EP3251468B1 - Heizvorrichtung, besonders halbdurchsichtig - Google Patents

Heizvorrichtung, besonders halbdurchsichtig Download PDF

Info

Publication number
EP3251468B1
EP3251468B1 EP16701766.4A EP16701766A EP3251468B1 EP 3251468 B1 EP3251468 B1 EP 3251468B1 EP 16701766 A EP16701766 A EP 16701766A EP 3251468 B1 EP3251468 B1 EP 3251468B1
Authority
EP
European Patent Office
Prior art keywords
heating
equal
layer
transparent
heating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16701766.4A
Other languages
English (en)
French (fr)
Other versions
EP3251468A1 (de
Inventor
Jean-Pierre Simonato
Alexandre Carella
Caroline Celle
Abdou DJOUADI
Guillaume DROVAL
Sylvain SIM
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Nantes
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Universite de Nantes
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Universite de Nantes, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP3251468A1 publication Critical patent/EP3251468A1/de
Application granted granted Critical
Publication of EP3251468B1 publication Critical patent/EP3251468B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/034Heater using resistive elements made of short fibbers of conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the present invention relates to a novel multilayer heating device based on nanomaterials coated with aluminum nitride.
  • such a device can have both good low-voltage heating properties and high transparency, making it advantageously suitable for use as a transparent conductive film for heating and / or demisting systems for which it is required a visibility requirement.
  • TCOs transparent conductive oxides
  • ITO indium oxide doped with tin
  • Zhang et al. [3] which propose a hybrid film architecture based on silver nanowires (AgNWs) and graphene oxide (rLGO), exhibiting good performance in terms of transparency and thermal conductivity.
  • the present invention aims to provide a novel multilayer heating device, allowing rapid and homogeneous heating of a surface to be obtained, while exhibiting high transparency properties.
  • aluminum nitride is usually crystallized by molecular beam epitaxy techniques (MBE for “Molecular Beam Epitaxy”) or by vapor phase epitaxy (MOCVD for “Metal Organic Chemical Vapor Deposition”. English). These techniques require high temperatures, greater than 950 ° C., incompatible with a surface deposition of metallic nanowires, the latter being altered at high temperature and liable to lose their structural properties.
  • MBE molecular beam epitaxy
  • MOCVD vapor phase epitaxy
  • the heating device according to the invention proves to be advantageous in several ways.
  • such a device has good low-voltage heating properties and makes it possible to restore, in a uniform manner, the heat produced at the surface of the device.
  • Such performance is particularly sought after when it is desired to obtain a rapid effect from starting the heating system, for example in the context of an application for a demisting system, in particular for vehicles.
  • a heating device can combine both heating and optical transparency properties, which makes it suitable for the design of various semi-transparent heating and / or demisting systems. and transparent, for example for glazing, shower panels, glasses, heating elements of optoelectronic devices, etc.
  • a heating device can exhibit an overall transmittance, over the whole of the visible spectrum, of at least 50%, advantageously of at least 70% and more particularly of at least 80%.
  • the heating device according to the invention can advantageously be prepared by large-area and low-temperature printing techniques.
  • substrate refers to a solid base structure on at least one of the faces of which the heating layer and the thermal diffusion layer are formed.
  • the basic substrate can be of various kinds.
  • the substrate can be a flexible or a rigid substrate.
  • the substrate can be transparent, translucent, opaque or colored.
  • the substrate is chosen in a suitable manner with regard to the intended application for the heating device.
  • the substrate is chosen from semi-transparent or transparent substrates.
  • semi-transparent is understood to mean, according to the invention, a structure / layer exhibiting a transmittance, over the whole of the visible spectrum, of greater than or equal to 50%.
  • the transmittance of a given structure represents the light intensity passing through the structure on the visible spectrum. It can be measured by UV-Vis-IR spectrometry, for example using an integrating sphere on a Varian Carry 5000 type spectrometer.
  • the transmittance on the visible spectrum corresponds to the transmittance for wavelengths between 350 and 800 nm.
  • a structure / layer exhibiting a transmittance greater than or equal to 80% is qualified as “transparent” according to the invention.
  • the substrate can thus be a substrate made of glass or of transparent polymers such as polycarbonate, polyolefins, polyethersulfone, polysulfone, phenolic resins, epoxy resins, polyester resins, polyimide resins, polyetherester resins, polyetheramide resins.
  • transparent polymers such as polycarbonate, polyolefins, polyethersulfone, polysulfone, phenolic resins, epoxy resins, polyester resins, polyimide resins, polyetherester resins, polyetheramide resins.
  • the base substrate can be glass or polyethylene naphthalate.
  • the substrate may in particular have a thickness of between 500 nm and 1 cm, in particular between 200 ⁇ m and 5 mm.
  • the “heating layer”, carried by the base substrate refers to an electrically conductive layer formed of at least one percolating network of nano-objects, the nano-objects including at least metal nanowires. .
  • the metal nanowires can more particularly be chosen from silver, gold and / or copper nanowires.
  • the metallic nanowires represent at least 40%, in particular at least 60%, of the total mass of the nano-objects of the heating layer.
  • the heating layer can comprise, in addition to metallic nanowires, carbon nanotubes and / or graphene, or their derivatives such as, for example, graphene oxides.
  • the heating layer may be in the form of a single layer formed of a percolating network of nano-objects.
  • the heating layer can be formed from a percolating network of metallic nanowires.
  • the heating layer may have a multilayer percolating network.
  • the percolating network of multilayer nano-objects is formed from at least two sub-layers of nano-objects of distinct compositions, in particular based on different nano-objects, at least one of the sub-layers comprising, or even being formed of metallic nanowires.
  • At least one of the sub-layers, in particular the upper layer, is formed of metallic nanowires.
  • a heating layer comprising at least two different types of nano-objects is hereinafter referred to as a “hybrid” heating layer.
  • a hybrid heating layer can consist of a percolating network formed of a first layer of nano-objects, other than metallic nanowires, for example of carbon nanotubes, and of a second layer of nanowires metallic.
  • the heating layer has a transmittance, over the entire visible spectrum, greater than or equal to 50%, in particular greater than or equal to 70% and more particularly greater than or equal to 80%.
  • the density of nano-objects of the percolating network of the heating layer according to the invention is between 100 ⁇ g / m 2 and 500 mg / m 2 .
  • Those skilled in the art are able to adjust the density of nano-objects to be implemented in order to obtain a percolating and conductive network. Indeed, if the network of nano-objects is not dense enough, no conduction path is possible, and the layer will not be conductive. From a certain density of nano-objects, the network becomes percolating and the charge carriers can be transported over the entire surface of the heating layer.
  • the heating layer of a device according to the invention has a surface resistance of less than or equal to 500 ohm / square.
  • the surface resistance can be measured by techniques known to those skilled in the art, for example by a 4-point resistivity meter, for example of the Loresta EP type.
  • the heating layer of the device according to the invention has a surface resistance less than or equal to 200 ohm / square, preferably less than or equal to 100 ohm / square and more preferably less than or equal to 60 ohm / square.
  • a low electrical resistance makes it possible to improve the heating performance, the thermal power dissipated by the heating film being proportional to V 2 / R (Joule effect), V representing the voltage applied to the terminals of the heating layer (in direct current DC) and R the resistance of the heating layer from one terminal to the other.
  • a heating layer according to the invention thus exhibits good heating properties at low voltage. More particularly, it makes it possible to reach a temperature of at least 80 ° C by applying low voltages, for example voltages below 12 V.
  • the heating layer according to the invention also has properties of high transparency.
  • the heating layer advantageously has, over the whole of the visible spectrum, a transmittance greater than or equal to 50%.
  • the heating layer has a transmittance, over the whole of the visible spectrum, of greater than or equal to 70%, in particular greater than or equal to 80%.
  • a heating layer according to the invention can advantageously combine properties of high electrical conductivity and optical transparency, allowing its use to form a semi-transparent or transparent heating device, as detailed in the remainder of the text.
  • the thickness of the heating layer of a heating device according to the invention can be between 1 nm and 10 ⁇ m, in particular between 5 nm and 800 nm.
  • the nano-objects can be prepared beforehand according to synthesis methods known to those skilled in the art.
  • silver nanowires can be synthesized according to the synthesis method described in the publication Nanotechnology, 2013, 24, 215501 [4].
  • Copper nanowires can be obtained by the method described in the publication Nanoresearch 2014, pp 315-324 [5].
  • the carbon nanotubes can be mono and / or multi-wall nanotubes, purified or unpurified, functionalized or non-functionalized; they can be obtained according to known techniques, for example by laser ablation, CVD or arc discharge.
  • the percolating network can be obtained by depositing on the surface of the base substrate one or more suspensions of nano-objects in a solvent medium (water, methanol, isopropanol, etc.), followed by the evaporation of the solvent or solvents.
  • a solvent medium water, methanol, isopropanol, etc.
  • the metallic nano-objects can be dispersed beforehand in an easily evaporable organic solvent (for example methanol, isopropanol), or else dispersed in an aqueous medium in the presence of a surfactant.
  • an easily evaporable organic solvent for example methanol, isopropanol
  • the suspension of nano-objects can then be deposited on the surface of the substrate according to methods known to those skilled in the art, the most used techniques being deposition by nebulization (“spray-coating”), jet deposition. ink, dip deposition, film pull deposition, impregnation deposition, doctor blade deposition, flexogravure, etc.
  • the heating layer is formed by depositing by nebulization of one or more suspensions of the nano-objects in a solvent medium, followed by the evaporation of the solvent or solvents.
  • the solvent or solvents of the suspension of nano-objects are then evaporated in order to form a percolating network of nano-objects allowing the passage of the current.
  • the network of nano-objects for example nanowires, can be annealed at a temperature between 100 and 150 ° C.
  • the percolating network of the heating layer of a device according to the invention can consist of several layers of nano-objects. superimposed. In this case, the steps of depositing the suspension of nano-objects and evaporating the solvent are repeated as many times as it is desired to obtain layers of nano-objects.
  • the heating layer is coated in whole or in part with a layer of aluminum nitride (AIN), called a “thermal diffusion layer”.
  • AIN aluminum nitride
  • Aluminum nitride films exhibit particularly advantageous properties in terms of electrical insulation and thermal conductivity, depending on their crystalline quality.
  • the layer of AIN covers the whole of the heating layer.
  • a thermal diffusion layer according to the invention has a thermal conductivity greater than or equal to 20 WK -1 .m -1 , in particular between 80 and 250 WK -1 .m -1 .
  • Thermal conductivity gives the ability of a material to dissipate heat. It can be measured by a hot-band transient type technique.
  • Such a thermal diffusion layer makes it possible to restore the heat produced by the underlying heating layer, uniformly over the entire exposed surface of the heating device.
  • the superposition according to the invention of a heating layer having a low surface resistance and a thermal diffusion layer with high thermal conductivity allows access, in a very short time, to a uniform heating of the entire surface of the heater.
  • Such a device is particularly advantageous for applications for heating systems, for example automobile demisting / defrosting, for which it is desired to obtain a rapid effect from starting the heating system.
  • the thermal diffusion layer has a thickness of between 50 nm and 5 ⁇ m, in particular between 80 nm and 800 nm.
  • the AlN layer according to the invention advantageously exhibits high transparency.
  • the AlN layer has a transmittance, over the whole of the visible spectrum, of greater than or equal to 50%, in particular greater than or equal to 70%, and more particularly greater than or equal to 80%.
  • the inventors take advantage of recent optimizations of deposition techniques by magnetron sputtering to access, at low temperature, a thin film of AlN of good crystalline quality and having good thermal conductivity.
  • the thermal diffusion layer of a device according to the invention can be formed, at the surface of the percolating network of nano-objects, by magnetron sputtering in continuous DC mode or pulsed at high power HiPIMS (for "High Power Impulse Magnetron Sputtering ”in English).
  • the technique of depositing a thin film on a substrate by magnetron sputtering consists, in general, in bombarding a target, which forms the cathode of a magnetron reactor and which is made in the material to be deposited, with ions from an electric discharge (plasma). This ion bombardment causes the target to sputter in the form of a “vapor” of atoms or molecules which are deposited, in the form of a thin layer, on the substrate placed near the magnetron target.
  • HiPIMS technology advantageously makes it possible to generate very high instantaneous currents while maintaining a reduced heating of the target due to the use of pulses of short durations.
  • a thin layer of AlN with good crystallinity can more particularly be produced by magnetron sputtering from an aluminum target and a reactive argon / nitrogen mixture.
  • it is formed at a temperature less than or equal to 250 ° C, and more particularly less than or equal to 200 ° C.
  • the multilayer heating device according to the invention can, in an advantageous manner, have both good heating performance and high transparency.
  • a heating device can exhibit an overall transmittance over the whole of the visible spectrum of at least 50%, in particular greater than or equal to 70% and more particularly greater than or equal to 80%.
  • all transmittance is understood to mean the transmittance of the whole of the structure formed by the stack of substrate, heating layer and thermal diffusion layer according to the invention.
  • a heating device according to the invention can be used as a thin transparent heating film for various applications, in particular in heating and / or demisting systems.
  • the heating device according to the invention can be used by applying a voltage between two opposite edges of the heating layer.
  • two non-transparent conductive strips can be deposited on the base substrate, in contact with two opposite edges of the heating layer, as shown in figure 1 .
  • These bands can be, for example, made from metallic paste or silver lacquer, in order to allow a better connection with the external electrical supply systems.
  • the power supply of the system incorporating a heating device can be fixed or nomadic, for example a battery, a cell or a photovoltaic cell, and supplied continuously or discontinuously.
  • the present invention thus relates to a heating and / or demisting system comprising a heating device as described above, in particular a semi-transparent or transparent heating device.
  • the heating and / or demisting system can relate to all types of systems known from the state of the art requiring the use of a heating film, in particular with high transparency.
  • the system can be implemented for example for a glazing, a shower panel, a mirror element, a visor, a mask, glasses, a radiator, a heating element of an optoelectronic device, a transparent food container, for example. example a bottle.
  • a heating device produced with a flexible and transparent base substrate, can be implemented for a transparent heating element (transparent electrode) in an optoelectronic device, for example a display screen .
  • a heating and semi-transparent device according to the invention can also be implemented for a heated windshield, the heating device being intended to heat the windshield with the aim of demisting or defrosting it.
  • the performances of the heating device according to the invention in terms of heating and high transparency allow rapid access, in the context of an application for an automobile windshield, to a clear vision, after activation of the heating device.
  • Total transmittance is measured using an integrating sphere on a Varian Carry 5000 spectrometer.
  • the transmittance on the visible spectrum corresponds to the transmittance for wavelengths between 350 and 800 nm.
  • the transmittance is measured every 2nm.
  • the surface electrical resistance is measured by a 4-point resistivity meter of the Loresta EP type.
  • silver nanowires are synthesized and purified according to the process described in the document Nanotechnology, 2013, 24, 215501 [4].
  • nanowires are deposited on Eagle XG TM glass (Corning) (substrate (11)) according to a nebulization deposition process (“spray-coating” in English).
  • the material thus deposited, constituting the heating layer (12), has a square resistance of 28 ohm / square.
  • the electrical contacts (21) are repeated on two opposite edges by using a silver lacquer or a metallic film deposit, for example by CVD or PVD.
  • the aluminum nitride (AIN) is deposited on this heating layer (12) by magnetron sputtering in direct current. During this deposition, the electrical contact times are protected to be used subsequently in order to apply a potential to the device.
  • the power used is 175 W.
  • the ratio of the quantities of nitrogen and argon QN 2 / (QN 2 + QAr) is 25%.
  • the deposition rate is approximately 40 nm / min, which allows precise control of the thickness of the deposited AlN layer.
  • the deposition is carried out for 5 minutes which makes it possible to obtain a layer (13) of 200 nm.
  • This heating device (1) has an overall transmittance, measured using an integrating sphere on a Varian Carry 5000 spectrometer, of 85% minimum over the entire visible spectrum.
  • a temperature of 51 ° C is reached in less than a minute, uniformly over the entire surface of the heating device.
  • carbon nanotubes (CSP3 type from Carbon solution) are dispersed in NMP (N-methylPyrrolidone) and deposited on Eagle XG TM glass (Corning) using a spray-coating process. »In English). The transmittance of the deposited layer, over the entire visible spectrum, is 99.2%.
  • Silver nanowires are synthesized and purified according to the process described in the document Nanotechnology, 2013, 24, 215501 . These nanowires are deposited on the layer of carbon nanotubes.
  • Repetitions of electrical contacts (21) are made on two opposite edges by using a silver lacquer or a metallic film deposit, for example by CVD.
  • Aluminum nitride (AIN) is deposited on this heating layer as described in Example 1.
  • This device (1) has an overall transmittance of 88% minimum over the entire visible spectrum.
  • a heating device (1) similar to that described in Example 1 is produced, by implementing instead of silver nanowires, copper nanowires manufactured according to the process described in the publication. Nanoresearch 2014, pp 315-324 [5].
  • the heating layer (12) thus produced has a square resistance of 53 ohm / square.
  • This device has an overall transmittance of 82% minimum over the entire visible spectrum.
  • a heating device (1) similar to that described in Example 1 is produced, by implementing instead of the glass substrate, a substrate (11) made of polyethylene naphthalate 125 ⁇ m thick.
  • the heating layer (12) thus produced has a square resistance of 19 ohm / square.
  • This device has an overall transmittance of 90% minimum over the entire visible spectrum.

Landscapes

  • Surface Heating Bodies (AREA)
  • Laminated Bodies (AREA)

Claims (19)

  1. Heizvorrichtung, umfassend:
    - ein Basissubstrat (11);
    - eine elektrisch leitende Schicht (12), sogenannte Heizschicht, welche von dem Substrat getragen wird und aus wenigstens einem perkolierenden Netzwerk von Nanoobjekten besteht, die metallische Nanodrähte umfassen; dadurch gekennzeichnet, dass die Heizvorrichtung umfasst
    - eine Wärmediffusionsschicht (13) auf Basis von Aluminiumnitrid, welche die gesamte Heizschicht (12) oder einen Teil dieser bedeckt.
  2. Vorrichtung nach Anspruch 1, bei der die Heizschicht (12) über das gesamte sichtbare Spektrum eine Durchlässigkeit von mehr als oder gleich 50 %, insbesondere von mehr als oder gleich 70 % und weiterhin insbesondere von mehr als oder gleich 80 % aufweist.
  3. Vorrichtung nach Anspruch 1 oder 2, bei der die Heizschicht (12) einen Flächenwiderstand von weniger als oder gleich 500 Ohm/Quadrat, insbesondere von weniger als oder gleich 200 Ohm/Quadrat, vorzugsweise von weniger als oder gleich 100 Ohm/Quadrat und weiterhin bevorzugt von weniger als oder gleich 60 Ohm/Quadrat aufweist.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die metallischen Nanodrähte wenigstens 40 Gew.-%, insbesondere wenigstens 60 % der Gesamtmasse der Nanoobjekte der Heizschicht (12) ausmachen.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die metallischen Nanodrähte aus Silber-, Gold- und/oder Kupfernanodrähten ausgewählt sind und bei der die Heizschicht (12) eventuell ferner metallische Nanodrähte, Kohlenstoff-Nanoröhren und/oder Graphen oder deren Derivate umfasst.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das perkolierende Netzwerk von Nanoobjekten der Heizschicht (12) eine Dichte an Nanoobjekten im Bereich zwischen 100 µg/m2 und 500 mg/m aufweist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Heizschicht (12) in Form einer einzigen Schicht vorliegt, die aus einem perkolierenden Netzwerk von Nanoobjekten, insbesondere aus einem perkolierenden Netzwerk von metallischen Nanodrähten gebildet ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, bei der die Heizschicht (12) ein mehrlagiges perkolierendes Netzwerk aufweist, das aus wenigstens zwei Unterschichten von Nanoobjekten unterschiedlicher Zusammensetzung gebildet ist, wobei wenigstens eine der Unterschichten metallische Nanodrähte umfasst, sogar von diesen gebildet ist.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Heizschicht (12) eine Dicke im Bereich zwischen 1 nm und 10 µm, insbesondere zwischen 5 nm und 800 nm aufweist.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Wärmediffusionsschicht (13) eine Wärmeleitfähigkeit von mehr als oder gleich 20 W.K 1.m-1, insbesondere im Bereich zwischen 80 und 250 W.K-1.m-1 aufweist.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die Wärmediffusionsschicht (13) eine Dicke im Bereich zwischen 50 nm und 5 µm, insbesondere zwischen 80 und 800 nm aufweist, und bei der die Wärmediffusionsschicht (13) die gesamte Heizschicht (12) bedeckt.
  12. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das Basissubstrat (11) ein transparentes oder halbtransparentes Substrat ist, insbesondere aus Glas oder aus transparenten Polymeren wie Polycarbonat, Polyolefinen, Polyethersulfon, Polysulfon, Phenolharzen, Epoxidharzen, Polyesterharzen, Polyimidharzen, Polyetheresterharzen, Polyetheramidharzen, Polyvinyl(acetat), Cellulosenitrat, Celluloseacetat, Polystyrol, Polyurethanen, Polyacrylnitril, Polytetrafluorethylen, Polyacrylate wie Polymethylmethacrylat, Polyarylat, Polyetherimiden, Polyetherketonen, Polyetheretherketon, Polyvinylidfluorid, Polyestern wie Polyethylenterephthalat oder Polyethylennaphthalat, Polyamiden, Zirkon oder ihren Derivaten; vorzugsweise besteht das Basissubstrat Glas oder Polyethylennaphthalat.
  13. Vorrichtung nach einem der vorstehenden Ansprüche, halbtransparent oder transparent, bei der:
    - das Basissubstrat (11) halbtransparent oder transparent ist, insbesondere so wie in dem vorhergehenden Anspruch definiert; und
    - die Heizschicht (12) über das gesamte sichtbare Spektrum eine Durchlässigkeit von mehr als oder gleich 50 %, insbesondere von mehr als oder gleich 70 % und weiterhin insbesondere von mehr als oder gleich 80 % aufweist.
  14. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass sie über das gesamte sichtbare Spektrum eine Gesamtdurchlässigkeit von wenigstens 50 %, insbesondere von mehr als oder gleich 70 % und weiterhin insbesondere von mehr als oder gleich 80 % aufweist.
  15. Verfahren zur Herstellung einer Heizvorrichtung, umfassend wenigstens die Schritte, die darin bestehen:
    (i) ein Basissubstrat (11) zur Verfügung zu haben, von welchem eine der Flächen wenigstens teilweise mit einer elektrisch leitenden Schicht (12), sogenannten Heizschicht bedeckt ist, die aus wenigstens einem perkolierenden Netzwerk von Nanoobjekten besteht, welche metallische Nanodrähte umfassen; und dadurch gekennzeichnet, dass das Verfahren einen Schritt umfasst, der darin besteht
    (ii) auf der gesamten freiliegenden Oberfläche der Heizschicht oder einem Teil dieser eine Wärmediffusionsschicht (13) auf der Basis von Aluminiumnitrid mittels Gleichstrom- oder Hochleistungsimpuls-Magnetron-Kathoden-Sputtern bei einer Temperatur von streng unter 280 °C auszubilden.
  16. Verfahren nach dem vorhergehenden Anspruch, bei dem die Wärmediffusionsschicht (13) in Schritt (ii) bei einer Temperatur von weniger als oder gleich 250 °C, insbesondere von weniger als oder gleich 200 °C gebildet wird.
  17. Verfahren nach Anspruch 15 oder 16, bei dem die Heizschicht (12), die von dem Substrat aus Schritt (i) getragen wird, zuvor durch Abscheiden mittels Zerstäuben von einer oder mehreren Suspensionen der Nanoobjekte in einem Lösungsmittelmedium gebildet wird, woran sich das Verdampfen des oder der Lösungsmittel(s) anschließt.
  18. Heiz- und/oder Entfeuchtungssystem, umfassend eine Heizvorrichtung, wie in einem der Ansprüche 1 bis 14 definiert oder wie durch ein Verfahren nach einem der Ansprüche 15 bis 17 erhalten.
  19. System nach dem vorhergehenden Anspruch, umfassend eine transparente oder halbtransparente Heizvorrichtung wie in den Ansprüchen 13 oder 14 definiert, wobei das System für eine Verglasung, eine Duschwand, ein Spiegelelement, ein Visier, eine Maske, eine Brille, ein Heizgerät, ein Heizelement eines optoelektronischen Gerätes oder einen transparenten Lebensmittelbehälter verwendet wird.
EP16701766.4A 2015-01-28 2016-01-27 Heizvorrichtung, besonders halbdurchsichtig Active EP3251468B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550666A FR3032084B1 (fr) 2015-01-28 2015-01-28 Dispositif chauffant, en particulier semi-transparent
PCT/EP2016/051648 WO2016120302A1 (fr) 2015-01-28 2016-01-27 Dispositif chauffant, en particulier semi-transparent

Publications (2)

Publication Number Publication Date
EP3251468A1 EP3251468A1 (de) 2017-12-06
EP3251468B1 true EP3251468B1 (de) 2020-11-18

Family

ID=53269652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16701766.4A Active EP3251468B1 (de) 2015-01-28 2016-01-27 Heizvorrichtung, besonders halbdurchsichtig

Country Status (4)

Country Link
US (1) US20180014359A1 (de)
EP (1) EP3251468B1 (de)
FR (1) FR3032084B1 (de)
WO (1) WO2016120302A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637920B1 (ko) * 2015-01-06 2016-07-08 연세대학교 산학협력단 투명필름히터 및 그의 제조방법
KR101812024B1 (ko) * 2016-06-10 2017-12-27 한국기계연구원 열선 및 이를 포함하는 면상 발열 시트
FR3056070B1 (fr) * 2016-09-13 2018-10-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reseau percolant de nanofils pour chauffage localise.
FR3066349B1 (fr) * 2017-05-12 2021-06-04 Valeo Vision Revetement conducteur avec particules d'argent pour glace de projecteur avec fonction degivrage
FR3066644B1 (fr) * 2017-05-19 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electriquement conducteur, transparent ou semi-transparent, a base de nanofils metalliques et de nanoparticules de silice poreuse
DE102017121041A1 (de) * 2017-05-24 2018-11-29 Webasto SE Heizgerät und Verfahren zur Herstellung desselben
FR3070973B1 (fr) * 2017-09-11 2022-02-04 Commissariat Energie Atomique Procede de preparation d'un aerogel metallique electriquement et thermiquement conducteur
FR3087991B1 (fr) 2018-10-29 2022-12-09 Commissariat Energie Atomique Preparation d'un systeme de chauffage a partir d'un substrat thermoretractable
US12117636B2 (en) 2019-04-03 2024-10-15 3M Innovative Properties Company Optical film and glass laminate
CN110685186A (zh) * 2019-09-10 2020-01-14 衢州五洲特种纸业股份有限公司 一种改性石墨烯/纳米纤维素导电功能涂料及其制备方法和应用
CN110670411A (zh) * 2019-09-10 2020-01-10 衢州五洲特种纸业股份有限公司 一种具有保温和加热功能的食品卡纸及其制备方法
FR3106204B1 (fr) * 2020-01-10 2022-01-21 Commissariat Energie Atomique Procede de mesure de la temperature d’un reseau percolant de nanofils metalliques
CN112009694B (zh) * 2020-09-03 2021-12-03 北京航空航天大学 一种可用于三维复杂曲面的电加热防冰涂层的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW250618B (de) * 1993-01-27 1995-07-01 Mitsui Toatsu Chemicals
EP1525777A1 (de) * 2002-07-18 2005-04-27 Glaverbel Beheizbare glasscheibe
JP5409094B2 (ja) * 2008-07-17 2014-02-05 富士フイルム株式会社 曲面状成形体及びその製造方法並びに車両灯具用前面カバー及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20180014359A1 (en) 2018-01-11
WO2016120302A1 (fr) 2016-08-04
FR3032084A1 (fr) 2016-07-29
FR3032084B1 (fr) 2017-02-10
EP3251468A1 (de) 2017-12-06

Similar Documents

Publication Publication Date Title
EP3251468B1 (de) Heizvorrichtung, besonders halbdurchsichtig
Zhu et al. Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy
EP0511096B1 (de) Verfahren zur Lokalpassivierung eines Substrates mit einer amorphen wasserstoffhaltigen Kohlenstoffschicht und Verfahren zur Herstellung von Dünnschicht-Transistoren auf diesem passivierten Substrat
EP3347945B1 (de) Radom mit einem aus streifen von metallnanoelementen geformten widerstandsheizsystem
EP2183787A2 (de) Vorderflächensubstrat für eine photovoltaische zelle und verwendung eines substrats für die vorderfläche einer photovoltaischen zelle
CA2115320A1 (fr) Substrats en verre revetus d'un empilement de couches minces, application a des vitrages a proprietes de reflexion dans l'infra-rouge et/ou a proprietes dans le domaine du rayonnement solaire
EP2255372A2 (de) Photovoltaikzelle und substrat für eine photovoltaikzelle
FR2579775A1 (fr) Procede de realisation d'elements de commande non lineaire pour ecran plat de visualisation electro-optique et ecran plat realise selon ce procede
WO2021130461A1 (fr) Module photovoltaïque
FR3066644B1 (fr) Dispositif electriquement conducteur, transparent ou semi-transparent, a base de nanofils metalliques et de nanoparticules de silice poreuse
FR2629222A1 (fr) Vitrage a transmission variable du type electrochrome
FR2542278A1 (fr) Perfectionnements apportes aux revetements aptes a resister a des contraintes thermiques elevees et notamment aux revetements pour satellites et vaisseaux spatiaux et aux procedes de production de ces revetements
EP3336904B1 (de) Herstellungsverfahren eines fotovoltaikmoduls, und so erhaltenes fotovoltaikmodul
EP2676296A2 (de) Leitfähiges transparentes glassubstrat für photovoltaikzellen
FR3066499A1 (fr) Dispositif electriquement conducteur, transparent ou semi-transparent, a base de polymeres poly(thio- ou seleno-)pheniques et de nanoparticules de silice poreuse
EP0092452A1 (de) Überzug für Sonnenenergieumwandlung
FR2758431A1 (fr) Dispositif d'affichage electroluminescent en couche mince et a excitation alternative et son procede de realisation
Poonthong et al. Performance Analysis of Ti‐Doped In2O3 Thin Films Prepared by Various Doping Concentrations Using RF Magnetron Sputtering for Light‐Emitting Device
WO2018069286A1 (fr) Utilisation a titre d'element chauffant d'un film polymerique conducteur et transparent a base de polymeres (thio- ou seleno-) pheniques
FR2932611A1 (fr) Cellule photovoltaique et substrat de cellule photovoltaique
FR3057710A1 (fr) Radome equipe d'un systeme chauffant a base de polymeres poly(thio- ou seleno-)pheniques
EP3849769B1 (de) Verfahren zur herstellung eines substrats einer optoelektronischen komponente und zugehörige vorrichtungen
EP2576866B1 (de) Verfahren zur diffusion von metallpartikeln innerhalb einer verbundschicht
FR2973263A1 (fr) Elaboration d'electrodes transparentes en nanotubes de carbone metallises
WO2020002832A1 (fr) Composition de polymère conducteur et son procédé de fabrication

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200610

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016048003

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1337158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1337158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201118

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016048003

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

26N No opposition filed

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 9

Ref country code: GB

Payment date: 20240131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118