WO2016120302A1 - Dispositif chauffant, en particulier semi-transparent - Google Patents

Dispositif chauffant, en particulier semi-transparent Download PDF

Info

Publication number
WO2016120302A1
WO2016120302A1 PCT/EP2016/051648 EP2016051648W WO2016120302A1 WO 2016120302 A1 WO2016120302 A1 WO 2016120302A1 EP 2016051648 W EP2016051648 W EP 2016051648W WO 2016120302 A1 WO2016120302 A1 WO 2016120302A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
layer
equal
transparent
heating layer
Prior art date
Application number
PCT/EP2016/051648
Other languages
English (en)
Inventor
Jean-Pierre Simonato
Alexandre Carella
Caroline Celle
Abdou DJOUADI
Guillaume DROVAL
Sylvain SIM
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Centre National De La Recherche Scientifique
Universite De Nantes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Centre National De La Recherche Scientifique, Universite De Nantes filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to US15/545,151 priority Critical patent/US20180014359A1/en
Priority to EP16701766.4A priority patent/EP3251468B1/fr
Publication of WO2016120302A1 publication Critical patent/WO2016120302A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/034Heater using resistive elements made of short fibbers of conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the present invention relates to a new multilayer heating device based on nanomaterials coated with aluminum nitride.
  • such a device may have both good heating properties at low voltage and high transparency, making it advantageously suitable for its implementation as transparent conductive film for heating and / or demister systems for which is required a visibility requirement.
  • Transparent conductive heating films are of growing interest for a wide range of applications, for example for display devices, automotive demisting or de-icing systems, heated windows, etc.
  • TCOs transparent conductive oxide films
  • ITO indium oxide doped with tin
  • Zhang et al. [3] that propose a hybrid film architecture based on silver nanowires (AgNWs) and graphene oxide (rLGO), with good performance in terms of transparency and thermal conductivity.
  • the present invention aims to propose a new multilayer heating device, allowing access to a rapid and homogeneous heating of a surface, while having properties of high transparency.
  • the present invention relates, according to a first aspect, to a heating device comprising:
  • an electroconductive layer carried by the substrate, and formed of at least one percolating network of nano-objects comprising metallic nanowires;
  • thermal diffusion layer based on aluminum nitride, covering all or part of the heating layer.
  • aluminum nitride is usually crystallized by molecular beam epitaxy (MBE) techniques or by vapor phase epitaxy (MOCVD for "Metal Organic Chemical Vapor Deposition” in the English language).
  • MBE molecular beam epitaxy
  • MOCVD vapor phase epitaxy
  • the heating device according to the invention is advantageous in several ways. First, such a device has good low-voltage heating properties and allows to restore, in a uniform manner, the heat produced on the surface of the device.
  • a heating device can combine both heating and optical transparency properties, which makes it suitable for the design of various heating systems and / or semi-transparent demister and transparent, for example for glazing, shower panels, spectacles, heating elements of optoelectronic devices, etc.
  • a heating device may have an overall transmittance, over the entire visible spectrum, of at least 50%, advantageously at least 70% and more particularly at least 80%.
  • the heating device according to the invention can be advantageously prepared by large-area and low-temperature printing techniques.
  • the present invention relates, in another of its aspects, to a method for preparing a heating device, comprising at least the steps of:
  • thermal diffusion layer based on aluminum nitride by magnetron cathode sputtering at high temperature or at a high power, at a temperature that is strictly less than 280 ° C.
  • substrate refers to a solid base structure on at least one of the faces of which are formed the heating layer and the thermal diffusion layer.
  • the base substrate can be of various kinds.
  • the substrate can be a flexible or rigid substrate.
  • the substrate may be transparent, translucent, opaque or colored.
  • the substrate is appropriately selected with respect to the intended application for the heating device.
  • the substrate is chosen from semi-transparent or transparent substrates.
  • semi-transparent is meant to qualify according to the invention a structure / layer having a transmittance, over the entire visible spectrum, greater than or equal to 50%.
  • the transmittance of a given structure represents the light intensity passing through the structure on the visible spectrum. It can be measured by UV-Vis-IR spectrometry, for example using an integrating sphere on a Varian Carry 5000 type spectrometer.
  • the transmittance on the visible spectrum corresponds to the transmittance for wavelengths between 350 and 800 nm.
  • transparent means a structure / layer having a transmittance greater than or equal to 80%.
  • the substrate may thus be a substrate made of glass or transparent polymers such as polycarbonate, polyolefins, polyethersulfone, polysulfone, phenolic resins, epoxy resins, polyester resins, polyimide resins, polyetherester resins, polyetheramide resins , polyvinyl (acetate), cellulose nitrate, cellulose acetate, polystyrene, polyurethanes, polyacrylonitrile, polytetrafluoroethylene, polyacrylates such as polymethyl methacrylate, polyarylate, polyetherimides, polyether ketones, polyethers ether ketones, polyvinylidene fluoride, polyesters such as polyethylene terephthalate or polyethylene naphthalate, polyamides, zirconia, or their derivatives.
  • transparent polymers such as polycarbonate, polyolefins, polyethersulfone, polysulfone, phenolic resins, epoxy resins, polyester resins, polyimide resins, poly
  • the base substrate may be glass or polyethylene naphthalate.
  • the substrate may in particular have a thickness of between 500 nm and 1 cm, in particular between 200 ⁇ and 5 mm.
  • the "heating layer”, carried by the base substrate refers to an electroconductive layer formed of at least one percolating network of nano-objects, the nano-objects including at least metal nanofilts .
  • the metal nanofilas may be more particularly chosen from nanofilts of silver, gold and / or copper.
  • the metal nanofilaments represent at least 40%, in particular at least 60%, of the total mass of the nano-objects of the heating layer.
  • the heating layer may comprise, in addition to metallic nanofilts, carbon nanotubes and / or graphene, or their derivatives such as, for example, graphene oxides.
  • the heating layer may be in the form of a single layer formed of a percolating network of nano-objects.
  • the heating layer may be formed of a percolating network of metal nanofilts.
  • the heating layer may have a multilayer percolating network.
  • the percolating network of multilayer nano-objects is formed of at least two sub-layers of nano-objects of distinct compositions, in particular based on different nano-objects, at least one of the sub-layers comprising, even being formed of metal nanofil.
  • At least one of the sub-layers, in particular the upper layer, is formed of metal nanofilas.
  • a heating layer comprising at least two different types of nano-objects is hereafter designated as a "hybrid" heating layer.
  • a hybrid heating layer may consist of a percolating network formed of a first layer of nano-objects, other than metallic nanofilts, for example carbon nanotubes, and a second layer of nanowires. metal.
  • the heating layer has a transmittance, over the entire visible spectrum, greater than or equal to 50%, in particular greater than or equal to 70% and more particularly greater than or equal to 80%
  • the nano-object density of the percolating network of the heating layer according to the invention is between 100 ⁇ g / m 2 and 500 mg / m 2 .
  • the skilled person is able to adjust the density of nano-objects to implement to obtain a percolating and conductive network. Indeed, if the network of nano-objects is not dense enough, no conduction path is possible, and the layer will not be conductive. From a certain density of nano-objects, the network becomes percolating and the charge carriers can be transported over the entire surface of the heating layer.
  • the heating layer of a device according to the invention has a surface resistance of less than or equal to 500 ohm / square.
  • the surface resistance also called “square resistance”
  • square resistance can be defined by the following formula:
  • e represents the thickness of the conductive layer (in cm)
  • p represents the resistivity of the layer (in ⁇ ).
  • the surface resistance can be measured by techniques known to those skilled in the art, for example by a 4-point resistivity meter, for example of the Loresta EP type.
  • the heating layer of the device according to the invention has a surface resistance of less than or equal to 200 ohm / square, preferably less than or equal to 100 ohm / square and more preferably less than or equal to 60 ohm / square.
  • a low electrical resistance improves the heating performance, the thermal power dissipated by the heating film being proportional to V 2 / R (Joule effect), V representing the voltage applied across the heating layer (DC DC) and R the resistance of the heating layer from one terminal to the other.
  • a heating layer according to the invention thus has good low voltage heating properties. More particularly, it makes it possible to reach a temperature of at least 80 ° C. by applying low voltages, for example voltages of less than 12 V.
  • the heating layer according to the invention also has high transparency properties.
  • the heating layer advantageously has, over the entire visible spectrum, a transmittance greater than or equal to 50%.
  • the heating layer has a transmittance, over the entire visible spectrum, greater than or equal to 70%, in particular greater than or equal to 80%.
  • a heating layer according to the invention can advantageously combine properties of high electrical conductivity and optical transparency, allowing its implementation to form a semi-transparent or transparent heating device, as detailed in the following text.
  • the thickness of the heating layer of a heating device according to the invention may be between 1 nm and 10 ⁇ m, in particular between 5 nm and 800 nm.
  • the nano-objects may be previously prepared according to synthetic methods known to those skilled in the art.
  • silver nanowires can be synthesized according to the synthesis method described in Nanotechnology, 2013, 24, 215501 [4].
  • the copper nanowires can be obtained by the method described in the publication Nanoresearch 2014, pp 315-324 [5].
  • the carbon nanotubes may be mono and / or multi-wall nanotubes, purified or unpurified, functionalized or non-functionalized nanotubes; they can be obtained according to known techniques, for example by laser ablation, CVD or arc discharge.
  • the percolating network may be obtained by deposition on the surface of the base substrate of one or more suspensions of nano-objects in a solvent medium (water, methanol, isopropanol, etc.), followed by evaporation of the solvent (s).
  • a solvent medium water, methanol, isopropanol, etc.
  • the metal nano-objects can be dispersed beforehand in an easily evaporable organic solvent (for example methanol, isopropanol), or else dispersed in an aqueous medium in the presence of a surfactant.
  • an easily evaporable organic solvent for example methanol, isopropanol
  • the suspension of nano-objects can then be deposited on the surface of the substrate according to methods known to those skilled in the art, the most commonly used techniques being spray deposition ("spray-coating" in English), jet deposition. inks, dip coating, film coating, impregnation, doctoring, flexo-printing, etc.
  • the heating layer is formed by nebulized deposition of one or more suspensions of the nano-objects in a solvent medium, followed by evaporation of the solvent or solvents.
  • the solvent or solvents of the nano-object suspension are then evaporated to form a percolating network of nano-objects allowing the flow of current.
  • the network of nano-objects for example nanowires, can be annealed at a temperature between 100 and 150 ° C.
  • the percolating network of the heating layer of a device according to the invention may consist of several layers of nano-objects superimposed.
  • the deposition steps of the suspension of nano-objects and solvent evaporation are repeated as many times as it is desired to obtain layers of nano-objects.
  • the heating layer is coated in all or part of a layer of aluminum nitride (AIN), called “thermal diffusion layer”.
  • AIN aluminum nitride
  • Aluminum nitride films have particularly advantageous properties in terms of electrical insulation and thermal conductivity, which are dependent on their crystalline quality.
  • the AlN layer covers the entire heating layer.
  • a thermal diffusion layer according to the invention has a thermal conductivity greater than or equal to 20 WK .m -1 , in particular between 80 and 250 WK.
  • Thermal conductivity gives the ability of a material to dissipate heat. It can be measured by a transient hot-band type technique.
  • Such a thermal diffusion layer makes it possible to restore the heat produced by the underlying heating layer uniformly over the entire exposed surface of the heating device.
  • the superposition according to the invention of a heating layer having a low surface resistance and a thermal diffusion layer with a high thermal conductivity allows access, in a very short time, to a uniform heating of the entire surface of the heating device.
  • Such a device is particularly advantageous for applications for heating systems, for example automotive demisting / defrosting, for which it is desired to obtain a rapid effect of starting the heating system.
  • the thermal diffusion layer has a thickness of between 50 nm and 5 ⁇ , in particular between 80 nm and 800 nm.
  • the AlN layer according to the invention advantageously has a high transparency.
  • the AlN layer has a transmittance, over the entire visible spectrum, greater than or equal to 50%, in particular greater than or equal to 70%, and more particularly greater than or equal to 80%.
  • the inventors take advantage of the recent optimizations of magnetron sputtering deposition techniques to access, at low temperature, a thin film of AlN of good quality crystalline and having good thermal conductivity.
  • the thermal diffusion layer of a device according to the invention may be formed, on the surface of the percolating network of nano-objects, by magnetron cathode sputtering in continuous DC mode or pulsed at high power HiPIMS (for "High Power Impulse Magnetron Sputtering "in the English language).
  • the technique of depositing a thin film on a substrate by magnetron cathode sputtering generally consists in bombarding a target, which forms the cathode of a magnetron reactor and which is made of the material to be deposited, with ions from an electrical discharge (plasma). This ion bombardment causes the sputtering of the target in the form of a "vapor" of atoms or molecules which are deposited in the form of a thin layer on the substrate placed near the target of the magnetron.
  • the HiPIMS technology advantageously makes it possible to generate very high instantaneous currents while maintaining reduced heating of the target due to the use of pulses of short duration.
  • a thin layer of AlN of good crystallinity can be more particularly achieved by magnetron sputtering from an aluminum target and an argon / nitrogen reactive mixture.
  • it is formed at a temperature of less than or equal to 250 ° C, and more particularly less than or equal to 200 ° C.
  • the multilayer heating device according to the invention can, advantageously, have both good heating performance and high transparency.
  • the invention relates to a semitransparent or transparent heating device, comprising:
  • a semitransparent or transparent base substrate in particular as defined above, for example made of glass or transparent polymer
  • a heating layer having a transmittance, over the entire visible spectrum, greater than or equal to 50%, in particular greater than or equal to 70% and more particularly greater than or equal to 80%;
  • thermal diffusion layer based on aluminum nitride covering all or part of the heating layer.
  • a heating device may have an overall transmittance over the entire visible spectrum of at least 50%, in particular greater than or equal to 70% and more particularly greater than or equal to 80%.
  • Global transmittance means the transmittance of the entire structure formed by the substrate stack, heating layer and thermal diffusion layer according to the invention.
  • a heating device can be implemented as a thin transparent heating film for various applications, in particular in heating and / or defogging systems.
  • the skilled person is able to adapt the shape and dimensions of the heating device according to the invention to integrate it into the desired heating system.
  • the heating device according to the invention can be used by applying a voltage between two opposite edges of the heating layer.
  • two non-transparent conductive strips may be deposited on the base substrate, in contact with two opposite edges of the heating layer, as shown in FIG.
  • These strips called “contact pickups”, can be, for example, made from metal paste or silver lacquer, to allow a better connection with external power supply systems.
  • the power supply of the system incorporating a heating device can be fixed or mobile, for example a battery, a battery or a photovoltaic cell, and fed continuously or discontinuously.
  • the present invention thus relates to a heating and / or defogging system comprising a heating device as described above, in particular a semi-transparent or transparent heating device.
  • the heating and / or defogging system may concern all types of systems known in the state of the art requiring the implementation of a heating film, in particular with high transparency.
  • the system can be implemented for example for a glazing unit, a shower panel, a mirroring element, a visor, a mask, glasses, a radiator, a heating element of an optoelectronic device, a transparent food container, by example a bottle.
  • a heating device made with a flexible and transparent base substrate, can be implemented for a transparent heating element (transparent electrode) in an optoelectronic device, for example a display screen. .
  • a heating and semi-transparent device according to the invention can also be implemented for a heated windshield, the heating device being intended to heat the windshield in order to demist or defrost.
  • the performance of the heating device according to the invention in terms of heating and high transparency allow quick access, in the context of an application for an automobile windshield, to a clear vision, after activation of the heating device.
  • Figure 1 Schematic representation, in a vertical sectional plane, of the structure of a heating device (1) according to the invention.
  • FIG. 2 Diagrammatic view of the application of a voltage by means of a voltage generator (22), on the resumption of contact of a device (1) according to the invention, as operated in the examples 1 to 4.
  • Total transmittance is measured using an integrating sphere on a Varian Carry 5000 spectrometer.
  • the transmittance on the visible spectrum corresponds to the transmittance for wavelengths between 350 and 800 nm.
  • the transmittance is measured every 2 nm.
  • silver nanofilaments are synthesized and purified according to the process described in Nanotechnology, 2013, 24, 215501 [4].
  • nanowires are deposited on Eagle XG TM glass (Corning) (substrate (11)) according to a spraying method ("spray-coating" in English).
  • the material thus deposited, constituting the heating layer (12), has a square resistance of 28 ohm / square. Repetitions of electrical contacts (21) are performed on two opposite edges by using a silver lacquer or a metal film deposit, for example by CVD or PVD. Formation of the thermal diffusion layer (13)
  • Aluminum nitride (AlN) is deposited on this heating layer (12) by DC magnetron sputtering. During this deposition, the electrical contact times are protected for use thereafter to apply a potential on the device.
  • the power used is 175 W.
  • the ratio of quantities of nitrogen and argon QN 2 / (QN 2 + QAr) is 25%.
  • the deposition rate is about 40 nm / min, which allows precise control of the thickness of the deposited AlN layer.
  • the deposition is carried out for 5 minutes, which makes it possible to obtain a layer (13) of 200 nm.
  • This heating device (1) has a global transmittance, measured using an integrating sphere on a Varian Carry 5000 spectrometer, of 85% minimum over the entire visible spectrum.
  • carbon nanotubes (type CSP3 of Carbon solution) are dispersed in NMP (N-methylpyrrolidone) and deposited on Eagle XG TM glass (Corning) according to a nebulization deposition method ("spray coating"). In the English language). The transmittance of the deposited layer, over the entire visible spectrum, is 99.2%.
  • Silver nanowires are synthesized and purified according to the process described in Nanotechnology, 2013, 24, 215501. These nanowires are deposited on the carbon nanotube layer.
  • Repeats of electrical contacts (21) are performed on two opposite edges by using a silver lacquer or a metal film deposit, for example by CVD.
  • Aluminum nitride (AlN) is deposited on this heating layer as described in Example 1.
  • This device (1) has an overall transmittance of 88% minimum over the entire visible spectrum.
  • a heating device (1) similar to that described in Example 1 is produced, by implementing instead of silver nanowires, copper nanofilts manufactured according to the method described in the publication Nanoresearch 2014, pp 315-324 [ 5].
  • the heating layer (12) thus produced has a square resistance of 53 ohm / square.
  • the AIN deposition is carried out as described in Example 1. By applying a voltage of 9 V on the resumption of contact, a temperature of 63 ° C is reached in less than one minute, homogeneously over the entire surface of the heating device.
  • This device has an overall transmittance of 82% minimum over the entire visible spectrum.
  • a heating device (1) similar to that described in Example 1 is produced, by implementing instead of the glass substrate, a substrate (11) made of polyethylene naphthalate 125 ⁇ thick.
  • the heating layer (12) thus produced has a square resistance of 19 ohm / square.
  • This device has an overall transmittance of 90% minimum over the entire visible spectrum.

Landscapes

  • Surface Heating Bodies (AREA)
  • Laminated Bodies (AREA)

Abstract

La présente invention se rapporte à un dispositif chauffant (1) comportant : - un substrat de base (11); - une couche électroconductrice (12), dite couche chauffante, portée par le substrat (11), formée d'au moins un réseau percolant de nano-objets comprenant des nanofîls métalliques; et - une couche de diffusion thermique (13) à base de nitrure d'aluminium, recouvrant tout ou partie de la couche chauffante (12). Elle concerne également un procédé de préparation d'un tel dispositif chauffant.

Description

DISPOSITIF CHAUFFANT, EN PARTICULIER SEMI-TRANSPARENT
La présente invention porte sur un nouveau dispositif chauffant multicouche à base de nanomatériaux recouverts de nitrure d'aluminium.
En particulier, un tel dispositif peut présenter à la fois de bonnes propriétés de chauffage à basse tension et de haute transparence, le rendant avantageusement adapté à sa mise en œuvre comme film conducteur transparent pour des systèmes de chauffage et/ou de désembuage pour lesquels est requise une exigence de visibilité.
Les films chauffants conducteurs transparents suscitent un intérêt croissant pour une large gamme d'applications, par exemple pour des dispositifs d'affichage, des systèmes de désembuage ou de dégivrage automobiles, des vitrages chauffants, etc..
Actuellement, les techniques pour la fabrication de films chauffants transparents sont basées sur l'utilisation de films d'oxydes conducteurs transparents (TCOs) et plus particulièrement d'oxyde d'indium dopé à l'étain (ITO).
Cependant, l'utilisation de ces matériaux présente un certain nombre d'inconvénients, notamment au regard du coût élevé et fluctuant de l'indium et de la grande fragilité mécanique de ΓΙΤΌ. Egalement, les techniques de fabrication de ces films sont complexes, nécessitant de procéder sous vide et limitées à des dépôts sur des surfaces planes.
Les récentes avancées dans le domaine des nanotechnologies ont permis de proposer des réseaux de nano-objets, en particulier à base de nanofils métalliques, combinant de bonnes propriétés de conductivité électrique et une transparence élevée.
Il a ainsi été proposé par Celle et al. [1] de réaliser des films minces transparents flexibles à base de réseaux de nanofils d'argent, préparés par des techniques d'enduction centrifuge (« spin coating » en langue anglaise) ou nébulisation (« spray coating » en langue anglaise), présentant à la fois des propriétés de chauffage à basse tension et de haute température.
De même, Kim et al. [2] ont développé des couches hybrides de nanotubes de carbone et de nanofils d'argent.
On peut encore citer Zhang et al. ([3]) qui proposent une architecture de film hybride à base de nanofils d'argent (AgNWs) et d'oxyde de graphène (rLGO), présentant de bonnes performances en termes de transparence et de conductivité thermique. La présente invention vise à proposer un nouveau dispositif chauffant multicouche, permettant d'accéder à un chauffage rapide et homogène d'une surface, tout en présentant des propriétés de haute transparence.
Plus précisément, la présente invention concerne, selon un premier de ses aspects, un dispositif chauffant comportant :
- un substrat de base ;
- une couche électroconductrice, dite couche chauffante, portée par le substrat, et formée d'au moins un réseau percolant de nano-objets comprenant des nanofils métalliques ; et
- une couche de diffusion thermique à base de nitrure d'aluminium, recouvrant tout ou partie de la couche chauffante.
A la connaissance des inventeurs, il n'a jamais été proposé de revêtir une couche électroconductrice à base de nanoobjets par du nitrure d'aluminium.
De fait, le nitrure d'aluminium est habituellement cristallisé par des techniques d'épitaxie par jet moléculaire (MBE pour « Molecular Beam Epitaxy » en langue anglaise) ou par épitaxie en phase vapeur (MOCVD pour « Métal Organic Chemical Vapor Déposition » en langue anglaise). Ces techniques requièrent des températures élevées, supérieures à 950 °C, incompatibles avec un dépôt en surface de nanofils métalliques, ces derniers étant altérés à haute température et susceptibles de perdre leurs propriétés structurales.
Le dispositif chauffant selon l'invention s'avère avantageux à plusieurs titres. Tout d'abord, un tel dispositif présente de bonnes propriétés de chauffage à basse tension et permet de restituer, de manière uniforme, la chaleur produite à la surface du dispositif.
Ainsi, comme illustré dans les exemples qui suivent, il est possible d'atteindre, en un temps très court, avec un dispositif chauffant selon l'invention, une température homogène sur l'ensemble de la surface exposée du dispositif chauffant.
De telles performances sont particulièrement recherchées lorsque l'on souhaite obtenir un effet rapide de la mise en marche du système chauffant, par exemple dans le cadre d'une application pour un système de désembuage, notamment de véhicules. Par ailleurs, de manière particulièrement avantageuse, un dispositif chauffant selon l'invention peut combiner à la fois des propriétés de chauffage et de transparence optique, ce qui le rend adapté pour la conception de divers systèmes de chauffage et/ou de désembuage semi-transparents et transparents, par exemple pour des vitrages, panneaux de douche, lunettes, éléments chauffants d'appareils optoélectroniques, etc..
Plus particulièrement, un dispositif chauffant selon l'invention peut présenter une transmittance globale, sur l'ensemble du spectre visible, d'au moins 50 %, avantageusement d'au moins 70 % et plus particulièrement d'au moins 80 %.
Le dispositif chauffant selon l'invention peut être avantageusement préparé par des techniques d'impression grande surface et à basse température.
Plus précisément, la présente invention se rapporte, selon un autre de ses aspects, à un procédé de préparation d'un dispositif chauffant, comprenant au moins les étapes consistant en :
(i) disposer d'un substrat de base dont l'une des faces est recouverte au moins en partie d'une couche électroconductrice, dite couche chauffante, formée d'au moins un réseau percolant de nano-objets comprenant des nanofîls métalliques ; et
(ii) former, sur tout ou partie de la surface exposée de ladite couche chauffante, une couche de diffusion thermique, à base de nitrure d'aluminium par pulvérisation cathodique magnétron en courant continu ou puisé à haute puissante, à une température strictement inférieure à 280 °C.
D'autres caractéristiques, avantages et modes d'application du dispositif chauffant selon l'invention et de sa préparation ressortiront mieux à la lecture de la description détaillée qui va suivre, donnée à titre illustratif et non limitatif.
Dans la suite du texte, les expressions « compris entre ... et ... », « allant de ... à ... » et « variant de ... à ... » sont équivalentes et entendent signifier que les bornes sont incluses, sauf mention contraire.
Sauf indication contraire, l'expression « comportant/comprenant un(e) » doit être comprise comme « comportant/comprenant au moins un(e) ». DISPOSITIF CHAUFFANT SUBSTRAT DE BASE
Dans le cadre de la présente invention, le terme « substrat » fait référence à une structure de base solide sur au moins une des faces de laquelle sont formées la couche chauffante et la couche de diffusion thermique.
Le substrat de base peut être de diverses natures.
Il peut s'agir d'un substrat flexible ou rigide. Le substrat peut être transparent, translucide, opaque ou coloré.
II est entendu que le substrat est choisi de manière adéquate au regard de l'application visée pour le dispositif chauffant.
En particulier, dans le cas où le dispositif chauffant doit satisfaire à des propriétés optiques de transparence, par exemple pour un système de désembuage/dégivrage automobile, un vitrage transparent, etc., le substrat est choisi parmi les substrats semi-transparents ou transparents.
Par « semi-transparent », on entend qualifier selon l'invention une structure/couche présentant une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 50 %.
La transmittance d'une structure donnée représente l'intensité lumineuse traversant la structure sur le spectre du visible. Elle peut être mesurée par spectrométrie UV-Vis-IR, par exemple à l'aide d'une sphère d'intégration sur un spectromètre de type Varian Carry 5000.
La transmittance sur le spectre du visible correspond à la transmittance pour des longueurs d'ondes comprise entre 350 et 800 nm.
On qualifie de « transparent » selon l'invention, une structure/couche présentant une transmittance supérieure ou égale à 80 %.
Le substrat peut être ainsi un substrat en verre ou en polymères transparents tels que le polycarbonate, les polyoléfïnes, le polyéthersulfone, le polysulfone, les résines phénoliques, les résines époxy, les résines polyesters, les résines polyimides, les résines polyétheresters, les résines polyétheramides, le polyvinyl(acétate), le nitrate de cellulose, l'acétate de cellulose, le polystyrène, les polyuréthanes, le polyacrylonitrile, le polytétrafluoroéthylène, les polyacrylates tels que le polyméthacrylate de méthyle, le polyarylate, les polyétherimides, les polyéthers cétones, les polyéthers éthers cétones, le polyfluorure de vinylidène, les polyesters tels que le polyéthylène téréphtalate ou polyéthylène naphtalate, les polyamides, la zircone, ou leurs dérivés.
De préférence, le substrat de base peut être en verre ou en polyéthylène naphtalate.
Le substrat peut notamment présenter une épaisseur comprise entre 500 nm et 1 cm, en particulier entre 200 μιη et 5 mm. COUCHE CHAUFFANTE
Dans le cadre de l'invention, la « couche chauffante », portée par le substrat de base, fait référence à une couche électroconductrice formée d'au moins un réseau percolant de nano-objets, les nano-objets incluant au moins des nanofîls métalliques.
Les nanofîls métalliques peuvent être plus particulièrement choisis parmi des nanofîls d'argent, d'or et/ou de cuivre.
De préférence, les nanofîls métalliques représentent au moins 40 %, en particulier au moins 60 %, de la masse totale des nano-objets de la couche chauffante.
La couche chauffante peut comprendre, outre des nanofîls métalliques, des nanotubes de carbone et/ou du graphène, ou leurs dérivés tels que, par exemple, des oxydes de graphène.
Dans une première variante de réalisation, la couche chauffante peut se présenter sous la forme d'une unique couche formée d'un réseau percolant de nano-objets.
Selon un mode de réalisation particulier, la couche chauffante peut être formée d'un réseau percolant de nanofîls métalliques.
Dans une autre variante de réalisation, la couche chauffante peut présenter un réseau percolant multicouche.
Plus particulièrement, le réseau percolant de nano-objets multicouche est formé d'au moins deux sous-couches de nano-objets de compositions distinctes, en particulier à base de nano-objets différents, l'une au moins des sous-couches comportant, voire étant formée de nanofîls métalliques.
Selon un mode de réalisation particulier, l'une au moins des sous-couches, en particulier la couche supérieure, est formée de nanofîls métalliques. Une couche chauffante comprenant au moins deux types de nano-objets différents est désignée par la suite comme couche chauffante « hybride ».
A titre d'exemple, une couche chauffante hybride peut être constituée d'un réseau percolant formé d'une première couche de nano-objets, autres que des nanofïls métalliques, par exemple de nanotubes de carbone, et d'une seconde couche de nanofïls métalliques.
Avantageusement, la couche chauffante présente une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 50 %, en particulier supérieure ou égale à 70 % et plus particulièrement supérieure ou égale à 80 %
Selon un mode de réalisation particulièrement préféré, la densité en nano- objets du réseau percolant de la couche chauffante selon l'invention est comprise entre 100 μg/m2 et 500 mg/m2.
L'homme du métier est à même d'ajuster la densité en nano-objets à mettre en œuvre pour obtenir un réseau percolant et conducteur. En effet, si le réseau de nano-objets n'est pas assez dense, aucun chemin de conduction n'est possible, et la couche ne sera pas conductrice. A partir d'une certaine densité de nano-objets, le réseau devient percolant et les porteurs de charges peuvent être transportés sur toute la surface de la couche chauffante.
De manière avantageuse, la couche chauffante d'un dispositif selon l'invention présente une résistance surfacique inférieure ou égale à 500 ohm/carré.
La résistance surfacique, dite encore « résistance carrée », peut être définie par la formule suivante :
Figure imgf000008_0001
dans laquelle :
e représente l'épaisseur de la couche conductrice (en cm),
σ représente la conductivité de la couche (en S/cm) (σ=1/ρ), et
p représente la résistivité de la couche (en Ωχιη). La résistance surfacique peut être mesurée par des techniques connues de l'homme du métier, par exemple par un résistivimètre 4 pointes, par exemple de type Loresta EP.
De préférence, la couche chauffante du dispositif selon l'invention présente une résistance surfacique inférieure ou égale à 200 ohm/carré, de préférence inférieure ou égale à 100 ohm/carré et plus préférentiellement inférieure ou égale à 60 ohm/carré.
Une faible résistance électrique permet d'améliorer les performances de chauffage, la puissance thermique dissipée par le film chauffant étant proportionnelle à V2/R (effet Joule), V représentant la tension appliquée aux bornes de la couche chauffante (en courant continu DC) et R la résistance de la couche chauffante d'une borne à l'autre.
Comme illustré dans les exemples qui suivent, une couche chauffante selon l'invention présente ainsi de bonnes propriétés de chauffage à basse tension. Plus particulièrement, elle permet d'atteindre une température d'au moins 80 °C en appliquant de faibles tensions, par exemple des tensions inférieures à 12 V.
De manière avantageuse, comme évoqué précédemment, la couche chauffante selon l'invention présente en outre des propriétés de haute transparence.
Plus particulièrement, la couche chauffante présente avantageusement, sur l'ensemble du spectre visible, une transmittance supérieure ou égale à 50 %.
De préférence, la couche chauffante présente une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 70 %, en particulier supérieure ou égale à 80 %.
A titre d'illustration de l'invention, des réseaux percolants combinant à la fois des propriétés de haute conductivité électrique et de haute transparence sont présentés dans les exemples qui suivent.
Ainsi, une couche chauffante selon l'invention peut combiner avantageusement des propriétés de haute conductivité électrique et de transparence optique, autorisant sa mise en œuvre pour former un dispositif chauffant semi-transparent ou transparent, comme détaillé dans la suite du texte. L'épaisseur de la couche chauffante d'un dispositif chauffant selon l'invention peut être comprise entre 1 nm et 10 μιη, en particulier entre 5 nm et 800 nm. Préparation de la couche chauffante
Les nano-objets peuvent être préalablement préparés selon des méthodes de synthèse connues de l'homme du métier.
Par exemple, les nanofïls en argent peuvent être synthétisés selon la méthode de synthèse décrite dans la publication Nanotechnology, 2013, 24, 215501 [4]. Les nanofïls de cuivre peuvent être obtenus par la méthode décrite dans la publication Nanoresearch 2014, pp 315-324 [5].
Les nanotubes de carbone peuvent être des nanotubes mono et/ou multi-parois, purifiés ou non purifiés, fonctionnalisés ou non fonctionnalisés ; ils peuvent être obtenus selon des techniques connues, par exemple par ablation laser, CVD ou décharge d'arc.
Le réseau percolant peut être obtenu par dépôt en surface du substrat de base d'une ou plusieurs suspensions de nano-objets dans un milieu solvant (eau, méthanol, isopropanol, etc.), suivi de l'évaporation du ou des solvants.
Plus particulièrement, les nano-objets métalliques peuvent être préalablement dispersés dans un solvant organique facilement évaporable (par exemple le méthanol, l'isopropanol), ou encore dispersés dans un milieu aqueux en présence d'un tensioactif.
La suspension de nano-objets peut ensuite être déposée en surface du substrat selon des méthodes connues de l'homme du métier, les techniques les plus utilisées étant le dépôt par nébulisation (« spray-coating » en langue anglaise), le dépôt au jet d'encre, le dépôt au trempé, le dépôt au tire-film, le dépôt par imprégnation, le dépôt à la racle, la flexogravure, etc.
Selon un mode de réalisation particulier, la couche chauffante est formée par dépôt par nébulisation d'une ou plusieurs suspensions des nano-objets dans un milieu solvant, suivi par l'évaporation du ou des solvants.
Le ou les solvants de la suspension de nano-objets sont ensuite évaporés afin de former un réseau percolant de nano-objets permettant le passage du courant.
Afin d'améliorer encore les performances du matériau électroconducteur, le réseau de nano-objets, par exemple de nanofïls, peut être recuit à une température comprise entre 100 et 150 °C.
Comme décrit précédemment, le réseau percolant de la couche chauffante d'un dispositif selon l'invention peut être constitué de plusieurs couches de nano-objets superposées. Dans ce cas, les étapes de dépôt de la suspension de nano-objets et d'évaporation du solvant sont répétées autant de fois que l'on désire obtenir de couches de nano-objets. COUCHE DE DIFFUSION THERMIQUE
Comme précisé précédemment, la couche chauffante est revêtue en tout ou partie d'une couche de nitrure d'aluminium (AIN), dite « couche de diffusion thermique ».
Les films de nitrure d'aluminium présentent des propriétés particulièrement intéressantes en termes d'isolation électrique et de conductivité thermique, dépendantes de leur qualité cristalline.
De préférence, la couche d'AIN recouvre l'intégralité de la couche chauffante.
Selon un mode de réalisation particulièrement préféré, une couche de diffusion thermique selon l'invention présente une conductivité thermique supérieure ou égale à 20 W.K^.m"1, en particulier comprise entre 80 et 250 W.K^.rn \
La conductivité thermique donne la capacité d'un matériau à dissiper la chaleur. Elle peut être mesurée par une technique de type transitoire à bande chaude.
Une telle couche de diffusion thermique permet de restituer la chaleur produite par la couche chauffante sous-jacente, de manière uniforme sur toute la surface exposée du dispositif chauffant.
De manière avantageuse, la superposition selon l'invention d'une couche chauffante présentant une faible résistance surfacique et d'une couche de diffusion thermique à haute conductivité thermique permet d'accéder, en un temps très court, à un chauffage uniforme de l'ensemble de la surface du dispositif chauffant.
Un tel dispositif est particulièrement avantageux pour des applications pour des systèmes chauffants, par exemple de désembuage/dégivrage automobiles, pour lesquels l'on souhaite obtenir un effet rapide de la mise en marche du système chauffant.
De préférence, la couche de diffusion thermique présente une épaisseur comprise entre 50 nm et 5 μιη, en particulier entre 80 nm et 800 nm.
La couche d'AIN selon l'invention présente avantageusement une transparence élevée. En particulier, la couche d'AIN présente une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 50 %, en particulier supérieure ou égale à 70 %, et plus particulièrement supérieure ou égale à 80 %.
Préparation de la couche de diffusion thermique
Les inventeurs tirent profit des optimisations récentes des techniques de dépôt par pulvérisation cathodique magnétron pour accéder, à basse température, à un film mince d'AIN de bonne qualité cristalline et présentant une bonne conductivité thermique.
Ainsi, la couche de diffusion thermique d'un dispositif selon l'invention peut être formée, en surface du réseau percolant de nano-objets, par pulvérisation cathodique magnétron en mode continu DC ou puisé à haute puissance HiPIMS (pour « High Power Impulse Magnétron Sputtering » en langue anglaise).
La technique de dépôt d'un film mince sur un substrat par pulvérisation cathodique magnétron consiste, d'une manière générale, à bombarder une cible, qui forme la cathode d'un réacteur magnétron et qui est réalisée dans le matériau à déposer, avec des ions issus d'une décharge électrique (plasma). Ce bombardement ionique provoque la pulvérisation de la cible sous la forme d'une « vapeur » d'atomes ou molécules qui viennent se déposer, sous forme de couche mince, sur le substrat placé à proximité de la cible du magnétron.
La technologie HiPIMS permet avantageusement de générer des courants instantanés très élevés tout en maintenant un échauffement réduit de la cible du fait de l'utilisation d'impulsions de courtes durées.
Ces méthodes avancées de pulvérisation magnétron sont par exemple décrites par Belkerk et al. [6] et Duquenne et al. [7].
Une couche mince d'AIN de bonne cristallinité peut être plus particulièrement réalisée par pulvérisation magnétron à partir d'une cible d'aluminium et d'un mélange réactif argon/azote.
Elle peut être formée à une température strictement inférieure à 280 °C, n'affectant pas la stabilité de la couche chauffante sous-jacente.
De préférence, elle est formée à une température inférieure ou égale à 250 °C, et plus particulièrement inférieure ou égale à 200 °C. APPLICATIONS
Comme évoqué précédemment, le dispositif chauffant multicouche selon l'invention peut, d'une manière avantageuse, posséder à la fois des bonnes performances de chauffage et une haute transparence.
Selon une variante de réalisation particulièrement préférée, l'invention se rapporte à un dispositif chauffant semi-transparent ou transparent, comportant :
- un substrat de base semi-transparent ou transparent, en particulier tel que défini précédemment, par exemple en verre ou en polymère transparent ;
- une couche chauffante présentant une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 50 %, en particulier supérieure ou égale à 70 % et plus particulièrement supérieure ou égale à 80 % ; et
- une couche de diffusion thermique à base de nitrure d'aluminium recouvrant tout ou partie de la couche chauffante.
Avantageusement, un dispositif chauffant selon l'invention peut présenter une transmittance globale sur l'ensemble du spectre visible d'au moins 50 %, en particulier supérieure ou égale à 70 % et plus particulièrement supérieure ou égale à 80 %.
Par transmittance « globale », on entend la transmittance de l'ensemble de la structure formée par l'empilement substrat, couche chauffante et couche de diffusion thermique selon l'invention.
Un dispositif chauffant selon l'invention peut être mis en œuvre comme film mince chauffant transparent pour des applications diverses, en particulier dans des systèmes de chauffage et/ou de désembuage.
L'homme du métier est à même d'adapter la forme et les dimensions du dispositif chauffant selon l'invention pour l'intégrer dans le système de chauffage souhaité.
Le dispositif chauffant selon l'invention peut être utilisé par application d'une tension entre deux bords opposés de la couche chauffante.
Ainsi, selon un mode de réalisation particulier, deux bandes conductrices non transparentes peuvent être déposées sur le substrat de base, au contact de deux bords opposés de la couche chauffante, comme représenté en figure 1. Ces bandes, appelées « reprises de contact », peuvent être, par exemple, réalisées à partir de pâte métallique ou de laque d'argent, afin de permettre une meilleure connexion avec les systèmes extérieurs d'alimentation électrique.
Ces reprises de contacts électriques peuvent être réalisées selon des techniques usuelles, par exemple par dépôt chimique en phase vapeur CVD (pour « Chemical Vapour Déposition » en langue anglaise) ou par dépôt physique en phase vapeur PVD (pour « Physical Vapour Déposition » en langue anglaise).
L'alimentation électrique du système intégrant un dispositif chauffant peut être fixe ou nomade, par exemple une batterie, une pile ou une cellule photovoltaïque, et alimentée de façon continue ou discontinue.
Selon un autre de ses aspects, la présente invention concerne ainsi un système de chauffage et/ou de désembuage comportant un dispositif chauffant tel que décrit précédemment, en particulier un dispositif chauffant semi-transparent ou transparent.
De façon générale, le système de chauffage et/ou de désembuage peut concerner tous types de systèmes connus de l'état de l'art nécessitant la mise en œuvre d'un film chauffant, en particulier à haute transparence.
Le système peut être mis en œuvre par exemple pour un vitrage, un panneau de douche, un élément de miroiterie, une visière, un masque, des lunettes, un radiateur, un élément chauffant d'un appareil optoélectronique, un récipient alimentaire transparent, par exemple un biberon.
A titre d'exemple, un dispositif chauffant selon l'invention, réalisé avec un substrat de base flexible et transparent, peut être mis en œuvre pour un élément chauffant transparent (électrode transparente) dans un dispositif optoélectronique, par exemple un écran d'affichage.
Un dispositif chauffant et semi-transparent selon l'invention peut encore être mis en œuvre pour un pare-brise chauffant, le dispositif chauffant étant destiné à chauffer le pare-brise dans le but de le désembuer ou le dégivrer. Les performances du dispositif chauffant selon l'invention en termes de chauffage et de haute transparence permettent d'accéder rapidement, dans le cadre d'une application pour un pare-brise automobile, à une vision claire, après activation du dispositif chauffant.
Bien entendu, l'invention n'est pas limitée aux systèmes décrits ci-dessus, et d'autres applications du dispositif chauffant selon l'invention peuvent être envisagées. L'invention va maintenant être décrite au moyen des exemples et figures suivants, donnés à titre illustratif et non limitatif de l'invention. FIGURES
Figure 1 : Représentation schématique, dans un plan vertical de coupe, de la structure d'un dispositif chauffant (1) conforme à l'invention.
Figure 2 : Vue schématique de l'application d'une tension à l'aide d'un générateur de tension (22), sur les reprises de contact d'un dispositif (1) conforme à l'invention, comme opéré dans les exemples 1 à 4.
Il convient de noter que, pour des raisons de clarté, les différents éléments visibles sur les figures sont représentés en échelle libre, les dimensions réelles des différentes parties n'étant pas respectées. EXEMPLES
Méthodes de mesure
La transmittance totale est mesurée à l'aide d'une sphère d'intégration sur un spectromètre Varian Carry 5000.
La transmittance sur le spectre du visible correspond à la transmittance pour des longueurs d'ondes comprise entre 350 et 800 nm. La transmittance est mesurée tous les 2 nm.
La résistance électrique de surface est mesurée par un résistivimètre 4 pointes de type Loresta EP. EXEMPLE 1
Formation de la couche chauffante (12)
Dans un premier temps, des nanofïls d'argent sont synthétisés et purifiés selon le procédé décrit dans le document Nanotechnology, 2013, 24, 215501 [4].
Ces nanofïls sont déposés sur du verre Eagle XG™ (Corning) (substrat (11)) selon un procédé de dépôt par nébulisation (« spray-coating » en langue anglaise).
Le matériau ainsi déposé, constituant la couche chauffante (12), présente une résistance carrée de 28 ohm/carré. Des reprises de contacts électriques (21) sont réalisées sur deux bords opposés par utilisation d'une laque d'argent ou d'un dépôt de film métallique, par exemple par CVD ou PVD. Formation de la couche de diffusion thermique (13)
Le nitrure d'aluminium (AIN) est déposé sur cette couche chauffante (12) par pulvérisation magnétron en courant continu. Lors de ce dépôt, les reprises de contact électrique sont protégées pour être utilisées par la suite afin d'appliquer un potentiel sur le dispositif.
Le dépôt par pulvérisation magnétron en courant continu est réalisé à partir d'une cible d'aluminium pur et d'un plasma d'argon et d'azote sous vide secondaire (pression comprise entre 2 et 3 mTorr) et à basse température (T=200 °C). La puissance utilisée est de 175 W. Le ratio des quantités d'azote et d'argon QN2/(QN2+QAr) est de 25 %.
Dans ces conditions, la vitesse de dépôt est d'environ 40 nm/min, ce qui permet un contrôle précis de l'épaisseur de la couche d'AIN déposée.
Le dépôt est réalisé durant 5 minutes ce qui permet l'obtention d'une couche (13) de 200 nm.
En appliquant une tension de 5 V sur les reprises de contact, une température de 35 °C est atteinte en moins d'une minute, de façon homogène sur l'ensemble de la surface du dispositif chauffant (1).
Ce dispositif chauffant (1) a une transmittance globale, mesurée à l'aide d'une sphère d'intégration sur un spectromètre Varian Carry 5000, de 85 % minimum sur l'ensemble du spectre visible.
En appliquant une tension de 7V sur les reprises de contact, une température de
51 °C est atteinte en moins d'une minute, de façon homogène sur l'ensemble de la surface du dispositif chauffant. EXEMPLE 2
Formation de la couche chauffante (12)
Dans un premier temps, des nanotubes de carbone (type CSP3 de Carbon solution) sont dispersés dans de la NMP (N-méthylPyrrolidone) et déposés sur du verre Eagle XG™ (Corning) selon un procédé de dépôt par nébulisation (« spray-coating » en langue anglaise). La transmittance de la couche déposée, sur l'ensemble du spectre visible, est de 99,2 %.
Des nanofïls d'argent sont synthétisés et purifiés selon le procédé décrit dans le document Nanotechnology, 2013, 24, 215501. Ces nanofïls sont déposés sur la couche de nanotubes de carbone.
La couche chauffante « hybride » (12), composée des deux sous-couches de nanomatériaux de nature différente, ainsi formée, présente une résistance carrée de 20 ohm/carré.
Des reprises de contacts électriques (21) sont réalisées sur deux bords opposés par utilisation d'une laque d'argent ou d'un dépôt de film métallique, par exemple par CVD.
Formation de la couche de diffusion thermique (13)
Le nitrure d'aluminium (AIN) est déposé sur cette couche chauffante comme décrit en exemple 1.
En appliquant une tension de 5 V sur les reprises de contact (21), une température de 45 °C est atteinte en moins d'une minute, de façon homogène sur l'ensemble de la surface du dispositif chauffant (1).
Ce dispositif (1) a une transmittance globale de 88 % minimum sur l'ensemble du spectre visible.
EXEMPLE 3
Un dispositif chauffant (1) similaire à celui décrit en exemple 1 est réalisé, en mettant en œuvre en lieu et place des nanofïls d'argent, des nanofïls de cuivre fabriqués selon le procédé décrit dans la publication Nanoresearch 2014, pp 315-324 [5]. La couche chauffante (12) ainsi réalisée présente une résistance carrée de 53 ohm/carré.
Le dépôt d'AIN est réalisé comme décrit en exemple 1. En appliquant une tension de 9 V sur les reprises de contact, une température de 63 °C est atteinte en moins d'une minute, de façon homogène sur l'ensemble de la surface du dispositif chauffant.
Ce dispositif a une transmittance globale de 82 % minimum sur l'ensemble du spectre visible.
EXEMPLE 4
Un dispositif chauffant (1) similaire à celui décrit en exemple 1 est réalisé, en mettant en œuvre en lieu et place du substrat en verre, un substrat (11) en polyéthylène naphtalate de 125 μιη d'épaisseur.
La couche chauffante (12) ainsi réalisée présente une résistance carrée de 19 ohm/carré.
Le dépôt d'AIN est réalisé comme décrit en exemple 1.
En appliquant une tension de 9 V sur les reprises de contact, une température de 71 °C est atteinte en régime stationnaire de façon homogène sur l'ensemble de la surface du dispositif chauffant.
Ce dispositif a une transmittance globale de 90 % minimum sur l'ensemble du spectre visible.
Références
[1] Celle et al., « Highly Flexible Transparent Film Heaters Based on Random
Networks of Silver Nanowires », Nano Research (2012), 5(6): 427-433;
[2] Kim et al., « Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires », Carbon 63 (2013) 530-536;
[3] Zhang et al., « Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters », Carbon 69 (2014) 437-443;
[4] Nanotechnology, 2013, 24, 215501;
[5] Nanoresearch 2014, pp 315-324; [6] Belkerk et al, « Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering », Appl. Phys. Lett. 101, 151908 (2012) ;
[7] Duquenne et al, Appl. Phys. Lett. 93, 052905 (2008).

Claims

REVENDICATIONS
1. Dispositif chauffant comportant :
- un substrat de base ;
- une couche électroconductrice, dite couche chauffante, portée par le substrat, formée d'au moins un réseau percolant de nano-objets comprenant des nanofîls métalliques ; et
- une couche de diffusion thermique à base de nitrure d'aluminium, recouvrant tout ou partie de la couche chauffante.
2. Dispositif selon la revendication 1, dans lequel la couche chauffante présente une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 50 %, en particulier supérieure ou égale à 70 % et plus particulièrement supérieure ou égale à 80 %.
3. Dispositif selon la revendication 1 ou 2, dans lequel la couche chauffante présente une résistance surfacique inférieure ou égale à 500 ohm/carré, en particulier inférieure ou égale à 200 ohm/carré, de préférence inférieure ou égale à 100 ohm/carré et plus préférentiellement inférieure ou égale à 60 ohm/carré.
4. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les nanofîls métalliques représentent au moins 40 % en poids, en particulier au moins 60 % de la masse totale des nano-objets de ladite couche chauffante.
5. Dispositif selon l'une quelconque des revendications précédentes, dans lequel les nanofîls métalliques sont choisis parmi des nanofîls d'argent, d'or et/ou de cuivre.
6. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la couche chauffante comporte, outre des nanofîls métalliques, des nanotubes de carbone et/ou du graphène, ou leurs dérivés.
7. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le réseau percolant de nano-objets de la couche chauffante présente une densité en nano-objets comprise entre 100 μg/m2 et 500 mg/m2.
8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la couche chauffante se présente sous la forme d'unique couche formée d'un réseau percolant de nano-objets, en particulier d'un réseau percolant de nanofîls métalliques.
9. Dispositif selon l'une quelconque des revendications 1 à 7, dans lequel la couche chauffante présente un réseau percolant multicouche formé d'au moins deux sous- couches de nano-objets de compositions distinctes, au moins l'une des sous-couches comportant, voire étant formée, de nanofils métalliques.
10. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la couche chauffante présente une épaisseur comprise entre 1 nm et 10 μιη, en particulier entre 5 nm et 800 nm.
11. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la couche de diffusion thermique présente une conductivité thermique supérieure ou égale à 20 W.K^.m"1, en particulier comprise entre 80 et 250 W.K^.rn \
12. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la couche de diffusion thermique présente une épaisseur comprise entre 50 nm et 5 μιη, en particulier comprise entre 80 et 800 nm.
13. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la couche de diffusion thermique recouvre l'intégralité de la couche chauffante.
14. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le substrat de base est un substrat transparent ou semi-transparent, en particulier en verre ou en polymères transparents tels que le polycarbonate, les polyoléfmes, le polyéthersulfone, le polysulfone, les résines phénoliques, les résines époxy, les résines polyesters, les résines polyimides, les résines polyétheresters, les résines polyétheramides, le polyvinyl(acétate), le nitrate de cellulose, l'acétate de cellulose, le polystyrène, les polyuréthanes, le polyacrylonitrile, le polytétrafluoroéthylène, les polyacrylates tels que le polyméthacrylate de méthyle, le polyarylate, les polyétherimides, les polyéthers cétones, les polyéthers éthers cétones, le polyfluorure de vinylidène, les polyesters tels que le polyéthylène téréphtalate ou polyéthylène naphtalate, les polyamides, la zircone, ou leurs dérivés ; de préférence le substrat de base est en verre ou en polyéthylène naphtalate.
15. Dispositif selon l'une quelconque des revendications précédentes, semi- transparent ou transparent dans lequel :
- le substrat de base est semi-transparent ou transparent, en particulier tel que défini en revendication 14 ; et - la couche chauffante présente une transmittance, sur l'ensemble du spectre visible, supérieure ou égale à 50 %, en particulier supérieure ou égale à 70 % et plus particulièrement supérieure ou égale à 80 %.
16. Dispositif selon la revendication précédente, caractérisé en ce qu'il présente une transmittance globale, sur l'ensemble du spectre visible, d'au moins 50 %, en particulier supérieure ou égale à 70 % et plus particulièrement supérieure ou égale à 80 %.
17. Procédé de préparation d'un dispositif chauffant, comprenant au moins les étapes consistant en :
(i) disposer d'un substrat de base dont l'une des faces est recouverte au moins en partie d'une couche électroconductrice, dite couche chauffante, formée d'au moins un réseau percolant de nano-objets comprenant des nanofîls métalliques ; et
(ii) former, sur tout ou partie de la surface exposée de ladite couche chauffante, une couche de diffusion thermique à base de nitrure d'aluminium par pulvérisation cathodique magnétron en courant continu ou puisé à haute puissance, à une température strictement inférieure à 280 °C.
18. Procédé selon la revendication précédente, dans lequel la couche de diffusion thermique est formée en étape (ii) à une température inférieure ou égale à 250 °C, en particulier inférieure ou égale à 200 °C.
19. Procédé selon la revendication 17 ou 18, dans lequel la couche chauffante portée par le substrat de l'étape (i) est préalablement formée par dépôt par nébulisation d'une ou plusieurs suspensions des nano-objets dans un milieu solvant, suivi par l'évaporation du ou des solvants.
20. Système de chauffage et/ou de désembuage, comportant un dispositif chauffant tel que défini selon l'une quelconque des revendications 1 à 16 ou tel qu'obtenu par un procédé selon l'une quelconque des revendications 17 à 19.
21. Système selon la revendication précédente, comportant un dispositif chauffant transparent ou semi-transparent tel que défini en revendications 15 ou 16, ledit système étant mis en œuvre pour un vitrage, un panneau de douche, un élément de miroiterie, une visière, un masque, des lunettes, un radiateur, un élément chauffant d'un appareil optoélectronique ou un récipient alimentaire transparent.
PCT/EP2016/051648 2015-01-28 2016-01-27 Dispositif chauffant, en particulier semi-transparent WO2016120302A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/545,151 US20180014359A1 (en) 2015-01-28 2016-01-27 Heating device, in particular a semi-transparent heating device
EP16701766.4A EP3251468B1 (fr) 2015-01-28 2016-01-27 Dispositif chauffant, en particulier semi-transparent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1550666 2015-01-28
FR1550666A FR3032084B1 (fr) 2015-01-28 2015-01-28 Dispositif chauffant, en particulier semi-transparent

Publications (1)

Publication Number Publication Date
WO2016120302A1 true WO2016120302A1 (fr) 2016-08-04

Family

ID=53269652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/051648 WO2016120302A1 (fr) 2015-01-28 2016-01-27 Dispositif chauffant, en particulier semi-transparent

Country Status (4)

Country Link
US (1) US20180014359A1 (fr)
EP (1) EP3251468B1 (fr)
FR (1) FR3032084B1 (fr)
WO (1) WO2016120302A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087991A1 (fr) 2018-10-29 2020-05-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation d'un systeme de chauffage a partir d'un substrat thermoretractable
FR3106204A1 (fr) * 2020-01-10 2021-07-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de mesure de la temperature d’un reseau percolant de nanofils metalliques

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637920B1 (ko) * 2015-01-06 2016-07-08 연세대학교 산학협력단 투명필름히터 및 그의 제조방법
KR101812024B1 (ko) * 2016-06-10 2017-12-27 한국기계연구원 열선 및 이를 포함하는 면상 발열 시트
FR3056070B1 (fr) * 2016-09-13 2018-10-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reseau percolant de nanofils pour chauffage localise.
FR3066349B1 (fr) * 2017-05-12 2021-06-04 Valeo Vision Revetement conducteur avec particules d'argent pour glace de projecteur avec fonction degivrage
FR3066644B1 (fr) * 2017-05-19 2019-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif electriquement conducteur, transparent ou semi-transparent, a base de nanofils metalliques et de nanoparticules de silice poreuse
DE102017121063A1 (de) * 2017-05-24 2018-11-29 Webasto SE Heizleiter sowie Heizgerät
FR3070973B1 (fr) * 2017-09-11 2022-02-04 Commissariat Energie Atomique Procede de preparation d'un aerogel metallique electriquement et thermiquement conducteur
EP3946929A4 (fr) 2019-04-03 2022-12-28 3M Innovative Properties Company Film optique et stratifié de verre
CN110670411A (zh) * 2019-09-10 2020-01-10 衢州五洲特种纸业股份有限公司 一种具有保温和加热功能的食品卡纸及其制备方法
CN110685186A (zh) * 2019-09-10 2020-01-14 衢州五洲特种纸业股份有限公司 一种改性石墨烯/纳米纤维素导电功能涂料及其制备方法和应用
CN112009694B (zh) * 2020-09-03 2021-12-03 北京航空航天大学 一种可用于三维复杂曲面的电加热防冰涂层的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609088A2 (fr) * 1993-01-27 1994-08-03 MITSUI TOATSU CHEMICALS, Inc. Panneau chauffant transparent, méthode pour sa fabrication et couche conductive transparente
WO2004010737A1 (fr) * 2002-07-18 2004-01-29 Glaverbel Vitrage chauffant
EP2315494A1 (fr) * 2008-07-17 2011-04-27 FUJIFILM Corporation Corps formé en forme de surface courbe, procédé de fabrication du corps formé, couvercle avant pour dispositif d'éclairage de véhicule et procédé de fabrication du couvercle avant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0609088A2 (fr) * 1993-01-27 1994-08-03 MITSUI TOATSU CHEMICALS, Inc. Panneau chauffant transparent, méthode pour sa fabrication et couche conductive transparente
WO2004010737A1 (fr) * 2002-07-18 2004-01-29 Glaverbel Vitrage chauffant
EP2315494A1 (fr) * 2008-07-17 2011-04-27 FUJIFILM Corporation Corps formé en forme de surface courbe, procédé de fabrication du corps formé, couvercle avant pour dispositif d'éclairage de véhicule et procédé de fabrication du couvercle avant

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BELKERK ET AL.: "Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering", APPL. PHYS. LETT., vol. 101, 2012, pages 151908
CAROLINE CELLE ET AL: "Highly flexible transparent film heaters based on random networks of silver nanowires", NANO RESEARCH, vol. 5, no. 6, 18 May 2012 (2012-05-18), pages 427 - 433, XP055201042, ISSN: 1998-0124, DOI: 10.1007/s12274-012-0225-2 *
CELLE ET AL.: "Highly Flexible Transparent Film Heaters Based on Random Networks ofSilverNanowires", NANO RESEARCH, vol. 5, no. 6, 2012, pages 427 - 433
DUCKJONG KIM ET AL: "Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires", CARBON, vol. 63, 1 November 2013 (2013-11-01), pages 530 - 536, XP055201046, ISSN: 0008-6223, DOI: 10.1016/j.carbon.2013.07.030 *
DUQUENNE ET AL., APPL. PHYS. LETT., vol. 93, 2008, pages 052905
KIM ET AL.: "Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires", CARBON, vol. 63, 2013, pages 530 - 536
NANORESEARCH, 2014, pages 315 - 324
NANOTECHNOLOGY, vol. 24, 2013, pages 215501
ZHANG ET AL.: "Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters", CARBON, vol. 69, 2014, pages 437 - 443

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087991A1 (fr) 2018-10-29 2020-05-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives Preparation d'un systeme de chauffage a partir d'un substrat thermoretractable
FR3106204A1 (fr) * 2020-01-10 2021-07-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de mesure de la temperature d’un reseau percolant de nanofils metalliques

Also Published As

Publication number Publication date
US20180014359A1 (en) 2018-01-11
EP3251468B1 (fr) 2020-11-18
FR3032084A1 (fr) 2016-07-29
EP3251468A1 (fr) 2017-12-06
FR3032084B1 (fr) 2017-02-10

Similar Documents

Publication Publication Date Title
EP3251468B1 (fr) Dispositif chauffant, en particulier semi-transparent
CA2115320A1 (fr) Substrats en verre revetus d'un empilement de couches minces, application a des vitrages a proprietes de reflexion dans l'infra-rouge et/ou a proprietes dans le domaine du rayonnement solaire
EP3347945B1 (fr) Radome équipé d'un système résistif chauffant structure en bandes de nano-éléments metalliques
EP2067174A2 (fr) Procede de realisation de cellule photovoltaique a heterojonction en face arriere
EP3615485B1 (fr) Vitrage colore et son procede d'obtention
WO2021130461A1 (fr) Module photovoltaïque
FR3066644B1 (fr) Dispositif electriquement conducteur, transparent ou semi-transparent, a base de nanofils metalliques et de nanoparticules de silice poreuse
FR3070973A1 (fr) Procede de preparation d'un aerogel metallique electriquement et thermiquement conducteur
FR2629222A1 (fr) Vitrage a transmission variable du type electrochrome
FR3065737B1 (fr) Cible pour l'obtention d'un vitrage colore
FR3066499A1 (fr) Dispositif electriquement conducteur, transparent ou semi-transparent, a base de polymeres poly(thio- ou seleno-)pheniques et de nanoparticules de silice poreuse
EP2676296A2 (fr) Substrat verrier transparent conducteur pour cellule photovoltaique
EP0092452A1 (fr) Revêtement pour la conversion photothermique
EP1854148A1 (fr) Procede de metallissation d'un dispositif semi-conducteur
WO2018069286A1 (fr) Utilisation a titre d'element chauffant d'un film polymerique conducteur et transparent a base de polymeres (thio- ou seleno-) pheniques
Rasheed et al. The effect of the annealing on the properties of ZnO/Cu/ZnO multilayer structures
FR2932611A1 (fr) Cellule photovoltaique et substrat de cellule photovoltaique
FR3057710A1 (fr) Radome equipe d'un systeme chauffant a base de polymeres poly(thio- ou seleno-)pheniques
EP3849769B1 (fr) Procédé de fabrication d'un substrat de composant opto-electronique et dispositifs associés
EP3328806B1 (fr) Dopage électrostatique d'une couche d'un materiau conducteur ou non-conducteur
EP3364461A1 (fr) Procédé de dopage de graphène
EP2576866B1 (fr) Procédé de diffusion de particules métalliques au sein d'une couche composite
WO2020002832A1 (fr) Composition de polymère conducteur et son procédé de fabrication
Bornholdt et al. Investigations on the energy balance of the substrate during ZnO magnetron sputtering
EP1208067A1 (fr) Conducteur transparent et procede de fabrication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15545151

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016701766

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE