EP3266857B1 - Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur - Google Patents

Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur Download PDF

Info

Publication number
EP3266857B1
EP3266857B1 EP16400026.7A EP16400026A EP3266857B1 EP 3266857 B1 EP3266857 B1 EP 3266857B1 EP 16400026 A EP16400026 A EP 16400026A EP 3266857 B1 EP3266857 B1 EP 3266857B1
Authority
EP
European Patent Office
Prior art keywords
product
separation
phase
methanol
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16400026.7A
Other languages
English (en)
French (fr)
Other versions
EP3266857A1 (de
Inventor
Ingo Bauer
Peter PÖTSCHACHER
Armin Brandner
Günter Bräuner
Matthias Kasper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to EP16400026.7A priority Critical patent/EP3266857B1/de
Priority to BR112019000037-2A priority patent/BR112019000037A2/pt
Priority to MYPI2018002995A priority patent/MY197420A/en
Priority to SG11201811694XA priority patent/SG11201811694XA/en
Priority to PCT/EP2017/025181 priority patent/WO2018007022A1/en
Priority to US16/316,248 priority patent/US10696922B2/en
Priority to CN201720825169.XU priority patent/CN207468571U/zh
Priority to CN201710550533.0A priority patent/CN107586622B/zh
Publication of EP3266857A1 publication Critical patent/EP3266857A1/de
Priority to PH12019500013A priority patent/PH12019500013A1/en
Priority to CONC2019/0001040A priority patent/CO2019001040A2/es
Application granted granted Critical
Publication of EP3266857B1 publication Critical patent/EP3266857B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/04Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by hydrolysis
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols

Definitions

  • the invention relates to a process for the production of fatty acids by hydrolytic cleavage of fatty acid alkyl esters, in particular fatty acid methyl esters (FAME), or alternatively of fatty acid triglycerides contained in oils and fats of vegetable and animal origin, at high temperature and high pressure in the liquid phase without the addition of external, foreign substances as homogeneous or heterogeneous catalysts, and the processing of the cleavage product obtained to free fatty acids.
  • FAME fatty acid methyl esters
  • the invention further relates to a plant for performing the method.
  • ester cleavage The reverse reaction of the esterification is the so-called ester cleavage or ester hydrolysis.
  • ester hydrolysis one mole of water is consumed per mole of ester bond, one mole of free acid and alcohol being formed in each case.
  • hydrolysis is also an equilibrium reaction.
  • Triglycerides are hydrolytically split into glycerin and free fatty acids (FFA) with the addition and consumption of water at temperatures of 200 ° C and higher and corresponding water vapor pressure in the liquid phase.
  • FFA free fatty acids
  • the patent publication describes DE 69321607 T2 a cleavage of a FAME mixture of methyl caprylate and methyl capronate in the range from 70 to 110 ° C., operated at ambient pressure, an acidic, homogeneously dissolved catalyst comprising alkylbenzenesulfonic acids being used.
  • an acidic, homogeneously dissolved catalyst comprising alkylbenzenesulfonic acids being used.
  • a distillative workup of the reaction mixture under reduced pressure is also described here, with methanol, water and unreacted in a first stage Fatty acid methyl ester is removed. In a second stage, the FFA product is then separated from the catalyst and this is returned to the reaction system.
  • the patent publication GB 594 141 A describes a process for the production of free fatty acids. First, a triglyceride for hydrolysis is made. The hydrolysis is then carried out at a temperature of 240 to 250 ° C using liquid water.
  • the patent publication WO 2009/075762 A1 describes a process for the extraction of fatty acids from algae biomass by acid hydrolysis and extraction with an organic solvent.
  • Fat Splitting For Production of Fatty Acids and Crude Glycerine
  • http://www.lipico.com/processes_fat-splitting.html found on September 10, 2018 ) describes oil splitting using high pressure steam at temperatures between 245 - 255 ° C and pressures between 55 - 60 bar.
  • ion exchangers are used as catalysts, the catalyst separation is simplified, but the conversions described are significantly lower compared to the conversions achieved with homogeneous catalysis (sulfuric acid, toluene-p-sulfonic acid) or high concentrations of, for example, 12 to 27 g ion exchanger per 100 g FAME required to achieve high sales in a reasonable time.
  • the added propionic acid must also be finally removed from the reaction mixture in this variant.
  • the present invention is therefore based on the object of specifying the simplest possible process for the production of fatty acids by hydrolytic cleavage of fatty acid alkyl esters at high temperature and high pressure in the liquid phase without the addition of external, foreign substances as homogeneous or heterogeneous catalysts, in which the disadvantages mentioned above do not occur or only to a minor extent.
  • Hydrolysis conditions are understood to mean those reaction conditions which bring about at least a partial conversion, preferably a technically or economically relevant conversion of the fatty acid alkyl esters or the fatty acid triglycerides to free fatty acids.
  • the person skilled in the art will be familiar with hydrolysis conditions known from the prior art select and, if necessary, modify them on the basis of routine tests in order to adapt them to other boundary conditions of the process implementation.
  • light phase and “heavy phase” refer to the respective density (the “specific weight”) of the two liquid phases obtained from the cleavage product under phase separation conditions.
  • Phase separation conditions are understood to mean all physico-chemical parameters which enable, favor or accelerate the formation of the two liquid phases obtained from the fission product.
  • Important parameters in this context are the temperature and the strength of the gravitational field (e.g. earth's gravity or higher gravitational effect, for example during centrifugation).
  • Thermal separation processes are understood to mean all separation processes which are based on the establishment of a thermodynamic phase equilibrium. In particular, in the context of the present invention, this is distillation or rectification, which make use of the evaporation equilibrium of the substances involved.
  • the separation be carried out in such a way that the second separation product also contains a proportion of free fatty acids
  • the person skilled in the art will be able to design the underlying thermal separation process in such a way that this objective is achieved.
  • he will select the temperature profiles in the distillation apparatus, the reflux ratio and the mass flows of the top product and the bottom product accordingly.
  • Means for introducing, discharging, feeding, returning etc. are understood to mean all means which serve this purpose, that is to say in particular, but not exclusively, pipelines, pumps, compressors and intermediate containers.
  • a fluid connection between two system parts is understood to mean any type of connection that enables a fluid, for example the reaction mixture, the cleavage product or the individual separation products, from which one to the other of the two system parts can flow, irrespective of any intermediate areas or components ,
  • reaction apparatus as the hydrolysis reactor.
  • these are reaction apparatuses with high mixing or backmixing. Therefore, in the case of batchwise reaction control, in particular stirred reactors, in the case of continuous stirred reactors, for example, continuous stirred tank reactors, stirred tank cascades or tower reactors with segmental mixing (split tower) are suitable.
  • stirred reactors in the case of continuous stirred reactors, for example, continuous stirred tank reactors, stirred tank cascades or tower reactors with segmental mixing (split tower) are suitable.
  • stirred tank cascades or tower reactors with segmental mixing (split tower) are suitable. These are to be designed in such a way that they are suitable for setting the required pressure, which is achieved, among other things, by selecting appropriate wall thicknesses and providing suitable pressure-maintaining members.
  • the invention is based on the finding that the hydrolytic cleavage of fatty acid alkyl esters and fatty acid triglycerides can be accelerated autocatalytically. As soon as the first, minor conversion to the reaction products takes place (initiation phase), the free fatty acid formed acts as a catalyst for the hydrolysis reaction due to its acidity, which subsequently accelerates the ester cleavage. In terms of time, there is a typical S-shaped course of the sales curve.
  • the invention can be applied, for example, in such a way that a part of the free fatty acids obtained is retained from a previous reaction batch and then added to a subsequent reaction batch as a catalyst.
  • a preferred embodiment of the method according to the invention provides that the separation of the light phase (step e)) and / or the recycling of at least part of the second separation product to the reaction step b) (step g)) take place in such a way that during the reaction step b)
  • the proportion of free fatty acids based on the proportion of fatty acid alkyl esters or fatty acid triglycerides, is> 0 to 10% by weight, preferably 0.1 to 8% by weight, most preferably 0.5 to 5% by weight. It has been shown that in these free fatty acid concentration ranges there is a favorable compromise between the catalytic acceleration of the reaction on the one hand and the negative influence on the equilibrium position on the other hand is obtained.
  • reaction step b) is carried out at a temperature of at least 220 ° C., preferably at least 240 ° C., most preferably at least 260 ° C.
  • reaction temperatures represent favorable compromises between high reaction rates, incipient side reactions due to thermal decomposition of the substances involved and technical expenditure for maintaining pressure in order to keep water in the liquid phase.
  • the heavy phase comprising methanol obtained in step d) is fed to a second separation device which operates according to a thermal separation process and into a third separation product enriched in methanol and separated into a fourth separation product enriched in water, the third separation product being discharged from the process as a methanol product and the fourth separation product being at least partially returned to the reaction step b).
  • a second separation device which operates according to a thermal separation process and into a third separation product enriched in methanol and separated into a fourth separation product enriched in water, the third separation product being discharged from the process as a methanol product and the fourth separation product being at least partially returned to the reaction step b).
  • the use of fresh water as a starting material is reduced and, if necessary after further processing, it contains a marketable methanol product as a by-product.
  • methanol can already be discharged from the reaction apparatus as a top product. As a result, the reaction equilibrium is shifted towards the cleavage products and thus the hydrolysis reaction is promoted.
  • the cleavage product obtained in reaction step b) is first fed to the second separation device in which a top product enriched in methanol is selectively separated from the cleavage product and as methanol -Product is derived from the process.
  • a top product enriched in methanol is selectively separated from the cleavage product and as methanol -Product is derived from the process.
  • This will also contain a marketable methanol product as a by-product, if necessary after further processing.
  • methanol can already be discharged as a top product from the reaction apparatus. As a result, the reaction equilibrium is shifted towards the cleavage products and thus the hydrolysis reaction is promoted.
  • the quantity or the quantity flow of the fission product is reduced, so that the subsequent phase separation device can be made smaller. If the fission product freed from part of the methanol is to be cooled before being introduced into the phase separation device in order to promote phase separation, the quantity of cooling energy additionally reduced by the quantity reduction.
  • the second separation device is designed as a relaxation stage (flash), which is preferably designed and operated adiabatically.
  • flash a relaxation stage
  • the fission product freed from part of the methanol is already precooled before being introduced into the phase separation device, so that the required amount of cooling energy is reduced.
  • a cooling device upstream of the phase separation device can thereby be completely dispensed with.
  • a cooling device upstream of the phase separation device is also present, since this results in greater degrees of freedom with regard to the setting of the temperature in the phase separation device.
  • the cleavage product depleted in methanol is fed to the phase separation device and there separated under phase separation conditions into a light phase comprising free fatty acids and unreacted fatty acid alkyl esters and a heavy phase comprising water and methanol, the heavy phase being at least partially Implementation step b) returned and the light phase is fed to the first separation device.
  • the previous removal of part of the methanol from the cleavage product improves and facilitates phase separation in the phase separation device, since methanol acts as a solubilizer between the light, organic or non-polar and the heavy, aqueous or polar phase and thus impedes phase separation.
  • the phase separation conditions preferably comprise cooling the cleavage product or the cleavage product depleted in methanol to a temperature of 220 220 ° C., preferably 200 200 ° C., most preferably 180 180 ° C.
  • the improvement and simplification of the phase separation is understood to mean the formation of a sharp, well-defined phase boundary in the shortest possible time.
  • the cooling is effected by a cooling device upstream of the phase separation device and / or by the fact that the removal of the methanol-enriched top product from the cleavage product is carried out adiabatically.
  • the adiabatic cooling the fission product freed from part of the methanol is already pre-cooled before being introduced into the phase separation device, so that the required amount of cooling energy is reduced.
  • a cooling device upstream of the phase separation device can be completely dispensed with.
  • the remaining cooling is carried out by a cooling device connected upstream of the phase separation device, which, however, can be made smaller due to the adiabatic pre-cooling.
  • the ratio of water to fatty acid methyl ester is at least 2 mol / mol, preferably at least 10 mol / mol, most preferably at least 20 mol / mol. It has been shown that a favorable compromise between the desired high degrees of conversion and the required reactor volume is achieved in this way.
  • this includes a second separation device suitable for separating the heavy phase into a third separation product enriched with methanol and into a fourth separation product enriched with water, means for feeding the heavy phase into the second separation device, means for discharging the third separation product from the second separation device and for discharging from the plant as a methanol product, means for discharging the fourth separation product from the second separation device, means for returning at least a part of the fourth separation product to the at least one hydrolysis reactor.
  • a second separation device suitable for separating the heavy phase into a third separation product enriched with methanol and into a fourth separation product enriched with water
  • means for feeding the heavy phase into the second separation device means for discharging the third separation product from the second separation device and for discharging from the plant as a methanol product
  • means for discharging the fourth separation product from the second separation device means for returning at least a part of the fourth separation product to the at least one hydrolysis reactor.
  • the plant for the production of fatty acids by hydrolytic cleavage of fatty acid methyl esters further comprises means for feeding the cleavage product obtained in the at least one hydrolysis reactor to the second separation device, means for selectively separating an overhead product enriched in methanol from the cleavage product, means for discharging the Methanol-enriched top product from the plant as a methanol product.
  • This will also contain a marketable methanol product as a by-product, if necessary after further processing.
  • the quantity or the quantity flow of the fission product is reduced, so that the subsequent phase separation device can be made smaller. If the fission product freed from part of the methanol is to be cooled before being introduced into the phase separation device in order to promote phase separation, the quantity of cooling energy additionally reduced by the quantity reduction.
  • the second separation device is designed as a relaxation stage (flash), preferably as an adiabatic relaxation stage.
  • flash preferably as an adiabatic relaxation stage.
  • the fission product freed from part of the methanol is already precooled before being introduced into the phase separation device, so that the required amount of cooling energy is reduced.
  • the adiabatic relaxation already provides a sufficient cooling effect
  • one of the Phase separation device upstream cooling device completely eliminated.
  • a cooling device upstream of the phase separation device is also present, since this results in greater degrees of freedom with regard to the setting of the temperature in the phase separation device.
  • this further comprises means for feeding the cleavage product depleted in methanol to the phase separation device, means for returning at least part of the heavy phase to the at least one hydrolysis reactor, means for feeding the easy phase to the first separator.
  • the removal of some of the methanol from the cleavage product improves and facilitates phase separation in the phase separation device, since methanol acts as a solubilizer between the light, organic or non-polar and the heavy, aqueous or polar phase.
  • the system preferably further comprises a cooling device upstream of the phase separation device. This can be used advantageously if the cooling effect of the adiabatic relaxation stage for the partial separation of methanol alone is not sufficient to achieve good and rapid phase separation in the phase separation device.
  • the fatty acid methyl ester (FAME) and water (H 2 O) are fed via lines 1 and 2 to the hydrolysis reactor 3.
  • the hydrolysis reactor which is only indicated schematically, operates continuously with vigorous backmixing and is designed, for example, as a continuous stirred tank reactor.
  • Part of the water required for the ester hydrolysis can also be introduced as steam into the hydrolysis reactor. This is preferably done in a way that additionally contributes to the mixing of the liquid reaction mixture, for example by blowing into the liquid mixture. If necessary, the steam also serves as a heat carrier for heating the reactor contents.
  • the reactor pressure is selected so that the reaction mixture remains in the liquid phase at the reaction temperature set by a heating device (not shown).
  • the pressure is adjusted in a known manner via the vapor pressure of the components involved and, if appropriate, additionally by adding an inert gas.
  • the cleavage product leaves the hydrolysis reactor via line 4, is cooled in the cooling device 5 and then fed to the phase separation device 7 via line 6.
  • the phase separation device is a simple container with overflows and drains for a heavy and a light liquid phase, in which the phase separation is gravitationally driven due to the different density of the two liquid phases.
  • the light, non-polar phase which contains the free fatty acid product (FFA) and unreacted fatty acid methyl ester, is removed from the phase separation device via line 8 and introduced into the first separation device, which in the example shown is designed as a distillation.
  • first separation product a fraction enriched in free fatty acids
  • second separation product which is returned via lines 11 and 1 to the hydrolysis reactor 3 contains not only unreacted fatty acid methyl ester but also traces of methanol and significant proportions of free fatty acid. After the latter has been returned to the hydrolysis reactor, it acts as a catalyst for the conversion of further fatty acid methyl esters to free fatty acid.
  • the heavy, polar phase which contains unreacted water and methanol as a by-product of the ester hydrolysis, is removed via line 12 from the phase separation device 7 and introduced into the second separation device 13, which in the example shown is also equipped as a distillation.
  • a methanol product (MeOH) (third separation product) is obtained as the top product of the distillation, which is discharged from the process via line 14 and, if appropriate, fed to further processing.
  • a water-enriched fraction is obtained as the bottom product (fourth separation product), which is returned via lines 15 and 2 to the hydrolysis reactor 3.
  • FIG. 2 schematic representation of a second embodiment of the method according to the invention or the system corresponds to the process sequence up to reference number 3 that in Fig. 1 .
  • the cleavage product leaves the hydrolysis reactor via line 4, but is now adiabatically expanded (flash) by means of expansion valve 16 and introduced into the second separation device 13a via line 17, which in this case acts as a simple phase separation device for separating a gaseous phase enriched in methanol (third separation product) is designed from a liquid phase depleted in methanol (fourth separation product).
  • the top product of the phase separation device 13a receive a methanol product (MeOH) (third separation product) which is discharged from the process via line 14 and, if appropriate, fed to further processing.
  • MeOH methanol product
  • the cooling device 5 to which the liquid phase depleted in methanol is fed via line 18, can be designed to be smaller in terms of the cooling power required to set a defined temperature in the phase separation device 7.
  • the liquid phase depleted in methanol of the phase separation device 7 is fed in via line 6, the properties and mode of operation of which largely correspond to those described in Fig. 1 was explained.
  • the phase separation is compared to that in FIG Fig. 1 Design shown easier or faster because methanol was previously removed from the liquid phase, which acts as a solubilizer between the polar and the non-polar phase and thus complicates the phase separation. Due to the faster phase separation, the phase separation device 7 can thus Fig. 2 shown configuration can be designed smaller.
  • first separation product a fraction enriched in free fatty acids is obtained (first separation product), which is discharged from the process as a FFA product via line 10.
  • second separation product which is returned via lines 11 and 1 to the hydrolysis reactor 3, contains not only unreacted fatty acid methyl ester but also traces of methanol and significant proportions of free fatty acid. After the latter has been returned to the hydrolysis reactor, it acts as a catalyst for the conversion of further fatty acid methyl esters to free fatty acid.
  • Test series 2 and 3 show the effect of the water / FAME ratio.
  • the amount of conversion achieved in the final state is increasingly associated with an increased amount of water.
  • an increase in temperature shortens the reaction time required to reach this final state.
  • Test series 6 served as a reference since an FFA addition was not used here. A significant delay in the course of sales with decreasing temperature was evident within test series 6. In contrast to the results with C 8 -FAME (cf. Table 1, experimental areas 1a to 1b), an identical final state was not achieved at the varying temperature from 240 to 260 ° C.
  • test series 7 A comparison with test series 7 (with FFA addition) reveals the catalytic effect of the free fatty acid at the start of the reaction. Here a constant final state was reached after only 2 h, whereas in test series 6 this was only reached after 3 h (test 6b + 6c).
  • the reaction mixture from experimental example 2a (see Table 1) with a water / FAME ratio of 16 mol / mol was generated in an autoclave equipped with a sight glass. This enabled the observation of phase quantities and the targeted sampling of the individual phases. Due to the good solubility ratios of the relatively short-chain reactants and products to one another (in this case C 8 -FAME as starting material), a homogeneous reaction mixture formed at the end state of the reaction. When this homogeneous reaction mixture cooled, a beginning phase formation was observed from 224 ° C (cloud point). The cooling was continued successively and the phases that formed were each determined and analyzed volumetrically (see Table 3).
  • reaction mixture from experimental example 2b (preparation see Table 1) with a water / FAME ratio of 8 mol / mol was generated in an autoclave equipped with a sight glass. This enabled the observation of phase quantities and the targeted sampling of the individual phases. Due to the good solubility ratios of the relatively short-chain reactants and products to one another (in this case C 8 -FAME as starting material), a homogeneous mixture was also formed here at the end state of the reaction Reaction mixture. When this homogeneous reaction mixture cooled, a beginning phase formation was observed from 227 ° C (cloud point). The cooling was continued successively and the phases that formed were each determined and analyzed volumetrically (see Table 4).
  • the invention provides a method with which free fatty acids can be obtained in a simple manner by hydrolytic cleavage of fatty acid alkyl esters, in particular fatty acid methyl esters (FAME), or alternatively of fatty acid triglycerides contained in oils and fats of vegetable and animal origin. Since the process does not require the use of external, non-process substances as homogeneous or heterogeneous catalysts, special economic and ecological advantages are obtained since no catalysts have to be recovered from the cleavage product and subsequently have to be regenerated or disposed of in a complex manner. The autocatalytic effect of the free fatty acids added to the reaction mixture allows a reduction in the size of the reaction apparatus used in order to achieve a fixed production rate.
  • FAME fatty acid methyl esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft ein Verfahren zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäurealkylestern, insbesondere Fettsäuremethylestern (FAME), oder alternativ von in Ölen und Fetten pflanzlicher und tierischer Herkunft enthaltenen Fettsäuretriglyceriden, bei hoher Temperatur und hohem Druck in flüssiger Phase ohne Zugabe externer, verfahrensfremder Stoffe als homogene oder heterogene Katalysatoren, sowie die Aufarbeitung des gewonnenen Spaltproduktes zu freien Fettsäuren. Die Erfindung betrifft ferner eine Anlage zur Durchführung des Verfahrens.
  • Stand der Technik
  • Die Rückreaktion der Veresterung ist die sogenannte Esterspaltung oder Esterhydrolyse. Bei dieser hydrolytischen Spaltung wird pro mol Esterbindung ein mol Wasser verbraucht, wobei jeweils ein mol freie Säure und Alkohol entstehen. Als Rückreaktion der Veresterung ist die Hydrolyse ebenfalls eine Gleichgewichtsreaktion.
  • In der Oleotechnologie ist die hydrolytische Spaltung von Triglyceriden, d. h. die hydrolytische Spaltung von Ölen und Fetten pflanzlicher und tierischer Herkunft, eine dem Fachmann wohlbekannte Verfahrensweise, um freie Fettsäuren herzustellen. So werden Triglyceride unter Zugabe und Verbrauch von Wasser bei Temperaturen von 200 °C und höher und korrespondierendem Wasserdampfdruck in flüssiger Phase in Glycerin und freie Fettsäuren (FFA) hydrolytisch gespalten. Eine technische Ausführungsform dieses Verfahrens ist beispielsweise das Lurgi Spaltturm-Verfahren. Diese Art der Reaktionsführung zur Esterspaltung ist technisch etabliert und erfolgt mit hoher Effizienz, da das entstehende Glycerin sich während der Reaktion als separate Phase aus dem Reaktionsgemisch abscheidet und somit eine Verlagerung des Reaktionsgleichgewichts in Richtung des Zielreaktionsproduktes FFA begünstigt. Weitere Einzelheiten zu den bekannten Verfahrensweisen der hydrolytischen Spaltung von Triglyceriden finden sich beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, Sixth Edition, 1998 Electronic Release, Stichwort "Fatty Acids", Kapitel 3.2 "Fat Splitting".
  • Zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäurealkylestern, insbesondere von Fettsäuremethylestern (FAME), werden im Schrifttum Verfahren beschrieben, die einer Gleichgewichtseinstellung durch das Ausdampfen von gebildetem Methanol aus dem Reaktionsgemisch entgegenwirken. Diese Verfahren arbeiten bei geringem Druck, beispielsweise Umgebungsdruck, in einem Temperaturbereich von z. B. 70 bis 150 °C. Bedingt durch diese tiefen Reaktionstemperaturen ist es notwendig, die Reaktion katalytisch zu beschleunigen, um bezogen auf technisch übliche Reaktions- bzw. Verweilzeiten die gewünschten hohen Umsätze zu erzielen.
  • So beschreibt beispielsweise die Patentveröffentlichung DE 69321607 T2 eine bei Umgebungsdruck betriebene Spaltung eines FAME-Gemisches aus Methylcaprylat und Methylcapronat im Bereich von 70 bis 110 °C, wobei ein saurer, homogen gelöster Katalysator, umfassend Alkylbenzolsulfonsäuren, zum Einsatz kommt. Wie bei vielen homogen katalysierten Prozessen besteht auch hier der Nachteil der Abtrennung und Aufarbeitung zur Wiederverwendung des Katalysators aus dem Reaktionsgemisch. Ebenfalls wird hier eine destillative Aufarbeitung des Reaktionsgemisches unter vermindertem Druck beschrieben, wobei in einer ersten Stufe Methanol, Wasser und nicht umgesetzter Fettsäuremethylester entfernt wird. In einer zweiten Stufe wird dann das FFA-Produkt vom Katalysator abgetrennt und dieser in das Reaktionssystem zurückgeführt.
  • Die Patentveröffentlichung GB 594 141 A beschreibt ein Verfahren zur Herstellung von freien Fettsäuren. Zunächst wird ein Triglycerid für die Hydrolyse hergestellt. Anschließend wird die Hydrolyse bei einer Temperatur von 240 bis 250 °C unter Verwendung von flüssigem Wasser durchgeführt.
  • Auch in der Veröffentlichung "Hydrolysis of Vegetable Oils in Sub- and Supercritical Water", Russel L. Holliday et al., Ind. Eng. Chem. Res. 1997, 36, 932 - 935, wird die Verwendung von Wasser als Solvens und als Reaktant für die Hydrolyse von Triglyceriden beschrieben.
  • C. da Silva und J. V. Oliveira beschreiben im Brazilian Journal of Chemical Engineering, Vol. 31, No. 02, 271 - 285 (2014), die Biodiesel-Herstellung durch nichtkatalytische, überkritische Umesterung. von Triglyceriden mit überkritischen Alkoholen.
  • Die Patentveröffentlichung WO 2009/075762 A1 beschreibt ein Verfahren zur Herstellung von Biodiesel und Fettsäureestern, wobei die Fettsäurequelle und das verwendete Reagenz begrenzt ineinander löslich sind.
  • Die Patentveröffentlichung US 2002/0197687 A1 beschreibt ein Verfahren zur enzymatischen Spaltung von Ölen und Fetten, um Fettsäuren und Glycerin zu erhalten.
  • Die Patentveröffentlichung WO 2009/075762 A1 beschreibt ein Verfahren zur Extraktion von Fettsäuren aus Algen-Biomasse durch saure Hydrolyse und Extraktion mit einem organischen Lösungsmittel.
  • Die Internet-Referenz "Fat Splitting: For Production of Fatty Acids and Crude Glycerine", 2008, http://www.lipico.com/processes_fat-splitting.html (gefunden am 10.09.2018) beschreibt die Ölspaltung mittels Hochdruckdampf bei Temperaturen zwischen 245 - 255 °C und Drücken zwischen 55 - 60 bar.
  • In der US-Patentschrift US 4185027 wird ein säurekatalysierter Prozess unter Verwendung von Schwefelsäure, Toluol-p-sulfonsäure oder saurem Ionenaustauscher in einem ähnlichen Temperaturbereich wie in der DE 69321607 T2 beschrieben, wobei zusätzlich Propionsäure als kurzkettige Carbonsäure zugesetzt wird. Diese reagiert unter Freisetzung der Fettsäure intermediär zu Methylpropionat. Auch hierbei muss aus dem Reaktionsgemisch neben dem Katalysator die zugesetzte kurzkettige Carbonsäure aufwendig abgetrennt werden. Im Falle der Verwendung von Ionenaustauschern als Katalysator ist die Katalysatorabtrennung zwar vereinfacht, jedoch sind die beschriebenen Umsätze im Vergleich zu den erzielten Umsätzen bei homogener Katalyse (Schwefelsäure, Toluol-p-sulfonsäure) deutlich geringer bzw. es werden hohe Konzentrationen von beispielsweise 12 bis zu 27 g Ionenaustauscher pro 100 g FAME benötigt, um hohe Umsätze in angemessener Zeit zu erreichen. Zudem muss auch bei dieser Variante die zugesetzte Propionsäure aus dem Reaktionsgemisch abschließend entfernt werden.
  • Beschreibung der Erfindung
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein möglichst einfaches Verfahren zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäurealkylestern bei hoher Temperatur und hohem Druck in flüssiger Phase ohne Zugabe externer, verfahrensfremder Stoffe als homogene oder heterogene Katalysatoren anzugeben, bei dem die oben genannten Nachteile nicht oder nur in geringfügigem Maße auftreten.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Weitere Ausgestaltungen der Erfindung ergeben sich aus den jeweiligen Unteransprüchen.
  • Der Umfang der vorliegenden Erfindung wird nur durch die Ansprüche begrenzt.
    1. a) Mittel zum Bereitstellen der Fettsäurealkylester oder der Fettsäuretriglyceride,
    2. b) mindestens einen Hydrolysereaktor zum Umsetzen der Fettsäurealkylester oder der Fettsäuretriglyceride mit Wasser unter Hydrolysebedingungen bei Temperaturen von mindestens 200 °C, geeignet zum Einstellen eines Druckes, bei dem das Wasser bei der Reaktionstemperatur in flüssiger Phase vorliegt,
    3. c) Mittel zum Ausleiten eines Spaltproduktes, umfassend freie Fettsäuren (FFA), Wasser, nicht umgesetzte Fettsäurealkylester und das entsprechende Alkanol, insbesondere Methanol, oder nicht umgesetzte Fettsäuretriglyceride und Glycerin,
    4. d) eine Phasentrennvorrichtung, geeignet zum Auftrennen des Spaltproduktes unter Phasentrennungsbedingungen in eine freie Fettsäuren und nicht umgesetzte Fettsäurealkylester oder nicht umgesetzte Fettsäuretriglyceride umfassende leichte Phase und eine Wasser und Methanol oder Glycerin umfassende schwere Phase, Mittel zum Zuführen des Spaltproduktes zu der Phasentrennvorrichtung, Mittel zum Ausleiten der leichten Phase, Mittel zum Äusleiten der schweren Phase,
    5. e) eine nach einem thermischen Trennverfahren arbeitende, erste Trennvorrichtung, geeignet zum Auftrennen der leichten Phase in ein an freien Fettsäuren angereichertes, erstes Trennprodukt und in ein an nicht umgesetzten Fettsäurealkylestern oder an nicht umgesetzten Fettsäuretriglyceriden angereichertes, zweites Trennprodukt, wobei das zweite Trennprodukt ferner einen Anteil an freien Fettsäuren enthält, Mittel zum Zuführen der leichten Phase in die erste Trennvorrichtung, Mittel zum Ausleiten eines ersten Trennprodukts aus der ersten Trennvorrichtung, Mittel zum Ausleiten eines zweiten Trennprodukts aus der ersten Trennvorrichtung,
    6. f) Mittel zum Ausleiten des ersten Trennprodukts als FFA-Produkt,
    7. g) Mittel zum Rückführen mindestens eines Teils des zweiten Trennprodukts zum mindestens einen Hydrolysereaktor.
  • Unter Hydrolysebedingungen werden dabei diejenigen Reaktionsbedingungen verstanden, die mindestens einen Teilumsatz, bevorzugt einen technisch bzw. ökonomisch relevanten Umsatz der Fettsäurealkylester oder der Fettsäuretriglyceride zu freien Fettsäuren bewirken. Der Fachmann wird aus dem Stand der Technik bekannte Hydrolysebedingungen auswählen und sie ggf. auf der Basis von Routineversuchen abändern, um sie anderen Randbedingungen der Verfahrensdurchführung anzupassen.
  • Als externe, verfahrensfremde Stoffe werden diejenigen Stoffe verstanden, die nicht als Reaktionspartner an der Hydrolysereaktion oder - in ihrer Umkehrung - der Veresterungsreaktion teilnehmen und demnach in den entsprechenden Reaktionsgleichungen nicht erscheinen.
  • Die Bezeichnungen "leichte Phase" und "schwere Phase" beziehen sich auf die jeweilige Dichte (das "spezifische Gewicht") der beiden aus dem Spaltprodukt unter Phasentrennungsbedingungen erhaltenen Flüssigphasen.
  • Unter Phasentrennungsbedingungen werden dabei alle physikalisch-chemischen Parameter verstanden, die die Ausbildung der beiden aus dem Spaltprodukt erhaltenen Flüssigphasen ermöglichen, begünstigen oder beschleunigen. Wichtige Parameter sind in diesem Zusammenhang die Temperatur und die Stärke des Gravitationsfeldes (z. B. Erdgravitation oder höhere Gravitationswirkung, beispielsweise bei der Zentrifugation).
  • Unter thermischen Trennverfahren werden alle Trennverfahren verstanden, die auf der Einstellung eines thermodynamischen Phasengleichgewichtes beruhen. Insbesondere ist dies im Rahmen der vorliegenden Erfindung die Destillation oder Rektifikation, die sich der Einstellung des Verdampfungsgleichgewichtes der beteiligten Stoffe bedienen.
  • Wenn gefordert wird, dass das Auftrennen so durchgeführt wird, dass das zweite Trennprodukt ferner einen Anteil an freien Fettsäuren enthält, wird der Fachmann in der Lage sein, das zugrunde liegende thermische Trennverfahren so zu gestalten, dass diese Zielsetzung erreicht wird. So wird er bei der Anwendung der Destillation die Temperaturverläufe in der Destillationsvorrichtung, das Rücklaufverhältnis und die Mengenströme des Kopf- und des Sumpfproduktes entsprechend wählen.
  • Unter Mitteln zum Einleiten, Ausleiten, Zuführen, Rückführen etc. werden alle Mittel verstanden, die diesem Zweck dienen, also insbesondere, aber nicht ausschließlich Rohrleitungen, Pumpen, Verdichter und Zwischenbehälter.
  • Insbesondere bei kontinuierlicher Reaktionsführung stehen alle Anlagenteile in Fluidverbindung miteinander. Unter Fluidverbindung zwischen zwei Anlagenteilen wird dabei jegliche Art von Verbindung verstanden, die es ermöglicht, dass ein Fluid, beispielsweise das Reaktionsgemisch, das Spaltprodukt oder die einzelnen Trennprodukte, von dem einen zu dem anderen der beiden Anlagenteile strömen kann, unbeachtlich etwaiger zwischengeschalteter Bereiche oder Bauteile.
  • Als Hydrolysereaktor wird der Fachmann einen geeigneten Reaktionsapparat auswählen. Insbesondere sind dies Reaktionsapparate mit hoher Durchmischung bzw. Rückvermischung. Daher kommen bei absatzweiser Reaktionsführung insbesondere Rührreaktoren, bei kontinuierlicher Rührreaktoren beispielsweise kontinuierliche Rührkesselreaktoren, Rührkesselkaskaden oder Turmreaktoren mit segmentweiser Durchmischung (Spaltturm) in Betracht. Diese sind so auszulegen, dass sie zum Einstellen des erforderlichen Druckes geeignet sind, was unter anderem durch die Auswahl entsprechender Wandstärken und das Vorsehen geeigneter Druckhalteorgane erfolgt.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass die hydrolytische Spaltung von Fettsäurealkylestern und Fettsäuretriglyceriden autokatalytisch beschleunigt werden kann. Sobald der erste, geringfügige Umsatz zu den Reaktionsprodukten erfolgt (Initiationsphase), wirkt die dabei entstandene, freie Fettsäure aufgrund ihrer Acidität als Katalysator für die Hydrolysereaktion, wodurch die Esterspaltung nachfolgend beschleunigt wird. Zeitlich gesehen ergibt sich ein typischer S-förmiger Verlauf der Umsatzkurve.
  • Durch die Durchführung der Auftrennung der leichten Phase des Spaltproduktes in der Weise, dass noch ein gewisser Anteil an freier Fettsäure in der Fraktion enthalten ist, die auch die nicht umgesetzten Fettsäurealkylester und Fettsäuretriglyceride enthält, und der nachfolgenden Rückführung mindestens eines Teils dieser Fraktion in die Hydrolysereaktion, gelangt ein Anteil freier Fettsäure in den Hydrolysereaktor und kann dort beschleunigend auf die Reaktionsgeschwindigkeit der Hydrolyse einwirken.
  • Es ist dabei zu beachten, dass die Gleichgewichtslage der Hydrolysereaktion durch das Zuführen freier Fettsäure als Reaktionsprodukt zu den Edukten verschoben wird. Im Hinblick auf die für die katalytische Wirkung benötigten geringen Mengen an freier Fettsäure ist dieser Effekt aber nur als geringfügig zu bewerten. Insgesamt ergeben sich durch die höhere Reaktionsgeschwindigkeit ökonomische Vorteile. Diese machen sich insbesondere bei kontinuierlicher Reaktionsführung, beispielsweise in einem kontinuierlichen Rührkesselreaktor, einer Rührkesselkaskade oder einem anderen kontinuierlichen Reaktionsapparat mit hoher Rückvermischung, bemerkbar: Im stationären Zustand treffen die zugeführten, frischen, d. h. nicht vorreagierten Edukte bereits auf eine von Null verschiedene Konzentration freier Fettsäure als Katalysator im Hydrolysereaktor. Hierdurch wird die Initiationsphase gleichsam übersprungen und die zeitliche Umsatzkurve steigt sofort steil an. Zur Erzielung eines definierten Endumsatzes verkleinert sich daher die benötigte Reaktorgröße.
  • Bei absatzweiser Reaktionsführung kann die Erfindung beispielsweise so angewandt werden, dass aus einem vorangegangenen Reaktionsansatz ein Teil der gewonnen freien Fettsäuren zurückbehalten und sodann einem nachfolgenden Reaktionsansatz als Katalysator hinzugegeben wird.
  • Bevorzugte Ausgestaltungen der Erfindung
  • Eine bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass das Auftrennen der leichten Phase (Schritt e)) und/oder das Rückführen mindestens eines Teils des zweiten Trennprodukts zum Umsetzungsschritt b) (Schritt g)) so erfolgen, das während des Umsetzungsschrittes b) der Anteil an freien Fettsäuren, bezogen auf den Anteil an Fettsäurealkylester oder Fettsäuretriglyceriden, > 0 bis 10 Gew.-%, bevorzugt 0,1 bis 8 Gew.-%, meist bevorzugt 0,5 bis 5 Gew.-%beträgt. Es hat sich gezeigt, dass in diesen Konzentrationsbereichen der freien Fettsäure ein günstiger Kompromiss zwischen der katalytischen Beschleunigung der Reaktion einerseits und der negativen Beeinflussung der Gleichgewichtslage andererseits erhalten wird.
  • In weiterer bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens wird der Umsetzungsschritt b) bei einer Temperatur von mindestens 220 °C, bevorzugt mindestens 240 °C, meist bevorzugt mindestens 260 °C durchgeführt. Diese Reaktionstemperaturen stellen günstige Kompromisse dar zwischen hohen Reaktionsgeschwindigkeiten, einsetzenden Nebenreaktionen durch thermischen Zerfall der beteiligten Stoffe und technischem Aufwand zur Druckhaltung, um Wasser in der flüssigen Phase zu halten.
  • Bei einer bevorzugten Ausgestaltung eines Verfahrens zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME) wird die in Schritt d) erhaltene, Methanol umfassende schwere Phase einer nach einem thermischen Trennverfahren arbeitenden, zweiten Trennvorrichtung zugeführt und in ein an Methanol angereichertes, drittes Trennprodukt und in ein an Wasser angereichertes, viertes Trennprodukt aufgetrennt, wobei das dritte Trennprodukt als Methanol-Produkt aus dem Verfahren ausgeleitet und das vierte Trennprodukt mindestens teilweise zum Umsetzungsschritt b) zurückgeführt wird. Auf diese Weise wird der Einsatz von Frischwasser als Edukt reduziert und es wird - ggf. nach weiterer Aufarbeitung - ein vermarktungsfähiges Methanol-Produkt als Nebenprodukt enthalten. Alternativ oder zusätzlich kann Methanol bereits als Kopfprodukt aus dem Reaktionsapparat ausgeleitet werden. Hierdurch wird das Reaktionsgleichgewicht in Richtung auf die Spaltprodukte verschoben und somit die Hydrolysereaktion begünstigt.
  • In einem weiteren Aspekt der Erfindung wird bei einem Verfahren zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME) das im Reaktionsschritt b) erhaltene Spaltprodukt zunächst der zweiten Trennvorrichtung zugeführt, in der selektiv ein an Methanol angereichertes Kopfprodukt aus dem Spaltprodukt abgetrennt und als Methanol-Produkt aus dem Verfahren ausgeleitet wird. Auch hierdurch wird - ggf. nach weiterer Aufarbeitung - ein vermarktungsfähiges Methanol-Produkt als Nebenprodukt enthalten. Alternativ oder zusätzlich kann Methanol bereits als Kopfprodukt aus dem Reaktionsapparat ausgeleitet werden. Hierdurch wird das Reaktionsgleichgewicht in Richtung auf die Spaltprodukte verschoben und somit die Hydrolysereaktion begünstigt. Ferner wird die Menge bzw. der Mengenstrom des Spaltproduktes reduziert, so dass die nachgeschaltete Phasentrennvorrichtung kleiner ausgestaltet werden kann. Wenn das von einem Teil des Methanols befreite Spaltprodukt vor dem Einleiten in die Phasentrennvorrichtung gekühlt werden soll, um die Phasentrennung zu fördern, reduziert sich durch die Mengenreduktion zusätzlich die benötigte Menge an Kühlenergie.
  • Dabei wird es besonders bevorzugt, dass die zweite Trennvorrichtung als Entspannungsstufe (Flash) ausgestaltet ist, die vorzugsweise adiabat ausgestaltet ist und betrieben wird. Hierdurch erfolgt bereits eine Vorkühlung des von einem Teil des Methanols befreiten Spaltprodukts vor dem Einleiten in die Phasentrennvorrichtung, so dass die benötigte Menge an Kühlenergie reduziert wird. In besonders günstig gelagerten Fällen, bei denen die adiabate Entspannung bereits eine ausreichende Kühlwirkung erbringt, kann hierdurch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung komplett entfallen. Allerdings wird es allgemein bevorzugt, dass auch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung vorhanden ist, da sich hierdurch größere Freiheitsgrade hinsichtlich der Einstellung der Temperatur in der Phasentrennvorrichtung ergeben.
  • In Weiterbildung der beiden zuvor erörterten, bevorzugten Ausgestaltungen wird das an Methanol abgereicherte Spaltprodukt der Phasentrennvorrichtung zugeführt und dort unter Phasentrennungsbedingungen in eine freie Fettsäuren und nicht umgesetzte Fettsäurealkylester umfassende leichte Phase und eine Wasser und Methanol umfassende schwere Phase aufgetrennt, wobei die schwere Phase mindestens teilweise zum Umsetzungsschritt b) zurückgeführt und die leichte Phase der ersten Trennvorrichtung zugeführt wird. Die vorherige Entfernung eines Teils des Methanols aus dem Spaltprodukt verbessert und erleichtert die Phasentrennung in der Phasentrennvorrichtung, da Methanol als Lösungsvermittler zwischen der leichten, organischen bzw. unpolaren und der schweren, wässrigen bzw. polaren Phase wirkt und somit die Phasentrennung behindert.
  • Bevorzugt umfassen die Phasentrennungsbedingungen das Abkühlen des Spaltproduktes oder des an Methanol abgereicherten Spaltproduktes auf eine Temperatur von ≤ 220 °C, bevorzugt ≤ 200 °C, meist bevorzugt s 180 °C. Hierdurch wird die Phasentrennung in der Phasentrennvorrichtung weiter verbessert und erleichtert. Unter der Verbesserung und Erleichterung der Phasentrennung ist dabei die Ausbildung einer möglichst scharfen, wohldefinierten Phasengrenze in möglichst kurzer Zeit zu verstehen.
  • in Bezug auf den vorgenannten Aspekt der Erfindung wird das Abkühlen durch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung und/oder dadurch bewirkt, dass das Abtrennen des an Methanol angereicherten Kopfprodukts aus dem Spaltprodukt adiabat durchgeführt wird. Durch die adiabate Abkühlung erfolgt bereits eine Vorkühlung des von einem Teil des Methanols befreiten Spaltprodukts vor dem Einleiten in die Phasentrennvorrichtung, so dass die benötigte Menge an Kühlenergie reduziert wird. In besonders günstig gelagerten Fällen, bei denen die adiabate Entspannung bereits eine ausreichende Kühlwirkung erbringt, kann hierdurch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung komplett entfallen. In anderen Fällen erfolgt die restliche Kühlung durch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung, die aber aufgrund der adiabaten Vorkühlung kleiner ausgestaltet werden kann.
  • In bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens beträgt beim Umsetzen des Fettsäuremethylesters mit Wasser in Schritt b) das Verhältnis von Wasser zu Fettsäuremethylester mindestens 2 mol/mol, bevorzugt mindestens 10 mol/mol, meist bevorzugt mindestens 20 mol/mol. Es hat sich gezeigt, dass auf diese Weise ein günstiger Kompromiss zwischen den erwünschten hohen Umsatzgraden und dem benötigten Reaktorvolumen erzielt wird.
  • In besonderer Ausgestaltung der Anlage zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME) umfasst diese eine zweite Trennvorrichtung, geeignet zum Auftrennen der schweren Phase in ein an Methanol angereichertes, drittes Trennprodukt und in ein an Wasser angereichertes, viertes Trennprodukt, Mittel zum Zuführen der schweren Phase in die zweite Trennvorrichtung, Mittel zum Ausleiten des dritten Trennprodukts aus der zweiten Trennvorrichtung und zum Ausleiten aus der Anlage als Methanol-Produkt, Mittel zum Ausleiten des vierten Trennprodukts aus der zweiten Trennvorrichtung, Mittel zum Rückführen mindestens eines Teils des vierten Trennprodukts zum mindestens einen Hydrolysereaktor. Auf diese Weise wird der Einsatz von Frischwasser als Edukt reduziert und es wird - ggf. nach weiterer Aufarbeitung - ein vermarktungsfähiges Methanol-Produkt als Nebenprodukt enthalten.
  • Bevorzugt umfasst die Anlage zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME) ferner Mittel zum Zuführen des im mindestens einen Hydrolysereaktor erhaltenen Spaltprodukts zu der zweiten Trennvorrichtung, Mittel zum selektiven Abtrennen eines an Methanol angereichertes Kopfprodukt aus dem Spaltprodukt, Mittel zum Ausleiten des an Methanol angereichertes Kopfprodukts aus der Anlage als Methanol-Produkt. Auch hierdurch wird - ggf. nach weiterer Aufarbeitung - ein vermarktungsfähiges Methanol-Produkt als Nebenprodukt enthalten. Ferner wird die Menge bzw. der Mengenstrom des Spaltproduktes reduziert, so dass die nachgeschaltete Phasentrennvorrichtung kleiner ausgestaltet werden kann. Wenn das von einem Teil des Methanols befreite Spaltprodukt vor dem Einleiten in die Phasentrennvorrichtung gekühlt werden soll, um die Phasentrennung zu fördern, reduziert sich durch die Mengenreduktion zusätzlich die benötigte Menge an Kühlenergie.
  • Im Hinblick auf die zuletzt erörterte Ausgestaltung der Anlage wird es besonders bevorzugt, wenn die zweite Trennvorrichtung als Entspannungsstufe (Flash), vorzugsweise als adiabate Entspannungsstufe ausgestaltet ist. Hierdurch erfolgt bereits eine Vorkühlung des von einem Teil des Methanols befreiten Spaltprodukts vor dem Einleiten in die Phasentrennvorrichtung, so dass die benötigte Menge an Kühlenergie reduziert wird. In besonders günstig gelagerten Fällen, bei denen die adiabate Entspannung bereits eine ausreichende Kühlwirkung erbringt, kann hierdurch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung komplett entfallen. Allerdings wird es allgemein bevorzugt, dass auch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung vorhanden ist, da sich hierdurch größere Freiheitsgrade hinsichtlich der Einstellung der Temperatur in der Phasentrennvorrichtung ergeben.
  • In einem weiteren Aspekt der Anlage zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME) umfasst diese ferner Mittel zum Zuführen des an Methanol abgereicherten Spaltprodukts zu der Phasentrennvorrichtung, Mittel zum Rückführen mindestens eines Teils der schweren Phase zum mindestens einen Hydrolysereaktor, Mittel zum Zuführen der leichten Phase zu der ersten Trennvorrichtung. Die Entfernung ein Teil des Methanols aus dem Spaltprodukt verbessert und erleichtert die Phasentrennung in der Phasentrennvorrichtung, da Methanol als Lösungsvermittler zwischen der leichten, organischen bzw. unpolaren und der schweren, wässrigen bzw. polaren Phase wirkt.
  • Bevorzugt umfasst die Anlage ferner eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung. Diese kann vorteilhaft eingesetzt werden, wenn die Kühlwirkung der adiabaten Entspannungsstufe zur Teilabtrennung von Methanol allein nicht ausreicht, um eine gute und rasche Phasentrennung in der Phasentrennvorrichtung zu erzielen.
  • Ausführungs- und Zahlenbeispiele
  • Weiterbildungen, Vorteile und Anwendungsmöglichkeiten der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung von Ausführungs- und Zahlenbeispielen und der Zeichnungen.
  • Es zeigen:
  • Fig. 1
    die schematische Darstellung des erfindungsgemäßen Verfahrens bzw. der Anlage nach einer ersten Ausgestaltung,
    Fig. 2
    die schematische Darstellung des erfindungsgemäßen Verfahrens bzw. der Anlage nach einer zweiten Ausgestaltung.
  • In dem in Fig. 1 gezeigten, schematischen Fließbild einer ersten Ausgestaltung des erfindungsgemäßen Verfahrens bzw. der Anlage werden der Fettsäuremethylester (FAME) und Wasser (H2O) über Leitungen 1 und 2 dem Hydrolysereaktor 3 zugeführt. Der nur schematisch angedeutete Hydrolysereaktor arbeitet kontinuierlich unter starker Rückvermischung und ist beispielsweise als kontinuierlicher Rührkesselreaktör ausgestaltet. Ein Teil des für die Esterhydrolyse benötigten Wassers kann auch als Dampf in den Hydrolysereaktor eingeleitet werden. Vorzugsweise erfolgt dies in einer Weise, die zusätzlich zur Durchmischung des flüssigen Reaktionsgemischs beiträgt, also beispielsweise durch Einblasen in die flüssige Mischung. Gegebenenfalls dient der Dampf dabei auch als Wärmeträger zur Beheizung des Reaktorinhalts.
  • Der Reaktordruck wird so gewählt, dass das Reaktionsgemisch bei der durch eine bildlich nicht dargestellte Heizvorrichtung eingestellten Reaktionstemperatur in der flüssigen Phase verbleibt. Die Druckeinstellung erfolgt auf bekannte Weise über den Dampfdruck der beteiligten Komponenten sowie ggf. zusätzlich durch Zugabe eines Inertgases.
  • Nach Erreichen eines bestimmten Endumsatzes verlässt das Spaltprodukt über Leitung 4 den Hydrolysereaktor, wird in der Kühlvorrichtung 5 abgekühlt und sodann über Leitung 6 der Phasentrennvorrichtung 7 zugeführt. Bei der Phasentrennvorrichtung handelt es sich im gezeigten Beispiel um einen einfachen Behälter mit Überläufen und Ableitungen für eine schwere und eine leichte flüssige Phase, in dem die Phasentrennung gravitationsgetrieben aufgrund der unterschiedlichen Dichte der beiden flüssigen Phasen erfolgt.
  • Aus der Phasentrennvorrichtung wird die leichte, unpolare Phase, die das freie Fettsäureprodukt (FFA) und nicht umgesetzten Fettsäuremethylester enthält, über Leitung 8 abgeführt und in die erste Trennvorrichtung eingeleitet, die im gezeigten Beispiel als Destillation ausgestaltet ist. Bei der destillativen Auftrennung der leichten Phase wird eine an freien Fettsäuren angereicherte Fraktion gewonnen (erstes Trennprodukt), die über Leitung 10 als FFA-Produkt aus dem Verfahren ausgeleitet wird. Die verbleibende Fraktion (zweites Trennprodukt), die über Leitungen 11 und 1 zum Hydrolysereaktor 3 zurückgeführt wird, enthält neben nicht umgesetztem Fettsäuremethylester auch noch Spuren von Methanol und signifikante Anteile an freier Fettsäure. Letztere wirkt nach ihrer Rückführung in den Hydrolysereaktor als Katalysator für die Umsetzung weiteren Fettsäuremethylesters zu freier Fettsäure.
  • Die schwere, polare Phase, die nicht umgesetztes Wasser und Methanol als Koppelprodukt der Esterhydrolyse enthält, wird über Leitung 12 aus der Phasentrennvorrichtung 7 abgeführt und in die zweite Trennvorrichtung 13 eingeleitet, die im gezeigten Beispiel ebenfalls als Destillation ausgestattet ist. Bei der destillativen Auftrennung der schweren Phase wird als Kopfprodukt der Destillation ein Methanolprodukt (MeOH) (drittes Trennprodukt) erhalten, das über Leitung 14 aus dem Verfahren ausgeleitet und ggf. der weiteren Aufarbeitung zugeführt wird. Als Sumpfprodukt wird eine an Wasser angereicherte Fraktion erhalten (viertes Trennprodukt), die über Leitungen 15 und 2 zum Hydrolysereaktor 3 zurückgeführt wird.
  • In der in Fig. 2 gezeigten, schematischen Darstellung einer zweiten Ausgestaltung des erfindungsgemäßen Verfahrens bzw. der Anlage entspricht der Verfahrensablauf bis zum Bezugszeichen 3 demjenigen in Fig. 1. Nach Erreichen eines bestimmten Endumsatzes verlässt das Spaltprodukt über Leitung 4 den Hydrolysereaktor, wird nun jedoch mittels Entspannungsventil 16 adiabat entspannt (Flash) und über Leitung 17 in die zweite Trennvorrichtung 13a eingeleitet, die hierbei als einfache Phasentrennvorrichtung zur Abtrennung einer gasförmigen, an Methanol angereicherten Phase (drittes Trennprodukt) von einer an Methanol abgereicherten Flüssigphase (viertes Trennprodukt) ausgestaltet ist. Als Kopfprodukt der Phasentrennvorrichtung 13a wird ein Methanolprodukt (MeOH) (drittes Trennprodukt) erhalten, das über Leitung 14 aus dem Verfahren ausgeleitet und ggf. der weiteren Aufarbeitung zugeführt wird.
  • Aufgrund der adiabaten Entspannung ist die Temperatur des vierten Trennprodukts kleiner als die des den Hydrolysereaktor 3 verlassenden Spaltprodukts. Hierdurch kann die Kühlvorrichtung 5, der die an Methanol abgereicherte Flüssigphase über Leitung 18 aufgegeben wird, kleiner hinsichtlich der benötigten Kühlleistung ausgelegt werden, die zur Einstellung einer definierten Temperatur in der Phasentrennvorrichtung 7 benötigt wird.
  • Über Leitung 6 wird die an Methanol abgereicherte Flüssigphase der Phasentrennvorrichtung 7 aufgegeben, deren Eigenschaften und Arbeitsweise weitgehend derjenigen entsprechen, die in Fig. 1 erläutert wurde. Jedoch verläuft die Phasentrennung im Vergleich zu der in Fig. 1 dargestellten Ausgestaltung leichter bzw. rascher, da der Flüssigphase zuvor Methanol entzogen wurde, das als Lösungsvermittler zwischen der polaren und der unpolaren Phase wirkt und somit die Phasentrennung erschwert. Aufgrund der rascher verlaufenden Phasentrennung kann die Phasentrennvorrichtung 7 somit in der in Fig. 2 gezeigten Ausgestaltung kleiner ausgelegt werden.
  • Bei der destillativen Auftrennung in der ersten Trennvorrichtung 9, der die leichte Phase über Leitung 8 aufgegeben wird, wird eine an freien Fettsäuren angereicherte Fraktion gewonnen (erstes Trennprodukt), die über Leitung 10 als FFA-Produkt aus dem Verfahren ausgeleitet wird. Die verbleibende Fraktion (zweites Trennprodukt), die über Leitungen 11 und 1 zum Hydrolysereaktor 3 zurückgeführt wird, enthält neben nicht umgesetztem Fettsäuremethylester auch noch Spuren von Methanol und signifikante Anteile an freier Fettsäure. Letztere wirkt nach ihrer Rückführung in den Hydrolysereaktor als Katalysator für die Umsetzung weiteren Fettsäuremethylesters zu freier Fettsäure.
  • Die aus der Phasentrennvorrichtung 7 über Leitung 12 ausgeleitete schwere, polare Phase, die nicht umgesetztes Wasser und Methanol als Koppelprodukt der Esterhydrolyse enthält, wird über Leitung 12 und Leitung 2 zum Hydrolysereaktor 3 zurückgeführt.
  • Von sämtlichen Rückführströmen in den in Fig. 1 und Fig. 2 gezeigten Ausführungsbeipielen können kleine Teilmengen ausgeleitet und verworfen werden (Purge), um die Anreicherung von Verunreinigungen und anderer unerwünschter Komponenten zu verhindern.
  • In beiden erörterten Ausfühungsbeispielen ist es möglich, einen methanolreichen Strom als Kopfprodukt aus dem Reaktionsapparat über eine nicht dargestellte Leitung auszuleiten. Hierdurch wird das Reaktionsgleichgewicht in Richtung auf die Spaltprodukte verschoben und somit die Hydrolysereaktion begünstigt.
  • Zahlenbeispiele Reaktionsparameter
  • Zur Demonstration der Hydrolysereaktion wurden Versuche in einem Autoklaven mit verschiedenen Versuchsparametern und FAME-Kettenlängen durchgeführt. Das Reaktionsgemisch wurde hierbei mit einer Rührerumdrehungsgeschwindigkeit von 500 min-1 gerührt. Die dabei erhaltenen Versuchsergebnisse sind in Tabelle 1 zusammengestellt.
  • Innerhalb der Versuchsreihe 1 wird eine deutliche Beschleunigung des Umsatzverlaufes mit zunehmender Temperatur erkennbar. Bei 240 und 260 °C wird ein identischer Endzustand erreicht, während bei 220 °C die Beobachtungszeit nicht ausreichend war, um diesen zu erreichen.
  • Den Effekt eines Methanolaustrages mittels Flash-Verdampfung während der Reaktion zeigt der Vergleich zwischen Beispiel 1c und 2a. Der erreichte Umsatz liegt am Endzustand des Reaktionsgemisches ca. 5 % höher, wenn Methanol aus dem Gleichgewicht entfernt wurde. Tabelle 1: FAME-Umsatz in Abhängigkeit der Reaktionszeit, Temperatur und Wasser-FAME-Verhättnis
    Versuch. Nr. 1a 1b 1c 2a 2b 2c 3a 3b 3c 4a 4b
    FAME-Kettenlänge C8 C8 C8 C8 C8 C8 C8 C8 C8 C10 C10
    Wasser/ FAME* 16 16 16 16 8 2 24 16 8 16 8
    T/°C 220 240 260 260 260 260 240 240 240 260 260
    MeOH-Austrag** ja ja ja nein nein nein nein nein nein nein nein
    Reaktionszeit / h FAME-Umsatz
    0,5 h 2 % 5 % 24 % 21 % 12 % 5 % 7 % 10 % 3 % 12 % 10 %
    1,0 h 7 % 23 % 60 % 63 % 43 % 32 % 26 % 33 % 13 % 44 % 41 %
    1.5 h 19 % 61 % 74 % 73 % 61 % 44 % 52 % 58 % 37 % 68 % 58 %
    2,0 h 35 % 76 % 78 % 75 % 63 % 45 % 72 % 72 % 52 % 71 % 62 %
    3,0 h 58 % 80 % 80 % 75 % 63 % 45 % 77 % 75 % 62 % 72 % 63 %
    4.0 h 67 % 80 % 80 % 75 % 63 % 45 % 79 % 75 % 62 % 72 % 63 %
    * Wasser/FAME-Verhältnis [mol Wasser pro mol FAME]
    ** Methanol wurde während der Umsetzung aus dem Reaktionsgemisch durch eine Druckabsenkung ausgedampft (Flash)
  • Den Effekt des Wasser/FAME-Verhältnisses zeigen die Versuchsreihen 2 und 3. Die Höhe des erreichten Umsatzes am Endzustand ist zunehmend mit erhöhter Wassermenge. Bei identischen Wasser/FAME-Verhältnissen bewirkt eine Temperaturerhöhung eine Verkürzung der notwendigen Reaktionszeit zur Erreichung dieses Endzustandes.
  • Der Effekt der FAME-Kettenlänge wird beim Vergleich der Versuche 2a und 2b mit den Versuchen 4a und 4b deutlich. Hierbei werden unter sonst identischen Bedingungen Umsätze auf vergleichbarem Niveau nach identischer Reaktionszeit erreicht.
  • Die Versuche wurden bei unterschiedlichen Rührerumdrehungsgeschwindigkeiten wiederholt. Innerhalb der ersten zwei Versuchsstunden ergaben sich bei höheren Rührerumdrehungsgeschwindigkeiten schnellere Anstiege der zeitlichen Umsatzkurve. Jeweils nach 2 h wurde aber bei allen Versuchen ein identischer Endzustand des Umsatzes erreicht.
  • Katalytischer Einfluss freier Fettsäuren (FFA)
  • Zur Demonstration des katalytischen Einflusses freier Fettsäuren auf die Hydrolysereaktion wurden weitere Versuche im Autoklaven bei verschiedenen Temperaturen unter ansonsten identischen Bedingungen sowohl mit als auch ohne FFA-Zusatz durchgeführt. Die Menge der zugesetzten FFA betrug 5,28 % g/g, bezogen auf die eingesetzte C10-FAME-Menge, was einer FFA-Konzentration von 5 Gew.-% in FAME, bzw. rund 3 Gew.-%, bezogen auf das gesamte Reaktionsgemisch entsprach. Das Reaktionsgemisch wurde hierbei mit 500 min-1 gerührt. Die hierbei erhaltenen Ergebnisse werden nachfolgend in Tabelle 2 zusammengestellt.
  • Versuchsreihe 6 diente als Referenz, da hier auf einen FFA-Zusatz verzichtet wurde. Innerhalb der Versuchsreihe 6 wurde eine deutliche Verzögerung des Umsatzverlaufes mit abnehmender Temperatur erkennbar. Im Gegensatz zu den Ergebnissen mit C8-FAME (vgl. Tabelle 1, Versuchsreiche 1a bis 1b) wurde bei der variierenden Temperatur von 240 bis 260 °C kein identischer Endzustand erreicht.
  • Beim Vergleich mit der Versuchsreihe 7 (mit FFA-Zusatz) wird der katalytische Effekt der freien Fettsäure zu Reaktionsbeginn erkennbar. Hier wurde bereits nach 2 h ein konstanter Endzustand erreicht, während dieser bei Versuchsreihe 6 erst nach 3 h (Versuch 6b + 6c) erreicht wurde.
  • Die Höhe des FAME-Umsatzes am Endzustand bei den Versuchen mit FFA-Zusatz verringert sich proportional zur Konzentration der zugesetzten FFA im FAME, da sich die FFA-Konzentration am Endzustand der Reaktion gleichgewichtsbedingt einstellt und somit führt zu einer Begrenzung des maximalen FAME-Umsatzes führt. Tabelle 2: FAME-Umsatz in Abhängigkeit der Reaktionszeit und Temperatur mit und ohne FFA als Katalysator
    Versuch. Nr. 6a 6b 6c 7a 7b 7c
    FAME-Kettenlänge C10 C10 C10 C10 C10 C10
    Wasser / FAME* 9,5 9,5 9,5 9,5 9,5 9,5
    T / °C 260 250 240 260 250 240
    MeOH-Austrag** nein nein nein nein nein nein
    FFA-Zusatz nein nein nein ja ja ja
    Reaktionszeit / h FAME-Umsatz
    0,5 h 7 % 4 % 1 % 45,1 % 30 % 23 %
    1,0 h 41 % 23 % 8 % 62,0 % 53 % 46 %
    1,5 h 64 % 52 % 27 % 64,1 % 58 % 54 %
    2,0 h 68 % 61 % 48 % 64,4 % 60 % 57 %
    3,0 h 68 % 64 % 60 % 64,4 % 60 57 %
    4,0 h 68 % 64 % 60 % 64,4 % 60 % 57 %
    * Wasser/FAME-Verhältnis [mol Wasser pro mol FAME]
    ** Methanol wurde während der Umsetzung aus dem Reaktionsgemisch durch eine Druckabsenkung ausgedampft (Flash)
  • Phasentrennung des Reaktionsgemisches am Endzustand aus Versuchsbeispiel 2a
  • Das Reaktionsgemisch aus Versuchsbeispiel 2a (siehe Tabelle 1) mit einem Wasser/FAME-Verhältnis von 16 mol/mol wurde in einem mit Schauglas ausgestatteten Autoklaven erzeugt. Somit wurde die Beobachtung von Phasenmengen und die gezielte Beprobung der einzelnen Phasen ermöglicht. Bedingt durch die guten Löslichkeitsverhältnisse der relativ kurzkettigen Reaktanden und Produkte ineinander (in diesem Fall C8-FAME als Edukt), bildete sich am Endzustand der Reaktion ein homogenes Reaktionsgemisch aus. Bei Abkühlung dieses homogenen Reaktionsgemisches wurde eine beginnende Phasenausbildung ab 224 °C beobachtet (Trübungspunkt). Die Abkühlung wurde sukzessive fortgeführt und die sich ausbildenden Phasen jeweils volumetrisch bestimmt und analysiert (siehe Tabelle 3). Tabelle 3: Phasenausbildung und Phasenzusammensetzung; Reaktionsgemisch aus Versuchsbeispiel 2a
    Bsp. Nr. 2a/1 2a/2 2a/3
    Phasenanteil oben 50 % vol 46 % vol 43 % vol
    FFA+FAME-reiche leichte Phase
    % w/w % w/w % w/w
    Wasser 33,8 26,2 18,6
    Methanol 4,3 4,3 3,8
    FAME 18,2 20,9 23,2
    FFA 43,7 48,6 54,4
    Reaktionsgemisch am Endzustand der Spaltungsreaktion Abkühlung auf 217°C Abkühlung auf 199°C Abkühlung auf 177°C
    % w/w
    Wasser 64,2
    Methanol 5,3
    FAME 8,3
    FFA 22,2
    Phasenanteil unten 50 % vol 54 % vol 57 % vol
    wasser- +methanolreiche schwere Phase
    % w/w % w/w % w/w
    Wasser 89,1 92,1 93,2
    Methanol 5,9 5,7 5,9
    FAME 1,1 0,4 0,2
    FFA 3,9 1,8 0,7
  • Es wurde eine Ausbildung einer FFA- und FAME-reichen leichten Phase sowie einer wasser- und methanolreichen schweren Phase beobachtet. Mit abnehmender Phasentrennungstemperatur (2a/1 > 2a/2 > 2a/3) vervollständigte sich die Trennung so, dass es zur weiteren Anreicherung von FFA und FAME in der leichten Phase bzw. zur weiteren Anreicherung von Wasser und Methanol in der schweren Phase kam.
  • Phasentrennung des Reaktionsgemisches am Endzustand aus Versuchsbeispiel 2b
  • Das Reaktionsgemisch aus Versuchsbeispiel 2b (Herstellung siehe Tabelle 1) mit einem Wasser/FAME-Verhältnis von 8 mol/mol wurde in einem mit Schauglas ausgestatteten Autoklaven erzeugt. Somit wurde die Beobachtung von Phasenmengen und die gezielte Beprobung der einzelnen Phasen ermöglicht. Bedingt durch die guten Löslichkeitsverhältnisse der relativ kurzkettigen Reaktanden und Produkte ineinander (in diesem Fall C8-FAME als Edukt), bildete sich auch hier am Endzustand der Reaktion ein homogenes Reaktionsgemisch aus. Bei Abkühlung dieses homogenen Reaktionsgemisches wurde eine beginnende Phasenausbildung ab 227 °C beobachtet (Trübungspunkt). Die Abkühlung wurde sukzessive fortgeführt und die sich ausbildenden Phasen jeweils volumetrisch bestimmt und analysiert (siehe Tabelle 4).
  • Wiederum wurde die Ausbildung einer FFA- und FAME-reichen leichten Phase sowie einer wasser- und methanolreichen schweren Phase beobachtet. Auch hier vervollständigte sich die Trennung mit abnehmender Phasentrennungstemperatur (2b/1 > 2b/2 > 2b/3) so, dass es zur weiteren Anreicherung von FFA und FAME in der leichten Phase bzw. zur weiteren Anreicherung von Wasser und Methanol in der schweren Phase kam. Eine Ausnahme bildet hier die wasser- und methanolreiche schwere Phase im Beispiel 2b/3. Bei der Abkühlung auf 180 °C wurde eine Trübung (Emulsion) beobachtet, was die Abweichung in deren Zusammensetzung erklärt. Tabelle 4: Phasenausbildung und deren Phasenzusammensetzung; Reaktionsgemisch aus Versuchsbeispiel 2b
    Bsp. Nr. 2b/1 2b/2 2b/3
    Phasenanteil oben nicht ermittelt 52 % vol 61 % vol
    FFA+FAME-reiche leichte Phase
    % w/w % w/w % w/w
    Wasser 30,5 22,6 17,5
    Methanol 6,3 5,7 5,4
    FAME 28,8 29,3 33,5
    FFA 34,3 42,5 43,5
    Reaktionsgemisch am Endzustand der Spaltungsreaktion Abkühlung auf 215°C Abkühlung auf 197°C Abkühlung auf 180°C
    % w/w
    Wasser 43,1
    Methanol 6,8
    FAME 19,9
    FFA 30,1
    Phasenanteil unten nicht ermittelt 48 % vol 39 % vol
    wasser- +methanolreiche schwere Phase
    % w/w % w/w % w/w
    Wasser 86,9 89,5 84,6
    Methanol 8,1 8,1 8,3
    FAME 1,8 0,7 3,7
    FFA 3,2 1,7 3,4
  • Gewerbliche Anwendbarkelt
  • Mit der Erfindung wird ein Verfahren zur Verfügung gestellt, mit denen freie Fettsäuren in einfacher Weise durch hydrolytisches Spalten von Fettsäurealkylestem, insbesondere Fettsäuremethylestern (FAME), oder alternativ von in Ölen und Fetten pflanzlicher und tierischer Herkunft enthaltenen Fettsäuretriglyceriden, erhalten werden können. Da das Verfahren ohne den Einsatz externer, verfahrensfremder Stoffe als homogene oder heterogene Katalysatoren auskommt, werden besondere ökonomische und ökologische Vorteile erhalten, da keine Katalysatoren aus dem Spaltprodukt wiedergewonnen und nachfolgend aufwendig regeneriert oder entsorgt werden müssen. Die autokatalytische Wirkung der dem Reaktionsgemisch zugesetzten, freien Fettsäuren gestattet eine Verkleinerung der verwendeten Reaktionsapparate zur Erzielung einer festgelegten Produktionsrate.
  • Bezugszeichenliste
  • [1]
    Leitung
    [2]
    Leitung
    [3]
    Hydrolysereaktor
    [4]
    Leitung
    [5]
    Kühlvorrichtung
    [6]
    Leitung
    [7]
    Phasentrennvorrichtung
    [8]
    Leitung
    [9]
    erste Trennvorrichtung (Destillation)
    [10]
    Leitung
    [11]
    Leitung
    [12]
    Leitung
    [13]
    zweite Trennvorrichtung (Destillation)
    [13a]
    zweite Trennvorrichtung (Phasentrennvorrichtung, Flash)
    [14]
    Leitung
    [15]
    Leitung
    [16]
    Entspannungsventil
    [17]
    Leitung
    [18]
    Leitung

Claims (10)

  1. Verfahren zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäurealkylestern, insbesondere Fettsäuremethylestern (FAME), umfassend folgende Schritte:
    a) Bereitstellen der Fettsäurealkylester,
    b) Umsetzen der Fettsäurealkylester mit Wasser unter Hydrolysebedingungen bei Temperaturen von mindestens 200 °C, wobei der Druck so gewählt wird, dass das Wasser in flüssiger Phase vorliegt und wobei kein externer, verfahrensfremder Stoff als homogener oder heterogener Katalysator zugegeben wird,
    c) Ausleiten eines Spaltproduktes, umfassend freie Fettsäuren (FFA), Wasser, nicht umgesetzte Fettsäurealkylester und das entsprechende Alkanol, insbesondere Methanol, d) Zuführen des Spaltproduktes zu einer Phasentrennvorrichtung und Auftrennen des Spaltproduktes unter Phasentrennungsbedingungen in eine freie Fettsäuren und nicht umgesetzte Fettsäurealkylester umfassende leichte Phase und eine Wasser und Methanol umfassende schwere Phase,
    e) Zuführen der leichten Phase in eine nach einem thermischen Trennverfahren arbeitenden, ersten Trennvorrichtung und Auftrennen der leichten Phase in ein an freien Fettsäuren angereichertes, erstes Trennprodukt und in ein an nicht umgesetzten Fettsäurealkylestern angereichertes, zweites Trennprodukt, wobei das Auftrennen so durchgeführt wird, dass das zweite Trennprodukt ferner einen Anteil an freien Fettsäuren enthält,
    f) Ausleiten des ersten Trennprodukts als FFA-Produkt,
    g) Rückführen mindestens eines Teils des zweiten Trennprodukts zum Umsetzungsschritt b).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Auftrennen der leichten Phase (Schritt e)) und/oder das Rückführen mindestens eines Teils des zweiten Trennprodukts zum Umsetzungsschritt b) (Schritt g)) so erfolgen, dass während des Umsetzungsschrittes b) der Anteil an freien Fettsäuren, bezogen auf den Anteil an Fettsäurealkylester, > 0 bis 10 Gew.-%, bevorzugt 0,1 bis 8 Gew.-%, meist bevorzugt 0,5 bis 5 Gew.-% beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Umsetzungsschritt b) bei einer Temperatur von mindestens 220 °C, bevorzugt mindestens 240 °C, meist bevorzugt mindestens 260 °C durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3 zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME), dadurch gekennzeichnet, dass die in Schritt d) erhaltene, Methanol umfassende schwere Phase einer nach einem thermischen Trennverfahren arbeitenden, zweiten Trennvorrichtung zugeführt und in ein an Methanol angereichertes, drittes Trennprodukt und in ein an Wasser angereichertes, viertes Trennprodukt aufgetrennt wird, wobei das dritte Trennprodukt als Methanol-Produkt aus dem Verfahren ausgeleitet und das vierte Trennprodukt mindestens teilweise zum Umsetzungsschritt b) zurückgeführt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3 zur Herstellung von Fettsäuren durch hydrolytisches Spalten von Fettsäuremethylestern (FAME), dadurch gekennzeichnet, dass das in Schritt b) erhaltene Spaltprodukt zunächst der zweiten Trennvorrichtung zugeführt wird, in der selektiv ein an Methanol angereichertes Kopfprodukt aus dem Spaltprodukt abgetrennt und als Methanol-Produkt aus dem Verfahren ausgeleitet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die zweite Trennvorrichtung als Entspannungsstufe (Flash) ausgestaltet ist, die vorzugsweise adiabat ausgestaltet ist und betrieben wird.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das an Methanol abgereicherte Spaltprodukt der Phasentrennvorrichtung zugeführt und dort unter Phasentrennungsbedingungen in eine freie Fettsäuren und nicht umgesetzte Fettsäurealkylester umfassende leichte Phase und eine Wasser und Methanol umfassende schwere Phase aufgetrennt wird, wobei die schwere Phase mindestens teilweise zum Umsetzungsschritt b) zurückgeführt und die leichte Phase der ersten Trennvorrichtung zugeführt wird.
  8. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass die Phasentrennungsbedingungen das Abkühlen des Spaltproduktes oder des an Methanol abgereicherten Spaltproduktes auf eine Temperatur von ≤ 220 °C, bevorzugt ≤ 200 °C, meist bevorzugt ≤ 180 °C umfassen.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Abkühlen durch eine der Phasentrennvorrichtung vorgeschaltete Kühlvorrichtung und/oder dadurch bewirkt wird, dass das Abtrennen des an Methanol angereicherten Kopfprodukts aus dem Spaltprodukt adiabat durchgeführt wird.
  10. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass beim Umsetzen des Fettsäuremethylesters mit Wasser in Schritt b) das Verhältnis von Wasser zu Fettsäuremethylester mindestens 2 mol/mol, bevorzugt mindestens 10 mol/mol, meist bevorzugt mindestens 20 mol/mol beträgt.
EP16400026.7A 2016-07-08 2016-07-08 Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur Active EP3266857B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP16400026.7A EP3266857B1 (de) 2016-07-08 2016-07-08 Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur
MYPI2018002995A MY197420A (en) 2016-07-08 2017-06-27 Process for preparing fatty acids by ester hydrolysis
SG11201811694XA SG11201811694XA (en) 2016-07-08 2017-06-27 Process for preparing fatty acids by ester hydrolysis
PCT/EP2017/025181 WO2018007022A1 (en) 2016-07-08 2017-06-27 Process for preparing fatty acids by ester hydrolysis
US16/316,248 US10696922B2 (en) 2016-07-08 2017-06-27 Process for preparing fatty acids by ester hydrolysis
BR112019000037-2A BR112019000037A2 (pt) 2016-07-08 2017-06-27 processo para preparar ácidos graxos por meio de hidrólise de éster
CN201720825169.XU CN207468571U (zh) 2016-07-08 2017-07-07 通过酯水解制备脂肪酸的设备
CN201710550533.0A CN107586622B (zh) 2016-07-08 2017-07-07 通过酯水解制备脂肪酸的方法
PH12019500013A PH12019500013A1 (en) 2016-07-08 2019-01-03 Process for preparing fatty acids by ester hydrolysis
CONC2019/0001040A CO2019001040A2 (es) 2016-07-08 2019-01-31 Proceso para preparar ácidos grasos por hidrólisis de éster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16400026.7A EP3266857B1 (de) 2016-07-08 2016-07-08 Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur

Publications (2)

Publication Number Publication Date
EP3266857A1 EP3266857A1 (de) 2018-01-10
EP3266857B1 true EP3266857B1 (de) 2020-01-01

Family

ID=56787398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16400026.7A Active EP3266857B1 (de) 2016-07-08 2016-07-08 Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur

Country Status (9)

Country Link
US (1) US10696922B2 (de)
EP (1) EP3266857B1 (de)
CN (2) CN107586622B (de)
BR (1) BR112019000037A2 (de)
CO (1) CO2019001040A2 (de)
MY (1) MY197420A (de)
PH (1) PH12019500013A1 (de)
SG (1) SG11201811694XA (de)
WO (1) WO2018007022A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2950637T3 (es) * 2018-08-30 2023-10-11 Nextchem S P A Procedimiento y aparato para producir ácidos grasos a partir de ésteres metílicos a lo largo de un proceso no catalítico
CN113337346A (zh) * 2021-07-07 2021-09-03 刘德武 一种酯水解制备脂肪酸的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197687A1 (en) * 2001-06-21 2002-12-26 Karlheinz Brunner Method for enzymatic splitting of oils and fats
WO2009075762A1 (en) * 2007-12-11 2009-06-18 Cargill, Incorporated Process for producing biodiesel and fatty acid esters
WO2010000416A1 (en) * 2008-06-30 2010-01-07 Eni S.P.A. Process for the extraction of fatty acids from algal biomass

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB594141A (en) * 1943-12-20 1947-11-04 Emery Industries Inc Improvements in or relating to methods of splitting fatty materials
US4185027A (en) 1978-06-15 1980-01-22 The Procter & Gamble Company Hydrolysis of methyl esters
DE69321607T2 (de) 1992-12-22 1999-03-18 Procter & Gamble Hydrolyse von methylestern zur herstellung der fettsäuren
DK173148B1 (da) * 1995-08-21 2000-02-07 Poul Moeller Ingenioerraadgivn Fremgangsmåde til udskillelse af vand fra spildevandsslam ved opvarmning i væskeform til høje temperaturer og under høje tr
US8088183B2 (en) * 2003-01-27 2012-01-03 Seneca Landlord, Llc Production of biodiesel and glycerin from high free fatty acid feedstocks
WO2016054597A1 (en) * 2014-10-03 2016-04-07 Flint Hills Resources, Lp System and methods for making bioproducts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197687A1 (en) * 2001-06-21 2002-12-26 Karlheinz Brunner Method for enzymatic splitting of oils and fats
WO2009075762A1 (en) * 2007-12-11 2009-06-18 Cargill, Incorporated Process for producing biodiesel and fatty acid esters
WO2010000416A1 (en) * 2008-06-30 2010-01-07 Eni S.P.A. Process for the extraction of fatty acids from algal biomass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANON.: "Fat Spplitting: For Production of Fatty Acids and Crude Glycerine", 2008, Retrieved from the Internet <URL:http://www.lipico.com/processes_fat-splitting.html> [retrieved on 20180910] *

Also Published As

Publication number Publication date
US20190211282A1 (en) 2019-07-11
WO2018007022A1 (en) 2018-01-11
CN107586622A (zh) 2018-01-16
EP3266857A1 (de) 2018-01-10
MY197420A (en) 2023-06-16
PH12019500013A1 (en) 2019-10-28
US10696922B2 (en) 2020-06-30
SG11201811694XA (en) 2019-01-30
CN207468571U (zh) 2018-06-08
BR112019000037A2 (pt) 2019-04-16
CN107586622B (zh) 2023-05-30
CO2019001040A2 (es) 2019-02-08

Similar Documents

Publication Publication Date Title
EP1183225B1 (de) Verfahren zur herstellung von fettsäureestern einwertiger alkylalkohole
EP1339816B1 (de) Verfahren zur vorbehandlung von rohölen und rohfetten für eine herstellung von fettsäureestern
DE60312446T2 (de) Vefahren zur Herstellung einer Kohlenwasserstoffkomponente biologischer Herkunft
EP0494177B1 (de) Kontinuierliches verfahren zum herstellen niederer alkylester
EP1910267B1 (de) Verfahren zur herstellung von carbonsäurealkylestern
WO2010105892A1 (de) VERFAHREN ZUR HERSTELLUNG VON α,β-UNGESÄTTIGTEN C10-ALDEHYDEN
EP1230206B1 (de) Verfahren zur herstellung von ameisensäure
DE102006054519A1 (de) Verfahren zur Herstellung von Fettsäurealkylestern und Acrolein aus Triglyceriden
EP2069282B1 (de) Verfahren zur kontinuierlichen herstellung von fettsäure-methylester oder fettsäure-ethylester
EP1792891B1 (de) Verfahren zur Herstellung von Salpetersäureestern einwertiger Alkohole
WO2009056230A1 (de) Verfahren zur heterogen katalysierten veresterung von fettsäuren
EP2358851B1 (de) Verwendung von methansulfonsäure zur herstellung von fettsäureestern
EP3266857B1 (de) Verfahren zum herstellen von fettsäuren durch hydrolytische esterspaltung in wasser bei hohen temperatur
WO2004018405A1 (de) Um- und veresterung von fettsäuren und triglyceriden durch dispergieren und dispersionsverfahren zur herstellung von fettsäuremethylestern
WO2009056231A1 (de) Kontinuierliches verfahren zur heterogen katalysierten veresterung von fettsäuren
DE102018004940A1 (de) Verfahren zur Herstellung von Fettsäuremethylester
EP3798202A1 (de) Verfahren zur aufreinigung von methylmethacrylat von leichtsiedenden komponenten
DE69819208T2 (de) Auf der glycerolyse von methylester beruhendes verfahren zur herstellung von monoglycerid
DE102007052064A1 (de) Verfahren zur heterogen katalysierten Veresterung von Fettsäuren
WO2009095190A2 (de) Verbessertes verfahren zur heterogen katalysierten veresterung von fettsäuren
WO2008119489A1 (de) Verfahren zur trennung von produktgemischen aus umesterungsreaktionen
EP0160909A2 (de) Verfahren zur Chlorierung und Sulfochlorierung von organischen Verbindungen
DE4324875A1 (de) Verfahren zur Herstellung von Alkylestern aus Pflanzenölen
WO2008049260A2 (de) Verfahren zur herstellung von fettsäureestern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180919

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1219785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016008229

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200402

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016008229

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20201002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1219785

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230726

Year of fee payment: 8

Ref country code: DE

Payment date: 20230719

Year of fee payment: 8

Ref country code: BE

Payment date: 20230719

Year of fee payment: 8