EP3250828B1 - Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system - Google Patents

Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system Download PDF

Info

Publication number
EP3250828B1
EP3250828B1 EP16708337.7A EP16708337A EP3250828B1 EP 3250828 B1 EP3250828 B1 EP 3250828B1 EP 16708337 A EP16708337 A EP 16708337A EP 3250828 B1 EP3250828 B1 EP 3250828B1
Authority
EP
European Patent Office
Prior art keywords
stator
elastomer part
adjustment
elements
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16708337.7A
Other languages
English (en)
French (fr)
Other versions
EP3250828A1 (de
Inventor
Stefan Voit
Christian Kneidl
Hisham Kamal
Christian BINDIG
Mikael Tekneyan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Pumpen and Systeme GmbH
Original Assignee
Netzsch Pumpen and Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Pumpen and Systeme GmbH filed Critical Netzsch Pumpen and Systeme GmbH
Publication of EP3250828A1 publication Critical patent/EP3250828A1/de
Application granted granted Critical
Publication of EP3250828B1 publication Critical patent/EP3250828B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/102Adjustment of the interstices between moving and fixed parts of the machine by means other than fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/30Geometry of the stator

Definitions

  • the present invention relates to a stator-rotor system and a method for adjusting a stator in a stator-rotor system according to the features of the preambles of claims 1 and 12.
  • the present invention relates to a stator-rotor system of an eccentric screw pump for conveying liquid and / or granular media with an adjustable or adjustable stator.
  • Eccentric screw pumps are pumps for pumping a variety of media, especially viscous, highly viscous and abrasive media such as sludge, liquid manure, petroleum and fats.
  • the driven, coiled rotor rolls in the stator. This is a housing with a helical spiral inside.
  • the rotor performs an eccentric rotary movement about the stator axis with its figure axis.
  • the outer snail, i.e. the stator for example, has the form of a two-start thread, while the rotor worm is only one-start.
  • the rotor is usually made of a highly abrasion-resistant material, such as steel.
  • the stator is made of an elastic material, for example rubber.
  • eccentric screw pumps can not only convey fluids, but also solid bodies.
  • the rotor In order to form the delivery spaces and to be able to convey the respective medium with as little reflux as possible, the rotor is pressurized against an inner wall of the stator formed by elastic material. Due to the movement of the generally metallic rotor within the stator, which is usually made of rubber or a similar material, there is some abrasion or wear of the stator. The wear on the pressurized contact force between the rotor and the stator is reduced; in particular, the contact between the stator and the rotor cannot be maintained along an uninterrupted helical contact line, as a result of which the performance of the eccentric screw pump decreases. This applies in particular to pumps that have to overcome a high suction head. For this reason, the stator must be replaced and replaced at regular intervals.
  • sensors are used, for example, which detect the wear of the stator on the basis of physical parameters.
  • stator can be adjusted to compensate for wear.
  • voltage in the stator-rotor system can be adjusted by changing the stator diameter.
  • DE 3641855 A1 describes an adjustable stator with an elastomer body, which is vulcanized into a tubular jacket divided into segments on the circumference by longitudinal slots, and at least one clamp that encompasses the tubular jacket.
  • EP 0292594 A1 discloses a stator jacket for eccentric screw pumps provided with a longitudinal slot, which has a tensioning device for generating pressure and for adjusting when the stator wears only in its pressure range. The voltage is partially distributed over the length of the stator sheath using suitable reinforcing ribs.
  • DD 279 043 A1 describes a stator for an eccentric screw pump, which can be retightened and enables a correction of wear-related gap losses along the helically wound stator interior.
  • the stator is conical and axially retensionable in a sleeve with an inner cone. Retensioning is carried out with a clamping nut that spans the sleeve.
  • the contacting conical outer surfaces of the stator and sleeve create a spatial Distribution of the clamping forces and thereby the narrowing of the stator interior required for the correction of the gap losses.
  • FR 1 155 632 A describes a screw pump, comprising a screw and a support element formed from an elastic material and surrounded by a housing.
  • the support element is divided into different sectors. At least one projection is assigned to each sector, via which pressure is generated on the respective sector and thus on the housing and on the support element.
  • the pressure of the projections to be applied is set, for example, by the inclined surfaces of a telescopic threaded sleeve.
  • DE 4403979 A1 discloses an adjustable stator for progressing cavity pumps with continuous longitudinal slots and longitudinal slots that end at a short distance from the suction end of the stator.
  • a continuous slot follows each longitudinal slot.
  • the stator is readjusted by partially pressing in the stator elastomer at certain lines or points of the stator.
  • the stator comprises helical strips in areas of particularly high wear.
  • fluid is pressed in between the wall of a stator jacket and the elastomer part, as a result of which the stator diameter is changed.
  • fluid is filled into inflatable tubes, which increases the pressure on the rotor.
  • the object of the invention is to make the clamping force of the elastomer of the stator to the rotor in the stator-rotor system of the eccentric screw pump variable to compensate for the wear of the stator and for which the backflow can be kept low even after a long period of operation. Furthermore, influences of the medium on the elastomer in the system should be able to be compensated.
  • the invention relates to a stator-rotor system for an eccentric screw pump.
  • a stator-rotor system comprises a rotor with a rotor screw and a stator with an internal thread.
  • the stator can be constructed, for example, in two parts and in particular comprise a support element, for example a stator jacket, and an elastomer part, the elastomer part of the stator being arranged in the support element or stator jacket and having no fixed connection to the support element or stator jacket.
  • a fabric surrounding the elastomer part can be used as the support element. This means that the support element or the stator casing and the elastomer part can preferably be designed as separate parts.
  • the support element or the stator sheath completely surrounds the elastomer part at least in some areas.
  • the support element or the stator casing surrounds the majority of the elastomer part, so that only the free outer end regions of the elastomer part protrude beyond the support element or the stator casing and are not enclosed by the latter.
  • the stator is a stator system as shown in FIG DE 102005042559 A1 is described. Due to the lack of a firm connection between the elastomer part and the support element or stator jacket, an axial deformation of the elastomer part is possible. In the event of deformation, the volume of the elastomer part of the stator remains the same. As a result, an axial deformation of the elastomer part also leads to a radial deformation of the elastomer part, as a result of which the cross section of the passage of the elastomer part in which the rotor is guided is reduced.
  • the pretension between the stator and the rotor can easily be varied, that is to say that Adjusting or adjusting the stator according to the invention can also be used to adapt the pretension between the stator and rotor of an eccentric screw pump to different operating conditions and operating states.
  • the stator-rotor system has an adjusting mechanism for adjusting or adjusting the stator, which comprises two adjusting elements which are coupled to the stator-rotor system and which are variable in relation to one another.
  • the two setting elements are at a first distance from one another and in a second working position, the two setting elements are at a second distance from one another, the first distance being not equal to the second distance.
  • the cross section and the length of the elastomer part of the stator are changed compared to the cross section and the length of the elastomer part in the first working position.
  • the cross section of the elastomer part is important in relation to the pre-tension formed between the stator and the rotor.
  • compressing the elastomer part reducing its length, increases the cross section.
  • the inner contour of the stator is reduced, which increases the preload between the stator and rotor.
  • stretching the elastomer part increasing its length, reduces the cross-section.
  • the inner contour of the stator increases, which reduces the preload between the stator and rotor.
  • a mechanical coupling and / or connection between the adjusting mechanism and the stator in particular there is such a mechanical coupling and / or connection between the adjusting mechanism and the elastomer part of the stator.
  • the second distance is smaller than the first distance, the cross section of the elastomer part of the stator being enlarged in the second working position compared to the first working position and the length of the elastomer part of the stator being reduced compared to the first working position.
  • an approximation of the setting elements causes an enlargement or increase the bias between the rotor and stator of the stator-rotor system.
  • a spacing of the adjusting elements from one another results in a reduction in the pretension between the rotor and the stator of the stator-rotor system.
  • the second distance is greater than the first distance, the cross section of the elastomer part of the stator being reduced in the second working position compared to the first working position and the length of the elastomer part of the stator being increased compared to the first working position.
  • removal of the adjusting elements causes a reduction in the pretension between the rotor and the stator of the stator-rotor system.
  • a spacing of the adjusting elements from one another causes an increase or increase in the pretension between the rotor and the stator of the stator-rotor system.
  • one of the adjusting elements is arranged in a stationary manner on the stator-rotor system and the other adjusting element is arranged in a variable position on the stator-rotor system.
  • the first setting element is arranged in a fixed position on the support element or stator jacket and the second setting element is arranged in a variable position on the elastomer part of the stator.
  • the first setting element is arranged in a fixed position on a flange at a free end of the support element or stator casing and that the second position-variable setting element is arranged on a free end of the elastomer part of the stator.
  • the relative distance between the two setting elements can be set in different ways.
  • wedge elements can be assigned to each of the two setting elements.
  • the wedge elements are operatively connected to one another, so that a change in the position of one wedge element forces a change in the position of the other wedge element.
  • the first wedge element assigned to the first stationary adjusting element is displaceable relative to the latter
  • the second wedge element assigned to the second position-variable adjusting element is fixed in place on the second adjusting element.
  • a movement of the first wedge element in particular a displacement of the first wedge element relative to the first adjustment element, causes a displacement of the second wedge element and thus a displacement of the second position-variable adjustment element.
  • the displacement movement of the second wedge element is oriented approximately orthogonally to the displacement movement of the first wedge element.
  • a plurality of wedge rings are provided between the two setting elements. By rotating the wedge rings against each other, the distance can be varied as desired in a range between a minimum distance defined by the wedge rings and a maximum distance.
  • a spindle with an external thread or a toothed rack can be provided, which is arranged between or on the setting elements in such a way that the second position-variable setting element can be moved in the direction of the first fixed setting element or in the opposite direction from the first fixed setting element.
  • This is possible, for example, in combination with a toggle mechanism.
  • at least one hydraulic or pneumatic hollow cylinder can also be provided for changing the distance between the two setting elements or for adjustment via a plurality of threads.
  • the invention can in particular comprise a support element, so that the elastomer part of the stator is at least partially covered and supported on an exposed outer end region in which the elastomer part is not enclosed by the support element or stator jacket.
  • a compensating element may be necessary so that at least a large part of the exposed elastomer part is always covered and supported.
  • a support and / or compensation element is arranged between the first fixed setting element and the second position-variable setting element, which at least partially covers and supports an exposed end region of the elastomer part.
  • the supporting and / or compensating element can consist of at least two supporting elements which encompass the elastomer part in a form-fitting manner and are at least partially guided into one another.
  • One of the support elements is arranged on the first fixed setting element and the other support element is arranged on the second position-variable setting element.
  • one of the support elements is designed as a support ring encompassing the end region of the elastomer part and the other support element is designed as a hollow cylinder and on the flange of the support element or stator jacket arranged.
  • the inner diameter of the hollow cylinder is at least slightly larger than the outer diameter of the support ring.
  • the support ring is guided in the hollow cylinder according to the cylinder-piston principle.
  • Support ring and hollow cylinder are arranged on the stator-rotor system in such a way that the hollow cylinder largely encloses the support ring with minimal spacing of the two adjusting elements.
  • the hollow cylinder encloses only a small part of an area of the support ring facing away from the free end of the elastomer part of the stator. In this way, radial support of the elastomer part is always guaranteed in the end region not enclosed by the support element or stator jacket.
  • the support elements have approximately the same inside and outside diameter.
  • Each of the support elements has regularly spaced fingers.
  • the support elements are arranged on the stator-rotor system in such a way that the fingers of one support element are guided in the spaces between the fingers of the other support element.
  • the fingers of one support element With minimal spacing of the two adjusting elements, the fingers of one support element largely fill the gaps between the fingers of the other support element and vice versa.
  • maximum spacing of the two setting elements on the other hand, only end regions of the fingers of the one support element engage in the spaces between the end regions of the fingers of the other support element. In this way, radial support of the elastomer part is always guaranteed in the end region not enclosed by the support element or stator jacket.
  • a spring assembly encompassing the elastomer part for example a corrugated spring, or a plurality of elements loosely encompassing the elastomer part are used as the supporting and / or compensating element.
  • the support and / or compensation element can also be formed by a material that is introduced internally and / or externally into the elastomer part and / or applied to the elastomer part.
  • Various other adjustment mechanisms can also be used to adjust the distance between the two setting elements.
  • the invention further relates to a method for adjusting or adjusting a stator in a stator-rotor system of an eccentric screw pump, in particular a method for adjusting or adjusting a stator in a previously described stator-rotor system.
  • the relative distance between two adjusting elements arranged on the stator-rotor system is changed in a targeted manner, whereby the cross section and / or the length of the elastomer part can be adjusted in order to adjust it and / or to adapt it to the respective operating conditions.
  • the relative distance between the two adjusting elements is reduced in order to increase the cross section of the elastomer part of the stator and to reduce the length of the elastomer part of the stator, as a result of which the pretension between the stator and the rotor can be increased. If, on the other hand, the relative distance between the two adjusting elements is increased, the cross section of the elastomer part of the stator is reduced, while the length of the elastomer part of the stator is increased, as a result of which the pretension between the stator and the rotor can be reduced.
  • the relative distance between the two adjusting elements is increased in order to reduce the cross section of the elastomer part of the stator and to increase the length of the elastomer part of the stator, the preload between stator and rotor being reduced. If, on the other hand, the relative distance between the two adjusting elements is reduced, the cross section of the elastomer part of the stator increases, while the length of the elastomer part of the stator decreases, the preload between the stator and rotor being increased.
  • the method can comprise one or more features and / or properties of the device described above.
  • the device can also have individual or multiple features and / or properties of the described method.
  • the adjustment mechanism is coupled to a control system and is controlled and controlled by this.
  • the control system comprises at least one sensor for determining actual operating parameters of the stator-rotor system and a controller for adjusting the adjustment mechanism.
  • the setting of the adjustment mechanism is determined on the basis of data measured by sensors, the adjustment of the adjustment mechanism being controlled and / or controlled or monitored by the control.
  • the control mechanism establishes a connection between different physical operating parameters of the stator-rotor system and the state of wear of the stator or the pretension between the stator and rotor. For example, a relationship is established between the physical operating parameters pressure, flow rate, speed and / or viscosity and the state of wear of the stator or the pretension between the stator and the rotor.
  • the most direct parameter that combines these relationships is the tension in the elastomer material. This can either be determined directly via a corresponding sensor system in the elastomer material, or indirectly via the reaction force of the elastomer on other components.
  • a correlation is established, for example from pressure, flow, speed and the required preload, and a corresponding adjustment path for adjusting the adjustment mechanism is then determined, which should be suitable for setting the optimal operating point.
  • the distance to be set between the setting means of the adjustment mechanism is calculated.
  • the physical operating parameters of the eccentric screw pump are measured again and it is determined from this whether the optimal operating state has been reached. If the measured operating parameters do not correspond to the desired target parameters, an adjustment path is calculated again and the adjustment mechanism is readjusted, in particular the relative distance between the adjustment means of the adjustment mechanism is readjusted.
  • the second position-variable setting element is preferably controlled by the controller in order to change the distance from the first fixed setting element.
  • the actual operating status of the eccentric screw pump is first queried.
  • at least one physical actual operating parameter relating to the eccentric screw pump and / or at least one physical actual operating parameter relating to the elastomer part of the stator-rotor system and / or at least one physical actual operating parameter of the adjusting mechanism are determined by sensors.
  • the sensor-determined actual operating parameters compared with known or desired target operating parameters. The comparison is made in particular on the basis of data stored in the control.
  • the actual operating state of the eccentric screw pump is queried again and compared with the target operating parameters. The success of the adjustment is checked. If there is still a significant difference between the actual operating parameters and the target operating parameters of the eccentric screw pump, the adjustment mechanism is triggered and adjusted again. If the deviation between the actual operating parameters and the target operating parameters could be sufficiently reduced by adjusting the adjustment mechanism and thus adjusting or adjusting the stator, no further adjustment is made. Instead, the set operating state of the eccentric screw pump is checked again after a defined further period of time by means of the sensor measurements described above.
  • the actual operating status of the eccentric screw pump is queried again after a defined period of time by measuring the actual operating parameters and again Comparison of the same with the target operating parameters.
  • the stator-rotor system is continuously monitored during operation by regular polling at defined time intervals and can be readjusted and adapted promptly.
  • the pressure, the speed, the temperature and / or the volume flow of the eccentric screw pump is determined by sensors.
  • the pretension between the rotor and stator and / or the reaction forces of the elastomer material of the elastomer part are measured.
  • the position of at least one setting element of the sensor Adjustment mechanism and / or the relative distance between two adjustment elements of the adjustment mechanism can be determined.
  • stator-rotor system With the stator-rotor system and the method for adjusting or adjusting the stator of a stator-rotor system, wear and tear of a stator can be compensated for simply, quickly and thus cost-efficiently. Furthermore, the setting or readjustment of the stator according to the invention can also be used to adapt the preload between the stator and rotor of an eccentric screw pump.
  • This effect is also used to compensate for expansion of the elastomer, for example due to an elevated temperature of the medium being conveyed or the swelling of the elastomer.
  • friction losses can be minimized, which in turn can increase energy efficiency enormously.
  • breakaway torques at the start of the pump can be minimized, i.e. a lower torque is required to overcome static friction and to change into sliding friction.
  • Adjusting the stator can still be used as a leak valve when the pump is at a standstill.
  • the preload is increased, which leads to a seal between the rotor and stator of the eccentric screw pump.
  • the efficiency of the pump can in particular be increased, since the backflow of medium can be largely minimized.
  • the stator is adjusted or adjusted by the interaction of two adjusting elements.
  • a change in the distance between the two adjusting elements causes a deformation of the elastomer and thus a change in the cross section and / or the length of the elastomer part of the stator and thus an adjustment or readjustment of the elastomer part of the stator.
  • the position of the two elements can take place over the entire length of the stator and beyond.
  • the first stationary element can be arranged on the flange of the support element or stator jacket flange at one end of the stator-rotor system and the second stationary element on the opposite free end of the elastomer part of the stator-rotor system.
  • Figure 1 shows a schematic partial view of a known stator-rotor system 1 for an eccentric screw pump.
  • a system 1 includes one in the Rule metallic, single-start spiral rotor (not shown) and a stator 3 with a two-start thread.
  • the rotor performs an eccentric rotary movement about the longitudinal axis X3 of the stator with its figure axis.
  • the stator 3 comprises an elastomer part 4 and a stator jacket 5 as a supporting element, there being no fixed connection between the elastomer part 4 and the stator jacket 5.
  • FIG. 2 shows a schematic partial view of a first embodiment of a stator-rotor system 10, 10a according to the invention with adjusting mechanism 12.
  • the adjusting mechanism 12 comprises a first fixed adjusting element 13 and a second position-variable adjusting element 14.
  • a change in the distance between the two adjusting elements 13, 14 causes one Deformation of the elastomer and thus a change in the cross section and / or the length of the elastomer part 4 of the stator 3 and thus an adjustment or readjustment of the elastomer part 4 of the stator 3.
  • a flange 23 on the stator casing 5 serves as a fixed adjusting element 13 and one at the free end 8 of the elastomer part 4 arranged actuating element 24 serves as a variable position adjusting element 14.
  • FIGS 3 and 4 show schematic partial views of further embodiments of a stator-rotor system 10b, 10c according to the invention with adjustment mechanism 12.
  • the change in the distance of the two adjusting elements 13, 14 from one another causes a deformation of the elastomer and thus a change in the cross section and / or the length of the elastomer part 4 of the stator 3.
  • the length of an end region 9 of the elastomer part 4 protruding from the stator jacket 5 also changes .
  • the end region 9 of the elastomer part 4 protruding from the stator jacket 5 is preferably at least partially covered and supported by a support element which at least partially covers and supports the elastomer part 4 of the stator 3 in the exposed end region 9 in which the elastomer part 4 is not enclosed by the stator jacket 5.
  • a compensating element is also necessary so that at least a large part of the exposed elastomer part 4 is always covered and supported.
  • two elements 30, 31 which enclose the elastomer part 4 in a form-fitting manner and are at least partially guided into one another are provided, in particular a support ring 30 * and a hollow cylinder 31 *, which support the elastomer part 4 according to the cylinder-piston principle of length changes.
  • One of the elements, in particular the support ring 30 * is arranged and fastened on the position-variable adjusting element 14 and the other element, in particular the hollow cylinder 31 *, is arranged and fastened on the stationary adjusting element 13.
  • the support ring 30 * is pushed further into the hollow cylinder 31 *.
  • both elements 30, 31 jointly support the exposed end region 9 and the length compensation of the elastomer part 4, that is to say each of the two elements 30, 31 serves both as a support element and as a compensation element.
  • An element 30, in particular a support ring 30 *, which positively encompasses the elastomer part 4 can be attached, for example, to the thickened free end 8 of the elastomer part 4 and is shown in FIG Figure 13 shown.
  • the elastomer part 4 is arranged in the stator jacket 5.
  • an element 30 which engages around the elastomer part 4 in a form-fitting manner is arranged in the form of a support ring 30 * in the region of the free end 8 of the elastomer part 4 and screwed together after assembly.
  • the screw connection 40 takes place in the region of the thickening of the free end 8 of the elastomer part 4.
  • Figure 5 shows the structure of a support ring 30 arranged around the elastomer part 4 of the stator 3. This has an overlap and is fastened in the overlap region by means of a screw connection 40 on the elastomer part 4.
  • Figure 6 shows a further support compensation system also comprising two elements 32, 33 which encompass the elastomer part 4 in a form-fitting manner and are at least partially guided into one another.
  • the elements 32, 33 each have regularly spaced fingers 34.
  • the two elements 32, 33 are arranged such that the fingers 34a of the first element 32 engage in the spaces between the fingers 34b of the second element 33.
  • Figure 4 shows an embodiment of a stator-rotor system 10c according to the invention with an adjustment mechanism 12 with a support compensating element 35 between the first fixed adjusting element 13, in particular between the stator jacket flange 23, and the second position-variable adjusting element 14, in particular the actuating element 24.
  • loose elements which encompass the elastomer part 4 of the stator 3 can serve as a supporting compensating element 35, between the adjusting elements 13, 14 lie and thus cover a large part of the exposed outer surface area of the elastomer part 4.
  • a spring assembly for example, a spring assembly encompassing the elastomer part 4 of the stator 3, can be provided as the support compensating element 35 Figure 7 wave spring 37 shown.
  • the elastomer part 4 can also be supported internally and / or externally at the exposed locations by a material introduced into the elastomer part 4 or applied to the elastomer part 4, for example an elastomer-fiber composite can be used for this. Since in this case the compensating function is also effected by this material, the length of the elastomer part 4 supported in this way along the longitudinal axis X3 of the stator (cf. Figure 1 ) be chosen accordingly so that the area of the elastomer part 4 which is exposed at any given time is always adequately supported.
  • FIGS 8 to 14 show various embodiments of adjustment mechanisms 12 which can be used within the scope of the invention.
  • Figure 8 represents an adjustment mechanism 12a in the form of a wedge mechanism, in which a first wedge element 50 is arranged on the first fixed adjusting element 13 and a second wedge element 54 is arranged on the second position-variable adjusting element 14.
  • the first setting element 13 further comprises a spindle 52 with an external thread fastened to the first wedge element 50, which is guided by a nut 51 with a corresponding internal thread.
  • the spindle 52 By rotating the spindle 52 about the longitudinal axis X52, the first wedge element 50 is moved in a first direction of movement B1.
  • the movement of the first wedge element 50 is transmitted to the second wedge element 54 of the second adjusting element 14 which is operatively connected to the first wedge element 50.
  • Figure 9 shows an adjustment mechanism 12b in the form of an adjustment by means of a spindle 60.
  • the spindle 60 has an external thread 62.
  • the spindle 60 is rotatably arranged and mounted on the flange 23 arranged fixed on the stator jacket 5.
  • the spindle 60 is mounted in a stationary manner on the flange 23, ie rotation of the spindle 60 does not change the position of the spindle 60 relative to the flange 23.
  • the spindle 60 has an adjustment shoulder 66. This can be designed, for example, as a clutch for a motor or as a starting point for manual adjustment of the spindle 60.
  • a plurality of spindles can be arranged around the outer circumference of the stator 3.
  • a first driven spindle 60 can be mechanically coupled to the other non-driven spindles (not shown) via a gear 64 and a ring gear 65 or other suitable coupling means such that all spindles can be adjusted together.
  • a second position-variable setting element 14 is arranged at the free end of the elastomer part 4 of the stator 3 (compare Figure 1 ).
  • a support compensating element 35 is provided between the second position-variable setting element 14 and the flange 23 serving as the first fixed setting element 13, as is the case, for example, in connection with FIGS Figures 3 to 6 has been described.
  • the second position-variable setting element 14 has a bearing for the spindle 60 with an internal thread (not shown), in which the spindle 60 is rotatably mounted, so that a rotation R of the spindle 60 about its longitudinal axis X60, a movement of the second position-variable setting element 14 effected in a direction of movement B3.
  • Figure 10 represents part of an adjusting mechanism 12c in the form of a toggle lever 70.
  • a spindle 72 or rack 73 with an external thread 74 is assigned to an adjusting element 75 so as to be rotatable.
  • Two adjusting elements 77 are arranged on the spindle 72 via movably mounted connecting elements 76.
  • One of the adjusting elements 77a is fixed in place and forms the first fixed adjusting element 13.
  • the other adjusting element 77b is variable in position and forms the second variable adjusting element 14.
  • the adjusting element 75 for example by Rotation R
  • the spindle 72 is moved and in particular moved in the direction of movement B4.
  • This movement is transmitted via the movable connecting elements 76 to the adjusting elements 77, which are thereby moved closer to one another or moved apart, in particular the variable-position adjusting element 77b being moved relative to the fixed adjusting element 77a.
  • FIG 11 shows an adjustment mechanism 12d in the form of an adjustment by means of wedge rings 80, 82.
  • the adjustment mechanism 12d is constructed, for example, from two outer wedge rings 80a, 80b and two inner wedge rings 82a, 82b and is seated at the free end 8 on the elastomer part 4 of the stator.
  • the outer wedge ring 80b is arranged on a fixed part 13, for example on the flange 23 of the stator casing (not shown).
  • the variable outer setting element 14 is assigned to the opposite outer wedge ring 80a.
  • the two inner wedge rings 82a, 82b are seated on the widened free end 8 of the elastomer part 4 of the stator and are fixed thereon.
  • Figure 12 represents an adjusting mechanism 12e by means of a hydraulic or pneumatic hollow cylinder 90.
  • the second position-variable adjusting element 14 is in turn arranged on the widened free end 8 of the elastomer part 4 of the stator 3.
  • the flange 23 on the stator casing 5 represents the fixed setting element 13 and is increased in its outer regions in the direction of the free end 8 of the elastomer part 4 by an attached ring or the like.
  • At least one hydraulic or pneumatic hollow cylinder is arranged on the second position-variable setting element 14. By actuating the hollow cylinder, in particular by filling or removing a suitable fluid, the second position-variable adjusting element 14 can be moved in the direction of the first stationary adjusting element 13 or in the opposite direction.
  • a support compensation element 35 is in turn provided between the second position-variable setting element 14 and the flange 23 serving as the first fixed setting element 13
  • Figure 13 shows an adjustment mechanism 12f which achieves the adjustment of the relative distance of the adjustment elements 13, 14 from one another with the aid of threads.
  • the fixed adjusting element 13 is operatively connected to the position-variable adjusting element 14 via a thread arrangement.
  • the position-variable adjusting element 14 is designed as an adjusting ring 93 and is placed on the flange of the elastomer part 4 with a thread.
  • the adjusting ring 93 also receives a collar 95, which is fixed via a clamping ring 97.
  • a fixed fastening ring is arranged at the free end 8 of the elastomer part 4.
  • a drive gear 94 and a gear 96 with an internal thread are assigned to the fastening ring 92.
  • the gear 96 with an internal thread engages the position-variable adjusting element 14 or adjusting ring 93.
  • the twisting of the threads of the gear wheels 94, 96 relative to one another causes the position-variable adjusting element 14 or adjusting ring 93 to move along the longitudinal axis X3 of the stator (not shown) or the elastomer part 4.
  • Fig. 14 shows an adjustment mechanism 12g, which is designed as a medium-operated adjustment system, in particular a hydraulic or pneumatic adjustment system, using a membrane 45.
  • the principle of the medium-operated adjustment mechanism 12g is a modification of the idea of the adjustment by means of a hydraulic cylinder 46 according to Figure 12 .
  • the bias between stator 3 and rotor (not shown) is set as a function of a medium pressure on the membrane 45.
  • the hydraulic cylinder 46 comprises a fixed cylinder part 47 and a movably mounted cylinder part 48, on which the membrane 45 is arranged in such a way that it separates the hydraulic fluid H from the medium pumped by the eccentric screw pump.
  • the hydraulic cylinder 46 is arranged at the free end 8 of the elastomer part 4 of the stator 3, in particular the movably mounted cylinder part 48 is fastened to the elastomer flange and the stationary fixed cylinder part 47 is arranged and fixed on the stator jacket 5.
  • the medium pressure of the eccentric screw pump is used. This simplifies the system and significantly reduces costs.
  • the necessary separation between hydraulic fluid H and medium is realized in the illustrated embodiment by the membrane 45.
  • a pressure transmission D causes the movably mounted cylinder part 48 to be displaced with respect to the fixedly fixed cylinder part 47.
  • the hydraulic cylinder is reset 46 in the case of a reduction in pressure takes place via the spring force of the elastomer of the elastomer part 4 and / or through additional components. As a result of this interaction, the elastomer of the elastomer part 4 is compressed to such an extent that, depending on the pump pressure, an optimal preload is established between the rotor (not shown) and the stator 3.
  • the end region 9 of the elastomer part 4 protruding from the stator jacket 5 is also at least partially enclosed in this exemplary embodiment by an encompassing (support) element 30 which supports the elastomer part 4 of the stator 3 in the exposed end region 9, in which the elastomer part 4 is not the stator jacket 5 is enclosed, at least partially covered and supported. Furthermore, there is a compensating element 36 which can compensate for the change in length of the elastomer part 4 of the stator-rotor system of the eccentric screw pump in relation to a fixed flange 20 of the eccentric screw pump.
  • the end face of the elastomer part 4 is used as a piston, on which the medium pressure of the pumped medium acts directly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Transmission Devices (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Stator- Rotor- System und ein Verfahren zum Einstellen eines Stators in einem Stator- Rotor- System gemäß den Merkmalen der Oberbegriffe der Ansprüche 1 und 12.
  • Stand der Technik
  • Die vorliegende Erfindung betrifft Stator- Rotor- System einer Exzenterschneckenpumpe zur Förderung flüssiger und / oder körniger Medien mit einem einstellbaren beziehungsweise nachstellbaren Stator.
  • Exzenterschneckenpumpen sind Pumpen zur Förderung einer Vielzahl von Medien, insbesondere von dickflüssigen, hochviskosen und abrasiven Medien wie zum Beispiel Schlämmen, Gülle, Erdöl und Fetten. Hierbei wälzt sich der angetriebene, gewendelte Rotor im Stator ab. Dieser ist ein Gehäuse mit einer schneckenförmig gewendelten Innenseite. Der Rotor vollführt dabei mit seiner Figurenachse eine exzentrische Drehbewegung um die Statorachse. Die äußere Schnecke, d.h. der Stator, hat beispielsweise die Form eines zweigängigen Gewindes, während die Rotorschnecke nur eingängig ist. Der Rotor besteht üblicherweise aus einem hoch abriebfesten Material, wie zum Beispiel Stahl. Der Stator hingegen besteht aus einem elastischen Material, zum Beispiel Gummi. Durch die spezielle Formgebung von Rotor und Stator entstehen zwischen Rotor und Stator abgedichtete Hohlräume, die sich bei Drehung des Rotors axial fortbewegen und das Medium fördern. Das Volumen der Hohlräume ist dabei konstant, so dass das Fördermedium nicht gequetscht wird. Bei passender Auslegung können mit Exzenterschneckenpumpen nicht nur Fluide, sondern auch Festkörper gefördert werden.
  • Zur Ausbildung der Förderräume und um das jeweilige Medium mit möglichst geringem Rückfluss befördern zu können, liegt der Rotor druckbeaufschlagt an einer durch elastisches Material gebildeten Innenwandung des Stators an. Aufgrund der Bewegung des in der Regel metallischen Rotors innerhalb des in der Regel aus Gummi oder einem ähnlichen Material bestehenden Stators kommt es zu einem gewissen Abrieb beziehungsweise Verschleiß des Stators. Durch den Verschleiß wird die druckbeaufschlagte Anlagekraft zwischen Rotor und Stator reduziert, insbesondere kann die Berührung zwischen dem Stator und dem Rotor längs einer ununterbrochenen wendelförmigen Berührungslinie nicht aufrecht erhalten werden, wodurch die Leistung der Exzenterschneckenpumpe sinkt. Dies gilt insbesondere für Pumpen, die eine große Saughöhe zu überwinden haben. Aus diesem Grund muss der Stator in regelmäßigen Abständen ausgetauscht und ersetzt werden.
  • Um den Zeitpunkt des Austauschs des Stators zu ermitteln, werden beispielsweise Sensoren verwendet, die den Verschleiß des Stators anhand physikalischer Parameter detektieren.
  • Alternativ sind Ausführungsformen bekannt, bei denen der Stator nachgestellt werden kann, um den Verschleiß auszugleichen. Beispielsweise kann die Spannung im Stator- Rotor- System durch eine Veränderung des Statordurchmessers angepasst werden.
  • DE 3433269 A1 beschreibt einen Statormantel mit Spannvorrichtungen in Form von Zugbolzen, die über die gesamte axiale Länge des Statormantels verteilt sind. Dies bewirkt eine deutliche Gewichtserhöhung des Stator- Rotor- Systems. Zudem müssen zum Nachstellen alle Spannvorrichtungen einzeln nachgezogen werden.
  • DE 3641855 A1 beschreibt einen verstellbaren Stator mit einem Elastomerkörper, der in einem am Umfang durch Längsschlitze in Segmente aufgeteilten Rohrmantel einvulkanisiert ist und mindestens eine den Rohrmantel umfassende Spannschelle.
  • EP 0292594 A1 offenbart einen mit einem Längsschlitz versehenen Statormantel für Exzenterschneckenpumpen, der ausschließlich in seinem Druckbereich eine Spannvorrichtung zur Druckerzeugung sowie zum Nachstellen bei Verschleiß des Stators aufweist. Die Spannung wird durch geeignete Verstärkungsrippen teilweise über die Länge des Statormantels verteilt.
  • DD 279 043 A1 beschreibt einen Stator für eine Exzenterschneckenpumpe, der nachspannbar ist und eine Korrektur verschleißbedingter Spaltverluste entlang des schraubenförmig gewundenen Statorinnenraums ermöglicht. Der Stator ist konisch ausgebildet und in einer Hülse mit einem Innenkonus axial nachspannbar angeordnet. Das Nachspannen erfolgt mit einer die Hülse übergreifenden Spannmutter. Die sich kontaktierenden konischen Mantelflächen von Stator und Hülse bewirken eine räumliche Verteilung der Spannkräfte und dadurch die für die Korrektur der Spaltverluste erforderliche Verengung des Statorinnenraums.
  • FR 1 155 632 A beschreibt eine Schraubenpumpe, umfassend eine Schraube und ein aus einem elastischen Material gebildetes Stützelement, das von einem Gehäuse umfasst ist. Das Stützelement ist in verschiedenen Sektoren unterteilt. Jedem Sektor ist zumindest ein Vorsprung zugeordnet, über welchem jeweils Druck auf den jeweiligen Sektor und damit Druck auf das Gehäuse und auf das Stützelement erzeugt wird. Der aufzubringende Druck der Vorsprünge wird beispielsweise durch die Schrägflächen einer Teleskopgewindehülse eingestellt.
  • DE 4312123 A1 beschreibt einen Statormantel mit mehreren längs verlaufenden Schlitzen, die das Nachstellen vereinfachen. Damit ein Nachstellen besser im Bereich des druckseitigen Endes des Stators vollzogen werden kann, enden die Schlitze kurz vor dem Ende des saugseitigen Endes des Stators und laufen nur am druckseitigen Ende frei aus.
  • DE 4403979 A1 offenbart einen nachstellbaren Stator für Exzenterschneckenpumpen mit durchgängigen Längsschlitzen und Längsschlitzen, die mit geringem Abstand vor dem saugseitigen Ende des Stators enden. Zweckmäßigerweise folgt je einem Längsschlitz ein durchgehender Schlitz.
  • DE 10200393 A1 beschreibt eine Exzenterschneckenpumpe mit einem partiell nachspannbaren Stator. Hierbei ist ein axial nicht durchgängiger Spannspalt in dem den elastomeren Statorkern umgreifenden Statormantel vorgesehen. Der auf der Eintrittsseite verbleibende Steg bildet auf dieser Seite eine Spannsperre. Das Nachspannen des Stators erfolgt durch eine Spanneinrichtung, die in einem Bereich des Statormantels mit Spannspalt angeordnet ist.
  • Weiterhin ist gemäß DE 2331173 eine Vorrichtung bekannt, bei der ein Nachstellen des Stators durch ein partielles Eindrücken des Stator- Elastomers an bestimmten Linien oder Punkten des Stators erfolgt. Hierzu umfasst der Stator wendelförmige Leisten in Bereichen besonders hohen Verschleißes. Durch Verstellung der wendelförmige Leisten werden insbesondere die von den im Querschnitt geradlinigen Abschnitten gebildeten Bereiche der Innengewindefläche des Stators in ihrer Lage in radialer Richtung verändert. Dadurch kann selbst eine stark verschlissene Statorauskleidung derart verformt werden, dass sie ihre ursprüngliche Querschnittsform wieder einnimmt.
  • Eine weitere Möglichkeit sieht vor, dass ein Fluid zwischen der Wandung eines Statormantels und dem Elastomerteil eingepresst wird, wodurch der Statordurchmesser verändert wird. Gemäß einer in der US 3139035 beschriebenen Variante wird Fluid in aufblasbare Röhren eingefüllt, wodurch der Druck auf den Rotor erhöht wird.
  • Der vorbeschriebene Stand der Technik weist eine Mehrzahl von Nachteilen auf. Aufgrund der vielen Stellmöglichkeiten an den verschiedenen Systemen ist die jeweilige Handhabung schwierig. Insbesondere fehlt in den beschriebenen Systemen eine Rückmeldung über die Höhe der Spannung zwischen Stator und Rotor. Die Einstellung sollte somit nur durch erfahrenes Bedienpersonal erfolgen, da ansonsten die Gefahr einer Fehlbedienung hoch ist. Wird die Spannung zu stark erhöht, arbeitet die Pumpe schlechter und der Verschleiß des Stators wird weiter erhöht.
  • Mit den vorbeschriebenen Systemen ist nur ein Ausgleich des Statorverschleißes möglich, jedoch keine Anpassung an die jeweilig vorherrschenden Betriebsbedingungen.
  • Aufgabe der Erfindung ist es, die Spannkraft des Elastomers des Stators zum Rotor im Stator- Rotor- System der Exzenterschneckenpumpe variabel zu gestalten, um den Verschleiß des Stators auszugleichen und bei welcher der Rückfluss auch nach langer Betriebsdauer gering gehalten werden kann. Weiterhin sollen Einflüsse des Mediums auf das Elastomer im System ausgeglichen werden können.
  • Die obige Aufgabe wird durch ein Stator- Rotor- System und ein Verfahren zum Nachstellen eines Stators in einem Stator- Rotor- System gelöst, die die Merkmale in dem Patentansprüchen 1 und 12 umfassen. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.
  • Beschreibung
  • Die Erfindung bezieht sich auf ein Stator- Rotor- System für eine Exzenterschneckenpumpe. Ein solches Stator- Rotor- System umfasst einen Rotor mit einer Rotorschnecke und einen Stator mit einem Innengewinde. Der Stator kann beispielsweise zweiteilig aufgebaut sein und insbesondere ein Stützelement, beispielsweise einen Statormantel, und ein Elastomerteil umfassen, wobei das Elastomerteil des Stators in dem Stützelement beziehungsweise Statormantel angeordnet ist und keine feste Verbindung zum Stützelement beziehungsweise Statormantel aufweist. Alternativ kann als Stützelement beispielsweise ein den Elastomerteil umschließendes Gewebe verwendet werden. Das heißt, das Stützelement beziehungsweise der Statormantel und das Elastomerteil können vorzugsweise als getrennte Teile ausgebildet sein. Das Stützelement beziehungsweise der Statormantel umschließt das Elastomerteil zumindest bereichsweise vollumfänglich. Insbesondere umschließt das Stützelement beziehungsweise der Statormantel den Großteil des Elastomerteils, so dass nur die freien äußeren Endbereiche des Elastomerteils über das Stützelement beziehungsweise den Statormantel hinaus ragen und nicht von diesem umschlossen sind.
  • Insbesondere handelt es sich bei dem Stator um ein Statorsystem wie es in der DE 102005042559 A1 beschrieben ist. Aufgrund einer fehlenden festen Verbindung zwischen Elastomerteil und Stützelement beziehungsweise Statormantel ist eine axiale Verformung des Elastomerteils möglich. Bei einer Verformung bleibt das Volumen des Elastomerteils des Stators gleich. Dadurch führt eine axiale Verformung des Elastomerteils zugleich zu einer radialen Verformung des Elastomerteils, wodurch der Querschnitt des Durchgangs des Elastomerteils, in dem der Rotor geführt ist, reduziert wird. Dadurch kann zusätzlich zum Ausgleich des Statorverschleißes noch einfach die Vorspannung zwischen Stator und Rotor variiert werden, das heißt das erfindungsgemäße Einstellen beziehungsweise Nachstellen des Stators kann auch verwendet werden, um die Vorspannung zwischen Stator und Rotor einer Exzenterschneckenpumpe an unterschiedliche Betriebsbedingungen und Betriebszustände anzupassen.
  • Erfindungsgemäß ist vorgesehen, dass das Stator- Rotor- System einen Verstellmechanismus zum Einstellen beziehungsweise Nachstellen des Stators aufweist, der zwei mit dem Stator- Rotor- System gekoppelte Einstellelemente umfasst, die zueinander distanzvariabel sind. In einer ersten Arbeitsposition weisen die beiden Einstellelemente einen ersten Abstand zueinander auf und in einer zweiten Arbeitsposition weisen die beiden Einstellelemente einen zweiten Abstand zueinander auf, wobei der erste Abstand ungleich dem zweiten Abstand ist. In der zweiten Arbeitsposition sind der Querschnitt und die Länge des Elastomerteils des Stators gegenüber dem Querschnitt und der Länge des Elastomerteils in der ersten Arbeitsposition verändert. Der Querschnitt des Elastomerteils, insbesondere der Querschnitt des Innengewindes des Elastomerteils, ist wichtig in Bezug auf die zwischen Stator und Rotor ausgebildete Vorspannung. Insbesondere bewirkt beispielsweise eine Stauchung des Elastomerteils, wobei sich dessen Länge verringert, eine Vergrößerung des Querschnitts. Parallel dazu verringert sich die innere Kontur des Stators, wodurch die Vorspannung zwischen Stator und Rotor zunimmt. Umgekehrt bewirkt eine Dehnung des Elastomerteils wobei sich dessen Länge erhöht, eine Verkleinerung des Querschnitts. Parallel dazu vergrößert sich die innere Kontur des Stators, wodurch die Vorspannung zwischen Stator und Rotor abnimmt.
  • Gemäß einer bevorzugten Ausführungsform besteht zwischen dem Verstellmechanismus und dem Stator eine mechanische Koppelung und / oder Verbindung, insbesondere besteht eine solche mechanische Koppelung und / oder Verbindung zwischen dem Verstellmechanismus und dem Elastomerteil des Stators. Durch Änderung des relativen Abstands zwischen den beiden Einstellelementen des Verstellmechanismus wird eine Veränderung des Querschnitts und der Länge des Elastomerteils des Stators bewirkt.
  • Gemäß einer bevorzugten Ausführungsform ist der zweite Abstand geringer als der erste Abstand, wobei in der zweiten Arbeitsposition der Querschnitt des Elastomerteils des Stators im Vergleich zu der ersten Arbeitsposition vergrößert ist und die Länge des Elastomerteils des Stators im Vergleich zu der ersten Arbeitsposition verringert ist. Bei dieser Ausführungsform bewirkt eine Annäherung der Einstellelemente eine Vergrößerung beziehungsweise Erhöhung der Vorspannung zwischen Rotor und Stator des Stator-Rotor- Systems. Dagegen bewirkt eine Beabstandung der Einstellelemente voneinander eine Verringerung der Vorspannung zwischen Rotor und Stator des Stator- Rotor-Systems.
  • Gemäß einer alternativen Ausführungsform ist der zweite Abstand größer als der erste Abstand, wobei in der zweiten Arbeitsposition der Querschnitt des Elastomerteils des Stators im Vergleich zu der ersten Arbeitsposition verringert ist und die Länge des Elastomerteils des Stators im Vergleich zu der ersten Arbeitsposition vergrößert ist. Bei dieser Ausführungsform bewirkt eine Entfernung der Einstellelemente eine Verringerung der Vorspannung zwischen Rotor und Stator des Stator- Rotor- Systems. Dagegen bewirkt eine Beabstandung der Einstellelemente voneinander eine Vergrößerung beziehungsweise Erhöhung der Vorspannung zwischen Rotor und Stator des Stator-Rotor- Systems.
  • Gemäß einer bevorzugten Ausführungsform ist vorgesehen, dass eines der Einstellelemente ortsfest am Stator- Rotor- System angeordnet ist und das andere Einstellelement positionsvariabel am Stator- Rotor- System angeordnet ist. Insbesondere ist das erste Einstellelement ortsfest am Stützelement beziehungsweise Statormantel angeordnet und das zweite Einstellelement positionsvariabel am Elastomerteil des Stators angeordnet. Gemäß einer bevorzugten Ausführungsform ist vorgesehen, dass das erste Einstellelement ortsfest an einem Flansch an einem freien Ende des Stützelements beziehungsweise Statormantels angeordnet ist und dass das zweite positionsvariable Einstellelement an einem freien Ende des Elastomerteils des Stators angeordnet ist.
  • Die Einstellung des relativen Abstandes zwischen den beiden Einstellelementen kann auf unterschiedliche Art und Weise erfolgen. Beispielsweise können jedem der beiden Einstellelementen Keilelemente zugeordnet sein. Die Keilelemente stehen miteinander in Wirkverbindung, so dass eine Veränderung der Lage eines Keilelementes eine Veränderung der Lage des anderen Keilelementes erzwingt. Während das dem ersten ortsfesten Einstellelement zugeordnete erste Keilelement gegenüber diesem verschieblich ist, ist das dem zweiten positionsvariablen Einstellelement zugeordnete zweite Keilelement ortsfest an dem zweiten Einstellelement befestigt. Eine Bewegung des ersten Keilelements, insbesondere eine Verschiebung des ersten Keilelements gegenüber dem ersten Einstellelement, bewirkt eine Verschiebung des zweiten Keilelementes und somit eine Verschiebung des zweiten positionsvariablen Einstellelements. Insbesondere ist die Verschiebungsbewegung des zweiten Keilelementes in etwa orthogonal zur Verschiebungsbewegung des ersten Keilelementes orientiert.
  • Gemäß einer weiteren Ausführungsform ist eine Mehrzahl von Keilringen zwischen den beiden Einstellelementen vorgesehen. Durch ein Verdrehen der Keilringe gegeneinander, kann der Abstand in einem Bereich zwischen einem durch die Keilringe definierten Minimalabstand und einem Maximalabstand beliebig variiert werden.
  • Alternativ kann die Verwendung einer Spindel mit Außengewinde oder einer Zahnstange vorgesehen sein, die derart zwischen beziehungsweise an den Einstellelementen angeordnet ist, dass das zweite positionsvariable Einstellelement in Richtung des ersten ortsfesten Einstellelementes oder in Gegenrichtung vom ersten ortsfesten Einstellelement weg verschoben werden kann. Dies ist beispielsweise in Kombination mit einer Kniehebelmechanik möglich. Anstelle einer Spindel kann auch mindestens ein hydraulischer oder pneumatischer Hohlzylinder für die Abstandsänderung zwischen den beiden Einstellelementen oder eine Verstellung über mehrere Gewinde vorgesehen sein.
  • Die Erfindung kann zusätzlich zu dem Verstellmechanismus aus zwei Einstellelementen insbesondere ein Abstützelement umfassen, so dass das Elastomerteil des Stators an einem freiliegenden äußeren Endbereich, in dem das Elastomerteil nicht von dem Stützelement beziehungsweise Statormantel umschlossen ist, zumindest teilweise bedeckt und abstützt. Weiterhin kann ein Ausgleichselement notwendig sein, damit immer mindestens ein Großteil des freiliegenden Elastomerteils bedeckt und abgestützt ist.
  • Gemäß einer bevorzugten Ausführungsform ist zwischen dem ersten ortsfesten Einstellelement und dem zweiten positionsvariablen Einstellelement ein Abstütz- und / oder Ausgleichselement angeordnet, das einen freiliegenden Endbereich des Elastomerteils zumindest teilweise bedeckt und abstützt. Beispielsweise kann das Abstütz- und / oder Ausgleichselement aus mindestens zwei den Elastomerteil formschlüssig umgreifenden und zumindest teilweise ineinander geführten Stützelementen bestehen. Eines der Stützelemente ist an dem ersten ortsfesten Einstellelement und das andere Stützelement ist an dem zweiten positionsvariablen Einstellelement angeordnet. Beispielsweise ist eines der Stützelemente als ein den Endbereich des Elastomerteils umfassender Stützring ausgebildet und das andere Stützelement ist als Hohlzylinder ausgebildet und am Flansch des Stützelements beziehungsweise Statormantels angeordnet. Der Innendurchmesser des Hohlzylinders ist zumindest geringfügig größer als der Außendurchmesser des Stützrings. Der Stützring ist nach dem Zylinder- Kolben- Prinzip in dem Hohlzylinder geführt. Stützring und Hohlzylinder sind derart an dem Stator- Rotor- System angeordnet, dass der Hohlzylinder bei minimaler Beabstandung der beiden Einstellelemente, den Stützring größtenteils umschließt. Bei maximaler Beabstandung der beiden Einstellelemente umschließt der Hohlzylinder einen dem freien Ende des Elastomerteils des Stators abgewandten Bereich des Stützrings dagegen nur zu einem geringen Teil. Auf diese Weise wird immer eine radiale Abstützung des Elastomerteils in dem nicht vom Stützelement beziehungsweise Statormantel umschlossenen Endbereich gewährleistet.
  • Gemäß einer weiteren Ausführungsform weisen die Stützelemente in etwa denselben Innen- und Außendurchmesser auf. Jedes der Stützelemente weist regelmäßig beabstandete Finger auf. Die Stützelemente sind derart an dem Stator- Rotor- System angeordnet, dass die Finger des einen Stützelementes in den Zwischenräumen zwischen den Fingern des anderen Stützelementes geführt sind. Bei minimaler Beabstandung der beiden Einstellelemente füllen die Finger des einen Stützelementes die Zwischenräume zwischen den Fingern des anderen Stützelementes größtenteils aus und vice versa. Bei maximaler Beabstandung der beiden Einstellelemente greifen dagegen nur noch Endbereiche der Finger des einen Stützelementes in die Zwischenräume zwischen den Endbereichen der Finger des anderen Stützelementes. Auf diese Weise wird immer eine radiale Abstützung des Elastomerteils in dem nicht vom Stützelement beziehungsweise Statormantel umschlossenen Endbereich gewährleistet.
  • Gemäß einer weiteren Ausführungsform findet als Abstütz- und / oder Ausgleichselement ein das Elastomerteil umgreifendes Federpaket, beispielsweise eine Wellfeder, oder eine Mehrzahl von das Elastomerteil lose umgreifenden Elementen Verwendung. Alternativ kann das Abstütz- und / oder Ausgleichselement auch durch ein innerlich und / oder äußerlich in das Elastomerteil eingebrachtes und / oder auf das Elastomerteil aufgetragenes Material gebildet werden.
  • Zur Einstellung des Abstands zwischen den beiden Einstellelementen können auch verschiedene andere Verstellmechanismen verwendet werden. Beispielsweise ist es denkbar, den Abstand zwischen den Einstellelementen mittels geeigneter hydraulisch oder pneumatisch betriebener Einstellmittel oder mittels geeigneter mechanischer Einstellmittel zu variieren.
  • Die Erfindung betrifft weiterhin ein Verfahren zum Einstellen beziehungsweise Nachstellen eines Stators in einem Stator- Rotor- System einer Exzenterschneckenpumpe, insbesondere ein Verfahren zum Einstellen beziehungsweise Nachstellen eines Stators in einem vorbeschriebenen Stator- Rotor- System. Hierbei wird der relative Abstand zwischen zwei an dem Stator- Rotor- System angeordneten Einstellelementen gezielt verändert, wodurch der Querschnitt und / oder die Länge des Elastomerteils eingestellt werden kann, um diesen nachzustellen und / oder an jeweilige Betriebsbedingungen anzupassen.
  • Gemäß einer Ausführungsform des Verfahrens wird der relative Abstand zwischen den beiden Einstellelementen verringert, um den Querschnitt des Elastomerteils des Stators zu erhöhen und die Länge des Elastomerteils des Stators zu verkleinern, wodurch die Vorspannung zwischen Stator und Rotor erhöht werden kann. Wird dagegen der relative Abstand zwischen den beiden Einstellelementen erhöht, dann verringert sich der Querschnitt des Elastomerteils des Stators, während sich die Länge des Elastomerteils des Stators erhöht, wodurch die Vorspannung zwischen Stator und Rotor verringert werden kann.
  • Gemäß einer alternativen Ausführungsform des Verfahrens wird der relative Abstand zwischen den beiden Einstellelementen vergrößert, um den Querschnitt des Elastomerteils des Stators zu verkleinern und die Länge des Elastomerteils des Stators zu erhöhen, wobei die Vorspannung zwischen Stator und Rotor verringert wird. Wird dagegen der relative Abstand zwischen den beiden Einstellelementen verringert, dann erhöht sich der Querschnitt des Elastomerteils des Stators, während sich die Länge des Elastomerteils des Stators verringert, wobei die Vorspannung zwischen Stator und Rotor erhöht wird.
  • Das Verfahren kann alternativ oder zusätzlich zu den beschriebenen Merkmalen ein oder mehrere Merkmale und / oder Eigenschaften der zuvor beschriebenen Vorrichtung umfassen. Ebenfalls kann die Vorrichtung alternativ oder zusätzlich einzelne oder mehrere Merkmale und / oder Eigenschaften des beschriebenen Verfahrens aufweisen.
  • Gemäß einer Ausführungsform der Erfindung ist eine Automatisierung der Statorverstellung vorgesehen. Hierfür ist der Verstellmechanismus mit einem Regelsystem gekoppelt und wird durch dieses angesteuert und kontrolliert. Insbesondere umfasst das Regelsystem mindestens einen Sensor zur Ermittlung von Ist-Betriebsparametern des Stator- Rotor- Systems und eine Steuerung zur Einstellung des Verstellmechanismus. Die Einstellung des Verstellmechanismus wird anhand sensorisch gemessener Daten ermittelt, wobei die Einstellung des Verstellmechanismus durch die Regelung angesteuert und / oder kontrolliert beziehungsweise überwacht wird.
  • Der erfindungsgemäße Regelmechanismus stellt einen Zusammenhang zwischen verschiedenen physikalischen Betriebsparametern des Stator- Rotor- Systems und dem Verschleißzustand des Stators bzw. der Vorspannung zwischen Stator und Rotor her. Beispielsweise wird ein Zusammenhang zwischen den physikalischen Betriebsparametern Druck, Durchfluss, Drehzahl und / oder Viskosität und dem Verschleißzustand des Stators bzw. der Vorspannung zwischen Stator und Rotor hergestellt. Der direkteste Parameter, der diese Zusammenhänge miteinander vereint, ist die Spannung im Elastomermaterial. Diese kann entweder direkt über eine entsprechende Sensorik im Elastomermaterial bestimmt werden, oder indirekt über die Reaktionskraft des Elastomers auf andere Bauteile ermittelt werden.
  • Mit Hilfe des erfindungsgemäßen Regelalgorithmus wird eine Korrelation beispielsweise aus Druck, Durchfluss, Drehzahl und der benötigten Vorspannung hergestellt und daraufhin ein entsprechender Verstellweg zur Einstellung des Verstellmechanismus ermittelt, der geeignet sein sollte, den optimalen Betriebspunkt einzustellen. Insbesondere wird der zwischen den Einstellmitteln des Verstellmechanismus einzustellende Abstand berechnet. Nach automatisierter Justierung des Verstellmechanismus werden die physikalischen Betriebsparameter der Exzenterschneckenpumpe erneut gemessen und daraus ermittelt, ob der optimale Betriebszustand erreicht ist. Entsprechen die gemessenen Betriebsparameter nicht den gewünschten Soll- Parametern, so wird erneut ein Verstellweg berechnet und der Verstellmechanismus nachgestellt, insbesondere wird der relative Abstand zwischen den Einstellmitteln des Verstellmechanismus nachjustiert. Vorzugsweise wird das zweite positionsvariable Einstellelement zur Änderung des Abstands gegenüber dem ersten ortsfesten Einstellelement durch die Steuerung angesteuert.
  • Im Rahmen der Regelung erfolgt zuerst eine Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe. Hierbei werden sensorisch mindestens ein physikalischer Ist- Betriebsparameter betreffend die Exzenterschneckenpumpe und / oder mindestens ein physikalischer Ist- Betriebsparameter betreffend das Elastomerteil des Stator- Rotor-Systems und / oder mindestens ein physikalischer Ist- Betriebsparameter des Verstellmechanismus ermittelt. Anschließend werden die sensorisch ermittelten Ist-Betriebsparameter mit bekannten beziehungsweise gewünschten Soll-Betriebsparametern verglichen. Der Vergleich erfolgt insbesondere anhand von in der Steuerung gespeicherten Daten. Wird bei dem Vergleich eine Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern ermittelt, so wird eine notwendige Verstellung des Verstellmechanismus berechnet und dieser entsprechend angesteuert und eingestellt, was zu einem Einstellen beziehungsweise Nachstellen des Stators führt, insbesondere zu einer Änderung des Querschnitts und der Länge des Elastomerteils des Stators.
  • Gemäß einer bevorzugten Ausführungsform erfolgt im Anschluss an die Verstellung des Verstellmechanismus nach einer definierten Zeitspanne eine erneute Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe und Vergleich mit den Soll- Betriebsparametern. Dabei wird der Erfolg des Verstellens kontrolliert. Besteht weiterhin eine signifikante Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern der Exzenterschneckenpumpe, erfolgt eine erneute Ansteuerung und Einstellung des Verstellmechanismus. Konnte durch die Einstellung des Verstellmechanismus und somit Einstellen beziehungsweise Nachstellung des Stators die Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern ausreichend reduziert werden, so erfolgt keine weitere Verstellung. Stattdessen wird der eingestellte Betriebszustand der Exzenterschneckenpumpe nach einer definierten weiteren Zeitspanne erneut durch vorbeschriebene sensorische Messungen überprüft.
  • Wird dagegen bei der ersten Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe keine Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern ermittelt, so erfolgt nach einer definierten Zeitspanne eine erneute Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe durch Messung der Ist- Betriebsparameter und wiederum ein Vergleich derselben mit den Soll-Betriebsparametern. Durch die regelmäßige Abfrage in definierten Zeitabständen wird das Stator- Rotor- System im laufenden Betrieb ständig überwacht und kann zeitnah nachreguliert und angepasst werden.
  • Gemäß einer Ausführungsform der Erfindung wird sensorisch der Druck, die Drehzahl, die Temperatur und / oder der Volumenstroms der Exzenterschneckenpumpe ermittelt. Alternativ oder zusätzlich werden die Vorspannung zwischen Rotor und Stator und / oder die Reaktionskräfte des Elastomermaterials des Elastomerteils gemessen. Weiterhin kann sensorisch die Position mindestens eines Einstellelementes des Verstellmechanismus und /oder der relative Abstand zwischen zwei Einstellelementen des Verstellmechanismus ermittelt werden.
  • Mit dem Stator- Rotor- System und dem Verfahren zum Einstellen beziehungsweise Nachstellen des Stators eines Stator- Rotor- System kann einfach, schnell und damit kosteneffizient der Verschleiß eines Stators ausgeglichen werden. Weiterhin kann das erfindungsgemäße Einstellen beziehungsweise Nachstellen des Stators auch verwendet werden, um die Vorspannung zwischen Stator und Rotor einer Exzenterschneckenpumpe anzupassen.
  • Dieser Effekt wird auch ausgenutzt, um eine Ausdehnung des Elastomers, beispielsweise aufgrund einer erhöhten Temperatur des geförderten Mediums oder der Quellung des Elastomers zu kompensieren. Durch eine gezielte Verringerung der Vorspannkraft zwischen Stator und Rotor können Reibungsverluste minimiert werden, wodurch wiederum die Energieeffizienz enorm gesteigert werden kann. Weiterhin können die Losbrechmomente beim Start der Pumpe minimiert werden, das heißt es wird ein geringeres Drehmoment benötigt, um die Haftreibung zu überwinden und in die Gleitreibung überzugehen.
  • Das Einstellen des Stators kann weiterhin im Stillstand der Pumpe als Dichtigkeitsventil verwendet werden. Im Stillstand der Pumpe wird die Vorspannung erhöht, was zu einer Abdichtung zwischen Rotor und Stator der Exzenterschneckenpumpe führt.
  • Mit Hilfe des erfindungsgemäßen Stator- Rotor- Systems kann insbesondere der Wirkungsgrad der Pumpe erhöht werden, da der Rückfluss an Medium weitgehend minimiert werden kann.
  • Die Einstellung beziehungsweise Nachstellung des Stators erfolgt durch das Zusammenwirken von zwei Einstellelementen. Eine Abstandsänderung der beiden Einstellelemente zueinander bewirkt eine Verformung des Elastomers und somit eine Änderung des Querschnitts und / oder der Länge des Elastomerteils des Stators und somit ein Einstellen beziehungsweise Nachstellen des Elastomerteils des Stators. Die Position der beiden Elemente kann über die gesamte Statorlänge und darüber hinaus erfolgen. Beispielsweise kann das erste ortsfeste Element am Flansch des Stützelements beziehungsweise Statormantelflansch an einem Ende des Stator- Rotor- Systems angeordnet sein und das zweite ortsfeste Element am gegenüberliegenden freien Ende des Elastomerteils des Stator- Rotor- Systems.
  • Figurenbeschreibung
  • Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.
    • Figur 1 zeigt eine schematische Teil- Ansicht eines bekannten Stator- Rotor-Systems (Stand der Technik).
    • Figur 2 zeigt eine schematische Teil- Ansicht einer ersten Ausführungsform eines erfindungsgemäßem Stator- Rotor- Systems mit Verstellmechanismus.
    • Figur 3 zeigt schematisch eine Teil- Ansicht einer weiteren Ausführungsform eines erfindungsgemäßem Stator- Rotor- Systems mit Verstellmechanismus.
    • Figur 4 zeigt schematisch eine Teil- Ansicht einer weiteren Ausführungsform eines erfindungsgemäßem Stator- Rotor- Systems mit Verstellmechanismus.
    • Figur 5 zeigt einen Stator mit Stützring im Querschnitt.
    • Figur 6 zeigt ein weiteres Abstütz- Ausgleichselement einer Ausführungsform des erfindungsgemäßen Stator- Rotor- Systems.
    • Figur 7 zeigt ein weiteres Abstütz- Ausgleichselement einer Ausführungsform des erfindungsgemäßen Stator- Rotor- Systems.
    • Figuren 8 bis 14 zeigen verschiedene Ausführungsformen von Einstellmechanismen, die im Rahmen der Erfindung Anwendung finden können.
  • Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung oder das erfindungsgemäße Verfahren ausgestaltet sein können und stellen keine abschließende Begrenzung dar.
  • Figur 1 zeigt eine schematische Teil- Ansicht eines bekannten Stator- Rotor-Systems 1 für eine Exzenterschneckenpumpe. Ein solches System 1 umfasst einen in der Regel metallischen, eingängig gewendelten Rotor (nicht dargestellt) und einen Stator 3 mit einem zweigängigen Gewinde. Beim Betrieb der Exzenterschneckenpumpe vollführt der Rotor mit seiner Figurenachse eine exzentrische Drehbewegung um die Statorlängsachse X3. Der Stator 3 umfasst ein Elastomerteil 4 und als Stützelement einen Statormantel 5, wobei keine feste Verbindung zwischen Elastomerteil 4 und Statormantel 5 besteht.
  • Figur 2 zeigt eine schematische Teil- Ansicht einer ersten Ausführungsform eines erfindungsgemäßem Stator- Rotor- Systems 10, 10a mit Verstellmechanismus 12. Der Verstellmechanismus 12 umfasst ein erstes feststehendes Einstellelement 13 und ein zweites positionsvariables Einstellelement 14. Eine Abstandsänderung der beiden Einstellelemente 13, 14 zueinander bewirkt eine Verformung des Elastomers und somit eine Änderung des Querschnitts und / oder der Länge des Elastomerteils 4 des Stators 3 und somit ein Einstellen beziehungsweise Nachstellen des Elastomerteils 4 des Stators 3. Insbesondere dient ein Flansch 23 am Statormantel 5 als feststehendes Einstellelement 13 und ein am freien Ende 8 des Elastomerteils 4 angeordnetes Betätigungselement 24 dient als positionsvariables Einstellelement 14.
  • Figuren 3 und 4 zeigen schematische Teil- Ansichten weiterer Ausführungsformen eines erfindungsgemäßem Stator- Rotor- Systems 10b, 10c mit Verstellmechanismus 12.
  • Die Abstandsänderung der beiden Einstellelemente 13, 14 zueinander bewirkt eine Verformung des Elastomers und somit eine Änderung des Querschnitts und / oder der Länge des Elastomerteils 4 des Stators 3. Somit ändert sich aber auch die Länge eines aus dem Statormantel 5 herausragenden Endbereiches 9 des Elastomerteils 4.
  • Der aus dem Statormantel 5 herausragende Endbereich 9 des Elastomerteils 4 wird vorzugsweise durch ein Abstützelement, das das Elastomerteil 4 des Stators 3 in dem freiliegenden Endbereich 9, in dem das Elastomerteil 4 nicht von dem Statormantel 5 umschlossen ist, zumindest teilweise bedeckt und abstützt. Um die Längenänderung des Elastomerteils 4 ausgleichen zu können ist weiterhin ein Ausgleichselement notwendig, damit immer mindestens ein Großteil des freiliegenden Elastomerteils 4 bedeckt und abgestützt ist.
  • Gemäß der in Figur 3 dargestellten Ausführungsform sind zwei das Elastomerteil 4 formschlüssig umgreifende und zumindest teilweise ineinander geführte Elemente 30, 31 vorgesehen, insbesondere ein Stützring 30* und ein Hohlzylinder 31*, die nach dem Zylinder- Kolben- Prinzip eine Abstützung des Elastomerteils 4 unter Berücksichtigung von Längenänderungen bewirken. Eines der Elemente, insbesondere der Stützring 30*, ist am positionsvariablen Einstellelement 14 angeordnet und befestigt und das andere Element, insbesondere der Hohlzylinder 31*, ist am ortsfesten Einstellelement 13 angeordnet und befestigt. Bei einer Annäherung des positionsvariablen Einstellelements 14 an das ortsfeste Einstellelement 13 wird der Stützring 30* weiter in den Hohlzylinder 31* hinein geschoben. Bei einer weiteren Beabstandung des positionsvariablen Einstellelements 14 von dem ortsfesten Einstellelement 13 wird der Stützring 30* zumindest teilweise aus dem Hohlzylinder 31* heraus gezogen. Insbesondere bewirken beide Elemente 30, 31 gemeinsam die Abstützung des freiliegenden Endbereichs 9 und den Längenausgleich des Elastomerteils 4, das heißt jedes der beiden Elemente 30, 31 dient sowohl als Abstützelement als auch als Ausgleichselement.
  • Die Befestigung eines das Elastomerteil 4 formschlüssig umgreifenden Elementes 30, insbesondere eines Stützrings 30*, kann beispielsweise am verdickten freien Ende 8 des Elastomerteils 4 erfolgen und ist in Figur 13 dargestellt. Das Elastomerteil 4 wird im Statormantel 5 angeordnet. Anschließend wird ein das Elastomerteil 4 formschlüssig umgreifendes Element 30 in Form eines Stützrings 30* im Bereich des freien Endes 8 des Elastomerteils 4 angeordnet und nach der Montage verschraubt. Insbesondere erfolgt die Verschraubung 40 im Bereich der Verdickung des freien Endes 8 des Elastomerteils 4.
  • Figur 5 zeigt den Aufbau eines um das Elastomerteil 4 des Stators 3 angeordneten Stützrings 30. Dieser weist eine Überlappung auf und ist im Überlappungsbereich mittels einer Verschraubung 40 am Elastomerteil 4 befestigt.
  • Figur 6 zeigt ein weiteres Abstütz- Ausgleichssystem umfassend ebenfalls zwei das Elastomerteil 4 formschlüssig umgreifende und zumindest teilweise ineinander geführte Elemente 32, 33. Die Elemente 32, 33 weisen jeweils regelmäßig beabstandete Finger 34 auf. Die beiden Elemente 32, 33 sind so angeordnet, dass die Finger 34a des ersten Elementes 32 in die Zwischenräume zwischen den Fingern 34b des zweiten Elements 33 greifen. Durch Verschieben der Elemente 32, 33 gegeneinander können somit Längenänderungen des Elastomerteils 4 ausgeglichen werden, während gleichzeitig die Abstützung des Elastomerteils 4 gewährleistet ist. Das bedeutet, dass auch bei dieser Ausführungsform jedes der beiden Elemente 32, 33 sowohl als Abstützelement als auch als Ausgleichselement dient.
  • Figur 4 zeigt eine Ausführungsform eines erfindungsgemäßem Stator- Rotor-Systems 10c mit Verstellmechanismus 12 mit einem Abstütz- Ausgleichselement 35 zwischen dem ersten feststehenden Einstellelement 13, insbesondere zwischen dem Statormantelflansch 23, und dem zweiten positionsvariablen Einstellelement 14, insbesondere dem Betätigungselement 24. Als Abstütz- Ausgleichselement 35 können beispielsweise lose Elemente dienen, die das Elastomerteil 4 des Stators 3 umgreifen, zwischen den Einstellelementen 13, 14 liegen und somit einen Großteil der freiliegenden Außenmantelfläche des Elastomerteils 4 abdecken. Gemäß einer weiteren Ausführungsform kann als Abstütz- Ausgleichselement 35 beispielsweise ein das Elastomerteil 4 des Stators 3 umgreifendes Federpaket vorgesehen sein, beispielsweise eine in Figur 7 dargestellte Wellfeder 37.
  • Gemäß einer weiteren nicht dargestellten Ausführungsform kann das Elastomerteil 4 an den freiliegenden Stellen auch innerlich und / oder äußerlich durch ein in das Elastomerteil 4 eingebrachtes oder auf das Elastomerteil 4 aufgetragene Material gestützt werden, beispielsweise kann hierfür ein Elastomer- Faser- Verbundstoff verwendet werden. Da in diesem Fall die Ausgleichsfunktion ebenfalls durch dieses Material bewirkt wird, muss die Länge des derart gestützten Elastomerteils 4 entlang der Statorlängsachse X3 (vergleiche Figur 1) entsprechend gewählt sein, dass der zu jedem beliebigen Zeitpunkt freiliegende Bereich des Elastomerteils 4 immer ausreichend gestützt ist.
  • Figuren 8 bis 14 zeigen verschiedene Ausführungsformen von Einstellmechanismen 12, die im Rahmen der Erfindung Anwendung finden können.
  • Figur 8 stellt einen Verstellmechanismus 12a in Form eines Keilmechanismus dar, bei dem an dem ersten feststehenden Einstellelement 13 ein erstes Keilelement 50 angeordnet ist und an dem zweiten positionsvariablen Einstellelement 14 ein zweites Keilelement 54 angeordnet ist. Das erste Einstellelement 13 umfasst weiterhin eine am ersten Keilelement 50 befestigt Spindel 52 mit Außengewinde, die durch eine Mutter 51 mit korrespondierendem Innengewinde geführt ist. Durch Rotation der Spindel 52 um die Spindellängsachse X52 wird das erste Keilelement 50 in einer ersten Bewegungsrichtung B1 bewegt. Die Bewegung des ersten Keilelementes 50 wird auf das mit dem ersten Keilelement 50 in Wirkverbindung stehende zweite Keilelement 54 des zweiten Einstellelementes 14 übertragen. Dies führt zu einer Bewegung des zweiten Einstellelementes 14 in einer zweiten Bewegungsrichtung B2, die im Wesentlichen orthogonal zur ersten Bewegungsrichtung B1 des ersten Keilelementes 50 ist. Das Zusammenwirken der Keilelemente 50, 54 der beiden Einstellelemente 13, 14 bewirkt eine Abstandsänderung der beiden Einstellelemente 13, 14 zueinander und somit eine Verformung des Elastomers, insbesondere eine Änderung des Querschnitts und / oder eine Änderung der Länge des Elastomerteils 4.
  • Figur 9 zeigt einen Verstellmechanismus 12b in Form einer Verstellung mittels einer Spindel 60. Die Spindel 60 weist ein Außengewinde 62 auf. Die Spindel 60 ist drehbeweglich an dem ortsfest am Statormantel 5 angeordneten Flansch 23 angeordnet und gelagert. Insbesondere ist die Spindel 60 am Flansch 23 ortsfest gelagert, das heißt eine Drehung der Spindel 60 bewirkt keine Veränderung der Lage der Spindel 60 gegenüber dem Flansch 23. Die Spindel 60 weist einen Verstellansatz 66 auf. Dieser kann beispielsweise als Kupplung für einen Motor ausgebildet sein oder als Ansatzstelle für eine manuelle Verstellung der Spindel 60 dienen.
  • Gemäß einer Ausführungsform der Erfindung kann eine Mehrzahl von Spindeln (nicht dargestellt) um den Außenumfang des Stators 3 herum angeordnet sein. Eine erste angetriebene Spindel 60 kann über ein Zahnrad 64 und einen Zahnkranz 65 oder andere geeignete Kopplungsmittel derart mit den anderen, nicht angetriebenen Spindeln (nicht dargestellt) mechanisch gekoppelt sein, dass alle Spindeln gemeinsam verstellt werden können.
  • Am freien Ende des Elastomerteils 4 des Stators 3 (vergleiche Figur 1) ist ein zweites positionsvariables Einstellelement 14 angeordnet. Zwischen dem zweiten positionsvariablen Einstellelement 14 und dem als erstes feststehendes Einstellelement 13 dienenden Flansch 23 ist ein Abstütz- Ausgleichselement 35 vorgesehen, wie es beispielsweise im Zusammenhang mit den Figuren 3 bis 6 beschrieben wurde.
  • Das zweite positionsvariable Einstellelement 14 weist eine Lagerung für die Spindel 60 mit einem Innengewinde (nicht dargestellt) auf, in der die Spindel 60 drehbeweglich gelagert ist, so dass eine Rotation R der Spindel 60 um ihre Spindellängsachse X60, eine Bewegung des zweiten positionsvariablen Einstellelements 14 in eine Bewegungsrichtung B3 bewirkt.
  • Figur 10 stellt einen Teil eines Einstellmechanismus 12c in Form eines Kniehebels 70 dar. Eine Spindel 72 oder Zahnstange 73 mit einem Außengewinde 74 ist einem Einstellelement 75 drehbeweglich zugeordnet. An der Spindel 72 sind über beweglich gelagerte Verbindungselemente 76 zwei Verstellglieder 77 angeordnet. Eines der Verstellglieder 77a ist ortsfest fixiert und bildet das erste feststehende Einstellelement 13. Das andere Verstellglied 77b ist positionsvariabel und bildet das zweite positionsvariable Einstellelement 14. Durch Betätigung des Einstellelementes 75, beispielsweise durch Rotation R, wird die Spindel 72 bewegt und insbesondere in Bewegungsrichtung B4 verschoben. Diese Bewegung wird über die beweglichen Verbindungelemente 76 auf die Verstellglieder 77 übertragen, die dadurch einander angenähert oder auseinander bewegt werden, wobei insbesondere das positionsvariable Verstellglied 77b gegenüber dem fixierten Verstellglied 77a bewegt wird.
  • Figur 11 zeigt einen Verstellmechanismus 12d in Form einer Verstellung mittels Keilringen 80, 82. Der Verstellmechanismus 12d ist beispielsweise aus zwei äußeren Keilringen 80a, 80b und zwei inneren Keilringen 82a, 82b aufgebaut und sitzt am freien Ende 8 auf dem Elastomerteil 4 des Stators auf. Der äußere Keilring 80b ist an einem feststehenden Teil 13 angeordnet, beispielsweise am Flansch 23 des Statormantels (nicht dargestellt). Dem gegenüberliegenden äußeren Keilring 80a ist das positionsvariable Einstellelement 14 zugeordnet. Die beiden inneren Keilringe 82a, 82b sitzen am verbreiterten freien Ende 8 des Elastomerteils 4 des Stators auf und sind an diesem fixiert. Durch Drehung der Keilringe 80a, 80b, 82a, 82b wird deren Abstand zueinander eingestellt und somit auch der relative Abstand zwischen dem Flansch 23 des Statormantels und dem freien Ende 8 des Elastomerteils 4 des Stators variiert.
  • Figur 12 stellt einen Verstellmechanismus 12e mittels eines hydraulischen oder pneumatischen Hohlzylinders 90 dar. Hierbei ist das zweite positionsvariable Einstellelement 14 wiederum an dem verbreiterten freien Ende 8 des Elastomerteils 4 des Stators 3 angeordnet. Der Flansch 23 am Statormantel 5 stellte das ortsfeste Einstellelement 13 dar und ist in seinen Außenbereichen in Richtung des freien Ende 8 des Elastomerteils 4 durch einen aufgesetzten Ring oder ähnliches erhöht. Am zweiten positionsvariablen Einstellelement 14 ist mindestens ein hydraulischer oder pneumatischer Hohlzylinder angeordnet. Durch Betätigen des Hohlzylinders, insbesondere durch Einfüllen oder Entfernen eines geeigneten Fluids, kann das zweite positionsvariable Einstellelement 14 in Richtung des ersten ortsfesten Einstellelements 13 oder in der Gegenrichtung bewegt werden. Die Abstandsänderung zwischen den beiden Einstellelementen 13, 14 bewirkt die gewünschte Verformung des Elastomerteils 4 und somit ein Einstellen beziehungsweise Nachstellen des Elastomerteils 4 des Stators 3. Analog zu Figuren 2 bis 4 ist wiederum ein Abstütz- Ausgleichselement 35 zwischen dem zweiten positionsvariablen Einstellelement 14 und dem als erstes feststehendes Einstellelement 13 dienenden Flansch 23 vorgesehen
  • Figur 13 zeigt einen Verstellmechanismus 12f, der die Verstellung des relativen Abstands der Einstellelemente 13, 14 zueinander mit Hilfe von Gewinden erzielt. Das feststehende Einstellelement 13 ist über eine Gewindeanordnung mit dem positionsvariablen Einstellelement 14 in Wirkverbindung. Das positionsvariable Einstellelement 14 ist als Verstellring 93 ausgebildet und mit einem Gewinde auf den Flansch des Elastomerteils 4 aufgesetzt. Der Verstellring 93 nimmt weiterhin einen Bund 95 auf, welcher über einen Klemmring 97 fixiert ist. Am freien Ende 8 des Elastomerteils 4 ist ein feststehender Befestigungsring angeordnet. Dem Befestigungsring 92 sind ein Antriebszahnrad 94 und ein Zahnrad 96 mit Innengewinde zugeordnet. Das Zahnrad 96 mit Innengewinde greift wiederum am positionsvariablen Einstellelement 14 bzw. Verstellring 93 an. Das Verdrehen der Gewinde der Zahnräder 94, 96 gegeneinander bewirkt eine Bewegung des positionsvariablen Einstellelement 14 bzw. Verstellrings 93 entlang der Längsachse X3 des Stators (nicht dargestellt) bzw. des Elastomerteils 4.
  • Fig. 14 zeigt einen Verstellmechanismus 12g, der als mediumbetätigtes Verstellsystem, insbesondere hydraulisches oder pneumatisches Verstellsystem, unter Verwendung einer Membran 45 ausgebildet ist. Beim Prinzip des mediumsbetätigtem Verstellmechanismus 12g handelt es sich um eine Abwandlung der Idee der Verstellung mittels eines Hydraulikzylinders 46 gemäß Figur 12. Hierbei wird die Vorspannung zwischen Stator 3 und Rotor (nicht dargestellt) in Abhängigkeit von einem Mediumdruck an der Membran 45 eingestellt.
  • Der Hydraulikzylinder 46 umfasst einen ortsfest fixierten Zylinderteil 47 und einen beweglich gelagerten Zylinderteil 48, an dem die Membran 45 derart angeordnet ist, dass sie die Hydraulikflüssigkeit H von dem durch die Exzenterschneckenpumpe gepumptem Medium abtrennt. Der Hydraulikzylinder 46 ist am freien Ende 8 des Elastomerteils 4 des Stators 3 angeordnet, insbesondere ist der beweglich gelagerte Zylinderteil 48 am Elastomerflansch befestigt und der ortsfest fixierte Zylinderteil 47 ist am Statormantel 5 angeordnet und fixiert.
  • Anstatt den Hydraulikzylinder 46 extern über ein Aggregat und eine Logik / Steuerung zu positionieren, wird der Mediumsdruck der Exzenterschneckenpumpe genutzt. Dies vereinfacht das System und senkt maßgeblich die Kosten. Die nötige Trennung zwischen Hydraulikflüssigkeit H und Medium wird im dargestellten Ausführungsbeispiel durch die Membran 45 realisiert. Bei Erhöhung des Pumpendrucks wird der Druck über die Membran 45 auf die Hydraulikflüssigkeit H übertragen, was zu einer Verstellung des Hydraulikzylinders 46 führt. Insbesondere bewirkt eine Druckübertragung D eine Verstellung des beweglich gelagerten Zylinderteils 48 gegenüber dem ortsfest fixierten Zylinderteil 47. Die Rückstellung des Hydraulikzylinders 46 bei einer Druckverringerung erfolgt über die Federkraft des Elastomers des Elastomerteils 4 und / oder durch zusätzliche Bauelemente. Durch diese Wechselwirkung wird das Elastomer des Elastomerteils 4 in dem Maße gestaucht, so dass sich in Abhängigkeit des Pumpendrucks eine optimale Vorspannung zwischen Rotor (nicht dargestellt) und Stator 3 einstellt.
  • Der aus dem Statormantel 5 herausragende Endbereich 9 des Elastomerteils 4 ist auch in diesem Ausführungsbeispiel durch ein umgreifendes (Abstütz)- Element 30 zumindest bereichsweise umschlossen, welches das Elastomerteil 4 des Stators 3 in dem freiliegenden Endbereich 9 stützt, in dem das Elastomerteil 4 nicht von dem Statormantel 5 umschlossen ist, zumindest teilweise bedeckt und abstützt. Weiterhin ist ein Ausgleichselement 36, das die Längenänderung des Elastomerteils 4 des Stator- Rotor-Systems der Exzenterschneckenpumpe gegenüber einem feststehenden Flansch 20 der Exzenterschneckenpumpe ausgleichen kann.
  • Gemäß einer weiteren, nicht dargestellten Ausführungsform ist vorgesehen, eine Mehrzahl von Hydraulikzylindern 46 am Umfang des freien Endes 8 des Elastomerteils 4 des Stators 3 zu verteilen und nach dem beschriebenen Prinzip zu betätigen.
  • Gemäß einer weiteren, nicht dargestellten Ausführungsform ist vorgesehen, die Stirnfläche des Elastomerteils 4 als Kolben zu verwenden auf die der Mediumsdruck des gepumpten Mediums direkt wirkt.
  • Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.
  • Bezuaszeichenliste
  • 1
    Stator- Rotor- System
    3
    Stator
    4
    Elastomerteil
    5
    Statormantel
    8
    freies Ende
    9
    Endbereich
    10
    Stator- Rotor- System
    12
    Verstellmechanismus
    13
    erstes feststehendes Einstellelement
    14
    zweites positionsvariables Einstellelement
    23
    Flansch
    24
    Betätigungselement
    30
    umgreifendes (Ausgleichs)- Element
    30*
    Stützring
    31
    umgreifendes Element
    31*
    Hohlzylinder
    32
    umgreifendes Element mit regelmäßig beabstandeten Fingern
    33
    umgreifendes Element mit regelmäßig beabstandeten Fingern
    34
    Finger
    35
    Abstütz- Ausgleichselement
    36
    Ausgleichselement
    37
    Wellfeder
    40
    Verschraubung
    45
    Membran
    46
    Hydraulikzylinder
    47
    ortsfest fixierter Zylinderteil
    48
    beweglich gelagerter Zylinderteil
    50
    erstes Keilelement
    51
    Mutter
    52
    Spindel
    54
    zweites Keilelement
    60
    Spindel
    62
    Außengewinde
    64
    Zahnrad
    65
    Zahnkranz
    66
    Verstellansatz
    70
    Kniehebel
    72
    Spindel
    73
    Zahnstange
    74
    Außengewinde
    75
    Lagerung
    76
    Verbindungselement
    77
    Verstellglied
    80
    Keilring
    82
    Keilring
    90
    Hohlzylinder
    92
    Befestigungsring
    93
    Verstellring
    94
    Antriebszahnrad
    95
    Bund
    96
    Zahnrad mit Innengewinde
    97
    Klemmring
    B
    Bewegungsrichtung
    H
    Hydraulikflüssigkeit
    R
    Rotation
    Ü
    Überlappungsbereich
    X3
    Längsachse

Claims (13)

  1. Stator- Rotor- System (10) einer Exzenterschneckenpumpe umfassend einen Rotor mit einer Rotorschnecke und einen Stator (3) mit einem Innengewinde, der Stator (3) umfassend ein Stützelement (5) und ein Elastomerteil (4), wobei das Stützelement (5) das Elastomerteil (4) bereichsweise vollumfänglich umschließt, wobei das Stator-Rotor- System (10) einen Verstellmechanismus (12) zum Einstellen des Stators (3) aufweist, der Verstellmechanismus (12) umfassend mindestens zwei mit dem Stator-Rotor- System (10) gekoppelte Einstellelemente (13, 14), wobei die beiden Einstellelemente (13, 14) zueinander distanzvariabel sind, wobei die beiden Einstellelemente (13, 14) in einer ersten Arbeitsposition einen ersten Abstand zueinander aufweisen und wobei die beiden Einstellelemente (13, 14) in einer zweiten Arbeitsposition einen zweiten Abstand aufweisen, wobei der erste Abstand ungleich dem zweiten Abstand ist, wobei in der zweiten Arbeitsposition der Querschnitt und die Länge des Elastomerteils (4) des Stators (3) gegenüber dem Querschnitt und der Länge des Elastomerteils (4) in der ersten Arbeitsposition verändert ist, wobei zum Einstellen bzw. Nachstellen eines Stators (3) der relative Abstand zwischen den beiden Einstellelementen (13, 14) einstellbar ist, um den Querschnitt und die Länge des Elastomerteils (4) des Stators (3) an jeweilige Betriebsbedingungen anzupassen, dadurch gekennzeichnet, dass der relative Abstand zwischen den beiden Einstellelementen (13, 14) verringerbar ist, um eine Länge des Elastomerteils (4) des Stators (3) zu verringern, einen Querschnitt des Elastomerteils (4) des Stators (3) zu erhöhen, eine innere Kontur des Stators (3) zu verringern und eine Vorspannung zwischen Rotor und Stator (3) zu erhöhen oder dass der relative Abstand zwischen den beiden Einstellelementen (13, 14) vergrößerbar ist, um eine Länge des Elastomerteils (4) des Stators (3) zu erhöhen, einen Querschnitt des Elastomerteils (4) des Stators (3) zu verringern, eine innere Kontur des Stators (3) zu vergrößern und eine Vorspannung zwischen Rotor und Stator (3) zu verringern.
  2. Stator- Rotor- System (10) nach Anspruch 1, wobei eine mechanische Koppelung und/ oder Verbindung zwischen dem Verstellmechanismus (12) und dem Stator (3) besteht, wobei mittels einer Änderung des relativen Abstands zwischen den beiden Einstellelementen (13, 14) eine Veränderung des Querschnitts und der Länge des Elastomerteils (4) des Stators bewirkbar ist.
  3. Stator- Rotor- System (10) nach Anspruch 1 oder 2, wobei der zweite Abstand geringer ist als der erste Abstand, wobei in der zweiten Arbeitsposition der Querschnitt des Elastomerteils (4) des Stators (3) gegenüber der ersten Arbeitsposition vergrößert ist und die Länge des Elastomerteils (4) des Stators (3) verringert ist oder wobei der zweite Abstand größer ist als der erste Abstand, wobei in der zweiten Arbeitsposition der Querschnitt des Elastomerteils (4) des Stators (3) gegenüber der ersten Arbeitsposition verringert ist und die Länge des Elastomerteils (4) des Stators (3) gegenüber der ersten Arbeitsposition vergrößert ist.
  4. Stator- Rotor- System (10) nach einem der Ansprüche 1 bis 3, wobei das eine erste Einstellelement (13) ortsfest am Stator- Rotor- System (10) angeordnet ist und wobei das andere zweite Einstellelement (14) positionsvariabel am Stator- Rotor- System (10) angeordnet ist.
  5. Stator- Rotor- System (10) nach einem der Ansprüche 1 bis 4, wobei das erste Einstellelement (13) ortsfest am Stützelement (5) angeordnet ist und wobei das zweite Einstellelement (14) positionsvariabel am Elastomerteil (4) angeordnet ist.
  6. Stator- Rotor- System (10) nach Anspruch 5, wobei das erste Einstellelement (13) ortsfest an einem Flansch (23) an einem freien Ende des Stützelements (5) angeordnet ist und wobei das zweite positionsvariable Einstellelement (14) an einem freien Ende (8) des Elastomerteils (4) angeordnet ist.
  7. Stator- Rotor- System (10) nach einem der voranstehenden Ansprüche, wobei der Verstellmechanismus (12) Keilelemente (50, 54) oder Keilringe (80, 82) zur Abstandsänderung zwischen den beiden Einstellelementen (13, 14) umfasst.
  8. Stator- Rotor- System (10) nach einem der Ansprüche 1 bis 6, wobei der Verstellmechanismus (12) eine Spindelverstellung für die Abstandsänderung zwischen den beiden Einstellelementen (13, 14) umfasst oder wobei der Verstellmechanismus (12) eine Verstellung mittels einer Kniehebelmechanik (70) für die Abstandsänderung zwischen den beiden Einstellelementen (13, 14) umfasst oder wobei der Verstellmechanismus (12) eine Verstellung mittels eines hydraulischen oder pneumatischen Hohlzylinders (90) für die Abstandsänderung zwischen den beiden Einstellelementen (13, 14) umfasst oder wobei der Verstellmechanismus (12) eine Verstellung mittels Gewinde (94, 96) für die Abstandsänderung zwischen den beiden Einstellelementen (13, 14) umfasst.
  9. Stator- Rotor- System (10) nach einem der voranstehenden Ansprüche, wobei zwischen dem ersten ortsfesten Einstellelement (13) und dem zweiten positionsvariablen Einstellelement (14) ein Abstütz- und / oder Ausgleichselement (35) angeordnet ist, das einen freiliegenden Endbereich (9) des Elastomerteils (4) zumindest teilweise bedeckt und abstützt.
  10. Stator- Rotor- System (10) nach Anspruch 9, wobei das Abstütz- und / oder Ausgleichselement (35) aus mindestens zwei das Elastomerteil (4) formschlüssig umgreifenden und zumindest teilweise ineinander geführten Stützelementen (30, 31) besteht, wobei eines der Stützelemente (30, 31) an dem ersten ortsfesten Einstellelement (13) und das andere der Stützelemente (14, 13) an dem zweiten positionsvariablen Einstellelement (14) angeordnet ist, insbesondere wobei das Abstütz- und / oder Ausgleichselement (35) aus einem Stützring (30*) und einem Hohlzylinder (31*) besteht, wobei der Stützring (30*) nach dem Zylinder- Kolben-Prinzip in dem Hohlzylinder (31*) geführt ist oder wobei die mindestens zwei Elemente (32, 33) jeweils regelmäßig beabstandete Finger (34a, 34b) aufweisen, die ineinander geführt sind, wobei die Finger (34a) des einen Elementes (32) in Zwischenräumen zwischen den Fingern (34b) des anderen Elementes (33) geführt sind.
  11. Stator- Rotor- System (10) nach Anspruch 9, wobei das Abstütz- und / oder Ausgleichselement (35) aus einem das Elastomerteil (4) umgreifenden Federpaket gebildet ist oder wobei das Abstütz- und / oder Ausgleichselement (35) aus einer Wellfeder (37) gebildet ist oder wobei das Abstütz- und / oder Ausgleichselement (35) aus einer Mehrzahl von das Elastomerteil (4) lose umgreifenden Elementen gebildet ist oder wobei das Abstütz- und / oder Ausgleichselement (35) durch ein innerlich und/ oder äußerlich in das Elastomerteil (4) eingebrachtes und / oder auf das Elastomerteil (4) aufgetragenes Material gebildet ist.
  12. Verfahren zum Einstellen eines Stators (3) in einem Stator- Rotor- System (10) einer Exzenterschneckenpumpe umfassend einen Rotor mit einer Rotorschnecke und einen Stator (3) mit einem Innengewinde, der Stator (3) umfassend ein Stützelement (5) und ein Elastomerteil (4), wobei das Stützelement (5) und das Elastomerteil (4) getrennte Teile sind und wobei das Stützelement (5) das Elastomerteil (4) bereichsweise umschließt, wobei das Stator- Rotor- System (10) einen Verstellmechanismus zum Einstellen des Stators (3) aufweist, der mindestens zwei Einstellelemente (13, 14) umfasst, wobei der relative Abstand zwischen den beiden Einstellelementen (13, 14) eingestellt wird, um den Querschnitt und die Länge des Elastomerteils (4) des Stators (3) einzustellen und / oder an jeweilige Betriebsbedingungen anzupassen, wobei zum Einstellen bzw. Nachstellen eines Stators (3) der relative Abstand zwischen den beiden Einstellelementen (13, 14) einstellbar ist, um den Querschnitt und die Länge des Elastomerteils (4) des Stators (3) an jeweilige Betriebsbedingungen anzupassen, dadurch gekennzeichnet, dass der relative Abstand zwischen den beiden Einstellelementen (13, 14) verringert wird, um eine Länge des Elastomerteils (4) des Stators (3) zu verringern, einen Querschnitt des Elastomerteils (4) des Stators (3) zu erhöhen, eine innere Kontur des Stators (3) zu verringern und eine Vorspannung zwischen Rotor und Stator (3) zu erhöhen oder dass der relative Abstand zwischen den beiden Einstellelementen (13, 14) vergrößert wird, um eine Länge des Elastomerteils (4) des Stators (3) zu erhöhen, einen Querschnitt des Elastomerteils (4) des Stators (3) zu verringern, eine innere Kontur des Stators (3) zu vergrößern und eine Vorspannung zwischen Rotor und Stator (3) zu verringern.
  13. Verfahren nach Anspruch 12, wobei der relative Abstand zwischen den beiden Einstellelementen (13, 14) verringert wird, um den Querschnitt des Elastomerteils (4) des Stators (3) zu verkleinern und die Länge des Elastomerteils (4) des Stators (3) zu erhöhen oder wobei der relative Abstand zwischen den beiden Einstellelementen (13, 14) vergrößert wird, um den Querschnitt des Elastomerteils (4) des Stators (3) zu erhöhen und die Länge des Elastomerteils (4) des Stators (3) zu verringern.
EP16708337.7A 2015-01-29 2016-01-29 Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system Active EP3250828B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015101352.5A DE102015101352A1 (de) 2015-01-29 2015-01-29 Stator-Rotor-System und Verfahren zum Einstellen eines Stators in einem Stator-Rotor-System
PCT/DE2016/000032 WO2016119774A1 (de) 2015-01-29 2016-01-29 Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system

Publications (2)

Publication Number Publication Date
EP3250828A1 EP3250828A1 (de) 2017-12-06
EP3250828B1 true EP3250828B1 (de) 2020-04-29

Family

ID=55484776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16708337.7A Active EP3250828B1 (de) 2015-01-29 2016-01-29 Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system

Country Status (10)

Country Link
US (1) US10760570B2 (de)
EP (1) EP3250828B1 (de)
JP (1) JP2018507347A (de)
KR (1) KR20170108127A (de)
CN (1) CN107208483B (de)
AU (1) AU2016212424B2 (de)
DE (1) DE102015101352A1 (de)
RU (1) RU2017130344A (de)
WO (1) WO2016119774A1 (de)
ZA (1) ZA201704733B (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108591051B (zh) * 2018-04-11 2019-11-08 安徽埃斯克制泵有限公司 新型螺杆泵
CN114341499B (zh) * 2019-08-29 2023-12-29 兵神装备株式会社 单轴偏心螺杆泵
JP7432921B2 (ja) 2019-08-29 2024-02-19 兵神装備株式会社 一軸偏心ねじポンプ
DE102020111386A1 (de) 2020-04-27 2021-10-28 Vogelsang Gmbh & Co. Kg Zustandserfassung an Exzenterschneckenpumpen
CN113652288A (zh) * 2021-09-13 2021-11-16 孚迪斯石油化工(葫芦岛)有限公司 一种航改燃气轮机防锈型润滑油、生产方法及设备
DE102021131427A1 (de) 2021-11-30 2023-06-01 Vogelsang Gmbh & Co. Kg Exzenterschneckenpumpe mit Arbeitszustellung und Ruhezustellung sowie Verfahren zum Steuern der Exzenterschneckenpumpe
CN114472940B (zh) * 2022-03-24 2023-04-28 安徽新诺精工股份有限公司 用于数控立式车削中心主轴单元安装支撑的机构
DE102022119147A1 (de) * 2022-07-29 2024-02-01 Ruhr-Universität Bochum, Körperschaft des öffentlichen Rechts Verfahren zur Bestimmung oder Überwachung des Förderstroms einer Exzenterschneckenpumpe

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE279043C (de) 1913-12-23
FR1155632A (fr) * 1955-07-11 1958-05-06 Over Pompe hélicoïdale ou à vis sans fin
US3139035A (en) 1960-10-24 1964-06-30 Walter J O'connor Cavity pump mechanism
DE1303705C2 (de) * 1966-07-06 1973-10-11 Axial foerdernde verdraengerpumpe mit rotierendem pumpelement
US3499389A (en) 1967-04-19 1970-03-10 Seeberger Kg Worm pump
SU1192432A1 (ru) * 1984-07-19 1989-07-07 Inst Burovoi Tekhnik Mohtaжhoe пpиcпocoблehиe для opиehtиpobahhoй cбopkи paбoчиx opгahob bиhtoboгo зaбoйhoгo дbигateля, cпocoб eгo hactpoйkи и cпocoб opиehtиpobahhoй cбopkи paбoчиx opгahob bиhtoboгo зaбoйhoгo дbигateля
DE3433269A1 (de) 1984-09-11 1986-03-20 Gummi-Jäger KG GmbH & Cie, 3000 Hannover Stator fuer exzenterschneckenpumpen
DE3641855A1 (de) 1986-12-08 1988-06-16 Allweiler Ag Werk Bottrop Verstellbarer stator fuer exzenterschneckenpumpen
EP0292594A1 (de) 1987-05-27 1988-11-30 FOREG Aktiengesellschaft Statormantel für Exzenterschneckenpumpen
DD279043A1 (de) * 1988-12-29 1990-05-23 Hydrogeologie Nordhausen Halle Stator fuer exzenterschneckenpumpen
DE4312123C2 (de) 1993-04-14 1997-11-20 Artemis Kautschuk Kunststoff Stator für Exzenterschneckenpumpen
DE4403979C2 (de) 1994-02-09 2002-09-05 Artemis Kautschuk Kunststoff Stator für Exzenterschneckenpumpen
DE10200393B4 (de) 2002-01-08 2005-01-27 Johann Heinrich Bornemann Gmbh Kunststofftechnik Obernkirchen Partielle Spannsperre für eine Exzenterschneckenpumpe (partiell nachspannbarer Stator)
DE102004040720B4 (de) * 2004-08-20 2015-11-26 Knoll Maschinenbau Gmbh Exzenterschneckenpumpe
DE102005042559A1 (de) 2005-09-08 2007-03-15 Netzsch-Mohnopumpen Gmbh Statorsystem
DE102012006025B3 (de) * 2012-03-27 2013-08-01 Netzsch Pumpen & Systeme Gmbh Bolzengelenk für Exzenterschneckenpumpe
DE102013111716B3 (de) * 2013-10-24 2015-03-19 Netzsch Pumpen & Systeme Gmbh Exzenterschneckenpumpe und Verwendung einer Exzenterschneckenpumpe
CN203742983U (zh) * 2014-01-24 2014-07-30 潍坊天瑞重工凿岩机械有限公司 一种全自动混凝土高速喷涂机的螺杆泵调节装置
DE102014112552B4 (de) * 2014-09-01 2016-06-30 Seepex Gmbh Exzenterschneckenpumpe
DE102015112248A1 (de) * 2015-01-29 2016-08-04 Netzsch Pumpen & Systeme Gmbh Exzenterschneckenpumpe und Verfahren zum Anpassen des Betriebszustands einer Exzenterschneckenpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016119774A1 (de) 2016-08-04
US10760570B2 (en) 2020-09-01
AU2016212424B2 (en) 2019-05-09
JP2018507347A (ja) 2018-03-15
ZA201704733B (en) 2018-08-29
KR20170108127A (ko) 2017-09-26
CN107208483A (zh) 2017-09-26
CN107208483B (zh) 2019-05-31
RU2017130344A3 (de) 2019-02-28
EP3250828A1 (de) 2017-12-06
DE102015101352A1 (de) 2016-08-04
RU2017130344A (ru) 2019-02-28
AU2016212424A1 (en) 2017-07-13
US20180010603A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
EP3250828B1 (de) Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system
EP3250829B1 (de) Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren
EP1762726B1 (de) Statorsystem einer Exzenterschneckenpumpe
EP3189237B1 (de) Exzenterschneckenpumpe
DE2720130C3 (de) Meißeldirektantrieb für Tiefbohrwerkzeuge
EP3568596B1 (de) Regelung der spaltgeometrie in einer exzenterschneckenpumpe
WO2006063583A2 (de) Exzenterschneckenpumpe in kompaktbauweise
DE102017211873A1 (de) Kolbenpumpenaggregat für eine hydraulische Fremdkraft-Fahrzeugbremsanlage
EP2006544B1 (de) Kolbenpumpe mit variabler Exzentrizität
DE202012013094U1 (de) Elektrischer Zylinder und elektrisches Zylindersystem
DE10338632B4 (de) Exzenterschneckenpumpe mit erosionsfestem Rotor
EP2567114B1 (de) Exzenterlager
DE102006018285A1 (de) Pumpe, insbesondere Zahnradpumpe oder Flügelzellenpumpe
WO2017194508A1 (de) Schraubenspindelpumpe
EP1338796A2 (de) Exzenterschneckenpumpe
DE2139013C2 (de) Exzenterschneckenpumpe
DE3801348C2 (de)
EP2488782B1 (de) Schmierpumpe und schmiermittelversorgungsverfahren
EP1364127B1 (de) Füllstücklose innenzahnradpumpe
DE102014014278B3 (de) Exzenterschneckendoppelpumpe mit einem Rotor, welcher starr an die Schnecke eines Einschneckenextruders gekoppelt ist
DE102017104768A1 (de) Exzenterschneckenpumpe
DE102021131427A1 (de) Exzenterschneckenpumpe mit Arbeitszustellung und Ruhezustellung sowie Verfahren zum Steuern der Exzenterschneckenpumpe
DE10051101B4 (de) Einspritzschneckenantrieb für eine Kunststoffspritzgiessmaschine
WO2016086911A1 (de) Längenausgleichsvorrichtung
DE2527141A1 (de) Stator fuer exzenterschneckenpumpe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190415

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016009745

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1263722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016009745

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1263722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240201

Year of fee payment: 9

Ref country code: GB

Payment date: 20240124

Year of fee payment: 9