EP3270093A1 - Verbundpanzerung und verfahren zur herstellung - Google Patents

Verbundpanzerung und verfahren zur herstellung Download PDF

Info

Publication number
EP3270093A1
EP3270093A1 EP17180907.2A EP17180907A EP3270093A1 EP 3270093 A1 EP3270093 A1 EP 3270093A1 EP 17180907 A EP17180907 A EP 17180907A EP 3270093 A1 EP3270093 A1 EP 3270093A1
Authority
EP
European Patent Office
Prior art keywords
composite
composite armor
layer
steel
spatial structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17180907.2A
Other languages
English (en)
French (fr)
Other versions
EP3270093B1 (de
Inventor
Erich Schönenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Craco GmbH
Original Assignee
Craco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016117071.2A external-priority patent/DE102016117071A1/de
Application filed by Craco GmbH filed Critical Craco GmbH
Publication of EP3270093A1 publication Critical patent/EP3270093A1/de
Application granted granted Critical
Publication of EP3270093B1 publication Critical patent/EP3270093B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0414Layered armour containing ceramic material
    • F41H5/0421Ceramic layers in combination with metal layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles

Definitions

  • the invention relates to a composite armor, in particular armor plate for protection against projectiles, and a method for producing a composite armor and a use of a cast steel, wherein the composite armor is formed of at least one metal layer and at least one composite layer, wherein the metal layer is formed of cast steel, wherein the Composite layer of a dimensionally stable in liquid steel material which forms a spatial structure, and a matrix material which fills the spatial structure is formed.
  • composite armor formed from various layers of materials are well known and are said to provide adequate protection against armor piercing munitions attacks, such as, for example, shaped charge and balancing bullets, anti-crushing ammunition, and antitank mines.
  • Composite armor is used not only in military vehicles, such as tanks for protection against bullets, but also in civil vehicles, such as cars, which require a certain protection.
  • composite armor In principle, they can also be used for personal protection vests or object protection in general. In the case of a bombardment of the composite armor, this should in any case always prevent a shoot through, with a passage already being considered to be an opening in a rear side of the composite armor facing away from the direction of bombardment.
  • the ceramic material reacts upon impact of a projectile with cracking because the ceramic material is very brittle and can not yield elastically, absorbing or consuming a significant portion of an impact energy. Also, the ceramic material is resistant to very high temperatures, as they occur, for example, in shaped charges. However, destruction of the ceramic material or the structure need not be limited to the immediate area of the impact. It can also come through a so-called shock transmission to a large-scale destruction of the spatial structure of the ceramic material. Also grains of the ceramic can penetrate into a metal spike a shaped charge or in a balancing projectile and effectively hinder its progress. For example, it is known to glue on a metal layer of a hardened steel plate ceramic tiles.
  • the object is achieved by a composite armor with the features of claim 1 and a method with the features of claim 23 and a use with the features of claim 27.
  • the composite armor according to the invention is formed of a metal layer and at least one composite layer, wherein the metal layer is formed of cast steel, wherein the composite layer of a dimensionally stable in liquid steel material forming a spatial structure, and a matrix material, which fills the spatial structure is formed, wherein the matrix material is cast steel, wherein the composite layer is formed by casting steel in a mold in which the spatial structure is arranged, wherein the cast steel as an alloying component 4 to 30, preferably to 21 Contains manganese (Mn) by weight, the cast steel having a predominantly bainitic, austenitic and / or martensitic structure.
  • Mn manganese
  • the material of the metal layer is consequently cast steel and the material of the composite layer is the material which is dimensionally stable in liquid steel and which is combined with the cast steel.
  • the cast steel of the composite layer then acts as the matrix material which at least partially and preferably completely fills cavities of the spatial structure.
  • the composite armor can in principle have any geometric shape that is produced by casting can be.
  • the dimensionally stable material in liquid steel or the spatial structure of the dimensionally stable material can then also assume a corresponding geometric shape.
  • At least the composite layer is produced by infiltrating the material, which is dimensionally stable in liquid steel or the spatial structure formed by the dimensionally stable material, in the casting mold and infiltrating the steel or matrix material by casting steel into the casting mold.
  • the casting mold is completely filled with the liquid steel, so that the spatial structure is accommodated in the matrix material or the then solidified cast steel. Joints between the dimensionally stable material and the cast steel can thus be avoided, whereby the dimensionally stable material is more dimensionally stable in a bombardment and less prone to splintering. Also, an education of, for example, blind holes and ceramic inserts with tight tolerances is no longer required, whereby the composite armor is cheaper to produce.
  • the steel casting has a manganese content of 4 to 30 percent by mass
  • a bainitic or austenitic structure of the cast steel can be easily obtained.
  • the respective microstructure is then present in the cooled or ready-to-use state of the composite armor.
  • the structure in question outweighs possible other structures of steel casting with a share of> 50 percent by mass.
  • austenitic or bainitic cast steel strongly solidifies in cold deformation, so that the steel casting is difficult to work.
  • a special machining of the cast steel is no longer necessary.
  • the composite armor can still have a relatively high toughness at a high hardness. It is also possible, depending on the addition of manganese or other alloy constituents, to form the cast steel in such a way that, in addition to the austenitic structure, it has a predominantly martensitic structure.
  • the martensitic microstructure can also be obtained by a temperature treatment, in which case a layer with high toughness of bainitic or austenitic microstructure can then follow on a hardened layer of the cast steel.
  • the bainitic structure conversion of retained austenite to martensite is promoted in deformation by a high carbon concentration. For example, a particularly high elongation at break with an amount of retained austenite of 33 to 57 percent by volume can be achieved.
  • the bainitic structure can also be advantageously subjected to a heat treatment, since this is associated with only comparatively small changes in volume.
  • the material that is dimensionally stable in liquid steel can be any material that forms a spatial structure and can be arranged in the casting mold during the casting of steel or cast steel into a casting mold, without the spatial structure being deformed by the temperature rise caused in the liquid steel.
  • a softening temperature of the dimensionally stable material is therefore above a liquidus temperature of the liquid steel.
  • the dimensionally stable material may for example be steel, in particular an alloy with chromium, tungsten or another metal.
  • the metal layer and the composite layer may be formed together by casting steel into a mold in which the spatial structure is arranged. Consequently, the metal layer and the composite layer can be integrally formed with the same steel.
  • the metal layer is then the layer of the composite armor within which no spatial structure is arranged. In principle, however, it is also possible to form the metal layer independently of the composite layer in a separate casting process and then to bond or weld the metal layer to the composite layer, for example.
  • the composite layer may be formed of a ceramic material and the matrix material.
  • the ceramic material may be formed by sintering.
  • the ceramic material may be formed of alumina, silicon carbide or boron carbide.
  • the ceramic material may be formed entirely from one of these materials or also from a mixture of these materials, wherein at least one of these materials is present in a predominant proportion.
  • the ceramic material may be composed of a first component having an alpha-form alumina base and a second component having a base containing a preferably eutectic alpha-form alumina composition and zirconia first and the second component can be connected by means of a binder, preferably a metallic binder or silicates. As has been found, this ceramic material has a high hardness and a high strength.
  • the preferably eutectic composition may contain from about 57 to about 63 weight percent alpha-form alumina and from about 37 to about 43 weight percent zirconia.
  • the ceramic material can then also have a porous or sponge-like structure into which molten metal can penetrate. This makes it possible to bond the ceramic material particularly intimately with the cast steel and anchored in the composite layer, which increases a dielectric strength.
  • the cast steel may contain, as an alloying ingredient, 0.01 to 2, preferably 0.3 to 1.5 mass% of carbon.
  • a higher carbon content favors the formation of an austenitic microstructure with a manganese content of more than 4 percent.
  • With a lower carbon content it becomes possible to obtain a bainitic structure more.
  • carbon plays an important role in the transformation of the austenitic microstructure into martensitic microstructures, which is why the cast steel can advantageously contain at least 0.2 percent carbon.
  • the steel casting as an alloying ingredient may contain from 0.4 to 3.5, preferably from 1 to 2.5, percent by weight of chromium.
  • the austenitic structure can also be formed at comparatively low temperatures by means of chromium.
  • the cast steel may be tempered, preferably by quenching in a salt bath and / or by tempering in an oven in an air atmosphere.
  • a bainitic or martensitic microstructure can be formed by the coating.
  • these structures are formed only in a peripheral zone of the composite armor.
  • tempering in the oven a bainitic or austenitic structure can be obtained, which has a mechanically unstable austenite phase, which is comparatively quickly converted to a martensitic structure in the penetration of a projectile.
  • the composite armor may be in the form of a plate. Such a plate or armor plate is particularly easy to produce by casting.
  • the composite layer may preferably be arranged in the direction of a firing direction, in which case the metal layer then forms a rear side of the composite armor facing away from the firing direction.
  • the composite armor may comprise a further metal layer, in which case the composite layer may be accommodated between two metal layers.
  • the layers can each have the same thickness or different thicknesses, wherein the metal layer arranged in a firing direction can lower a kinetic energy of a projectile before it penetrates into the composite layer.
  • the backside forming metal layer can then form a supporting back plate for the composite layer.
  • two metal layers can form two-thirds and one composite layer one-third of a thickness of the composite armor.
  • the composite armor has variations of thicknesses of the respective layers which are different from each other.
  • the composite armor may also have two composite layers separated by a metal layer. In principle, more than two composite layers may be present. The composite layers can then in turn also of other metal layers be covered. Other combinations of layers are also possible.
  • the composite armor may comprise an intermediate layer which may be disposed between the metal layer and the composite layer and formed of a material having comparatively greater hardness and density.
  • the intermediate layer may for example consist of uranium or tungsten or contain these substances.
  • the spatial structure may be a honeycomb structure with preferably 6 or 8 corners, rectangular or cuboid.
  • the spatial structure or geometric structure can then form cavities with the honeycombs, rectangles or cuboids, which are substantially completely filled with cast steel.
  • the spatial structure may be formed of a plurality of plate-shaped layers of the dimensionally stable material.
  • the spatial structure or the geometric structure is arranged orthogonal to a firing direction running within the composite layer. Cavities formed by the dimensionally stable material can easily be infiltrated here with liquid steel and completely filled. It is essential that the dimensionally stable material then runs transversely to the firing direction or is arranged in the composite layer, so that a projectile must penetrate into the dimensionally stable material in any case.
  • the spatial structure can also form cavities that have channels or openings, wherein the cavities are infiltrated with the cast steel and preferably completely filled.
  • the dimensionally stable material can also have a geometrically unstructured structure with different form large cavities. This structure may be formed in the manner of a sponge or may be formed by sintering ceramic material. In principle, the dimensionally stable material can be formed in any conceivable structure, wherein the cavities can then also be formed by irregular columns in a random or unstructured spatial structure or distribution of the dimensionally stable material.
  • the spatial structure of channels or openings may be traversed, which allow or favor infiltration of the cavities of the spatial structure.
  • a honeycomb structure can be completely filled by the liquid steel in a casting of the composite layer and optionally the metal layer.
  • Metal layers on both sides of the composite layer can then also be connected directly to one another via the channels and openings.
  • the openings may, for example, be bores or any other type of openings which ensure that the spatial structure can be completely infiltrated with metal or steel.
  • the structure may be completely surrounded by the cast steel or partially form an outer surface of the composite armor.
  • the spatial structure can form spacers for arrangement in the mold, which are still visible after casting on the outer surface of the composite armor.
  • the outer surface is formed to a predominant proportion of cast steel.
  • the composite armor may form a fastening device, wherein the composite armor is then by means of the fastening device non-positively and / or positively fastened to a mounting base.
  • a suspension of the composite armor or armor plate on a mounting base which of a vehicle, in particular land vehicle, such as rail vehicle, road vehicle, off-road vehicle, watercraft, aircraft, such as helicopters, propeller aircraft, jet aircraft, and spacecraft, may be easily mounted.
  • a fastening device can be formed as an extension on the composite armor, wherein the fastening device can preferably be formed on a rear side of the composite armor facing away from a firing direction.
  • the composite armor is formed of at least one metal layer and at least one composite layer, wherein the metal layer is formed of cast steel, wherein the composite layer of a dimensionally stable in liquid steel material, which forming a spatial structure, and a matrix material, which fills the spatial structure is formed, wherein the matrix material is cast steel, wherein the composite layer is formed by casting steel into a mold in which the spatial structure is arranged, wherein the cast steel as a Alloy component contains 4 to 30, preferably up to 21 percent by weight of manganese, wherein the cast steel has a predominantly bainitic, austenitic and / or martensitic structure.
  • a temperature of the cast steel in a range of +/- 1 to 5 degrees Celsius is constant.
  • the cast steel of the metal layer can be provided to subject the cast steel of the metal layer to cold deformation.
  • a bainitic or austenitic structure hardened in an advantageous manner and optionally converted into a martensitic structure.
  • the cold deformation can be carried out so that the metal layer, based on a layer thickness of the metal layer, at least partially work hardened.
  • a first layer of the metal layer can then be made comparatively hard, and a second layer of the metal layer comparatively tough.
  • cast steel with 4 to 30, preferably up to 21 percent by weight of manganese is used as an alloy constituent and with a predominantly bainitic, austenitic and / or martensitic structure for forming a metal layer of a composite armor. This results in a completely new use of the relevant cast steel, in particular for armor plates for protection against projectiles.
  • the cast steel may be used to form the metal layer and at least one composite layer of the composite armor, wherein the composite layer may be formed of a material stable in liquid steel forming a spatial structure and the cast steel as a matrix material filling the spatial structure, wherein the composite layer may be formed by casting steel into a mold in which the spatial structure is arranged.
  • the Fig. 1 shows a sectional view of a composite armor 10, which is in the form of a plate 11.
  • the composite armor 10 is formed of a metal layer 12 and a composite layer 13.
  • the composite layer 13 is arranged opposite a bombardment direction 14.
  • the metal layer 12 thus forms a rear side 15 of the composite armor 10.
  • the metal layer 12 is formed of cast steel and the composite layer 13 of a ceramic material, not shown here, which forms a spatial structure, and of cast steel as a matrix material.
  • the cast steel of the composite layer 13 and the cast steel of the metal layer 12 are identical, but this does not necessarily have to be the case.
  • the composite armor 10 is obtained in that the ceramic material is used in a casting mold, not shown here, or arranged in this, wherein the mold is poured with steel.
  • the principle of the production of composite materials by casting with cast steel is in the WO 2014/041409 A2 described which relates to a different subject area. It is essential that the cast steel of the composite armor 10 contains as an alloying component 4 to 30, in the example shown 10 percent by mass of manganese.
  • the cast steel has a predominantly austenitic structure, which is converted by the impact of a projectile into a martensitic structure. The conversion is carried out by a plastic deformation of the cast steel and at least partial strain hardening thereof, which gives a tensile strength and hardness increased the steel casting. Further, the ceramic material of the composite layer 13 is fragmented upon penetration of a projectile into the composite layer 13, whereby a substantial part of an impact energy is absorbed or consumed.
  • destruction of the ceramic material need not be limited to any impact location. It can also come through a so-called shock transmission to a large-scale destruction of the spatial structure.
  • the above-described hardening of the metal layer 12 takes place in the region of the point of impact. In this case, a notched impact strength around the impact point around is not significantly reduced, since there is hardly any hardening. A dielectric strength of the composite armor 10 against projectiles can thus be significantly improved.
  • the Fig. 2 shows a composite armor 16 in contrast to the composite armor Fig. 1 the composite layer 13 is accommodated between two metal layers 12.
  • the Fig. 3 shows a composite armor 17 with two composite layers 13 which are each received between metal layers 12.
  • the Fig. 4 shows a composite armor 18 at the unlike the composite armor Fig. 2 a further metal layer 19 is formed thicker than the metal layer 12.
  • the Fig. 5 shows a schematic sectional view of a composite armor 20, wherein on a rear side 21 of the composite armor 20, a fastening device 22 is formed as a projection 23.
  • the projection 23 is hook-shaped, so that it can be hooked into a likewise hook-shaped mounting base 24.
  • the Fig. 6 shows a fastening device 25 in contrast to the fastening device Fig. 5 another, hook-shaped projection 26 has.
  • the Fig. 7 shows a fastening device 27 with a T-shaped projection 28th
  • the Fig. 8 shows a fastening device 29 with a dovetail-shaped projection 30th
  • the Fig. 9 shows a fastening device 31 with projections 32 which have a substantially semicircular recess 33.
  • the Fig. 10 shows a spatial structure 34 of a ceramic material, in particular of aluminum oxide.
  • the ceramic material is formed from a first component having a base of alumina in ⁇ -form and a second component having a base containing a eutectic composition of alumina in ⁇ -form and zirconia, wherein the first and the second component by means of a binder, preferably a metallic binder or silicates.
  • a binder preferably a metallic binder or silicates.
  • Other embodiments and a preparation of the ceramic material are known from EP 1 663 548 B1 known, which relates to a different subject area.
  • the spatial structure 34 forms a honeycomb structure 35, which extends transversely or orthogonally to a bombardment direction of a composite armor not shown here.
  • the spatial structure 34 of the ceramic material forms cavities 36 and 37, which are infiltrated with cast steel to form the composite layer and preferably completely filled.
  • the Fig. 11 shows a spatial structure 38 of ceramic material, which is formed of plate-shaped layers 39, wherein between the layers 39 cavities 40 are formed for filling with cast steel.
  • the Fig. 12 shows a spatial structure 41, the rectangular cavities 42 forms.
  • the Fig. 13 shows a spatial structure 43 has the cavities 44 in the form of a respective bore 45.
  • the Fig. 14 shows a spatial structure 46, which is formed in the manner of a sponge 47 or by sintering of ceramic material. Irregularly large interspaces 48 of the spatial structure 46 form corresponding cavities 49.
  • the Fig. 15 shows a composite armor 50 having two metal layers 51 and a composite layer 52 received between the two metal layers 51.
  • a ceramic material of the composite layer 52 forms a spatial structure 53, similar to the one in FIG Fig. 10 shown spatial structure, from.
  • openings 54 are formed, so that the spatial structure 53 can be completely penetrated by the cast steel of the metal layers 51 or filled in a casting.
  • the metal layers 51 are therefore directly connected to each other.
  • the openings 54 may be, for example, a bore or any other type of opening which ensures that the spatial structure 53 can be completely infiltrated with cast steel.
  • the Fig. 16 shows a manganese-carbon diagram from which it can be seen at what levels of manganese and carbon, an austenitic, bainitic or martensitic structure of cast steel of a composite armor can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Die Erfindung betrifft eine Verbundpanzerung (50) sowie ein Verfahren zur Herstellung einer Verbundpanzerung, insbesondere Panzerplatte zum Schutz gegen Geschosse, wobei die Verbundpanzerung aus wenigstens einer Metallschicht (51) und wenigstens einer Verbundschicht (52) ausgebildet ist, wobei die Metallschicht aus Stahlguss ausgebildet ist, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur (53) ausbildet, und einem Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet ist, wobei das Matrixmaterial aus Stahlguss ist, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet ist, ausgebildet ist, wobei der Stahlguss als ein Legierungsbestandteil 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan enthält, wobei der Stahlguss ein überwiegend bainitisches, austenitisches und/oder martensitisches Gefüge aufweist.

Description

  • Die Erfindung betrifft eine Verbundpanzerung, insbesondere Panzerplatte zum Schutz gegen Geschosse, und ein Verfahren zur Herstellung einer Verbundpanzerung sowie eine Verwendung eines Gussstahls, wobei die Verbundpanzerung aus wenigstens einer Metallschicht und wenigstens einer Verbundschicht ausgebildet ist, wobei die Metallschicht aus Stahlguss ausgebildet ist, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur ausbildet, und einem Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet ist.
  • Derartige Verbundpanzerungen, die aus verschiedenen Schichten von Materialien ausgebildet sind, sind hinreichend bekannt und sollen einen ausreichenden Schutz gegen Angriffe mit panzerbrechender Munition, wie beispielsweise Hohlladungs- und Wuchtgeschossen, Quetschkopfmunition und Panzerabwehrminen bieten. Verbundpanzerungen werden nicht nur bei militärischen Fahrzeugen, wie Panzern zum Schutz gegen Geschosse eingesetzt, sondern auch bei zivilen Fahrzeugen, wie beispielsweise PKW, die einem bestimmten Schutz bedürfen. Verbundpanzerungen können prinzipiell auch für Personenschutzwesten oder den Objektschutz im Allgemeinen eingesetzt werden. Bei einem Beschuss der Verbundpanzerung soll diese in jedem Fall immer einen Durchschuss verhindern, wobei als ein Durchschuss bereits eine Öffnung in einer einer Beschussrichtung abgewandten Rückseite der Verbundpanzerung angesehen wird.
  • Bei mit keramischem Material ausgebildeten Verbundpanzerungen reagiert das keramische Material bei dem Auftreffen eines Geschosses mit einer Rissbildung, da das keramische Material sehr spröde ist und nicht elastisch nachgeben kann, wobei ein erheblicher Teil einer Aufprallenergie absorbiert oder verbraucht wird. Auch ist das keramische Material gegen sehr hohe Temperaturen, wie sie beispielsweise bei Hohlladungen auftreten, widerstandsfähig. Eine Zerstörung des keramischen Materials beziehungsweise der Struktur muss jedoch nicht auf den unmittelbaren Bereich der Einschlagstelle beschränkt sein. Es kann auch durch eine sogenannte Schockübertragung zu einer großflächigen Zerstörung der räumlichen Struktur des keramischen Materials kommen. Auch können Körner der Keramik in einen Metallstachel einer Hohlladung oder in ein Wuchtgeschoss eindringen und dessen Fortkommen wirksam behindern. Beispielsweise ist es bekannt, auf eine Metallschicht aus einer gehärteten Stahlplatte Keramikkacheln aufzukleben. Weiter ist es bekannt, in einer Stahlplatte Sacklöcher auszubilden und in diese Keramikelemente einzusetzen und gegebenenfalls die Sacklöcher zu verschweißen. Dadurch wird ein Zersplittern der Keramikelemente behindert, was eine Schutzwirkung verbessert. Bei dieser Art der Verbundpanzerung bildet die Stahlplatte folglich ein Matrixmaterial für das keramische Material aus. Nachteilig ist hier jedoch, dass zwischen dem keramischen Material und dem Matrixmaterial Fugen existent sind, die, um ein Zersplittern des keramischen Materials zu verhindern, möglichst klein sein sollten. Weiter kann eine Schicht aus Faserverbundwerkstoff oder eine Metallschicht vorgesehen sein, die als eine Rückenplatte zur Stützung der Verbundschicht fungiert. Diese Metallschicht kann die Verbundschicht bei einem Einschlag eines Geschosses stützen, so dass die Verbundschicht nicht durch hohe Biegemomente belastet wird. Derartige Verbundpanzerungen sind jedoch nur vergleichsweise kostenaufwendig herzustellen.
  • Es ist daher Aufgabe der Erfindung, eine Verbundpanzerung und ein Verfahren zu dessen Herstellung vorzuschlagen, die beziehungsweise das ein Verhältnis von Schutzwirkung zu Gewicht und Herstellungskosten verbessert.
  • Die Aufgabe wird durch eine Verbundpanzerung mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruchs 23 sowie eine Verwendung mit den Merkmalen des Anspruchs 27 gelöst.
  • Die erfindungsgemäße Verbundpanzerung, insbesondere Panzerplatte zum Schutz gegen Geschosse, ist aus einer Metallschicht und wenigstens einer Verbundschicht ausgebildet, wobei die Metallschicht aus Stahlguss ausgebildet ist, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur ausbildet, und einem Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet ist, wobei das Matrixmaterial Stahlguss ist, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet ist, ausgebildet ist, wobei der Stahlguss als ein Legierungsbestandteil 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan (Mn) enthält, wobei der Stahlguss ein überwiegend bainitisches, austenitisches und/oder martensitisches Gefüge aufweist.
  • Das Material der Metallschicht ist folglich Stahlguss beziehungsweise Gussstahl und das Material der Verbundschicht das in flüssigen Stahl formstabile Material, welches mit dem Stahlguss kombiniert ist. Der Stahlguss der Verbundschicht fungiert dann als das Matrixmaterial, welches Hohlräume der räumlichen Struktur zumindest teilweise und bevorzugt vollständig ausfüllt. Die Verbundpanzerung kann prinzipiell jede beliebige geometrische Form aufweisen, die durch Gießen hergestellt werden kann. Das in flüssigen Stahl formstabile Material beziehungsweise die räumliche Struktur des formstabilen Materials kann dann ebenfalls eine entsprechende geometrische Form annehmen. Eine Herstellung von zumindest der Verbundschicht erfolgt dadurch, dass das in flüssigen Stahl formstabile Material beziehungsweise die von dem formstabilen Material ausgebildete räumliche Struktur, in der Gussform angeordnet wird und durch Gießen von Stahl in die Gussform mit dem Stahl beziehungsweise Matrixmaterial infiltriert wird. Die Gussform wird vollständig mit dem flüssigen Stahl ausgegossen, so dass die räumliche Struktur in dem Matrixmaterial beziehungsweise dem dann erstarrten Stahlguss aufgenommen ist. Fugen zwischen dem formstabilen Material und dem Stahlguss können so vermieden werden, wodurch das formstabile Material bei einem Beschuss formstabiler ist und weniger zum Zersplittern neigt. Auch ist eine Ausbildung von beispielsweise Sacklochbohrungen und keramischen Einsätzen mit engen Toleranzen nicht mehr erforderlich, wodurch die Verbundpanzerung kostengünstiger herstellbar wird.
  • Dadurch, dass der Stahlguss einen Mangangehalt von 4 bis 30 Masseprozent aufweist, kann leicht ein bainitisches oder austenitisches Gefüge des Stahlgusses erhalten werden. Weiter ist es möglich, durch Wärmebehandlung des Stahlgusses ein martensitisches Gefüge auszubilden. Das jeweilige Gefüge liegt dann im abgekühlten beziehungsweise gebrauchsfertigen Zustand der Verbundpanzerung vor. Dabei überwiegt das betreffende Gefüge mögliche andere Gefüge des Stahlgusses mit einem Anteil von > 50 Masseprozent. Insbesondere austenitischer beziehungsweise bainitischer Stahlguss verfestigt bei Kaltverformung stark, so dass der Stahlguss schwer zu verarbeiten ist. Durch das Vergießen der räumlichen Struktur mit dem Stahlguss ist jedoch eine besondere Bearbeitung des Stahlgusses nicht mehr erforderlich.
  • Bei einem Auftreffen eines Geschosses auf die Metallschicht wird der Stahlguss plastisch verformt und zumindest teilweise kaltverfestigt, wobei eine Festigkeit beziehungsweise Zugfestigkeit und Härte des Stahlgusses in unterschiedlichem Maße zunimmt. Im Gegensatz dazu nimmt eine Dehnung und Kerbschlagzähigkeit ab. Es hat sich gezeigt, dass eine Zunahme an Festigkeit abhängig ist von der aufgebrachten kinetischen Energie, mit der sich die Verformung vollzieht sowie von der Veranlagung des Stahlgusses zum Kaltverfestigen. Eine hohe Kaltverfestigungsgeschwindigkeit bedeutet eine schnelle Erhöhung der Festigkeit im Verhältnis zur abnehmenden Verformungsgeschwindigkeit. Diese Verfestigung im Oberflächenbereich der Verbundpanzerung oder auch innerhalb der Verbundpanzerung erfolgt durch eine Umwandlung des austenitischen Gefüges oder einer mechanisch instabilen Austenit-Phase des bainitischen Gefüges in martensitisches Gefüge. Damit kommt es zu einer Härtesteigerung des Stahlgusses, was seine Durchschlagfestigkeit erhöht.
  • So kann beispielsweise auch schon eine Kaltverfestigung der Metallschicht erfolgen, wenn ein Geschoss auf der einer Beschussrichtung zugewandten Verbundschicht auftrifft und in diese eindringt. Auch kann die Verbundpanzerung bei einer großen Härte noch eine vergleichsweise hohe Zähigkeit aufweisen. Weiter ist es möglich, den Stahlguss je nach Zugabe von Mangan oder weiterer Legierungsbestandteile so auszubilden, dass er neben dem austenitischen Gefüge ein überwiegend martensitisches Gefüge aufweist. Das martensitisches Gefüge kann auch durch eine Temperaturbehandlung erhalten werden, wobei dann auf eine aufgehärtete Schicht des Stahlgusses eine Schicht mit hoher Zähigkeit aus bainitischen oder austenitischen Gefüge folgen kann. Insbesondere bei dem bainitischen Gefüge wird eine Umwandlung von Restaustenit in Martensit bei einer Verformung durch eine hohe Kohlenstoffkonzentration begünstigt. Beispielsweise kann auch eine besonders hohe Bruchdehnung bei einer Menge von Restaustenit von 33 bis 57 Volumenprozent erzielt werden. Das bainitische Gefüge kann auch vorteilhaft einer Wärmebehandlung unterzogen werden, da diese mit nur vergleichsweise kleinen Volumenänderungen einhergeht.
  • Das in flüssigen Stahl formstabile Material, kann jedes Material sein, dass eine räumliche Struktur ausbildet, und beim Gießen von Stahl bzw. Stahlguss in eine Gussform in der Gussform anordbar ist, ohne dass die räumliche Struktur durch die im flüssigen Stahl bedingte Temperaturerhöhung verformt wird. Eine Erweichungstemperatur des formstabilen Materials liegt daher über einer Liquidustemperatur des flüssigen Stahls. Das formstabile Material kann beispielsweise auch Stahl, insbesondere eine Legierung mit Chrom, Wolfram oder ein anderes Metall sein.
  • Die Metallschicht und die Verbundschicht können zusammen durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet ist, ausgebildet sein. Folglich können die Metallschicht und die Verbundschicht in einem Guss ausgebildet mit dem gleichen Stahl werden. Die Metallschicht ist dann die Schicht der Verbundpanzerung, innerhalb der keine räumliche Struktur angeordnet ist. Prinzipiell ist es jedoch auch möglich, die Metallschicht unabhängig von der Verbundschicht in einem gesonderten Gießverfahren auszubilden und die Metallschicht dann mit der Verbundschicht beispielsweise zu verkleben oder zu verschweißen.
  • Die Verbundschicht kann aus einem keramischen Material und dem Matrixmaterial ausgebildet sein. Vorzugsweise kann das keramische Material durch Sintern ausgebildet sein.
  • Das keramische Material kann aus Aluminiumoxid, Siliziumcarbid oder Bohrcarbid ausgebildet sein. Das keramische Material kann vollständig aus einem dieser Materialien oder auch aus einer Mischung dieser Materialien ausgebildet sein, wobei zumindest eines dieser Materialien mit einem überwiegenden Anteil vorliegt.
  • Das keramische Material kann aus einem ersten Bestandteil mit einer Basis aus Aluminiumoxid in α-Form und mit einem zweiten Bestandteil mit einer Basis, welche eine vorzugsweise eutektische Zusammensetzung aus Aluminiumoxid in α-Form und Zirkoniumdioxid enthält, wobei der erste und der zweite Bestandteil mittels eines Bindemittels, vorzugsweise eines metallischen Bindemittels oder Silicaten verbunden sein kann. Wie sich herausgestellt hat, weist dieses keramische Material eine große Härte und eine hohe Festigkeit auf.
  • Die vorzugsweise eutektische Zusammensetzung kann 57 bis 63 Gewichtsprozent Aluminiumoxid in α-Form und 37 bis 43 Gewichtsprozent Zirkoniumdioxid enthalten. Das keramische Material kann dann auch ein poröses oder schwammartiges Gefüge aufweisen, in welches geschmolzenes Metall eindringen kann. Dadurch wird es möglich, das keramische Material besonders innig mit dem Stahlguss zu verbinden und in der Verbundschicht zu verankern, was eine Durchschlagsfestigkeit erhöht.
  • Der Stahlguss kann als ein Legierungsbestandteil 0,01 bis 2, vorzugsweise 0,3 bis 1,5 Masseprozent Kohlenstoff enthalten. Insbesondere ein höherer Kohlenstoffgehalt begünstigt bei einem Mangangehalt von über 4 Prozent die Ausbildung eines austenitischen Gefüges. Mit einem niedrigeren Kohlenstoffgehalts wird es möglich, eher ein bainitisches Gefüge zu erhalten. Gleichzeitig bildet Kohlenstoff eine wichtige Rolle bei der Umwandlung des austenitischen Gefüges in martensitisches Gefüge, weshalb der Stahlguss vorteilhaft zumindest 0,2 Prozent Kohlenstoff enthalten kann.
  • Weiter kann der Stahlguss als ein Legierungsbestandteil 0,4 bis 3,5, vorzugsweise 1 bis 2,5 Masseprozent Chrom enthalten. Zunächst wird es dadurch möglich, eine höhere Härte und Korrosionsbeständigkeit des Stahlgusses zu erzielen. Neben einer Steigerung der Zugfestigkeit kann mittels des Chroms das austenitische Gefüge auch bei vergleichsweise niedrigen Temperaturen ausgebildet werden.
  • Auch kann der Stahlguss vergütet sein, vorzugsweise durch Abschrecken in einem Salzbad und/oder durch Temperierung in einem Ofen in einer Luftatmosphäre. Durch die Vergütung kann beispielsweise ein bainitisches oder martensitisches Gefüge ausgebildet werden. Weiter kann vorgesehen sein, dass diese Gefüge lediglich in einer Randzone der Verbundpanzerung ausgebildet sind. Durch die Temperierung in dem Ofen kann auch ein bainitisches oder austenitisches Gefüge erhalten werden, welches eine mechanisch instabile Austenit-Phase aufweist, die bei dem Eindringen eines Geschosses vergleichsweise schnell zu einem martensitischen Gefüge umwandelbar ist.
  • Die Verbundpanzerung kann in Form einer Platte ausgebildet sein. Eine derartige Platte beziehungsweise Panzerplatte ist durch Gießen besonders einfach herstellbar. Vorzugsweise kann die Verbundschicht in Richtung einer Beschussrichtung angeordnet sein, wobei dann die Metallschicht eine von der Beschussrichtung abgewandte Rückseite der Verbundpanzerung ausbildet. Optional ist es auch möglich, die Metallschicht in Richtung einer Beschussrichtung anzuordnen, wenn dies zum Schutz gegen bestimmte Geschosse sinnvoll ist.
  • Die Verbundpanzerung kann eine weitere Metallschicht aufweisen, wobei dann die Verbundschicht zwischen zwei Metallschichten aufgenommen sein kann. Die Schichten können jeweils gleich dick oder auch unterschiedlich dick ausgebildet sein, wobei die in einer Beschussrichtung angeordnete Metallschicht vor einem Eindringen in die Verbundschicht eine kinetische Energie eines Geschosses absenken kann. Die eine Rückseite ausbildende Metallschicht kann dann eine stützende Rückenplatte für die Verbundschicht ausbilden.
  • Auch können zwei Metallschichten zwei Drittel und eine Verbundschicht ein Drittel einer Dicke der Verbundpanzerung ausbilden. Weiter ist es auch möglich, dass die Verbundpanzerung Variationen von Dicken der jeweiligen Schichten aufweist, die voneinander verschieden sind.
  • Die Verbundpanzerung kann auch zwei Verbundschichten aufweisen, die durch eine Metallschicht voneinander getrennt sind. Prinzipiell können auch mehr als zwei Verbundschichten vorhanden sein. Die Verbundschichten können dann ihrerseits auch von weiteren Metallschichten abgedeckt sein. Weitere Kombinationen von Schichten sind ebenfalls möglich.
  • Die Verbundpanzerung kann eine Zwischenschicht aufweisen, die zwischen der Metallschicht und der Verbundschicht angeordnet und aus einem Material ausgebildet sein kann, welches vergleichsweise eine größere Härte und eine höhere Dichte aufweist. Die Zwischenschicht kann beispielsweise aus Uran oder Wolfram bestehen beziehungsweise diese Stoffe enthalten. Optional ist es auch möglich, die Zwischenschicht aus Gummi auszubilden, wobei dann die Härte und Dichte der Zwischenschicht vergleichsweise gering ist. Mit einer Zwischenschicht kann ein Schutz gegen Wuchtgeschosse weiter verbessert werden.
  • Die räumliche Struktur kann eine Wabenstruktur mit vorzugsweise 6 oder 8 Ecken, rechteckig oder quaderförmig sein. Die räumliche Struktur beziehungsweise geometrische Struktur kann dann mit den Waben, Rechtecken oder Quadern Hohlräume ausbilden, die mit Stahlguss im Wesentlichen vollständig gefüllt sind.
  • Alternativ kann die räumliche Struktur aus einer Mehrzahl von plattenförmigen Schichten aus dem formstabilen Material ausgebildet sein.
  • Besonders vorteilhaft ist es, wenn die räumliche Struktur beziehungsweise die geometrische Struktur orthogonal zu einer Beschussrichtung verlaufend innerhalb der Verbundschicht angeordnet ist. Von dem formstabilen Material ausgebildete Hohlräume können auch hier mit flüssigem Stahl leicht infiltriert und vollständig ausgefüllt werden. Wesentlich ist, dass das formstabile Material dann quer zu der Beschussrichtung verläuft beziehungsweise in der Verbundschicht angeordnet ist, so dass ein Geschoss in jedem Fall in das formstabile Material eindringen muss. Die räumliche Struktur kann auch Hohlräume ausbilden, die Kanäle oder Öffnungen aufweisen, wobei die Hohlräume mit dem Stahlguss infiltriert und vorzugsweise vollständig ausgefüllt sind. Das formstabile Material kann auch eine geometrisch unstrukturierte Struktur mit unterschiedlich großen Hohlräumen ausbilden. Diese Struktur kann in Art eines Schwamms ausgebildet oder auch durch Sintern von keramischem Material ausgebildet werden. Prinzipiell kann das formstabile Material in jeder beliebigen denkbaren Struktur ausgebildet sein, wobei die Hohlräume dann auch durch unregelmäßige Spalten in einer zufälligen beziehungsweise unstrukturierten räumlichen Struktur beziehungsweise Verteilung des formstabilen Materials ausgebildet sein können.
  • Weiter kann die räumliche Struktur von Kanälen oder Öffnungen durchzogen sein, die eine Infiltration der Hohlräume der räumlichen Struktur ermöglichen beziehungsweise begünstigen. Beispielsweise kann dann eine Wabenstruktur vollständig von dem flüssigen Stahl bei einem Gießen der Verbundschicht und gegebenenfalls der Metallschicht ausgefüllt werden. Auch können dann Metallschichten beiderseits der Verbundschicht über die Kanäle und Öffnungen unmittelbar miteinander verbunden sein. Die Öffnungen können beispielsweise Bohrungen oder jede andere Art von Öffnungen sein, die gewährleisten, dass die räumliche Struktur vollständig mit Metall beziehungsweise Stahl infiltriert werden kann.
  • Je nach Anordnung der räumlichen Struktur in einer Gussform kann die Struktur vollständig von dem Stahlguss umgeben sein oder teilweise eine Außenfläche der Verbundpanzerung ausbilden. Beispielsweise kann die räumliche Struktur Abstandshalter zur Anordnung in der Gussform ausbilden, die nach einem Gießen noch an der Außenfläche der Verbundpanzerung sichtbar sind. Vorzugsweise ist jedoch vorgesehen, dass die Außenfläche zu einem überwiegenden Anteil von Stahlguss ausgebildet ist.
  • Die Verbundpanzerung kann eine Befestigungsvorrichtung ausbilden, wobei die Verbundpanzerung dann mittels der Befestigungsvorrichtung kraft- und/oder formschlüssig an einer Befestigungsbasis befestigbar ist. Beispielsweise kann dann eine Aufhängung der Verbundpanzerung beziehungsweise Panzerplatte an einer Befestigungsbasis, welche von einem Fahrzeug, insbesondere Landfahrzeug, wie Schienenfahrzeug, Straßenfahrzeug, Geländefahrzeug, Wasserfahrzeug, Luftfahrzeug, wie Hubschrauber, Propellerflugzeug, Strahlflugzeug, und Raumfahrzeug, ausgebildet sein kann, leicht befestigt werden. Durchgangsbohrungen in der Verbundpanzerung zur Befestigung derselben sind nicht vorgesehen, können aber prinzipiell auch vorhanden sein. Die Befestigungsvorrichtung kann als ein Fortsatz an der Verbundpanzerung angeformt sein, wobei die Befestigungseinrichtung vorzugsweise auf einer Rückseite der Verbundpanzerung, einer Beschussrichtung abgewandt, ausgebildet sein kann.
  • Bei dem erfindungsgemäßen Verfahren zur Herstellung einer Verbundpanzerung, insbesondere Panzerplatte zum Schutz gegen Geschosse, wird die Verbundpanzerung aus wenigstens einer Metallschicht und wenigstens einer Verbundschicht ausgebildet, wobei die Metallschicht aus Stahlguss ausgebildet wird, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur ausbildet, und einem Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet wird, wobei das Matrixmaterial Stahlguss ist, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet wird, ausgebildet wird, wobei der Stahlguss als ein Legierungsbestandteil 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan enthält, wobei der Stahlguss ein überwiegend bainitisches, austenitisches und/oder martensitisches Gefüge aufweist. Die Vorteile des erfindungsgemäßen Verfahrens betreffend wird auf die Vorteilsbeschreibung der erfindungsgemäßen Verbundpanzerung verwiesen.
  • Um das betreffende Gefüge zu erhalten ist es vorteilhaft, wenn beim Gießen eine Temperatur des Gussstahls in einem Bereich von +/- 1 bis 5 Grad Celsius konstant ist.
  • Weiter kann vorgesehen sein, den Stahlguss der Metallschicht einer Kaltverformung zu unterziehen. Mit der Kaltverformung kann dann ein bainitisches oder austenitisches Gefüge in vorteilhafter Weise aufgehärtet und gegebenenfalls in ein martensitisches Gefüge umgewandelt werden.
  • Dabei kann die Kaltverformung so erfolgen, dass die Metallschicht, bezogen auf eine Schichtdicke der Metallschicht, zumindest teilweise kaltverfestigt wird. Ein erste Schicht der Metallschicht kann dann vergleichsweise hart, und eine zweite Schicht der Metallschicht vergleichsweise zäh ausgebildet werden.
  • Weitere vorteilhafte Ausführungsformen des Verfahrens ergeben sich aus den auf den Vorrichtungsanspruch 1 rückbezogenen Unteransprüchen.
  • Erfindungsgemäß wird Stahlguss mit 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan als ein Legierungsbestandteil und mit einem überwiegend bainitischen, austenitischen und/oder martensitischen Gefüge zur Ausbildung einer Metallschicht einer Verbundpanzerung verwendet. Hierdurch ergibt sich eine vollkommen neue Verwendungsmöglichkeit des betreffenden Stahlgusses, insbesondere für Panzerplatten zum Schutz gegen Geschosse.
  • Weiter kann der Stahlguss zur Ausbildung der Metallschicht und wenigstens einer Verbundschicht der Verbundpanzerung verwendet werden, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur ausbildet, und dem Stahlguss als Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet sein kann, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet ist, ausgebildet sein kann.
  • Nachfolgend wird die Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher erläutert.
  • Es zeigen:
  • Fig. 1
    eine Schnittansicht einer ersten Ausführungsform einer Verbundpanzerung;
    Fig. 2
    eine Schnittansicht einer zweiten Ausführungsform einer Verbundpanzerung;
    Fig. 3
    eine Schnittansicht einer dritten Ausführungsform einer Verbundpanzerung;
    Fig. 4
    eine Schnittansicht einer vierten Ausführungsform einer Verbundpanzerung;
    Fig. 5
    eine Schnittansicht einer ersten Ausführungsform einer Befestigungsvorrichtung;
    Fig. 6
    eine Schnittansicht einer zweiten Ausführungsform einer Befestigungsvorrichtung;
    Fig. 7
    eine Schnittansicht einer dritten Ausführungsform einer Befestigungsvorrichtung;
    Fig. 8
    eine Schnittansicht einer vierten Ausführungsform einer Befestigungsvorrichtung;
    Fig. 9
    eine Schnittansicht einer fünften Ausführungsform einer Befestigungsvorrichtung;
    Fig. 10
    eine Schnittansicht einer ersten Ausführungsform einer räumlichen Struktur;
    Fig. 11
    eine Schnittansicht einer zweiten Ausführungsform einer räumlichen Struktur;
    Fig. 12
    eine Schnittansicht einer dritten Ausführungsform einer räumlichen Struktur;
    Fig. 13
    eine Schnittansicht einer vierten Ausführungsform einer räumlichen Struktur;
    Fig. 14
    eine Schnittansicht einer fünften Ausführungsform einer räumlichen Struktur;
    Fig. 15
    eine Schnittansicht einer fünften Ausführungsform einer Verbundpanzerung;
    Fig. 16
    ein Mangan-Kohlenstoff-Diagramm.
  • Die Fig. 1 zeigt eine Schnittansicht einer Verbundpanzerung 10, die in Form einer Platte 11 ausgebildet ist. Die Verbundpanzerung 10 ist aus einer Metallschicht 12 und einer Verbundschicht 13 ausgebildet. Die Verbundschicht 13 ist gegenüber einer Beschussrichtung 14 angeordnet. Die Metallschicht 12 bildet folglich eine Rückseite 15 der Verbundpanzerung 10 aus. Die Metallschicht 12 ist aus Stahlguss ausgebildet und die Verbundschicht 13 aus einem hier nicht dargestellten keramischen Material, welches eine räumliche Struktur ausbildet, sowie aus Stahlguss als ein Matrixmaterial. Der Stahlguss der Verbundschicht 13 und der Stahlguss der Metallschicht 12 sind dabei identisch, was jedoch nicht zwangsläufig der Fall sein muss. Die Verbundpanzerung 10 wird dadurch erhalten, dass das keramische Material in eine hier nicht dargestellte Gussform eingesetzt beziehungsweise in dieser angeordnet wird, wobei die Gussform mit Stahl ausgegossen wird. Das Prinzip der Herstellung von Verbundmaterialien durch Vergießen mit Stahlguss ist in der WO 2014/041409 A2 beschrieben, welche ein abweichendes Sachgebiet betrifft. Wesentlich ist, dass der Stahlguss der Verbundpanzerung 10 als ein Legierungsbestandteil 4 bis 30, im dargestellten Beispiel 10 Masseprozent Mangan enthält. Der Stahlguss weist ein überwiegend austenitisches Gefüge auf, welches durch das Auftreffen eines Geschosses in ein martensitisches Gefüge umgewandelt wird. Die Umwandlung erfolgt durch eine plastische Verformung des Stahlgusses und einer zumindest teilweisen Kaltverfestigung desselben, was eine Zugfestigkeit und Härte des Stahlguss erhöht. Weiter wird das keramische Material der Verbundschicht 13 bei einem Eindringen eines Geschosses in die Verbundschicht 13 zersplittert, wobei ein erheblicher Teil einer Aufprallenergie absorbiert oder verbraucht wird. Eine Zerstörung des keramischen Materials muss jedoch nicht auf eine eventuelle Einschlagstelle beschränkt sein. Es kann auch durch eine sogenannte Schockübertragung zu einer großflächigen Zerstörung der räumlichen Struktur kommen. Gleichzeitig erfolgt die zuvor beschriebene Aufhärtung der Metallschicht 12 im Bereich der Einschlagstelle. Dabei ist eine Kerbschlagzähigkeit um die Einschlagstelle herum nicht wesentlich herabgesetzt, da hier kaum eine Aufhärtung erfolgt. Eine Durchschlagfestigkeit der Verbundpanzerung 10 gegen Geschosse kann so wesentlich verbessert werden.
  • Die Fig. 2 zeigt eine Verbundpanzerung 16 bei der im Unterschied zu der Verbundpanzerung aus Fig. 1 die Verbundschicht 13 zwischen zwei Metallschichten 12 aufgenommen ist.
  • Die Fig. 3 zeigt eine Verbundpanzerung 17 mit zwei Verbundschichten 13 die jeweils zwischen Metallschichten 12 aufgenommen sind.
  • Die Fig. 4 zeigt eine Verbundpanzerung 18 bei der im Unterschied zu der Verbundpanzerung aus Fig. 2 eine weitere Metallschicht 19 dicker ausgebildet ist als die Metallschicht 12.
  • Die Fig. 5 zeigt eine schematische Schnittansicht einer Verbundpanzerung 20, wobei auf einer Rückseite 21 der Verbundpanzerung 20 eine Befestigungsvorrichtung 22 als ein Vorsprung 23 ausgebildet ist. Der Vorsprung 23 ist hakenförmig ausgebildet, so dass er in eine ebenfalls hakenförmig ausgebildete Befestigungsbasis 24 eingehängt werden kann.
  • Die Fig. 6 zeigt eine Befestigungsvorrichtung 25 die im Unterschied zu der Befestigungsvorrichtung aus Fig. 5 einen weiteren, hakenförmigen Vorsprung 26 aufweist.
  • Die Fig. 7 zeigt eine Befestigungsvorrichtung 27 mit einem T-förmig ausgebildeten Vorsprung 28.
  • Die Fig. 8 zeigt eine Befestigungsvorrichtung 29 mit einem schwalbenschwanzförmig ausgebildeten Vorsprung 30.
  • Die Fig. 9 zeigt eine Befestigungsvorrichtung 31 mit Vorsprüngen 32, die eine im Wesentlichen halbkreisförmige Ausnehmung 33 aufweisen.
  • Die Fig. 10 zeigt eine räumliche Struktur 34 aus einem keramischen Material, insbesondere aus Aluminiumoxid. Das keramische Material ist dabei aus einem ersten Bestandteil mit einer Basis aus Aluminiumoxid in α-Form und mit einem zweiten Bestandteil mit einer Basis, welche eine eutektische Zusammensetzung aus Aluminiumoxid in α-Form und Zirkoniumdioxid enthält, ausgebildet, wobei der erste und der zweite Bestandteil mittels eines Bindemittels, vorzugsweise eines metallischen Bindemittels oder Silicaten, verbunden sind. Weitere Ausführungsformen sowie eine Herstellung des keramischen Materials sind aus der EP 1 663 548 B1 bekannt, welche ein abweichendes Sachgebiet betrifft.
  • Die räumliche Struktur 34 bildet eine Wabenstruktur 35 aus, die quer beziehungsweise orthogonal zu einer Beschussrichtung einer hier nicht näher dargestellten Verbundpanzerung verläuft. Die räumliche Struktur 34 aus dem keramischen Material bildet Hohlräume 36 und 37 aus, die zur Ausbildung der Verbundschicht mit Stahlguss infiltriert und vorzugsweise vollständig ausgefüllt werden.
  • Die Fig. 11 zeigt eine räumliche Struktur 38 aus keramischem Material, welche aus plattenförmigen Schichten 39 ausgebildet ist, wobei zwischenliegend den Schichten 39 Hohlräume 40 zur Ausfüllung mit Stahlguss ausgebildet sind.
  • Die Fig. 12 zeigt eine räumliche Struktur 41, die quaderförmige Hohlräume 42 ausbildet.
  • Die Fig. 13 zeigt eine räumliche Struktur 43 die Hohlräume 44 in Form jeweils einer Bohrung 45 aufweist.
  • Die Fig. 14 zeigt eine räumliche Struktur 46, die in Art eines Schwamms 47 beziehungsweise durch Sintern von keramischem Material ausgebildet ist. Unregelmäßig große Zwischenräume 48 der räumlichen Struktur 46 bilden entsprechende Hohlräume 49 aus.
  • Die Fig. 15 zeigt eine Verbundpanzerung 50 mit zwei Metallschichten 51 und einer Verbundschicht 52, die zwischen den zwei Metallschichten 51 aufgenommen ist. Ein keramisches Material der Verbundschicht 52 bildet dabei eine räumliche Struktur 53, ähnlich der in Fig. 10 gezeigten räumlichen Struktur, aus. In der räumlichen Struktur 53 sind Öffnungen 54 ausgebildet, so dass die räumliche Struktur 53 vollständig von dem Stahlguss der Metallschichten 51 durchdrungen beziehungsweise bei einem Gießen ausgefüllt werden kann. Die Metallschichten 51 sind demnach unmittelbar miteinander verbunden. Die Öffnungen 54 können beispielsweise eine Bohrung oder jede andere Art von Öffnung sein, die gewährleistet, dass die räumliche Struktur 53 vollständig mit Stahlguss infiltriert werden kann.
  • Die Fig. 16 zeigt ein Mangan-Kohlenstoff-Diagramm aus dem ersichtlich ist, bei welchen Gehalten an Mangan und Kohlenstoff ein austenitisches, bainitisches oder martensitisches Gefüge von Stahlguss einer Verbundpanzerung ausgebildet werden kann.

Claims (28)

  1. Verbundpanzerung (10, 16, 17, 18, 20, 50), insbesondere Panzerplatte zum Schutz gegen Geschosse, wobei die Verbundpanzerung aus wenigstens einer Metallschicht (12, 19, 51) und wenigstens einer Verbundschicht (13, 52) ausgebildet ist, wobei die Metallschicht aus Stahlguss ausgebildet ist, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur (34, 38, 41, 43, 46, 53) ausbildet, und einem Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet ist,
    dadurch gekennzeichnet,
    dass das Matrixmaterial Stahlguss ist, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet ist, ausgebildet ist, wobei der Stahlguss als ein Legierungsbestandteil 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan (Mn) enthält, wobei der Stahlguss ein überwiegend bainitisches, austenitisches und/oder martensitisches Gefüge aufweist.
  2. Verbundpanzerung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Metallschicht (12, 19, 51) und die Verbundschicht (13, 52) zusammen durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur (34, 38, 41, 43, 46, 53) angeordnet ist, ausgebildet sind.
  3. Verbundpanzerung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Verbundschicht aus einem keramischen Material und dem Matrixmaterial ausgebildet ist.
  4. Verbundpanzerung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass das keramische Material aus Aluminiumoxid (Al2O3), Siliziumcarbid (SiC) oder Bohrcarbid (B4C) ausgebildet ist.
  5. Verbundpanzerung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass keramische Material aus einem ersten Bestandteil mit einer Basis aus Aluminiumoxid in α-Form (α-Al2O3) und mit einem zweiten Bestandteil mit einer Basis, welche eine vorzugsweise eutektische Zusammensetzung aus Aluminiumoxid in α-Form (α-Al2O3) und Zirkoniumdioxid (ZrO2) enthält, wobei der erste und der zweite Bestandteil mittels eines Bindemittels, vorzugsweise eines metallischen Bindemittels oder Silicaten, verbunden sind.
  6. Verbundpanzerung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die vorzugsweise eutektische Zusammensetzung 57 bis 63 Gewichtsprozent Aluminiumoxid in α-Form (α-Al2O3) und 37 bis 43 Gewichtsprozent Zirkoniumdioxid (ZrO2) enthält.
  7. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stahlguss als ein Legierungsbestandteil 0,01 bis 2, vorzugsweise 0,3 bis 1,5 Masseprozent Kohlenstoff (C) enthält.
  8. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Stahlguss als ein Legierungsbestandteil 0,4 bis 3,5, vorzugsweise 1 bis 2,5 Masseprozent Chrom (Cr) enthält.
  9. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der der Stahlguss vergütet ist, vorzugsweise durch Abschrecken in einem Salzbad und/oder durch Temperierung in einem Ofen in einer Luftatmosphäre.
  10. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Verbundpanzerung (10, 16, 17, 18, 20, 50) in Form einer Platte (11) ausgebildet ist.
  11. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Verbundschicht (13, 52) in Richtung einer Beschussrichtung (14) angeordnet ist.
  12. Verbundpanzerung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass die Metallschicht (12, 19, 51) in Richtung einer Beschussrichtung (14) angeordnet ist.
  13. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Verbundpanzerung (10, 16, 17, 18, 20, 50) eine weitere Metallschicht (12, 19, 51) aufweist, wobei die Verbundschicht (13, 52) zwischen zwei Metallschichten aufgenommen ist.
  14. Verbundpanzerung nach Anspruch 13,
    dadurch gekennzeichnet,
    dass zwei Metallschichten (12, 19, 51) zwei Drittel und eine Verbundschicht (13, 52) ein Drittel einer Dicke der Verbundpanzerung (17, 18, 20, 50) ausbilden.
  15. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Verbundpanzerung zwei Verbundschichten (13) aufweist, die durch eine Metallschicht (12) voneinander getrennt sind.
  16. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Verbundpanzerung (10, 16, 17, 18, 20, 50) eine Zwischenschicht aufweist, die zwischen der Metallschicht (12, 19, 51) und der Verbundschicht (13, 52) angeordnet und aus einem Material ausgebildet ist, welches vergleichsweise eine größere Härte und eine höhere Dichte aufweist.
  17. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die räumliche Struktur (34, 41, 53) eine Wabenstruktur mit vorzugsweise sechs oder acht Ecken, rechteckig oder quaderförmig ist.
  18. Verbundpanzerung nach einem der Ansprüche 1 bis 16,
    dadurch gekennzeichnet,
    dass die räumliche Struktur (38) aus einer Mehrzahl von plattenförmigen Schichten (39) aus dem formstabilen Material ausgebildet ist.
  19. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die räumliche Struktur (34, 38, 41, 43, 46, 53) orthogonal zu einer Beschussrichtung (14) verlaufend angeordnet ist.
  20. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die räumliche Struktur (34, 38, 41, 43, 46, 53) Hohlräume (36, 37, 40, 42, 49) ausbildet die Kanäle oder Öffnungen (54) aufweisen, wobei die Hohlräume mit dem Stahlguss infiltriert und vorzugsweise vollständig ausgefüllt sind.
  21. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die räumliche Struktur (34, 38, 41, 43, 46, 53) vollständig von dem Stahlguss umgeben ist oder teilweise eine Außenfläche der Verbundpanzerung (10, 16, 17, 18, 20, 50) ausbildet.
  22. Verbundpanzerung nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Verbundpanzerung (10, 16, 17, 18, 20, 50) eine Befestigungsvorrichtung (22, 25, 27, 29, 31) ausbildet, wobei die Verbundpanzerung mittels der Befestigungsvorrichtung kraft- und/oder formschlüssig an einer Befestigungsbasis (24) befestigbar ist.
  23. Verfahren zur Herstellung einer Verbundpanzerung (10, 16, 17, 18, 20, 50), insbesondere Panzerplatte zum Schutz gegen Geschosse, wobei die Verbundpanzerung aus wenigstens einer Metallschicht (12, 19, 51) und wenigstens einer Verbundschicht (13, 52) ausgebildet wird, wobei die Metallschicht aus Stahlguss ausgebildet wird, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur (34, 38, 41, 43, 46, 53) ausbildet, und einem Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet wird,
    dadurch gekennzeichnet,
    dass das Matrixmaterial Stahlguss ist, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet wird, ausgebildet wird, wobei der Stahlguss als ein Legierungsbestandteil 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan (Mn) enthält, wobei der Stahlguss ein überwiegend bainitisches, austenitisches und/oder martensitisches Gefüge aufweist.
  24. Verfahren nach Anspruch 23,
    dadurch gekennzeichnet,
    dass beim Gießen eine Temperatur des Stahlgusses in einem Bereich von +/- 1 bis 5 Grad Celsius konstant ist.
  25. Verfahren nach Anspruch 23 oder 24,
    dadurch gekennzeichnet,
    dass der Stahlguss der Metallschicht kaltverformt wird.
  26. Verfahren nach Anspruch 25,
    dadurch gekennzeichnet,
    dass die Metallschicht, bezogen auf eine Schichtdicke der Metallschicht, zumindest teilweise kaltverfestigt wird.
  27. Verwendung von Stahlguss mit 4 bis 30, vorzugsweise bis 21 Masseprozent Mangan (Mn) als ein Legierungsbestandteil, wobei der Stahlguss ein überwiegend bainitisches, austenitisches und/oder martensitisches Gefüge aufweist, zur Ausbildung einer Metallschicht (12, 19, 51) einer Verbundpanzerung (10, 16, 17, 18, 20, 50), insbesondere Panzerplatte zum Schutz gegen Geschosse.
  28. Verwendung nach Anspruch 27,
    dadurch gekennzeichnet,
    dass der Stahlguss zur Ausbildung der Metallschicht (12, 19, 51) und wenigstens einer Verbundschicht (13, 52) der Verbundpanzerung (10, 16, 17, 18, 20, 50) verwendet wird, wobei die Verbundschicht aus einem in flüssigen Stahl formstabilen Material, welches eine räumliche Struktur (34, 38, 41, 43, 46, 53) ausbildet, und dem Stahlguss als Matrixmaterial, welches die räumliche Struktur ausfüllt, ausgebildet ist, wobei die Verbundschicht durch Gießen von Stahl in eine Gussform, in welcher die räumliche Struktur angeordnet ist, ausgebildet ist.
EP17180907.2A 2016-07-15 2017-07-12 Panzerplatte und verfahren zur herstellung Active EP3270093B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016008522 2016-07-15
DE102016117071.2A DE102016117071A1 (de) 2016-07-15 2016-09-12 Verbundpanzerung und Verfahren zur Herstellung

Publications (2)

Publication Number Publication Date
EP3270093A1 true EP3270093A1 (de) 2018-01-17
EP3270093B1 EP3270093B1 (de) 2020-03-04

Family

ID=59337502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17180907.2A Active EP3270093B1 (de) 2016-07-15 2017-07-12 Panzerplatte und verfahren zur herstellung

Country Status (1)

Country Link
EP (1) EP3270093B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117483719A (zh) * 2023-11-09 2024-02-02 苏州朗威电子机械股份有限公司 一种具有碳化物陶瓷夹层的复合钢板的制备装置及工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332744A1 (de) * 1993-09-25 1995-03-30 Friatec Rheinhuette Gmbh & Co Verfahren zum Gießen von Formteilen
FR2711782A1 (fr) * 1991-07-30 1995-05-05 Creusot Loire Elément de blindage comportant un réseau de particules en matériau dur et procédé de réalisation de cet élément de blindage.
US20020136857A1 (en) * 1996-10-01 2002-09-26 Magotteaux International S.A. Composite wear component
WO2003078158A1 (en) * 2002-03-11 2003-09-25 Liquidmetal Technologies Encapsulated ceramic armor
CN101214539A (zh) * 2008-01-07 2008-07-09 吉林大学 TiC颗粒局部增强耐磨锰钢复合材料的制备方法
EP1663548B1 (de) 2003-08-20 2009-04-22 F.A.R. - Fonderie Acciaierie Roiale - SPA Verfahren zur herstellung eines verschleissteiles und verschleissteil
US20120247312A1 (en) * 2011-03-31 2012-10-04 Adams Richard W Structural panel insert with honeycomb core
WO2013022490A2 (en) * 2011-03-23 2013-02-14 Spokane Industries Ballistic applications of composite materials
WO2014041409A2 (en) 2012-09-14 2014-03-20 F. A. R. - Fonderie Acciaierie Roiale - Spa Method for manufacturing steel casts
WO2016008970A1 (en) * 2014-07-16 2016-01-21 Magotteaux International S.A. Ceramic grains and method for their production

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711782A1 (fr) * 1991-07-30 1995-05-05 Creusot Loire Elément de blindage comportant un réseau de particules en matériau dur et procédé de réalisation de cet élément de blindage.
DE4332744A1 (de) * 1993-09-25 1995-03-30 Friatec Rheinhuette Gmbh & Co Verfahren zum Gießen von Formteilen
US20020136857A1 (en) * 1996-10-01 2002-09-26 Magotteaux International S.A. Composite wear component
WO2003078158A1 (en) * 2002-03-11 2003-09-25 Liquidmetal Technologies Encapsulated ceramic armor
EP1663548B1 (de) 2003-08-20 2009-04-22 F.A.R. - Fonderie Acciaierie Roiale - SPA Verfahren zur herstellung eines verschleissteiles und verschleissteil
CN101214539A (zh) * 2008-01-07 2008-07-09 吉林大学 TiC颗粒局部增强耐磨锰钢复合材料的制备方法
WO2013022490A2 (en) * 2011-03-23 2013-02-14 Spokane Industries Ballistic applications of composite materials
US20120247312A1 (en) * 2011-03-31 2012-10-04 Adams Richard W Structural panel insert with honeycomb core
WO2014041409A2 (en) 2012-09-14 2014-03-20 F. A. R. - Fonderie Acciaierie Roiale - Spa Method for manufacturing steel casts
WO2016008970A1 (en) * 2014-07-16 2016-01-21 Magotteaux International S.A. Ceramic grains and method for their production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117483719A (zh) * 2023-11-09 2024-02-02 苏州朗威电子机械股份有限公司 一种具有碳化物陶瓷夹层的复合钢板的制备装置及工艺
CN117483719B (zh) * 2023-11-09 2024-04-16 苏州朗威电子机械股份有限公司 一种具有碳化物陶瓷夹层的复合钢板的制备装置及工艺

Also Published As

Publication number Publication date
EP3270093B1 (de) 2020-03-04

Similar Documents

Publication Publication Date Title
DE10157487C1 (de) Faserverstärkter Verbundkörper für Schutzpanzerungen, seine Herstellung und Verwendungen
DE60222268T2 (de) Mehrschichtige verbundpanzerung
DE1213305B (de) Panzerplatte, insbesondere zum Schutz gegen Panzergranaten und gegen Hohlladungen
EP3013513B1 (de) Siebstange, stangensieb und verfahren zur herstellung einer siebstange
DE102004026515A1 (de) Keramische Panzerplatte, Panzersystem und Verfahren zur Herstellung einer keramischen Panzerplatte
DE4005904A1 (de) Als panzerung dienendes verbundbauteil
DE102009053349A1 (de) Panzerstahlbauteil
EP3270093B1 (de) Panzerplatte und verfahren zur herstellung
DE102016117071A1 (de) Verbundpanzerung und Verfahren zur Herstellung
EP3754290B1 (de) Verfahren zur herstellung eines panzerungsbauteils für kraftfahrzeuge
DE10016798B4 (de) Verwendung eines warmgewalzten verschleißfesten austenitischen Manganstahlbleches
EP3153810A1 (de) Fahrzeug-panzerungsbauteil
EP2053340B1 (de) Flächiges Verbundpanzerungselement
EP0994084A1 (de) Schutzpanzerung
DE102017129793A1 (de) Panzerungsbauteil und Verfahren zur Herstellung eines Panzerungsbauteils
EP3499173B1 (de) Panzerplatte und verfahren zur herstellung
DE102011109660B3 (de) Formbauteil zu Panzerungszwecken und dessen Herstellungsverfahren
DE19856597B4 (de) Schutzpanzerung
EP3115134A1 (de) Verfahren zum herstellen eines aus einem vielschichtigen metallwerkstoffverbund bestehenden verbundblechs, mehrschichtiges verbundblech und verwendung eines solchen verbundblechs
EP0378986A1 (de) Lager
DE10303351B3 (de) Bauteil aus Metall/Keramik-Verbundwerkstoff mit intermetallischer Matrix, dessen Verwendung als Panzermaterial und Verfahren zu dessen Herstellung
WO2003058151A1 (de) Minenschutz für gepanzerte fahrzeuge gegen anti-tank-minen
EP3894217A1 (de) Stahlprodukt mit hohem energieaufnahmevermögen bei schlagartiger beanspruchung und verwendung eines solchen stahlproduktes
EP1570226A1 (de) Schutzmodul zum schutz von objekten gegen bedrohungen, insbesondere durch hohlladungen
DE102007002210B4 (de) Platte für eine schussfeste Panzerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180716

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004058

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2792037

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004058

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200712

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230720

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1240876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 7

Ref country code: GB

Payment date: 20230724

Year of fee payment: 7

Ref country code: ES

Payment date: 20230821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 7

Ref country code: DE

Payment date: 20230925

Year of fee payment: 7