches in den Lichtemissionsquellen 10 erzeugt wird, gelangt an der Lichteintrittsfläche 101 in die lichtleitende Vorsatzoptik 102 und verlässt diese wieder an der gegenüberliegenden Lichtaustrittsfläche 103. Die einzelnen Lichtleiter der lichtleitenden Vorsatzoptik 102 weisen hier beispielsweise rechteckige Querschnitte auf, welche sich von der Lichteintrittsfläche 101 zur Lichtaustrittsfläche 103 hin im Wesentlichen konisch erweitern. Die Vorsatzoptik 102 bzw. die einzelnen Lichtleiter 102 weist bzw. weisen einen Öffnungswinkel α in Richtung zur Lichtaustrittsfläche 103 auf. Die durch die Vorsatzoptik 102 geleiteten, direkten Lichtstrahlen 50 werden beim Austritt aus der lichtleitenden Vorsatzoptik 102 im Bereich des Lichtfarbsaums in blaue Grenzlichtstrahlen 51 bzw. in rote Grenzlichtstrahlen 52 aufgespalten. Die vergleichsweise kurzwellige blaue Strahlung bzw. der blaue Lichtanteil 51 wird dabei stärker als die vergleichsweise langwellige rote Strahlung bzw. der rote Lichtanteil 52 gebrochen. Ein Austrittswinkel ϕ1,B zwischen optischer Längsachse 150 und dem blauen Grenzlichtstrahl 51 ist somit größer als ein Austrittswinkel ϕ1,R zwischen optischer Achse 150 und dem rotem Grenzlichtstrahl 52. Ebenso ist ein Normalabstand y(B) des blauen Grenzlichtstrahls 51 von der optischen Längsachse 150, der in der Blendenebene 210 gemessen wird, größer als ein Normalabstand y(R) des roten Grenzlichtstrahls 52 von der optischen Längsachse 150. Ein Differenzabstand Δy zwischen roten und blauen Grenzlichtstrahlen 51, 52, gemessen als Normalabstand zur optischen Längsachse 150 in der Blendenebene 210, ist umso größer, je größer der Abstand z der Blendenebene 210 von der Ebene 110 durch den Linsenbrennpunkt ist. Weiters hängt der Differenzabstand Δy von der Materialauswahl der lichtleitenden Vorsatzoptik 102 ab, wie in den nachfolgenden Abbildungen Fig. 5 bis Fig. 7 veranschaulicht ist. Fig. 3 shows a detailed view of the light beam path of a direct light beam 50 in the light-conducting optical attachment 102. The optical attachment 102 here has a length 120 in the direction of the optical longitudinal axis 150. Light, which is generated in the light emission sources 10, arrives at the light entry surface 101 into the light-guiding attachment optics 102 and leaves it again at the opposite light exit surface 103. The individual light guides of the light-guiding attachment optics 102 here have, for example, rectangular cross sections, which differ from the light entry face 101 expand substantially conically towards the light exit surface 103. The front optics 102 or the individual light guides 102 have an opening angle α in the direction of the light exit surface 103. The direct light rays 50 guided through the front optical system 102 are split into blue boundary light rays 51 or red boundary light rays 52 in the region of the light color fringe when they exit from the light-guiding front optical system 102. The comparatively short-wave blue radiation or the blue light component 51 is refracted more than the comparatively long-wave red radiation or the red light component 52. An exit angle ϕ 1, B between the optical longitudinal axis 150 and the blue boundary light beam 51 is thus greater than an exit angle ϕ 1, R between the optical axis 150 and the red boundary light beam 52. Likewise, there is a normal distance y (B) of the blue boundary light beam 51 from the optical one Longitudinal axis 150, which is measured in the aperture plane 210, greater than a normal distance y (R) of the red boundary light beam 52 from the optical longitudinal axis 150. A difference Δy between red and blue boundary light beams 51, 52, measured as the normal distance to the optical longitudinal axis 150 in FIG The aperture plane 210 is larger, the greater the distance z of the aperture plane 210 from the plane 110 through the lens focal point. Furthermore, the difference distance Δy depends on the material selection of the light-conducting front lens 102, as in the following figures 5 to 7 is illustrated.

Fig. 4 zeigt in einer schematischen Detailansicht den Lichtstrahlengang eines zweifach-umgelenkten Lichtstrahls 55 in der Vorsatzoptik 102. Der umgelenkte Lichtstrahl 55 tritt dabei unter einem Austrittswinkel ϕ0 in Bezug zur Richtung der optischen Längsachse 150 an der Lichtaustrittsfläche 103 der Vorsatzoptik 102 aus. Im Bereich des Lichtfarbsaums werden die blauen Grenzlichtstrahlen 51 bzw. der blaue Lichtanteil 51 wiederum stärker als die roten Grenzlichtstrahlen 51 bzw. der rote Lichtanteil 52 gebrochen. Ein Austrittswinkel ϕ01,B zwischen optischer Achse 150 und dem blauen Grenzlichtstrahl 51 ist wiederum größer als ein Austrittswinkel ϕ01,R zwischen optischer Achse 150 und dem rotem Grenzlichtstrahl 52. Die hier nicht gezeigte Strahlenblende wird dabei mit ihrer Blendenkante solcherart in der Blendenebene 210 positioniert, dass die Blendenkante in einem Normalabstand zur optischen Längsachse 150 angeordnet ist, der zwischen dem Normalabstand y(B) des blauen Grenzlichtstrahls 51 und dem Normalabstand y(R) des roten Grenzlichtstrahls 52 liegt. Der Differenzabstand Δy zwischen den roten und blauen Grenzlichtstrahlen 51, 52 ist bei dem in Fig. 4 gezeigten Strahlengang eines zweifach-umgelenkten Lichtstrahls 55 etwas größer als im Fall des in Fig. 3 veranschaulichten Strahlengangs eines direkten Lichtstrahls 50. Fig. 4 shows a schematic detailed view of the light beam path of a double-deflected light beam 55 in the front optics 102. The redirected light beam 55 emerges at an exit angle ϕ 0 in relation to the direction of the optical longitudinal axis 150 at the light exit surface 103 of the front optics 102. In the area of the light color fringe, the blue boundary light rays 51 or the blue light component 51 are in turn refracted more than the red boundary light rays 51 or the red light component 52. An exit angle ϕ 01, B between the optical axis 150 and the blue boundary light beam 51 is in turn larger than an exit angle ϕ 01, R between the optical axis 150 and the red boundary light beam 52. The diaphragm edge, not shown here, becomes in this way in the diaphragm plane 210 with its diaphragm edge positioned that the diaphragm edge is arranged at a normal distance from the optical longitudinal axis 150, which lies between the normal distance y (B) of the blue boundary light beam 51 and the normal distance y (R) of the red boundary light beam 52. The difference distance Δy between the red and blue limit light beams 51, 52 is in that in Fig. 4 shown beam path of a double-deflected light beam 55 slightly larger than in the case of the in Fig. 3 illustrated beam path of a direct light beam 50.

Somit ist dem Fachmann klar, dass abhängig davon, ob die Positionierung der optisch aktiven Blendenkanten anhand des Differenzabstands Δy der direkten Lichtstrahlen 50 oder der in der lichtleitenden Vorsatzoptik 102 bereits umgelenkten Lichtstrahlen 55 erfolgt, es möglicherweise auch in einem geringeren Ausmaß zur Abschattung von roten Grenzlichtstrahlen kommen kann. Somit gilt es bei der Positionierung der Blendenkanten ein Optimum zwischen einer möglichst vollständigen Abschattung der blauen Grenzlichtstrahlen und einem möglichst ungehinderten Blendendurchtritt der roten Grenzlichtstrahlen zu finden.It is thus clear to the person skilled in the art that, depending on whether the positioning of the optically active diaphragm edges takes place on the basis of the differential distance Δy of the direct light rays 50 or the light rays 55 which have already been deflected in the light-conducting optical attachment 102, it may also be to a lesser extent for shadowing red boundary light rays can come. When positioning the diaphragm edges, it is therefore important to find an optimum between shading the blue boundary light rays as completely as possible and preventing the red boundary light rays from passing through as freely as possible.

Die Abbildungen Fig. 5 bis Fig. 7 zeigen jeweils in Diagrammdarstellung für unterschiedliche Materialien der lichtleitenden Vorsatzoptik 102 den Verlauf des Differenzabstands Δy zwischen blauen 51 und roten 52 Grenzlichtstrahlen als Funktion des Austrittswinkels ϕ zwischen der optischen Längsachse 150 und dem jeweiligen Grenzlichtstrahl 51,52. Fig. 5 zeigt dabei die Verläufe des Differenzabstands Δy für einen Lichtleiter 102 aus Polymethylmethacrylat (PMMA), wobei die Datenreihen für unterschiedliche Abstände z in 10 mm, 50 mm sowie 80 mm Entfernung von der Linsenbrennpunktebene bzw. von der Primäroptik 100 ermittelt wurden. Dabei ist ersichtlich, dass bei größerem Abstand z von 80 mm von der Primäroptik der Differenzabstand Δy größer ist als bei demselben Austrittswinkel ϕ bei einem geringeren Abstand z. Beispielsweise beträgt bei einem Lichtleiter aus PMMA in einer Entfernung z von 80 mm bei einem Austrittswinkel ϕ von 20° der Differenzabstand Δy etwa 0,4 mm.The illustrations 5 to 7 each show in a diagram for different materials of the light-conducting front lens system 102 the course of the differential distance Δy between blue 51 and red 52 boundary light beams as a function of the exit angle ϕ between the optical longitudinal axis 150 and the respective boundary light beam 51, 52. Fig. 5 shows the courses of the differential distance Δy for a light guide 102 made of polymethyl methacrylate (PMMA), the data series for different distances z being determined at 10 mm, 50 mm and 80 mm distance from the lens focal plane or from the primary optics 100. It can be seen that with a larger distance z of 80 mm from the primary optics, the difference distance Δy is greater than with the same exit angle ϕ with a smaller distance z. For example, with a light guide made of PMMA at a distance z of 80 mm with an exit angle ϕ of 20 °, the difference Δy is approximately 0.4 mm.

In Fig. 6, in der die Verläufe des Differenzabstands Δy für einen Lichtleiter 102 aus Silikon ermittelt wurden, wobei die Datenreihen ebenfalls für unterschiedliche Abstände z in 10 mm, 50 mm sowie 80 mm Entfernung von der Linsenbrennpunktebene bzw. von der Primäroptik 100 dargestellt sind, beträgt beispielsweise in einer Entfernung z von 80 mm bei einem Austrittswinkel ϕ von 20° der Differenzabstand Δy etwa 0,3 mm.In Fig. 6 , in which the courses of the differential distance Δy were determined for a light guide 102 made of silicone, the data series also being shown for different distances z in 10 mm, 50 mm and 80 mm distance from the lens focal plane or from the primary optics 100, for example in a distance z of 80 mm at an exit angle ϕ of 20 °, the difference Δy about 0.3 mm.

Fig. 7 veranschaulicht die Verläufe des Differenzabstands Δy für einen Lichtleiter 102 aus Polycarbonat (PC). Auch hier sind die Datenreihen für unterschiedliche Abstände z in 10 mm, 50 mm sowie 80 mm Entfernung von der Linsenbrennpunktebene bzw. von der Primäroptik 100 dargestellt. Beispielsweise beträgt für einen Lichtleiter aus Polycarbonat in einer Entfernung z von 80 mm bei einem Austrittswinkel ϕ von 20° der Differenzabstand Δy etwa 1,0 mm. Fig. 7 illustrates the courses of the differential distance Δy for a light guide 102 made of polycarbonate (PC). The data series for different distances z are also shown here at 10 mm, 50 mm and 80 mm from the lens focal plane or from the primary optics 100. For example, for a light guide made of polycarbonate at a distance z of 80 mm at an exit angle ϕ of 20 °, the difference Δy is approximately 1.0 mm.

Im Vergleich der drei untersuchten Materialien PMMA, Silikon und PC zeigt sich, dass ein Lichtleiter aus Polycarbonat (PC) aufgrund des vergleichsweise großen Differenzabstands Δy zwischen austretenden blauen und roten Grenzlichtstrahlen besonders gut geeignet ist, um bei einer erfindungsgemäßen Beleuchtungsvorrichtung in Kombination mit einer in Strahlenrichtung nachgeschalteten Strahlenblende selektiv störende blaue Grenzlichtstrahlen abzuschatten.A comparison of the three investigated materials PMMA, silicone and PC shows that a light guide made of polycarbonate (PC) is particularly well suited due to the comparatively large difference Δy between emerging blue and red boundary light beams, in order to combine with an illumination device according to the invention in combination with one in the beam direction downstream shield to selectively shade disturbing blue border light beams.

Fig. 8 zeigt ein sogenanntes "PixelLite"-Lichtmodul 2 mit einer Blendenposition 210 der Strahlenblende 200 bei halber Schnittweite SW. Die Blendenebene 210 ist hier also in Richtung der optischen Längsachse 150 genau mittig zwischen der Ebene 110 durch den Linsenbrennpunkt und der Linsenapexebene 310 angeordnet. Fig. 8 shows a so-called "PixelLite" light module 2 with a diaphragm position 210 of the beam diaphragm 200 at half the focal length SW. The aperture plane 210 is thus arranged exactly in the direction of the optical longitudinal axis 150 exactly between the plane 110 through the lens focal point and the lens apex plane 310.

Fig. 9 zeigt in Diagrammform den Verlauf des Auswahlkriteriums Δ(R-B) als Funktion des Abstands z der Strahlenblende 200 von der Linsenbrennpunktebene 110 zu Bestimmung einer geeigneten Blendenposition 210 im Strahlengang zwischen der Primäroptik 100 und der Sekundäroptik 300. Dazu wird für einen bestimmten, gewählten Abstand z der Strahlenblende 200 von der Linsenbrennpunktebene 110 aus durch Farbsensormessungen eine Differenz Δ(R-B) des relativen Unterschieds zwischen einem durch die Strahlenblende 200 abgeschirmten Rotlichtanteil R gegenüber dem ohne Strahlenblende durchgehenden Rotlichtanteil R im Lichtstrahl 50 und des relativen Unterschieds zwischen einem durch die Strahlenblende 200 abgeschirmten Blaulichtanteil B gegenüber dem ohne Strahlenblende durchgehenden Blaulichtanteil B im Lichtstrahl 50 bestimmt. Durch Iteration der Abstände z der Strahlenblende 200 sowie durch Variation des Normalabstands der Blendenkante 220 in x-Koordinatenrichtung bzw. in y-Koordinatenrichtung, jeweils von der optischen Längsachse 150 weg gemessen, wird für eine bestimmte Messanordnung beispielhaft der in Fig. 9 gezeigte Verlauf ermittelt. Bei einer positiven Differenz Δ(R-B) wird ein erhöhter Blaulichtanteil B abgeschattet und bei einer negativen Differenz Δ(R-B) wird ein erhöhter Rotlichtanteil R durch die Strahlenblende 200 abgeschattet. Im hier gezeigten Ausführungsbeispiel ist vorteilhafterweise eine Blendenposition mit einem Abstand z von 20 mm bis 25 mm zu wählen, um einerseits eine selektive Abschattung des Blaulichtanteils B zu erzielen und andererseits eine hohe Effizienz des Gesamtsystems zu gewährleisten. Die Differenz Δ(R-B) beträgt dabei von 0,1 bis 0,2, wobei der Abstand z und die Differenz Δ(R-B) direkt proportional zusammenhängen. Bei einer stärkeren Abschattung werden auch rote Lichtanteile R mit abgeschattet und folglich sinkt die Gesamteffizienz bzw. die gemessene Differenz Δ(R-B) weist negative Werte auf. Fig. 9 shows in diagram form the course of the selection criterion Δ (RB) as a function of the distance z of the beam diaphragm 200 from the lens focal plane 110 to determine a suitable diaphragm position 210 in the beam path between the primary optics 100 and the secondary optics 300. For this purpose, the Radiation diaphragm 200 from the lens focal plane 110 from color sensor measurements a difference Δ (RB) of the relative difference between a red light component R shielded by the beam diaphragm 200 compared to the red light component R in the light beam 50 passing through without the beam diaphragm and the relative difference between a blue light component B shielded by the beam diaphragm 200 compared to the blue light component B in the light beam 50 which is continuous without a beam diaphragm. By iteration of the distances z of the radiation diaphragm 200 and by variation of the normal distance of the diaphragm edge 220 in the x-coordinate direction or in the y-coordinate direction, in each case measured away from the optical longitudinal axis 150, the example in FIG Fig. 9 shown course determined. If the difference Δ (RB) is positive, an increased proportion of blue light B is shadowed, and if the difference Δ (RB) is negative, an increased proportion of red light R is shadowed by the diaphragm 200. In the exemplary embodiment shown here, an aperture position with a distance z of 20 mm to 25 mm is advantageously to be selected in order to achieve selective shading of the blue light component B on the one hand and to ensure high efficiency of the overall system on the other hand. The difference Δ (RB) is from 0.1 to 0.2, the distance z and the difference Δ (RB) being directly proportional. In the case of greater shading, red light components R are also shaded, and consequently the overall efficiency drops or the measured difference Δ (RB) has negative values.

Fig. 10 zeigt eine alternative Position einer farbkorrigierenden Strahlenblende 200 als Teil einer Vorsatzoptik-Halterung 105. Die Strahlenblende 200 ist hier in der Primäroptik 100 integriert und gemeinsam mit dieser an der Primäroptikhalterung befestigt. Fig. 10 shows an alternative position of a color-correcting radiation diaphragm 200 as part of an attachment optics holder 105. Here, the radiation diaphragm 200 is integrated in the primary optics 100 and is fastened together with the primary optics holder.

Fig. 11 stellt schräg von oben die in Fig. 10 veranschaulichte farbkorrigierende Strahlenblende 200 als Teil der Vorsatzoptik-Halterung 105 dar. Die Blendenebene 210 der Strahlenblende 200 ist hier innerhalb eines Lichtaustrittskegels 500 mit einer Begrenzungskante 510 angeordnet. Fig. 11 puts the in diagonally from above Fig. 10 illustrated color-correcting diaphragm 200 as part of the optical attachment holder 105. The diaphragm plane 210 of the diaphragm 200 is arranged here within a light exit cone 500 with a boundary edge 510.

Fig. 12 zeigt in einer Frontalansicht die in Fig. 11 dargestellte Anordnung, wobei die Blendenkanten 221, 222 strichliert eingezeichnet sind. Die Blendenkanten 221, 222 weisen hier jeweils Verläufe von Freiformkurven 240 auf. Fig. 12 shows in a front view the in Fig. 11 arrangement shown, the diaphragm edges 221, 222 are shown in dashed lines. The aperture edges 221, 222 each have courses of free-form curves 240 here.

In Fig. 13 ist die Primäroptikhalterung 105 teilweise freigeschnitten dargestellt. Die Blendenkanten 221, 222 in Form einer Freiformkurve 240 werden hier durch die Primäroptikhalterung 105 gebildet. Die Strahlenblende 200 ist somit in die Primäroptikhalterung 105 integriert.In Fig. 13 the primary optics holder 105 is shown partially cut away. The diaphragm edges 221, 222 in the form of a free-form curve 240 are formed here by the primary optics holder 105. The radiation diaphragm 200 is thus integrated in the primary optics holder 105.

Fig. 14 zeigt - vergleichbar mit Fig. 3 - in einer Detailansicht von der Seite die Abschattung von Grenzlichtstrahlen 51, 52 eines in der Vorsatzoptik 102 direkt geleiteten Lichtstrahls 50. Allerdings ist hier in Fig. 14 im Gegensatz zu Fig. 3 auch ein Blendenteil 202 einer Strahlenblende 200 dargestellt. Ein blauer Grenzlichtstrahl 51 des Lichtfarbsaums 251 wird hier von der Strahlenblende 200 abgeschattet, während ein roter Grenzlichtstrahl 52 die Blendenebene 210 ohne Abschattung passiert und somit vorteilhaft zur Gesamteffizienz der Beleuchtungsvorrichtung 1 beiträgt. Fig. 14 shows - comparable to Fig. 3 - In a detailed view from the side, the shadowing of limit light beams 51, 52 of a light beam 50 which is directly guided in the front optical system 102. However, here in Fig. 14 in contrast to Fig. 3 an aperture part 202 of a radiation diaphragm 200 is also shown. A blue border light beam 51 of the light color fringe 251 is shaded here by the beam diaphragm 200, while a red border light beam 52 passes through the diaphragm plane 210 without shading and thus advantageously contributes to the overall efficiency of the lighting device 1.

LISTE DER POSITIONSZEICHENLIST OF POSITION SIGNS

11
Beleuchtungsvorrichtunglighting device
22
Lichtmodullight module
1010
Lichtemissionsquelle bzw. LichtemissionspunktLight emission source or light emission point
5050
Lichtstrahlbeam of light
5151
blauer Grenzlichtstrahl bzw. blauer Lichtanteilblue border light beam or blue light component
5252
roter Grenzlichtstrahl bzw. roter Lichtanteilred border light beam or red light component
5555
umgelenkter Lichtstrahldeflected light beam
100100
Primäroptikprimary optics
101101
Lichteintrittsfläche der VorsatzoptikLight entry surface of the front lens
102102
Lichtleiter, einzelne lichtleitende VorsatzoptikLight guide, individual light-guiding attachment optics
103103
Lichtaustrittsfläche der VorsatzoptikLight exit surface of the front lens
105105
PrimäroptikhalterungPrimary optics holder
110110
Ebene durch LinsenbrennpunktPlane through lens focal point
120120
Länge der VorsatzoptikLength of the front lens
150150
optische Längsachseoptical longitudinal axis
200200
Strahlenblendebeam collimator
201201
erster Blendenteilfirst aperture part
202202
zweiter Blendenteilsecond aperture part
210210
Blendenebenestop plane
215215
BlendenausnehmungBlendenausnehmung
220220
Blendenkantediaphragm edge
221221
erste bzw. untere Blendenkante bzw. Blendenkantenabschnittfirst or lower diaphragm edge or diaphragm edge section
222222
zweite bzw. obere Blendenkante bzw. Blendenkantenabschnittsecond or upper diaphragm edge or diaphragm edge section
240240
FreiformkurveFreeform curve
250250
Lichtfarbsaum (Lichtstrahlen strichliert)Edge of light color (light rays dashed)
251251
oberer Lichtfarbsaum (Lichtstrahlen strichliert)upper edge of light color (light rays dashed)
252252
unterer Lichtfarbsaum (Lichtstrahlen strichliert)lower edge of light color (light rays dashed)
300300
Sekundäroptiksecondary optics
301301
LinseneintrittsflächeLens entrance surface
302302
LinsenaustrittsflächeLens exit surface
303303
Projektionslinseprojection lens
310310
LinsenapexebeneLinsenapexebene
500500
LichtaustrittskegelLight exit cone
510510
Begrenzungskante des LichtaustrittskegelsLimiting edge of the light exit cone
RR
Rotlichtanteilred light fraction
BB
BlaulichtanteilBlue light component
SWSW
Schnittweite, Abstand zwischen Linsenbrennpunktebene und LinsenapexebeneFocal length, distance between lens focal plane and lens apex plane
yy
Normalabstand zur optischen AchseNormal distance to the optical axis
ΔyDy
Differenzabstand zwischen GrenzlichtstrahlenDifference distance between limit light beams
zz
Abstand zwischen Linsenbrennpunktebene und BlendenebeneDistance between lens focal plane and aperture plane
αα
Öffnungswinkel der VorsatzoptikOpening angle of the front lens
ϕφ
Austrittswinkel zwischen optischer Achse und GrenzlichtstrahlExit angle between the optical axis and the limit light beam
ϕ0 ϕ 0
Auftreffwinkel bei Mehrfachreflexion in der VorsatzoptikImpact angle with multiple reflection in the front lens

Claims (18)

  1. Illumination device (1) for a motor vehicle headlight, comprising a light module (2) with at least one light emission source (10), a primary optical system (100), and a secondary optical system (300), wherein the primary optical system (100) has at least one light-conducting ancillary optical system (102), which is arranged to direct light (50) captured from the at least one light-emitting source (10), through at least one light-emitting surface (103) of the ancillary optical system, onward onto the secondary optical system (300), which is arranged downstream in the direction of the optical longitudinal axis (150), and wherein the secondary optical system (300) is set up so as to map a light distribution occurring on the light exit surface (103) of the ancillary optical system into a field in front of the illumination device (1), wherein at least one beam diaphragm (200) is arranged between the primary optical system (100) and the secondary optical system (300),
    characterised in that,
    the at least one beam diaphragm (200) is arranged for the purpose of masking a colour fringe of the light (250), wherein the at least one beam diaphragm (200, 201, 202) forms an optically active first diaphragm edge (221) for a lower colour fringe of the light (252), together with an optically active second diaphragm edge (222) for an upper colour fringe of the light (251), and the optically active diaphragm edges (220, 221, 222) are each arranged in the light beam (50) such that blue threshold light beams (51) of the colour fringe of the light (250, 251, 252) can be selectively masked.
  2. Illumination device (1) according to Claim 1,
    characterised in that, the optically active diaphragm edges (220, 221, 222) are each arranged in the light beam (50) such that red threshold light beams (52) reach the secondary optical system (300) without being masked.
  3. Illumination device (1) according to Claim 1 or 2,
    characterised in that, the optically active diaphragm edges (220, 221, 222) protrude into the light beam (50) between the blue threshold light beams (51) and the red threshold light beams (52) of the colour fringes of the light (250, 251, 252).
  4. Illumination device (1) according to one of the Claims 1 to 3, characterised in that, the at least one beam diaphragm (200, 201, 202) is arranged in a diaphragm plane (210) essentially at right angles to the optical longitudinal axis (150).
  5. Illumination device (1) according to one of the Claims 1 to 4, characterised in that, the beam diaphragm (200) is embodied in one piece, and has a diaphragm aperture (215), which forms a continuous optically active diaphragm edge (220) with a first diaphragm edge section (221) for a lower colour fringe of the light (252), and a second diaphragm edge section (222) for an upper colour fringe of the light (251), wherein in the installed position the diaphragm edge (220) encloses the optical longitudinal axis (150).
  6. Illumination device (1) according to one of the Claims 1 to 4, characterised in that, the beam diaphragm (201, 202) is embodied in two parts, wherein a first diaphragm part (201) with a first optically active diaphragm edge (221) and a second diaphragm part (202) with a second optically active diaphragm edge (222) are arranged on opposite sides of the optical longitudinal axis (150).
  7. Illumination device (1) according to Claim 6,
    characterised in that, the first diaphragm part (201) and the second diaphragm part (202) are arranged in different diaphragm planes (210), spaced apart from one another in the direction of the optical longitudinal axis (150).
  8. Illumination device (1) according to one of the Claims 1 to 7, characterised in that, at least one optically active diaphragm edge (220, 221, 222) is a free-form curve (240).
  9. Illumination device (1) according to one of the Claims 1 to 8, characterised in that, the at least one beam diaphragm (200, 201, 202) is spaced apart, in the direction of the optical longitudinal axis (150), from a lens focal point plane (110) at a distance (z) of 10 % to 90 %, preferably of 30 % to 70 %, particularly preferably of 50 %, of a focal length spacing (SW) between the lens focal point plane (110) and a lens apex plane (310) of the secondary optical system (300) .
  10. Illumination device (1) according to one of the Claims 1 to 9, characterised in that, the distance (z) of the at least one beam diaphragm (200, 201, 202) from the lens focal plane (110) can be determined, by colour sensor measurements and/or colour simulation calculations, as the difference Δ (R-B) of the relative difference between a red light component (R) in the light beam (50) shielded by the beam diaphragm (200, 201, 202) with respect to the red light component (R) in the light beam (50) passing through without a beam diaphragm, and the relative difference between a blue light component (B) in the light beam (50) which is shielded by the beam diaphragm (200, 201, 202) with respect to the blue light component (B) in the light beam (50) passing through without a beam diaphragm, wherein in the case of a positive difference Δ (R-B) an increased blue light component (B) is masked, and in the case of a negative difference Δ (R-B) an increased red light component (R) is masked, by the beam diaphragm (200, 201, 202).
  11. Illumination device (1) according to Claim 10,
    characterised in that, for a distance (z) of the beam diaphragm (200, 201, 202) from the lens focal plane (110) of 20 mm to 25 mm, the difference Δ (R-B) is a value of 0.1 to 0.2.
  12. Illumination device (1) according to one of the Claims 1 to 11, characterised in that, the at least one beam diaphragm (200) is attached to a primary optical system mounting (105), together with the primary optical system (100).
  13. Illumination device (1) according to one of the Claims 1 to 12, characterised in that, the at least one beam diaphragm (200) is integrated into the primary optical system (100).
  14. Illumination device (1) according to one of the Claims 1 to 13, characterised in that, a differential distance (Δy) between a blue threshold light beam (51) and a red threshold light beam (52) transverse to the optical longitudinal axis (150) is a function of the distance (z) in the direction of the optical longitudinal axis (150) and is also a function of the material of the light-conducting ancillary optical system (102).
  15. Illumination device (1) according to one of the Claims 1 to 14, characterised in that, the secondary optical system (300) comprises a projection lens (303) with a lens entry surface (301) and a lens exit surface (302).
  16. Illumination device (1) according to one of the Claims 1 to 15, characterised in that, the illumination device (1) is set up so as to generate a dipped beam or a full beam distribution.
  17. Motor vehicle headlight with at least one illumination device (1) according to one of the Claims 1 to 16.
  18. Motor vehicle with at least one motor vehicle headlight according to Claim 17.
EP16720990.7A 2015-04-10 2016-04-04 Lighting device having light-guiding shield Active EP3280950B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50284/2015A AT516836B1 (en) 2015-04-10 2015-04-10 Lighting device with beam diaphragm and motor vehicle headlights
PCT/AT2016/050088 WO2016161471A1 (en) 2015-04-10 2016-04-04 Lighting device having light-guiding shield

Publications (2)

Publication Number Publication Date
EP3280950A1 EP3280950A1 (en) 2018-02-14
EP3280950B1 true EP3280950B1 (en) 2020-02-19

Family

ID=55919547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16720990.7A Active EP3280950B1 (en) 2015-04-10 2016-04-04 Lighting device having light-guiding shield

Country Status (6)

Country Link
US (1) US10378719B2 (en)
EP (1) EP3280950B1 (en)
JP (1) JP6402260B2 (en)
CN (1) CN107407471B (en)
AT (1) AT516836B1 (en)
WO (1) WO2016161471A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT518551B1 (en) * 2016-08-04 2017-11-15 Zkw Group Gmbh Automotive illuminating device
AT519356B1 (en) * 2017-04-07 2018-06-15 Zkw Group Gmbh Light module for a motor vehicle headlight
JP6571734B2 (en) 2017-09-04 2019-09-04 トヨタ自動車株式会社 Vehicle lighting device
EP3495718A1 (en) * 2017-12-05 2019-06-12 ZKW Group GmbH Projection device for a motor vehicle headlight
EP3527875A1 (en) * 2018-02-15 2019-08-21 ZKW Group GmbH Motor vehicle headlamp with a burning lens sheet
JP7164594B2 (en) * 2018-03-15 2022-11-01 株式会社小糸製作所 vehicle lamp
KR102292135B1 (en) * 2019-09-27 2021-08-23 현대모비스 주식회사 Head lamp for vehicle
KR20210083600A (en) * 2019-12-27 2021-07-07 에스엘 주식회사 Lamp module for vehicle
CN112325241B (en) * 2020-10-27 2022-11-22 浙江吉利控股集团有限公司 Car lamp device and use its vehicle
DE102021132692A1 (en) * 2021-12-10 2023-06-15 Marelli Automotive Lighting Reutlingen (Germany) GmbH Light module of a motor vehicle headlight and motor vehicle headlight with such a light module
CN114508737B (en) * 2022-02-28 2023-08-08 广东烨嘉光电科技股份有限公司 Car lamp lens module capable of improving light utilization rate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003709A1 (en) * 2000-07-07 2002-01-10 Pierre Albou Elliptical headlights for motor vehicles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3241713A1 (en) * 1982-11-11 1984-05-17 Westfälische Metall Industrie KG Hueck & Co, 4780 Lippstadt DIMMED HEADLIGHT FOR MOTOR VEHICLES
FR2550847B1 (en) * 1983-08-18 1988-07-01 Cibie Projecteurs ELLIPTICAL REFLECTOR WITH CUT BEAM FOR MOTOR VEHICLE
US7036969B2 (en) * 2003-12-04 2006-05-02 Guide Corporation Adverse weather headlamp system
JP4971137B2 (en) * 2004-04-08 2012-07-11 フェデラル−モーグル コーポレイション Chromatic aberration correction projector, lamp, headlight
DE102007011561B4 (en) * 2007-03-02 2016-03-17 Seereal Technologies S.A. Device for correcting the wavelength dependence in diffraction-based optical systems
JP5212785B2 (en) * 2008-02-22 2013-06-19 スタンレー電気株式会社 Vehicle headlamp
DE102010029176A1 (en) * 2009-10-05 2012-12-27 Automotive Lighting Reutlingen Gmbh Motor vehicle headlight with a semiconductor light sources, a primary optics and a secondary optics having light module
WO2011121488A1 (en) * 2010-03-31 2011-10-06 Koninklijke Philips Electronics N.V. Lighting system and light source unit for such a system
DE102011077636A1 (en) * 2011-04-27 2011-11-03 Automotive Lighting Reutlingen Gmbh Light module for head lamp system of motor vehicle i.e. motor car, has sub modules separately controlled to generate set of strip-shaped segments of spot distribution, where strip-shaped segments are complement to spot distribution
AT511760B1 (en) * 2011-08-08 2013-12-15 Zizala Lichtsysteme Gmbh LED LIGHT SOURCE MODULE FOR A LED MOTOR VEHICLE HEADLIGHT AND LED MOTOR VEHICLE HEADLAMP AND HEADLAMP SYSTEM
DE102011085315A1 (en) * 2011-10-27 2013-05-02 Automotive Lighting Reutlingen Gmbh Headlamp projection module for a motor vehicle
KR101344427B1 (en) * 2012-09-06 2013-12-23 주식회사 에스엘 서봉 Automotive lamp
DE102013200925A1 (en) * 2013-01-22 2014-07-24 Automotive Lighting Reutlingen Gmbh Light source unit for vehicle headlights
DE102013206488A1 (en) * 2013-04-11 2014-10-30 Automotive Lighting Reutlingen Gmbh Light module for a motor vehicle lighting device
DE102013217843A1 (en) * 2013-09-06 2015-03-12 Automotive Lighting Reutlingen Gmbh Projection optics for use in an LED module of a motor vehicle headlight, and LED module and motor vehicle headlights with such a projection optics
KR101534703B1 (en) * 2013-09-25 2015-07-07 현대자동차 주식회사 Head lamp for vehicle
DE102013227194A1 (en) * 2013-12-27 2015-07-02 Automotive Lighting Reutlingen Gmbh Motor vehicle headlamps

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020003709A1 (en) * 2000-07-07 2002-01-10 Pierre Albou Elliptical headlights for motor vehicles

Also Published As

Publication number Publication date
JP2018511152A (en) 2018-04-19
EP3280950A1 (en) 2018-02-14
JP6402260B2 (en) 2018-10-10
AT516836A4 (en) 2016-09-15
AT516836B1 (en) 2016-09-15
US20180058652A1 (en) 2018-03-01
WO2016161471A1 (en) 2016-10-13
CN107407471B (en) 2020-07-28
US10378719B2 (en) 2019-08-13
CN107407471A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
EP3280950B1 (en) Lighting device having light-guiding shield
EP3042119B1 (en) Optical structure having a microstructure with a quadratic diffusion function
EP2799761B1 (en) Light module for a motor vehicle headlamp
EP2771613B1 (en) Lighting module for a motor vehicle
EP2420728B1 (en) Projection headlamp with targeted weakened light intensity gradients at the light-dark border
EP3394504B1 (en) Headlamp for a vehicle
EP2799762B1 (en) Light module for a motor vehicle headlamp
EP3042118B1 (en) Lighting device of a motor vehicle headlight with an optical structure
DE102015224745B4 (en) Motor vehicle headlight with a base light assembly and a high beam assembly
DE202014010486U1 (en) Optical fiber with horizontal light-dark boundary and horizontal dispersion
DE102011114636A1 (en) Arrangement and dimensioning of overhead elements on a projection lens of a motor vehicle headlight
EP3372890B1 (en) Motor vehicle headlamp light module
DE102012208566A1 (en) Lighting device for a motor vehicle
DE102013227194A1 (en) Motor vehicle headlamps
EP3091273A1 (en) Optical structure for light sign
DE102014213824B4 (en) vehicle light
EP3812653B1 (en) Signal light with a light guide
EP3657066B1 (en) Illumination unit for a motor vehicle headlight for generating a light distribution with a cut-off line
DE202014003075U1 (en) lighting device
DE102019112343A1 (en) Motor vehicle light
EP3719391B1 (en) Partial high beam module for a motor vehicle headlight
DE202015001004U1 (en) A lighting device for a motor vehicle having an endless mirror arrangement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171023

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TAUDT, LUKAS

Inventor name: REISINGER, BETTINA

Inventor name: MOSER, ANDREAS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20181130AFI20161019BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101AFI20161019BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REISINGER, BETTINA

Inventor name: MOSER, ANDREAS

Inventor name: TAUDT, LUKAS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016008801

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0041143000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 41/43 20180101ALI20190905BHEP

Ipc: F21S 41/143 20180101AFI20190905BHEP

Ipc: F21S 41/255 20180101ALI20190905BHEP

Ipc: F21S 41/24 20180101ALI20190905BHEP

INTG Intention to grant announced

Effective date: 20190925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008801

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1235380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200619

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008801

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1235380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 8

Ref country code: DE

Payment date: 20230420

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 8