EP3258006A1 - Procédé de production d'une couche de renfort, couche de renfort et pneu de véhicule - Google Patents

Procédé de production d'une couche de renfort, couche de renfort et pneu de véhicule Download PDF

Info

Publication number
EP3258006A1
EP3258006A1 EP17169840.0A EP17169840A EP3258006A1 EP 3258006 A1 EP3258006 A1 EP 3258006A1 EP 17169840 A EP17169840 A EP 17169840A EP 3258006 A1 EP3258006 A1 EP 3258006A1
Authority
EP
European Patent Office
Prior art keywords
blocked
polyamide
free
reinforcement
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17169840.0A
Other languages
German (de)
English (en)
Other versions
EP3258006B1 (fr
Inventor
Nermeen Nabih
Thomas Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Reifen Deutschland GmbH
Original Assignee
Continental Reifen Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Reifen Deutschland GmbH filed Critical Continental Reifen Deutschland GmbH
Publication of EP3258006A1 publication Critical patent/EP3258006A1/fr
Application granted granted Critical
Publication of EP3258006B1 publication Critical patent/EP3258006B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/395Isocyanates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • D06M2101/08Esters or ethers of cellulose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides

Definitions

  • the invention relates to a method for producing a reinforcement layer for elastomeric products and to a reinforcement layer produced by the method. Furthermore, the invention relates to a vehicle tire which contains at least one reinforcement layer according to the invention.
  • Strength supports for reinforcing various elastomeric products are well known.
  • the reinforcements are usually surrounded by at least one rubber mixture, which is also called Kunststoff fürsmischung.
  • One problem is that the reinforcements and the surrounding rubber mixture have different strengths.
  • RFL dips resorcinol-formaldehyde latex
  • blocked isocyanate and / or epoxy compounds in combination with RFL dips are used to further activate the strength carriers.
  • the WO 2005/026239 A1 discloses the use of polyisocyanates and RFL without epoxy compounds.
  • the present invention is based on the object to provide a method for producing a reinforcement layer comprising textile reinforcement, whereby the reinforcement layer produced have the same or even improved adhesion between reinforcements and rubberizing mixture and also should be dispensed with environmentally and harmful substances.
  • Another object of the present invention is a reinforcement layer comprising textile reinforcement, which was prepared by the inventive method.
  • a further object on which the invention is based is to provide a vehicle tire which has improved or at least the same structural durability, wherein environmentally and harmful substances are to be dispensed with in at least one reinforcement layer. It should thus be created at least one environmentally friendly alternative.
  • a vehicle tire comprising in at least one component at least one reinforcement layer according to the invention, which was prepared by the method according to the invention.
  • the reinforcement layer according to the invention or the reinforcement layer of the vehicle tire according to the invention has improved adhesion between the reinforcements and the surrounding rubber mixture, the adhesion level being comparable to the standard RFL dip treated reinforcements.
  • the vehicle tire is preferably a pneumatic vehicle tire.
  • the textile reinforcements in step a) are pretreated by immersion in at least one first bath, wherein the first bath contains at least one blocked polyisocyanate and is free of free resorcinol and free formaldehyde and their precondensates.
  • the textile reinforcements are still ungummed before and after this process step.
  • the first bath is preferably an aqueous dispersion containing, in addition to water and the blocked polyisocyanate, at least one epoxy compound such as glycerol triglyceride ether and / or bisphenol A diglycidyl ether and / or 2,3-epoxybutyl azide formate and / or sorbitol polyglycidyl ether, may contain.
  • the first bath contains at least one epoxy compound, preferably glycerol triglyceride ether, which is known, for example, under the trade name Grilbond® G 1701. Dipping in the reinforcement in this first bath is carried out in a manner known to those skilled in the art. Such a treatment step is also referred to as pre-dip.
  • the first bath is free of free resorcinol and free formaldehyde and their precondensates, ie it contains 0 to 0.01 wt .-%, but preferably 0 wt .-%, of such substances.
  • blocked polyisocyanates are understood as meaning substances which have three or more terminal isocyanate groups which are blocked only by a protective group and are available for further chemical reactions after / during the removal of the protective group.
  • the isocyanates can then be present as a mixture of different molecules with different functionalities, wherein the average number of terminal isocyanate groups corresponds to the average functionality.
  • the blocked polyisocyanate has a functionality of greater than or equal to 3, more preferably 3 to 5, most preferably 3 to 4, for example, in particular 3.3.
  • the blocked polyisocyanate is preferably selected from the group consisting of blocked 1,6-hexamethylene diisocyanate trimer (HDI) and its blocked higher homologues as well as blocked toluene diisocyanate trimer and its blocked higher homologues as well as blocked isophorone diisocyanate trimer and its blocked higher homologs.
  • HDI blocked 1,6-hexamethylene diisocyanate trimer
  • the blocked polyisocyanate is blocked 1,6-hexamethylene diisocyanate trimer or blocked toluene diisocyanate trimer, more preferably 1,6-hexamethylene diisocyanate trimer. Since the 1,6-hexamethylene diisocyanate trimer is formed formally by condensation of three 1,6-hexamethylene diisocyanate molecules on one isocyanate group of the diisocyanates, the 1,6-hexamethylene diisocyanate trimer has three (remaining) terminal isocyanate groups ,
  • the protecting groups of the blocked polyisocyanate (s) may be any protecting group known to those skilled in the art.
  • the protective groups of the blocked polyisocyanate (s) are preferably selected from the group consisting of ketoximes, such as preferably methyl ethyl ketoxime (MEKO), and / or pyrazole derivatives, such as preferably 3,5-dimethylpyrazole (DMP), and / or esters, as preferred malonic acid ester or caprolactam or alkylated phenols.
  • the protective group is preferably methyl ethyl ketoxime and / or 3,5-dimethylpyrazole.
  • the blocked polyisocyanate in process step a) Methyl ethyl ketoxime blocked 1,6-hexamethylene diisocyanate trimer or 3,5-dimethylpyrazole blocked 1,6-hexamethylene diisocyanate trimer.
  • the reinforcements in process step b) are dried at 120 to 180 ° C.
  • the temperature must not be too high, so that there is no deprotection of the blocked isocyanates, to an undesirable To prevent side reaction with the evaporating (residual) water.
  • the duration of the drying step b) is preferably 30 to 120 seconds.
  • the dried reinforcements are heated in process step c) to 160 to 230 ° C to deprotect the isocyanates.
  • the heating time in step c) is preferably 30 to 120 seconds.
  • the reinforcements in process step d) are treated by being dipped in at least one second bath, the second bath containing at least one malein-functionalized polymer and being free of free resorcinol and free formaldehyde and their precondensates.
  • a maleic-functionalized polymer is a polymer which carries maleic groups as functional groups by reaction with maleic acid and / or maleic anhydride.
  • a maleic-functionalized polymer is, for example, under the trade name Ricobond ® 7004 Cray Valley available as an aqueous dispersion.
  • the second bath is preferably an aqueous dispersion which preferably contains at least one VP latex (vinyl pyridine latex, typically 15% vinyl pyridine, 15% styrene and 70% butadiene) in addition to water and the malein functionalized polymer.
  • the aqueous dispersion consists of 90 to 99.9 wt .-% of water, VP latex and said maleic polymer.
  • the aqueous dispersion here preferably comprises 40 to 90% by weight of water and 5 to 40% by weight of VP latex and 1 to 10% by weight of the said maleic polymer.
  • the VP latex is likewise preferably used as aqueous dispersion, the above quantities being based on anhydrous VP latex, or the water content contained in the VP latex dispersion already having been added to the total amount of water of the aqueous dispersion.
  • malein-functionalized polymers by reaction with amines imide functionalities and thus maleimide polymers. Since not all malein groups have to be converted into imide groups, For example, the resulting maleimide polymer has both maleic and imide groups.
  • the maleic polymer used preferably has a molecular weight of 5,000 to 20,000 g / mol, particularly preferably 5,000 to 15,000 g / mol, very particularly preferably 7,000 to 13,000 g / mol, again very particularly preferably 10,500 to 13,000 g / mol. With such a molecular weight of the maleic polymer, sufficient adhesion to the strength member results, and the workability of the dispersion is good.
  • the maleic-functionalized polymer described above is a polybutadiene.
  • the second bath according to step d) is free of free resorcinol and free formaldehyde and their precondensates, i. it contains 0 to 0.01 wt .-%, but preferably 0 wt .-%, of such substances.
  • the combination of the dipping containing the maleic polymer according to step d) with said pre-dip containing polyisocyanates according to step a) leads to improved adhesion results of reinforcing agents to the respective surrounding rubberizing mixture, wherein the advantages in particular in a polyamide, preferably nylon, and a polyester, preferably PET, as textile reinforcing materials in comparison to a pretreatment with blocked diisocyanates known from the prior art.
  • a sufficient level of adhesion is achieved, which is dispensed with environmentally and harmful substances.
  • the reinforcements in process step e) are dried at 120 to 155 ° C. Again, this step is to first remove water so that it does not lead to side reactions in subsequent reactions.
  • the duration of the drying step e) is preferably 30 to 120 seconds.
  • the dried reinforcements are heated to 210 to 250 ° C. in process step f). This serves to react the deprotected substances from the first bath in step a) with the substances from the second bath in step d).
  • the heating time in process step f) is 30 to 120 seconds.
  • the strength carriers treated by method steps a) to f) are gummed according to the invention in step g) with at least one gumming mixture, i. jacketed.
  • the gum mixture for this purpose contains at least one diene rubber selected from the group consisting of natural polyisoprene and / or synthetic polyisoprene and / or butadiene rubber and / or styrene-butadiene rubber, and 20 to 90 phr of at least one filler selected from the group consisting of carbon black and / or silica.
  • the gum mixture may contain polyisoprene (IR, NR) as the diene rubber.
  • IR, NR polyisoprene
  • These may be both cis-1,4-polyisoprene and 3,4-polyisoprene.
  • preference is given to the use of cis-1,4-polyisoprenes having a cis-1,4 content of> 90% by weight.
  • a polyisoprene can be obtained by stereospecific polymerization in solution with Ziegler-Natta catalysts or using finely divided lithium alkyls.
  • natural rubber is such a cis-1,4-polyisoprene
  • the cis-1,4-content in natural rubber is greater than 99% by weight.
  • the rubber mixture contains polybutadiene (BR) as the diene rubber, these may be either cis-1,4- or vinyl-polybutadiene (about 10-90% by weight vinyl content).
  • BR polybutadiene
  • Preference is given to the use of cis-1,4-polybutadiene with a cis-1,4 content greater than 90 wt .-%, which z.
  • styrene-butadiene copolymers can be used as further diene rubbers.
  • the styrene-butadiene copolymers may be solution-polymerized styrene-butadiene copolymers (S-SBR) having a styrene content, based on the polymer, of about 10 to 45% by weight and a vinyl content (content of 1.2 bound butadiene, based on the total polymer) of from 10 to 70% by weight, which can be prepared using, for example, lithium alkyls in organic solvent.
  • S-SBR can also be coupled and end-group modified.
  • E-SBR emulsion-polymerized styrene-butadiene copolymers
  • S-SBR emulsion-polymerized styrene-butadiene copolymers
  • the styrene content of the E-SBR is about 15 to 50% by weight, and the types known in the art obtained by copolymerization of styrene and 1,3-butadiene in aqueous emulsion can be used.
  • the diene rubbers used in the mixture can also be used in a partially or completely functionalized form become.
  • the functionalization can be carried out with groups that can interact with the fillers used, in particular with OH-bearing fillers. It may be z.
  • the gum mixture preferably contains from 25 to 100 phr, particularly preferably from 50 to 100 phr, again particularly preferably from 70 to 100 phr of natural polyisoprene and / or synthetic polyisoprene, in which case natural polyisoprene is preferred.
  • the gumming mixture contains 100 phr of at least one natural polyisoprene (NR) and / or synthetic polyisoprene (IR), whereby a mixture of NR and IR is conceivable.
  • NR natural polyisoprene
  • IR synthetic polyisoprene
  • the gumming mixture contains 25 to 85 phr of at least one natural and / or synthetic polyisoprene and 15 to 50 phr of at least one butadiene rubber and / or 15 to 50 phr of at least one styrene-butadiene rubber.
  • these rubbers particularly in reinforcing layers of vehicle tires, very good physical properties of the rubberizing mixture are manifested in terms of processability, durability and tear properties while achieving a sufficient level of adhesion.
  • the term phr (parts per hundred parts of rubber by weight) used in this document is the quantity used in the rubber industry for mixture formulations.
  • the dosage of the parts by weight of the individual substances is always based on 100 parts by weight of the total mass of all the rubbers present in the mixture.
  • the mass of all rubbers present in the mixture adds up to 100.
  • the gum mixture may contain as fillers carbon blacks and / or silicic acids, the fillers may be used in combination and the total amount of carbon black and silica is 20 to 90 phr. Preferably 30 to 90 phr, more preferably 50 to 70 phr of at least one carbon black are used.
  • the gumming mixture contains 50 to 100 phr of at least one natural and / or synthetic polyisoprene and 30 to 90 phr of at least one carbon black. This results in a particularly good structural durability of the reinforcement layer produced, especially when used in vehicle tires.
  • further fillers such as aluminosilicates, chalk, starch, magnesium oxide, titanium dioxide or rubber gels may be included.
  • CNT carbon nanotubes
  • HCF hollow carbon fibers
  • Graphite and graphene as well as so-called "carbon-silica dual-phase filler” are conceivable as filler.
  • the gum mixture is preferably free of these further fillers, ie it preferably contains 0 to 0.001 phr of these further fillers.
  • Zinc oxide is not considered a filler in the present invention.
  • carbon black When carbon black is used in the gum mixture, it is preferably those types having an STSA surface area (in accordance with ASTM D 6556) of more than 30 m 2 / g, preferably 30 to 120 m 2 / g. These can be easily incorporated and ensure low heat build-up.
  • the gumming mixture contains at least one carbon black which has an iodine adsorption number according to ASTM D 1510 of 40 to 110 g / kg and an STSA surface (according to ASTM D 6556) of 40 to 120 m 2 / g.
  • a carbon black which has an iodine adsorption number according to ASTM D 1510 of 40 to 110 g / kg and an STSA surface (according to ASTM D 6556) of 40 to 120 m 2 / g.
  • a possible preferred type of carbon black is, for example, carbon black N326 having an iodine adsorption number according to ASTM D 1510 of 82 g / kg and an STSA surface (according to ASTM D 6556) of 76 m 2 / g.
  • Another possible preferred type of carbon black is, for example, carbon black N660 having an iodine adsorption number according to ASTM D 1510 of 36 g / kg and an STSA surface (according to ASTM D 6556) of 34 m 2 / g.
  • silicas are present in the mixture, these may be the silicas customary for tire rubber mixtures. It is particularly preferred when a finely divided, precipitated silica is used which has a CTAB surface area (according to ASTM D 3765) of 30 to 350 m 2 / g, preferably from 120 to 250 m 2 / g.
  • CTAB surface area according to ASTM D 3765
  • silicic acids it is possible to use both conventional silica such as VN3 (trade name) from Evonik and highly dispersible silicas, so-called HD silicas (eg Ultrasil 7000 from Evonik). Silicas are preferably used in amounts of less than 15 phr.
  • plasticizers from 0 to 70 phr, preferably from 0.1 to 60 phr, of at least one plasticizer may be present in the gum mixture.
  • plasticizers known to those skilled in the art, such as aromatic, naphthenic or paraffinic mineral oil plasticizers, such as, for example, MES (mild extraction solvate) or TDAE (treated distillate aromatic extract), or rubber-to-liquid oils (RTL) or biomass-to-liquid.
  • MES mill extraction solvate
  • TDAE treated distillate aromatic extract
  • RTL rubber-to-liquid oils
  • mineral oil this is preferably selected from the group consisting of DAE (Distilled Aromatic Extracts) and / or RAE (Residual Aromatic Extract) and / or TDAE (Treated Distilled Aromatic Extracts) and / or MES (Mild Extracted Solvents) and / or naphthenic oils.
  • the vulcanization is carried out in the presence of sulfur and / or sulfur donors, with some sulfur donors can also act as a vulcanization accelerator.
  • Sulfur or sulfur donors are added in the last mixing step in the amounts customary by the skilled person (0.4 to 8 phr, sulfur, preferably in amounts of 0.4 to 4 phr) of the gum mixture.
  • the vulcanization can also be carried out in the presence of very small amounts of sulfur in combination with sulfur-donating substances.
  • the gum mixture may contain vulcanization-affecting substances such as vulcanization accelerators, vulcanization retarders and vulcanization activators in conventional amounts in order to control the time and / or temperature of vulcanization required and to improve the vulcanizate properties.
  • the vulcanization accelerators may be selected, for example, from the following groups of accelerators: thiazole accelerators such as. B. 2-mercaptobenzothiazole, sulfenamide accelerators such as. B. benzothiazyl-2-cyclohexylsulfenamid (CBS), guanidine accelerators such as. N, N'-diphenylguanidine (DPG), dithiocarbamate accelerators such as. Zinc dibenzyldithiocarbamate, disulfides, Thiophosphates.
  • the accelerators can also be used in combination with each other, which can result in synergistic effects.
  • the preparation of the gum mixture is carried out in a conventional manner, wherein first of all a masterbatch containing all constituents except for the vulcanization system (sulfur and vulcanization-affecting substances) is prepared in one or more mixing stages followed by the addition of the curing system is produced. Subsequently, the mixture is processed further.
  • a masterbatch containing all constituents except for the vulcanization system sulfur and vulcanization-affecting substances
  • step g) The gumming of the reinforcement in step g) also takes place in a manner known to those skilled in the art.
  • the textile reinforcements preferably comprise polyethylene terephthalate (PET) and / or polyethylene naphthalate (PEN) and / or polybutylene terephthalate (PBT) and / or polycarbonate (PC) and / or cellulose and / or cellulose esters and / or m-aramid and / or p-aramid and / or a mixture of m-aramid and p-aramid and / or a polyamide which is selected from the group consisting of polyamide 46 (PA 4.6) and / or polyamide 410 (PA 4.10) and / or polyamide 6 (PA 6 ) and / or polyamide 66 (PA 6.6 polyhexamethylene adipamide) and / or polyamide 612 (PA 6.12) and / or polyamide 1010 (PA 10.10) and / or polyamide 1212 (PA 12.12).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • the textile reinforcements particularly preferably comprise polyethylene terephthalate (PET) and / or cellulose and / or cellulose esters and / or polyamide 66 (PA 6.6 polyhexamethylene adipamide).
  • PET polyethylene terephthalate
  • PA 6.6 polyhexamethylene adipamide PA 6.6 polyhexamethylene adipamide
  • the textile reinforcement are preferably cords having at least one twisted yarn.
  • all known in the prior art subtleties (titer in the unit dtex) and twisting of the cords and yarns are conceivable. It is expedient if the denier of each yarn is between 200 and 5000 dtex and if the twist of the yarns and cords is between 100 and 800 t / m.
  • the textile reinforcing materials preferably have the stated properties already before process step a), ie they are first twisted and then treated with process steps a) to f). In the event that the textile reinforcing elements are embedded as a tissue in the rubberizing mixture, preferably after twisting and before the treatment according to the process steps a) to f), as known to those skilled in a weaving step.
  • the reinforcing members are cords of a respective yarn, with which a twisted yarn represents a cord in each case.
  • the strength carriers are cords of at least two, more preferably two, yarns.
  • the reinforcement layer according to the invention or that of the vehicle tire according to the invention cords from different numbers of yarns as reinforcement.
  • the reinforcement layer according to the invention can be used in all components of a vehicle tire, which contain reinforcements, resulting in the above-mentioned advantages in terms of substances and the production and sufficient adhesion.
  • These components are, in particular, the carcass ply and / or the belt (in the belt layer or layers) and / or the belt bandage and / or the bead reinforcement.
  • nylon cords made of two nylon yarns having a thickness of 940 dtex (940 x 2) were passed through a pre-dip containing 95.54 wt .-% water and 0.75 wt .-% Grilbond ® G 1701 and 3 , 71% by weight of Acrafix PCI (DMP-blocked HDI trimer, solids content about 31.5% by weight). Subsequently, the cords were dried for 30 to 120 seconds at 165 ° C and then heated to 225 ° C. These cords were dipped through another dip bath containing 54% by weight of water and 42.4% by weight of VP latex (40% by weight of VP polymer in water, ie 17% by weight of VP).
  • Acrafix PCI DMP-blocked HDI trimer, solids content about 31.5% by weight
  • Latex in the dip and 3.6% by weight of RICOBOND 7004, Cray Valley (30% by weight of maleic polymer in water: mean value from manufacturer's information 25 to 35% by weight). It was then dried again at 140 ° C. for 30 to 120 seconds and then heated to 235 ° C.
  • Comparative Example 1 Nylon cords as textile reinforcement, Pre-dip containing caprolactam blocked MDI, dip containing maleic polymer
  • the cords of Comparative Example 1 was prepared analogously to E1, except that instead of Acrafix PCI (DMP blocked HDI-trimer) Crrilbond ® IL-6 (caprolactam-blocked MDI) was used.
  • the pre-dip containing 96.71 wt .-% water and 2.54 wt .-% ® Grilbond IL-6 and 0.75 wt .-% Grilbond ® G 1,701th
  • the process step of drying involving hot drawing was undisturbed, ie, as known to those skilled in the art. This serves to improve the properties, such as elongation at break, elongation at break and heat shrinkage of the cord by targeted stretching on the to set the desired level. wherein the tension applied to the cord is varied between tension and relaxation.
  • Adhesive tests, so-called peel tests, according to ISO 36: 2011 (E) with evaluation in accordance with DIN ISO 6133 without aging were carried out with the differently treated cords.
  • the strength carrier cords were rubberized with an uncured gum mixture having the composition according to Table 1 (according to process step g)) and then vulcanized.
  • the gumming takes place by placing the cords on or between calendered thin rubber sheets of the gumming compound and then compressing the entire specimen in the heating press. Then, the force for peeling off the mixture from the cords was determined (adhesion), and the coverage of the cords with mixture after peeling was optically determined. 5 means complete coverage, 0 means no rubber remains on the cord.
  • the breaking force, the elongation at 45 N, the shrinkage at 180 ° C and the residual shrinkage based on ASTM D 855 were determined.
  • Table 2 Components of the gum mixture ingredients Quantity (phr) NR / IR 70 BR / SBR 30 Soot N660 50 Processing oil / adhesive resin 5 Other additives a) 8th Resin from resorcinol and formaldehyde donor 5 Sulfur and accelerator 3.3 a) anti-aging agent, ZnO, stearic acid
  • the reinforcement layer produced by means of the method according to the invention shows, as can be seen in Table 2, a comparable or even improved durability, since the adhesion of the reinforcements to the rubber coating mixture is improved. Furthermore, in the example of the invention, the disadvantages associated with resorcinol and formaldehyde are avoided.
  • Cords made of polyester, each made of two polyester yarns (polyethylene terephthalate PET) with a thickness of 1440 dtex (1440 x 2) were obtained by a pre-dip containing 96.71% by weight of water and 0.75% by weight of Crrilbond® G wt .-% EDOLAN ® XCIB (MEKO blocked HDI-trimer) immersed 1701 and 2.54. Subsequently, the cords were dried for 30 to 120 seconds at 160 ° C and then heated to 235 ° C. These dried cords were dipped through another dip bath containing 54% by weight of water and 42.4% by weight of VP latex (40% by weight VP polymer in water) and 3.6% by weight.
  • VP latex 50% by weight VP polymer in water
  • E3 The cords according to Inventive Example 3 (E3) were prepared analogously E2 prepared with the exception that instead of EDOLAN ® XCIB (MEKO a blocked HDI-trimer) (MEKO blocked TDI) 2.54 wt .-% Baygard EDW ® was used.
  • Comparative Example 2 (V2): polyester cords as textile reinforcements, pre-dip containing caprolactam blocked MDI, dip containing maleic polymer
  • the cords according to Comparative Example 2 were prepared analogously to E2 with the exception that was used instead of of EDOLAN ® XCIB (MEKO a blocked HDI-trimer) 2.54 wt .-% Grilbond IL-6 (caprolactam-blocked MDI).
  • the drying step which involves hot drawing, was unaffected by the maleimide polymer, i. as known to the skilled person. This serves to adjust the properties, such as elongation at break, elongation at break and heat shrinkage of the cord by targeted stretching to the desired level. wherein the tension applied to the cord is varied between tension and relaxation.
  • the cords of Examples E2 and E3 and V2 were gummed analogously to Examples E1 and V1 with a gumming mixture according to Table 2 and then the adhesion and coverage as well as the rigidity were tested as described above. Furthermore, the breaking force, the elongation at 45 N, the shrinkage at 180 ° C and the residual shrinkage based on ASTM D 855 were determined.
  • a vehicle tire according to the invention preferably a pneumatic vehicle tire, which contains at least one reinforcement layer produced according to the invention in at least one component, is distinguished by a durability comparable to the prior art, with the activation of adhesion in the dips being based on the use of free resorcinol and formaldehyde as well as resorcinol-formaldehyde Pre-condensates can be dispensed with.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP17169840.0A 2016-06-14 2017-05-08 Procédé de production d'une couche de renfort, couche de renfort et pneu de véhicule Active EP3258006B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016210467.5A DE102016210467A1 (de) 2016-06-14 2016-06-14 Verfahren zur Herstellung einer Festigkeitsträgerlage, Festigkeitsträgerlage und Fahrzeugreifen

Publications (2)

Publication Number Publication Date
EP3258006A1 true EP3258006A1 (fr) 2017-12-20
EP3258006B1 EP3258006B1 (fr) 2019-06-12

Family

ID=58692398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17169840.0A Active EP3258006B1 (fr) 2016-06-14 2017-05-08 Procédé de production d'une couche de renfort, couche de renfort et pneu de véhicule

Country Status (3)

Country Link
EP (1) EP3258006B1 (fr)
DE (1) DE102016210467A1 (fr)
ES (1) ES2742872T3 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106559A1 (fr) 2019-11-27 2021-06-03 株式会社クラレ Fibres modifiées en surface, fibres de renforcement et article moulé les utilisant
EP3848191A1 (fr) * 2020-01-07 2021-07-14 Glanzstoff Industries A.G. Matériau de renfort et produit élastomère renforcé avec celui-ci
CN113840957A (zh) * 2019-03-01 2021-12-24 大陆轮胎德国有限公司 水性浸渍组合物
WO2022044460A1 (fr) 2020-08-25 2022-03-03 株式会社クラレ Fibres de renforcement et corps moulé utilisant lesdites fibres de renforcement
WO2023030988A1 (fr) * 2021-09-03 2023-03-09 Continental Reifen Deutschland Gmbh Matériau composite en tant que protection contre l'abrasion pour pneus de véhicule, et procédé de production

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472463A (en) * 1982-12-06 1984-09-18 The B. F. Goodrich Company Two-step process for dipping textile cord or fabric and resorcinol/formaldehyde-free composition used therein
WO1999009036A1 (fr) 1997-08-21 1999-02-25 Osi Specialties, Inc. Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge
WO2001068784A1 (fr) * 2000-03-16 2001-09-20 Dayco Products, Llc Composition adhesive et procede permettant de coller des textiles sur un caoutchouc epdm
WO2005026239A1 (fr) 2003-09-12 2005-03-24 Teijin Twaron B.V. Procede de trempage de fibres synthetiques a deux etapes
DE102006004062A1 (de) 2006-01-28 2007-08-09 Degussa Gmbh Kautschukmischungen
WO2008083244A1 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des polysulfures à noyau silylé
WO2008083242A1 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des polysulfures à noyau cyclique silylé
WO2008083241A2 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des compositions de charge à écoulement libre
WO2008083243A1 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des compositions de charge à écoulement libre
DE102008037714A1 (de) 2008-07-31 2010-02-04 Continental Reifen Deutschland Gmbh Kautschukmischung mit umweltfreundlichem Weichmacher
JP2013064037A (ja) * 2011-09-15 2013-04-11 Bridgestone Corp 有機繊維コード用接着剤組成物及びそれを用いた接着方法、並びにゴム補強材及びタイヤ
EP2589619A1 (fr) 2010-06-30 2013-05-08 Sumitomo Chemical Company Limited Méthode d'utilisation de l'acide s-(3-aminopropyl)thiosulfurique et/ou de sel métallique de celui-ci
EP1745079B1 (fr) 2004-05-14 2014-01-22 Cray Valley USA, LLC Procede permettant de faire adherer un tissu a du caoutchouc, tissu traite et composites tissu-caoutchouc
DE102014211365A1 (de) 2014-06-13 2015-12-17 Continental Reifen Deutschland Gmbh Festigkeitsträgerlage und Fahrzeugreifen

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4472463A (en) * 1982-12-06 1984-09-18 The B. F. Goodrich Company Two-step process for dipping textile cord or fabric and resorcinol/formaldehyde-free composition used therein
WO1999009036A1 (fr) 1997-08-21 1999-02-25 Osi Specialties, Inc. Agents de couplage a base de mercaptosilanes bloques, utilises dans des caoutchoucs a charge
WO2001068784A1 (fr) * 2000-03-16 2001-09-20 Dayco Products, Llc Composition adhesive et procede permettant de coller des textiles sur un caoutchouc epdm
WO2005026239A1 (fr) 2003-09-12 2005-03-24 Teijin Twaron B.V. Procede de trempage de fibres synthetiques a deux etapes
US20060280942A1 (en) * 2003-09-12 2006-12-14 Teijin Twaron B.V. Two-step method for dipping synthetic fiber
EP1745079B1 (fr) 2004-05-14 2014-01-22 Cray Valley USA, LLC Procede permettant de faire adherer un tissu a du caoutchouc, tissu traite et composites tissu-caoutchouc
DE102006004062A1 (de) 2006-01-28 2007-08-09 Degussa Gmbh Kautschukmischungen
WO2008083244A1 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des polysulfures à noyau silylé
WO2008083241A2 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des compositions de charge à écoulement libre
WO2008083243A1 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des compositions de charge à écoulement libre
WO2008083242A1 (fr) 2006-12-28 2008-07-10 Continental Ag Compositions pour pneus et constituants contenant des polysulfures à noyau cyclique silylé
DE102008037714A1 (de) 2008-07-31 2010-02-04 Continental Reifen Deutschland Gmbh Kautschukmischung mit umweltfreundlichem Weichmacher
EP2589619A1 (fr) 2010-06-30 2013-05-08 Sumitomo Chemical Company Limited Méthode d'utilisation de l'acide s-(3-aminopropyl)thiosulfurique et/ou de sel métallique de celui-ci
JP2013064037A (ja) * 2011-09-15 2013-04-11 Bridgestone Corp 有機繊維コード用接着剤組成物及びそれを用いた接着方法、並びにゴム補強材及びタイヤ
DE102014211365A1 (de) 2014-06-13 2015-12-17 Continental Reifen Deutschland Gmbh Festigkeitsträgerlage und Fahrzeugreifen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Bestimmung per GPC = gel permeation chromatography", ANLEHNUNG AN BS ISO 11344, 2004
DATABASE WPI Week 201327, Derwent World Patents Index; AN 2013-F40912, XP002774724 *
J. SCHNETGER: "Lexikon der Kautschuktechnik", 1991, HÜTHIG BUCH VERLAG, HEIDELBERG, pages: 42 - 48

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840957A (zh) * 2019-03-01 2021-12-24 大陆轮胎德国有限公司 水性浸渍组合物
WO2021106559A1 (fr) 2019-11-27 2021-06-03 株式会社クラレ Fibres modifiées en surface, fibres de renforcement et article moulé les utilisant
KR20220101644A (ko) 2019-11-27 2022-07-19 주식회사 쿠라레 표면 개질 섬유, 보강 섬유, 및 그것을 사용한 성형체
EP3848191A1 (fr) * 2020-01-07 2021-07-14 Glanzstoff Industries A.G. Matériau de renfort et produit élastomère renforcé avec celui-ci
WO2022044460A1 (fr) 2020-08-25 2022-03-03 株式会社クラレ Fibres de renforcement et corps moulé utilisant lesdites fibres de renforcement
KR20230058062A (ko) 2020-08-25 2023-05-02 주식회사 쿠라레 보강 섬유, 및 그것을 사용한 성형체
WO2023030988A1 (fr) * 2021-09-03 2023-03-09 Continental Reifen Deutschland Gmbh Matériau composite en tant que protection contre l'abrasion pour pneus de véhicule, et procédé de production

Also Published As

Publication number Publication date
DE102016210467A1 (de) 2017-12-14
EP3258006B1 (fr) 2019-06-12
ES2742872T3 (es) 2020-02-17

Similar Documents

Publication Publication Date Title
EP3655243B1 (fr) Procédé pour la fabrication d'un pneu de véhicule et pneu de véhicule fabriqué selon le procédé et utilisation de supports de renfort traités
EP3258006B1 (fr) Procédé de production d'une couche de renfort, couche de renfort et pneu de véhicule
DE102014211365A1 (de) Festigkeitsträgerlage und Fahrzeugreifen
EP3049255B1 (fr) Mélange de caoutchouc réticulable au soufre et pneu de véhicule
EP3258008B1 (fr) Procédé de fabrication d'une couche de renfort
EP2674452B1 (fr) Mélange de gommage pouvant être mis en réseau de souffre
WO2021197648A1 (fr) Mélange de revêtement en caoutchouc réticulable au soufre
EP3649191B1 (fr) Mélange de caoutchoucs réticulable au soufre
EP3258007B1 (fr) Procédé de fabrication d'une couche de renfort
EP3932984B1 (fr) Pneumatique de véhicule
DE102014225821A1 (de) Verfahren zur Herstellung eines Fahrzeugreifens, der wenigstens eine Festigkeitsträgerlage mit Polyhexamethylenadipinamid als Festigkeitsträgermaterial aufweist, und Fahrzeugreifen
EP3219510A1 (fr) Mélange de caoutchoutage réticulable à l'aide de soufre
EP4126561A1 (fr) Mélange de revêtement de caoutchouc réticulable au soufre
DE102018212821A1 (de) Schwefelvernetzbare Kautschukmischung
EP2817367B1 (fr) Mélange de gommage pouvant être mis en réseau de souffre
DE102018213701A1 (de) Schwefelvernetzbare Kautschukmischung
EP3636451B1 (fr) Mélange de caoutchouc réticulable au soufre
DE102009003735A1 (de) Kautschukmischung
EP3907254A1 (fr) Mélange d'engommage réticulable au soufre
EP3907257A1 (fr) Mélange d'engommage réticulable au soufre
DE102018213702A1 (de) Schwefelvernetzbare Kautschukmischung
WO2023051878A1 (fr) Produit élastomère
DE102020214552A1 (de) Kautschukmischung zur Ummantelung von Festigkeitsträgern, Festigkeitsträger, der mit der Kautschukmischung ummantelt ist, Fahrzeugreifen aufweisend wenigstens einen Festigkeitsträger sowie Verwendung der Kautschukmischung in Gurten, Riemen und Schläuchen
EP2628765A1 (fr) Mélange de caoutchouc pouvant être mis en réseau avec du souffre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180620

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: D06M 101/06 20060101ALN20181123BHEP

Ipc: D06M 11/79 20060101ALI20181123BHEP

Ipc: D06M 13/395 20060101ALI20181123BHEP

Ipc: D06M 11/74 20060101AFI20181123BHEP

Ipc: D06M 15/356 20060101ALI20181123BHEP

Ipc: D06M 15/693 20060101ALI20181123BHEP

Ipc: D06M 101/36 20060101ALN20181123BHEP

Ipc: D06M 15/263 20060101ALI20181123BHEP

Ipc: D06M 101/34 20060101ALN20181123BHEP

Ipc: D06M 101/32 20060101ALN20181123BHEP

Ipc: D06M 15/285 20060101ALI20181123BHEP

Ipc: D06M 101/08 20060101ALN20181123BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1142680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001523

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2742872

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001523

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

26N No opposition filed

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1142680

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 7

Ref country code: DE

Payment date: 20230531

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230725

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017001523

Country of ref document: DE

Owner name: CONTINENTAL REIFEN DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL REIFEN DEUTSCHLAND GMBH, 30165 HANNOVER, DE