EP3250829B1 - Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren - Google Patents

Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren Download PDF

Info

Publication number
EP3250829B1
EP3250829B1 EP16708338.5A EP16708338A EP3250829B1 EP 3250829 B1 EP3250829 B1 EP 3250829B1 EP 16708338 A EP16708338 A EP 16708338A EP 3250829 B1 EP3250829 B1 EP 3250829B1
Authority
EP
European Patent Office
Prior art keywords
stator
adjustment
screw pump
eccentric screw
operating parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16708338.5A
Other languages
English (en)
French (fr)
Other versions
EP3250829A1 (de
Inventor
Stefan Voit
Christian Kneidl
Hisham Kamal
Christian BINDIG
Mikael Tekneyan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Netzsch Pumpen and Systeme GmbH
Original Assignee
Netzsch Pumpen and Systeme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Netzsch Pumpen and Systeme GmbH filed Critical Netzsch Pumpen and Systeme GmbH
Publication of EP3250829A1 publication Critical patent/EP3250829A1/de
Application granted granted Critical
Publication of EP3250829B1 publication Critical patent/EP3250829B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/811Actuator for control, e.g. pneumatic, hydraulic, electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/17Tolerance; Play; Gap
    • F04C2270/175Controlled or regulated

Definitions

  • the present invention relates to an eccentric screw pump and a method for adapting the operating state of an eccentric screw pump according to the features of the preambles of claims 1 and 5.
  • the present invention relates to an eccentric screw pump for conveying liquid and / or granular media.
  • Eccentric screw pumps are pumps for pumping a variety of media, especially viscous, highly viscous and abrasive media such as sludge, liquid manure, petroleum and fats.
  • the driven, coiled rotor rolls in the stator. This is a housing with a helical spiral inside.
  • the rotor uses its figure axis to perform an eccentric rotary movement around the stator axis.
  • the outer snail, i.e. the stator has the shape of a double-start thread, while the rotor worm is only single-start.
  • the rotor is usually made of a highly abrasion-resistant material, such as steel.
  • the stator is made of an elastic material, for example rubber.
  • eccentric screw pumps can not only convey fluids, but also solid bodies.
  • the rotor In order to form the delivery spaces and to be able to convey the respective medium with as little reflux as possible, the rotor is pressurized against an inner wall of the stator formed by elastic material. Due to the movement of the generally metallic rotor within the stator, which is usually made of rubber or a similar material, there is a certain amount of abrasion or wear on the stator. The wear on the pressurized contact force between the rotor and the stator is reduced, in particular the contact between the stator and the rotor along an uninterrupted line helical contact line can not be maintained, which reduces the performance of the eccentric screw pump. This applies in particular to eccentric screw pumps that have to overcome a high suction head or a high back pressure. For this reason, the stator must be replaced and replaced at regular intervals.
  • sensors are used, for example, which detect the wear of the stator based on physical parameters.
  • the DE 10157143 A1 describes a display of maintenance intervals or remaining operating times of eccentric screw pumps.
  • the sensors record operating parameters relevant to wear, which are recorded by a control unit.
  • the control unit uses these parameters to determine an expected value of the operating time or of operating cycles until the next maintenance is due or the replacement of certain parts.
  • the DE 202005008989 discloses an eccentric screw pump with a monitoring of the functionality and wear of the stator, the stator being assigned at least one measuring sensor with which compressions and / or movements of the stator or the elastic material can be measured in the course of the rotation of the rotor.
  • DE 3433269 A1 describes a stator jacket with tensioning devices in the form of tension bolts, which are distributed over the entire axial length of the stator jacket. This causes a significant increase in the weight of the stator-rotor system. In addition, all clamping devices must be retightened individually for adjustment.
  • EP 0292594 A1 discloses a stator jacket for eccentric screw pumps provided with a longitudinal slot, which has a tensioning device for generating pressure and for adjusting when the stator wears only in its pressure range. The voltage is partially distributed over the length of the stator sheath using suitable reinforcing ribs.
  • DE 4403979 A1 discloses an adjustable stator for eccentric screw pumps with continuous longitudinal slots and longitudinal slots that end at a short distance in front of the suction-side end of the stator. Appropriately, a longitudinal slot is followed by a continuous slot.
  • the document WO 2016/034341 A1 describes an eccentric screw pump with at least one stator made of an elastic material and a rotor that can be rotated in the stator.
  • the stator is at least partially surrounded by a stator jacket, which is designed as a longitudinally divided jacket from at least two jacket segments, which form a stator clamping device with which the stator can be clamped against the rotor in the radial direction.
  • the stator tensioning device has one or more movable adjusting elements which act on the shell segments for adjusting and tensioning the stator.
  • the end regions of the elastomer part of the stator protrude beyond the jacket segments.
  • WO 01/98660 A2 discloses a rotor-stator system that provides an adjustable rotor and / or stator so that the press fit and / or the clearance can be adjusted.
  • the rotor and / or the inner cross section of the stator are tapered in the longitudinal direction in order to achieve a difference in the fit between the rotor and the stator by longitudinally adjusting their relative position.
  • the disclosure GB 2 338 268 A also describes an eccentric screw pump in which the play between a stator and a rotor can be adjusted to compensate for wear.
  • the rotor is rotatably received in a helical bore of the elastomeric stator, which is located in a cylindrical housing that has axial slots at equiangular intervals around its circumference.
  • An annular chamber surrounds the housing and is connected to an injector pump.
  • a pressure sensor in the chamber is connected to a regulator of the pump. Wear results in an excessive distance between the stator and rotor, which is indicated by a drop in pressure.
  • the chamber is filled with hydraulic fluid until the stator housing presses the elastomeric stator onto the rotor again.
  • the document DD 279 043 A1 describes a stator for an eccentric screw pump that can be re-tensioned and enables a correction of wear-related gap losses along the helically wound stator interior.
  • the stator is molded from an elastomer and has a conical outer surface.
  • the stator is further arranged axially retensionable in a sleeve. While a connection thread for a pump riser pipeline is provided on the head side, the sleeve has an external thread on the foot side, into which a clamping nut engages, for the securing of which a threaded ring is provided. Finally, the stator is re-tensioned using the tension nut.
  • the object of the invention is to achieve a simple and quick adaptation of a stator-rotor system to the operating conditions.
  • stator-rotor system and a method for adapting the operating state of a stator-rotor system, which comprise the features in claims 1 and 5. Further advantageous embodiments are described by the subclaims.
  • the invention relates to an eccentric screw pump with a stator-rotor system.
  • the stator-rotor system comprises a rotor with a rotor screw and a stator.
  • the stator-rotor system comprises a rotor with a single-start rotor screw and a stator with a two-start internal thread.
  • the stator is constructed in at least two parts and comprises a support element and an elastomer part.
  • the elastomer part of the stator is arranged in a stator shell and generally has no fixed connection to the stator shell.
  • a fabric part or a lattice structure that at least partially encompasses the elastomer part can also be used as a support element.
  • the support element or the stator casing and the elastomer part are generally designed as separate parts.
  • the support element or the stator sheath completely surrounds the elastomer part at least in some areas.
  • the support element or the stator casing surrounds the majority of the elastomer part, so that only the free outer end regions of the elastomer part protrude beyond the support element or the stator casing and are not enclosed by the latter.
  • the stator is a stator system as shown in FIG DE 102005042559 A1 is described. Due to the lack of a firm connection between the elastomer part and the support element or stator jacket, axial deformation of the elastomer part is possible. In the event of deformation, the volume of the stator remains the same. As a result, an axial deformation of the elastomer part also leads to a change in the cross section of the elongated hole of the elastomer part in which the rotor is guided.
  • the preload that is to say the contact pressure between the stator and rotor
  • the adjustment or adjustment of the stator can also be used to adapt the preload between the stator and rotor of an eccentric screw pump to different operating conditions .
  • the stator-rotor system of the eccentric screw pump has an adjustment mechanism for varying and adjusting the preload of the stator. Depending on the operating state of the eccentric screw pump, a different preload of the stator-rotor system is necessary. The preload is dependent, for example, on the viscosity of the product being conveyed, product mixture or the like.
  • the operating state is determined in particular by means of different operating parameters, for example pressure. Speed, torque and / or other operating parameters determined.
  • the adjustment mechanism is coupled to a control system and is controlled and controlled by this.
  • the control system comprises at least one sensor for determining actual operating parameters of the stator-rotor system and / or the eccentric screw pump and a control for setting the adjustment mechanism.
  • the adjustment mechanism is coupled via a control to at least one sensor for determining actual operating parameters of the stator-rotor system and / or the eccentric screw pump.
  • the adjustment mechanism is controlled by the control system taking into account the actual operating parameters determined by means of at least one sensor.
  • the control mechanism establishes a connection between various physical parameters of the stator-rotor system and the state of wear of the stator or the pretension between the stator and rotor. For example, a relationship is established between the physical parameters pressure, torque, flow rate, speed and / or viscosity as well as the state of wear of the stator or the preload between the stator and rotor. The most direct parameter that combines these relationships is the state of tension in the elastomer material.
  • Corresponding sensors in the elastomer material are determined, or determined indirectly via the reaction forces of the elastomer on other components, for example via the reaction forces of the elastomer on the stator wall, in particular the support element or the stator jacket, or via the reaction force of the elastomer on one of the end faces of the elastomer part, about the reaction force of the elastomer to closures, which for example consist of two shells and hold the support element or the stator casing together, etc.
  • a correlation is established, for example, from pressure, torque, flow, speed and the pre-tension in the elastomer, and a corresponding adjustment position for adjusting the adjustment mechanism is then determined, which should be suitable for setting the optimum operating point.
  • the physical operating parameters of the eccentric screw pump are measured again and from this it is determined whether the optimal operating state has been reached. If the measured operating parameters do not correspond to the desired target parameters, an adjustment path is calculated again and the adjustment mechanism is set accordingly.
  • the actual control parameter is the stress state prevailing in the elastomer, which is measured, for example, in an indirect form and in combination with other operating parameters, such as the speed of the eccentric screw pump or the like, an adjustment path x and / or an adjustment direction with incremental approximation outputs to the desired value.
  • a step-by-step approach to the optimal adjustment of the adjustment mechanism takes place.
  • the adjustment mechanism is adjusted by a specified amount.
  • the control algorithm according to the invention determines the direction of the adjustment based on the target / actual comparison and the data stored within the control algorithm, the size of the adjustment corresponds to a predetermined amount. In this way, an in particular incremental approximation to a desired target value takes place until the measured target / actual deviation lies within the defined tolerance.
  • the adjustment mechanism comprises two adjusting elements which are arranged on the stator-rotor system and are variable in relation to one another.
  • the two setting elements are at a first distance from one another and in a second working position, the two setting elements are at a second distance from one another, the first distance being not equal to the second distance.
  • the cross section and the length of the elastomer part of the stator are changed compared to the cross section and the length of the elastomer part in the first working position.
  • one of the setting elements is arranged in a fixed position on the stator-rotor system and the other setting element is arranged in a variable position on the stator-rotor system.
  • the first setting element is arranged in a stationary manner on the support element or the stator jacket and the second setting element is arranged in a variable position on the elastomer part of the stator.
  • the first setting element is arranged in a fixed position on a flange at a free end of the support element or stator casing and the second position-variable setting element is arranged at a free end of the elastomer part of the stator.
  • the control activates an actuator which brings about a repositioning of the second position-variable setting element and thus causes a change in the relative distance between the second position-variable setting element and the first fixed setting element.
  • the relative distance between the two setting elements can be set in different ways. For example, wedge elements, wedge rings, mechanisms with spindle adjustment, cylinder-supported mechanisms, etc. can serve as actuators.
  • At least one first sensor can be attached to a stationary component of the stator-rotor system Eccentric screw pump can be arranged, which can detect certain physical parameters of the stator-rotor system.
  • at least one second sensor can be arranged on the stator-rotor system, in particular on the elastomer part of the stator.
  • at least one third sensor can be arranged on the adjustment mechanism.
  • the at least one first sensor is designed for measuring the pressure, speed, torque, temperature and / or the volume flow of the eccentric screw pump, while the at least one second sensor is designed for direct or indirect measurement of the preload between the stator and the rotor of the stator-rotor.
  • the second sensor can be, for example, a piezo element, a load cell or a dielectric elastomer.
  • the second sensor can also be designed such that the reaction forces of the elastomer material can be measured, while the at least one third sensor for measuring the position of the second position-variable setting element and / or for measuring the relative distance between the first fixed setting element and the second position variable Adjustment element can be formed.
  • the invention further relates to a method for adapting the operating state of an eccentric screw pump with a stator-rotor system described above.
  • the actual operating status of the eccentric screw pump is queried.
  • at least one physical actual operating parameter relating to the eccentric screw pump and / or at least one physical actual operating parameter relating to the elastomer part of the stator-rotor system and / or at least one physical actual operating parameter of the adjusting mechanism are determined by sensors.
  • the sensor-determined actual operating parameters are then compared with known or desired target operating parameters. The comparison is made in particular on the basis of data stored in the control. If a discrepancy between the actual operating parameters and the target operating parameters is determined in the comparison, the adjustment mechanism for adjusting the stator is activated.
  • the setting of the new operating state is monitored by checking at least one physical actual operating parameter.
  • a deviation when a deviation is ascertained between the measured actual operating parameters and the target operating parameters calculates a necessary adjustment of an adjustment path of the adjustment mechanism and controls it accordingly and adjusts the calculated adjustment path, which leads to an adjustment or adjustment of the stator, in particular to a change in the cross section and the length of the elastomer part of the stator.
  • the operating state is set by an incremental approximation to an ideal operating point.
  • the control principle or control algorithm is based on the following functional principle: A volume flow is assigned to a first speed of an eccentric screw pump. In particular, with a 100% volumetric efficiency, the volume flow would be exactly the volume that is conveyed by the individual conveying elements (conveying chambers) according to the speed from the suction side to the pressure side of the eccentric screw pump.
  • the optimal setting of the operating point of the eccentric screw pump is now carried out as follows: If you consider the volume flow at a constant speed over a certain adjustment range, you can see that it is at least largely constant over a longer range. However, the drive torque required for this is not constant. If the preload is released, the torque drops due to the lower friction losses due to the reduced preload. The efficiency of the eccentric screw pump increases in the area where there is no change in the volume flow because there is no or only a small backflow. Only when an operating point is reached in which backflow increasingly occurs due to the reduced preload, does the efficiency of the eccentric screw pump decrease .
  • the point of highest efficiency can be descriptively described as follows:
  • the ideal operating point of the pump is precisely where there is just enough pre-tension between the rotor and stator, so that there is little or no backflow.
  • the ideal operating point is therefore the point at which just as much preload is generated in the rotor-stator system as is necessary to be able to generate the necessary back pressure with the least possible backflow of the medium.
  • the control algorithm preferably uses the measuring principle described below: First certain operating parameters of the eccentric screw pump are recorded. For example, the pressure, the speed, the torque (motor current) or other operating parameters are measured by means of suitable sensors. For example, the volume flow can also be recorded by means of a volume flow meter, a measuring orifice or the like.
  • the adjustment mechanism now moves into an at least largely closed position, e.g. in which the two setting elements are maximally approximated to one another.
  • the rubber of the elastomer part is pressed, so that the pretension in the stator-rotor system increases, and a backflow is thereby minimized.
  • the adjustment mechanism is opened slowly and in a controlled manner.
  • the volume flow initially remains largely constant up to a certain point. At a certain point, the volume flow drops because the backflow in the stator-rotor system increases.
  • the ideal operating point is just before this break-in point. The ideal operating point can also be seen as a certain range in which the eccentric screw pump shows its best efficiency.
  • the presetting is preferably carried out independently at certain time intervals by the adjustment system within the rotor-stator system. This ensures an active setting or adaptation to varying operating conditions of the pump.
  • the bias of the rotor-stator system can be increased until the maximum volume flow is reached on the basis of the measured operating parameters and the incremental adjustment procedure.
  • the preload is increased again by a fixed number of adjustment increments. This ensures that the iBP has been exceeded.
  • the iBP is determined and set by subsequently releasing the preload incrementally. This procedure is repeated at fixed intervals. It is thus reacted to changing operating conditions.
  • the actual operating state of the eccentric screw pump is queried again and compared with the target operating parameters. The success of the adjustment is checked. Consists If there is still a discrepancy between the actual operating parameters and the target operating parameters of the eccentric screw pump, in particular a discrepancy outside of a specified tolerance range, the adjustment mechanism is triggered and adjusted again. If the deviation between the actual operating parameters and the target operating parameters could be sufficiently reduced by adjusting the adjustment mechanism and thus adjusting or adjusting the stator, no further adjustment is made. Instead, the set operating state of the eccentric screw pump is checked again after a defined additional period of time by means of the sensor measurements described above.
  • the actual operating state of the eccentric screw pump is queried again after a defined period of time Measurement of the actual operating parameters and again a comparison of the same with the target operating parameters.
  • the stator-rotor system is continuously monitored during operation by regular polling at defined intervals. In this way, a deviation from the desired operating state can be promptly readjusted and adjusted during operation.
  • the pressure, the speed, the torque, the temperature and / or the volume flow of the eccentric screw pump is determined by sensors.
  • the pretension between the rotor and stator and / or the reaction forces of the elastomer material of the elastomer part are measured.
  • the position of at least one adjusting element of the adjusting mechanism and / or the relative distance between two adjusting elements of the adjusting mechanism can be determined by sensors.
  • the adjusting mechanism comprises two variable-distance adjusting elements
  • the adjusting mechanism is adjusted according to the invention by increasing or decreasing the relative distance between the two adjusting elements.
  • the change in distance between the two adjusting elements causes a change in the cross section and the length of the coupled elastomer part of the stator-rotor system.
  • the control mechanism calculates a target distance between the two setting elements and on the basis of sensor-determined physical parameters of the stator-rotor system in particular calculates the adjustment path of the second position-variable setting element.
  • the adjustment mechanism is then actuated and the calculated position of the second position-variable setting element is set, in particular the set distance between the two setting elements is thereby set. After a further time interval, the physical operating parameters are determined again.
  • the invention therefore relates to a stator-rotor system for an eccentric screw pump and to a control system of such a system.
  • the invention relates in particular to an automatic control system for varying the preload between the stator and the rotor of an eccentric screw pump, that is to say between a soft component - the elastomer part - and a harder component - the support element, for example a so-called stator jacket.
  • a major advantage is that the eccentric screw pump can be operated at the optimum operating point at any time, which leads to a significant increase in the energy efficiency of the stator-rotor system.
  • the automatic regulation of the preload leads in particular to automatic wear compensation, so that a stator can be used longer.
  • the breakaway torque can be reduced by setting the stator by means of a defined procedure when switching on and / or off.
  • the prestress between the stator and the rotor can advantageously be adapted to the viscosity of the conveyed medium with the automatic control system.
  • the method can comprise one or more features and / or properties of the device described above.
  • the device can also have one or more features and / or properties of the described method.
  • FIG 1 shows a schematic partial view of a known stator-rotor system 1 for an eccentric screw pump.
  • a system 1 comprises a generally metallic, single-start spiral rotor (not shown) and a stator 3 with a two-start thread.
  • the rotor executes an eccentric rotary movement about the longitudinal axis X3 of the stator with its figure axis.
  • the stator 3 comprises an elastomer part 4 and a stator jacket 5, there being no fixed connection between the elastomer part 4 and the stator jacket 5.
  • FIG. 2 shows a schematic partial view of a first embodiment of a stator-rotor system 10 according to the invention with adjusting mechanism 12 for adjusting or adjusting the stator 3.
  • the adjusting mechanism 12 comprises a first fixed adjusting element 13 and a second position variable Adjustment element 14.
  • a change in the distance between the two adjustment elements 13, 14 causes a deformation of the elastomer and thus a change in the cross section and / or the length of the elastomer part 4 of the stator 3 and thus a readjustment or adjustment of the elastomer part 4 of the stator 3 Flange 23 on the stator jacket 5 as a fixed adjusting element 13 and an actuating element 24 arranged at the free end 8 of the elastomer part 4 serves as a variable-position adjusting element 14.
  • the adjustment mechanism 12 is coupled to the control system 30 and is controlled and controlled by this.
  • the control system 30 comprises a controller 32 and at least one sensor 35 for measuring physical operating parameters of the stator-rotor system 10 or the eccentric screw pump.
  • at least one first sensor 36 is provided on the eccentric screw pump for measuring the pump pressure, the speed, the temperature and / or the volume flow.
  • at least one second sensor 37 can be arranged on the elastomer part 4, which for example determines the pretension between the rotor and stator 3 or reaction forces of the elastomer material.
  • At least one third sensor 38 can be provided on the adjustment mechanism 12, which detects, for example, the position of the position-variable adjustment element 14 or the relative distance between the fixed adjustment element 13 and the position-variable adjustment element 14.
  • the sensor-determined data is transmitted to the controller 32, which compares it with the target operating parameters and, in the event of a deviation between the measured actual operating parameters and the target operating parameters, controls a corresponding adjustment of the adjustment system 12, in particular an adjustment in which the relative distance between the fixed setting element 13 and the variable position setting element 14 is changed, whereby a deformation of the elastomer and thus a change in the cross section and / or the length of the elastomer part 4 of the stator 3 is effected.
  • FIG 3 schematically shows a sequence of a control mechanism for adjusting the stator-rotor system 10 according to Figure 2 .
  • the control mechanism according to the invention establishes a connection between different physical operating parameters of the stator-rotor system 10 or the eccentric screw pump and the state of wear of the stator 3 or the pretension between the stator 3 and the rotor of the eccentric screw pump. For example, a relationship between the physical parameters pressure, flow rate, speed and / or viscosity and the state of wear of the stator 3 or the bias voltage between stator 3 and rotor. The most direct parameter that combines these relationships is the state of tension in the elastomer material.
  • measurable parameters can be used on the eccentric screw pump, for example the pump pressure, the speed at which the eccentric screw pump is operated, the temperature, the volume flow of the pumped medium, etc.
  • sensors 38 can be provided which determine the actual state of the adjustment system, in particular the position of the position-variable adjustment element 14 or the relative distance between the fixed adjustment element 13 and the position-variable adjustment element 14 and / or sensors 38 which are used when the position of the position variable setting element 14 monitor the setting of the desired position.
  • the operating parameters determined by sensors provide information about the operating state of the eccentric screw pump.
  • the operating parameters are controlled by the controller 32 (compare Figure 2 ) compared with defined operating parameters, which are stored, for example, in a map or in a table in the controller 32. If there is no deviation between the actual operating parameters and the target operating parameters, the system does not react. Instead, the actual operating parameters are measured again after a time interval ⁇ t1 and subjected to a comparison, so that the operating state of the eccentric screw pump or the stator-rotor system 10 is regularly monitored or checked.
  • the controller 32 uses a stored map or a stored table the necessary adjustment of the adjustment mechanism 12 and controls it accordingly.
  • the physical operating parameters of the eccentric screw pump or of the stator-rotor system 10 are measured again after a further time interval ⁇ t2, and from this it is again determined whether the optimum operating state has been reached or is maintained. If the measured operating parameters do not correspond to the desired target operating parameters, the control 32 calculates an adjustment path again and the adjustment mechanism 12 is adjusted accordingly. In particular, an incremental setting is carried out using a control algorithm, as described below in connection with Figure 4 is described.
  • Figure 4 represents the setting of an ideal operating point as a function of an adjustment path n of the adjustment mechanism.
  • a specific speed Q of an eccentric screw pump is assigned.
  • the volume flow Q would be exactly the volume that is conveyed by the individual conveying elements (conveying chambers) according to the speed from the suction side to the pressure side of the eccentric screw pump.
  • the efficiency of the eccentric screw pump only drops when an operating point is reached in which backflow increasingly occurs.
  • the point of highest efficiency represents the ideal operating point iBP and can be descriptively described as follows:
  • the ideal operating point iBP of the eccentric screw pump lies precisely in the range of the adjustment path n of the adjustment mechanism, in which there is just enough preload between the rotor and stator that it is there is no or largely no backflow.
  • the ideal operating point iBP is the point at which just as much preload is generated in the rotor-stator system as is necessary to generate the necessary back pressure without backflow of the medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Exzenterschneckenpumpe und ein Verfahren zum Anpassen des Betriebszustands einer Exzenterschneckenpumpe gemäß den Merkmalen der Oberbegriffe der Ansprüche 1 und 5.
  • Stand der Technik
  • Die vorliegende Erfindung betrifft eine Exzenterschneckenpumpe zur Förderung flüssiger und/oder körniger Medien.
  • Exzenterschneckenpumpen sind Pumpen zur Förderung einer Vielzahl von Medien, insbesondere von dickflüssigen, hochviskosen und abrasiven Medien wie zum Beispiel Schlämmen, Gülle, Erdöl und Fetten. Hierbei wälzt sich der angetriebene, gewendelte Rotor im Stator ab. Dieser ist ein Gehäuse mit einer schneckenförmig gewendelten Innenseite. Der Rotor vollführt dabei mit seiner Figurenachse eine exzentrische Drehbewegung um die Statorachse. Die äußere Schnecke, d.h. der Stator, hat die Form eines zweigängigen Gewindes, während die Rotorschnecke nur eingängig ist. Der Rotor besteht üblicherweise aus einem hoch abriebfesten Material, wie zum Beispiel Stahl. Der Stator hingegen besteht aus einem elastischen Material, zum Beispiel Gummi. Durch die spezielle Formgebung von Rotor und Stator entstehen zwischen Rotor und Stator abgedichtete Hohlräume, die sich bei Drehung des Rotors axial fortbewegen und das Medium fördern. Das Volumen der Hohlräume ist dabei konstant, so dass das Fördermedium nicht gequetscht wird. Bei passender Auslegung können mit Exzenterschneckenpumpen nicht nur Fluide, sondern auch Festkörper gefördert werden.
  • Zur Ausbildung der Förderräume und um das jeweilige Medium mit möglichst geringem Rückfluss befördern zu können, liegt der Rotor druckbeaufschlagt an einer durch elastisches Material gebildeten Innenwandung des Stators an. Aufgrund der Bewegung des in der Regel metallischen Rotors innerhalb des in der Regel aus Gummi oder einem ähnlichen Material bestehenden Stators kommt es zu einem gewissen Abrieb beziehungsweise Verschleiß des Stators. Durch den Verschleiß wird die druckbeaufschlagte Anlagekraft zwischen Rotor und Stator reduziert, insbesondere kann die Berührung zwischen dem Stator und dem Rotor längs einer ununterbrochenen wendelförmigen Berührungslinie nicht aufrecht erhalten werden, wodurch die Leistung der Exzenterschneckenpumpe sinkt. Dies gilt insbesondere für Exzenterschneckenpumpen, die eine große Saughöhe oder einen hohen Gegendruck zu überwinden haben. Aus diesem Grund muss der Stator in regelmäßigen Abständen ausgetauscht und ersetzt werden.
  • Um den Zeitpunkt des Austauschs des Stators zu ermitteln, werden beispielsweise Sensoren verwendet, die den Verschleiß des Stators anhand physikalischer Parameter detektieren. Die DE 10157143 A1 beschreibt eine Anzeige von Wartungsintervallen beziehungsweise Restbetriebsdauern von Exzenterschneckenpumpen. Die Sensoren erfassen verschleißrelevante Betriebsparameter, die von einer Steuereinheit erfasst werden. Die Steuereinheit ermittelt anhand dieser Parameter einen zu erwartenden Wert der Betriebsdauer beziehungsweise von Betriebszyklen bis zur Fälligkeit der nächsten Wartung beziehungsweise dem Austausch von bestimmten Teilen.
  • Die DE 202005008989 offenbart eine Exzenterschneckenpumpe mit einer Überwachung der Funktionsfähigkeit und des Verschleißes des Stators, wobei dem Stator mindestens ein Messaufnehmer zugeordnet ist, mit welchem Kompressionen und / oder Bewegungen des Stators beziehungsweise des elastischen Materials im Zuge der Rotation des Rotors messbar sind.
  • Weitere Möglichkeiten der sensorischen Überwachung des Statorzustandes werden beispielsweise in den Dokumenten JP 2011112041 A , JP 2010281280 A , JP 2009235976 A und JP 20101104 A beschrieben.
  • Damit ein Stator länger verwendet werden kann, sind zudem nachstellbare Statoren bekannt. DE 3433269 A1 beschreibt einen Statormantel mit Spannvorrichtungen in Form von Zugbolzen, die über die gesamte axiale Länge des Statormantels verteilt sind. Dies bewirkt eine deutliche Gewichtserhöhung des Stator- Rotor- Systems. Zudem müssen zum Nachstellen alle Spannvorrichtungen einzeln nachgezogen werden.
  • EP 0292594 A1 offenbart einen mit einem Längsschlitz versehenen Statormantel für Exzenterschneckenpumpen, der ausschließlich in seinem Druckbereich eine Spannvorrichtung zur Druckerzeugung sowie zum Nachstellen bei Verschleiß des Stators aufweist. Die Spannung wird durch geeignete Verstärkungsrippen teilweise über die Länge des Statormantels verteilt.
  • DE 4312123 A1 beschreibt einen Statormantel mit mehreren längs verlaufenden Schlitzen, die das Nachstellen vereinfachen. Damit ein Nachstellen besser im Bereich des druckseitigen Endes des Stators vollzogen werden kann, enden die Schlitze kurz vor dem Ende des saugseitigen Endes des Stators und laufen nur am druckseitigen Ende frei aus.
  • DE 4403979 A1 offenbart einen nachstellbaren Stator für Exzenterschneckenpumpen mit durchgängigen Längsschlitzen und Längsschlitzen, die mit geringem Abstand vor dem saugseitigen Ende des Stators enden. Zweckmäßigerweise folgt je einem Längsschlitz ein durchgehender Schlitz.
  • Das Dokument WO 2016/034341 A1 beschreibt eine Exzenterschneckenpumpe mit zumindest einem Stator aus einem elastischen Material und einem in dem Stator drehbaren Rotor. Der Stator ist zumindest bereichsweise von einem Statormantel umgeben, der als längsgeteilter Mantel aus zumindest zwei Mantelsegmenten ausgebildet ist, die eine Statorspannvorrichtung bilden, mit welcher der Stator in radialer Richtung gegen den Rotor verspannt werden kann. Die Statorspannvorrichtung weist ein oder mehrere bewegliche Stellelemente auf, welche zum Einstellen und Spannen des Stators auf die Mantelsegmente wirken. Zudem ragen die Endbereiche des Elastomerteils des Stators über die Mantelsegmente hinaus.
  • Das Dokument WO 01/98660 A2 offenbart ein Rotor- Stator- System, das einen verstellbaren Rotor und/oder Stator vorsieht, so dass der Presssitz und/oder das Spiel eingestellt werden kann. Der Rotor und/oder der innere Querschnitt des Stators sind sich in Längsrichtung verjüngend ausgebildet, um einen Unterschied in der Passung zwischen Rotor und Stator durch Längsverstellung ihrer relativen Position zu erzielen.
  • Die Offenlegungsschrift GB 2 338 268 A beschreibt ebenfalls eine Exzenterschneckenpumpe, bei der das Spiel zwischen einem Stator und einem Rotor einstellbar ist, um Verschleiß auszugleichen. Der Rotor ist drehbar in einer schraubenförmigen Bohrung des elastomeren Stators aufgenommen, der sich in einem zylindrischen Gehäuse befindet, das axiale Schlitze in gleichwinkligen Abständen um seinen Umfang herum aufweist. Eine Ringkammer umgibt das Gehäuse und ist mit einer Injektorpumpe verbunden. Ein Drucksensor in der Kammer ist mit einem Regler der Pumpe verbunden. Durch Verschleiß ergibt sich ein zu großer Abstand zwischen Stator und Rotor, der durch einen Druckabfall angezeigt wird. Zur Einstellung wird die Kammer mit Druckflüssigkeit gefüllt, bis das Statorgehäuse den elastomeren Stator wieder auf den Rotor drückt.
  • Das Dokument DD 279 043 A1 beschreibt einen Stator für eine Exzenterschneckenpumpe, der nachspannbar ist und eine Korrektur verschleißbedingter Spaltverluste entlang des schraubenförmig gewundenen Statorinnenraums ermöglicht. Der Stator st aus einem Elastomer formgepresst und weist eine konische Mantelfläche auf. Der Stator ist weiter in einer Hülse axial nachspannbar angeordnet. Während kopfseitig ein Anschlussgewinde für eine Pumpensteigrohrleitung vorgesehen ist, weist die Hülse fußseitig ein Außengewinde auf, in das eine Spannmutter eingreift, für deren Sicherung ein Gewindering vorgesehen ist. Über die Spannmutter erfolgt schließlich ein Nachspannen des Stators.
  • Aufgabe der Erfindung ist es, eine einfach und schnelle Anpassung eines Stator-Rotor- Systems an die Betriebszustände zu erreichen.
  • Die obige Aufgabe wird durch ein Stator- Rotor- System und ein Verfahren zum Anpassen des Betriebszustands eines Stator- Rotor- Systems gelöst, die die Merkmale in den Patentansprüchen 1 und 5 umfassen. Weitere vorteilhafte Ausgestaltungen werden durch die Unteransprüche beschrieben.
  • Beschreibung
  • Die Erfindung bezieht sich auf eine Exzenterschneckenpumpe mit Stator- Rotor-System. Das Stator- Rotor- System umfasst einen Rotor mit einer Rotorschnecke und einen Stator. Gemäß einer bevorzugten Ausführungsform umfasst das Stator- Rotor-System einen Rotor mit einer eingängigen Rotorschnecke und einen Stator mit einem zweigängigen Innengewinde. Der Stator ist mindestens zweiteilig aufgebaut und umfasst ein Stützelement und ein Elastomerteil. Gemäß einer Ausführungsform der Erfindung ist das Elastomerteil des Stators in einem Statormantel angeordnet und weist in der Regel keine feste Verbindung zum Statormantel auf. Anstelle eines Statormantels kann auch ein Gewebeteil oder eine das Elastomerteil zumindest bereichsweise umfassende Gitterstruktur als Stützelement Verwendung finden. Das heißt, das Stützelement beziehungsweise der Statormantel und das Elastomerteil sind in der Regel als getrennte Teile ausgebildet. Das Stützelement beziehungsweise der Statormantel umschließt das Elastomerteil zumindest bereichsweise vollumfänglich. Insbesondere umschließt das Stützelement beziehungsweise der Statormantel den Großteil des Elastomerteils, so dass nur die freien äußeren Endbereiche des Elastomerteils über das Stützelement beziehungsweise den Statormantel hinaus ragen und nicht von diesem umschlossen sind.
  • Insbesondere handelt es sich bei dem Stator um ein Statorsystem wie es in der DE 102005042559 A1 beschrieben ist. Aufgrund einer fehlenden festen Verbindung zwischen Elastomerteil und Stützelement beziehungsweise Statormantel ist eine axiale Verformung des Elastomerteils möglich. Bei einer Verformung bleibt das Volumen des Stators gleich. Dadurch führt eine axiale Verformung des Elastomerteils zugleich zu einer Querschnittsveränderung des Langlochs des Elastomerteils, in dem der Rotor geführt ist,. Dadurch kann zusätzlich zum Ausgleich des Verschleißes des Stators die Vorspannung, das heißt die Anpresskraft zwischen Stator und Rotor, variiert werden, das heißt das Nachstellen beziehungsweise Einstellen des Stators kann auch verwendet werden, um die Vorspannung zwischen Stator und Rotor einer Exzenterschneckenpumpe an unterschiedliche Betriebsbedingungen anzupassen.
  • Das Stator- Rotor- System der Exzenterschneckenpumpe weist einen Verstellmechanismus zur Variation und Nachstellen der Vorspannung des Stators auf. Je nach Betriebszustand der Exzenterschneckenpumpe ist eine andere Vorspannung des Stator- Rotor- Systems notwendig. Die Vorspannung ist beispielsweise abhängig von der Viskosität des geförderten Produktes, Produktgemisches oder ähnlichem. Der Betriebszustand wird insbesondere mittels unterschiedlicher Betriebsparameter, beispielsweise Druck. Drehzahl, Drehmoment und / oder weiterer Betriebsparameter ermittelt. Der Verstellmechanismus ist mit einem Regelsystem gekoppelt und wird durch dieses angesteuert und kontrolliert. Insbesondere umfasst das Regelsystem mindestens einen Sensor zur Ermittlung von Ist- Betriebsparametern des Stator- Rotor- Systems und / oder der Exzenterschneckenpumpe und eine Steuerung zur Einstellung des Verstellmechanismus. Das heißt, der Verstellmechanismus ist über eine Steuerung mit mindestens einem Sensor zur Ermittlung von Ist- Betriebsparametern des Stator- Rotor-Systems und / oder der Exzenterschneckenpumpe gekoppelt. Die Ansteuerung des Verstellmechanismus erfolgt unter Berücksichtigung der mittels mindestens einen Sensors ermittelten Ist- Betriebsparameter durch die Steuerung.
  • Der erfindungsgemäße Regelmechanismus stellt einen Zusammenhang zwischen verschiedenen physikalischen Parametern des Stator- Rotor- Systems und dem Verschleißzustand des Stators bzw. der Vorspannung zwischen Stator und Rotor her. Beispielsweise wird ein Zusammenhang zwischen den physikalischen Parametern Druck, Drehmoment, Durchfluss, Drehzahl und / oder Viskosität sowie dem Verschleißzustand des Stators beziehungsweise der Vorspannung zwischen Stator und Rotor hergestellt. Der direkteste Parameter, der diese Zusammenhänge miteinander vereint, ist der Spannungszustand im Elastomermaterial. Diese kann entweder direkt über eine entsprechende Sensorik im Elastomermaterial bestimmt werden, oder indirekt über die Reaktionskräfte des Elastomers auf andere Bauteile ermittelt werden, beispielsweise über die Reaktionskräfte des Elastomers auf die Statorwandung, insbesondere dem Stützelement beziehungsweise den Statormantel, oder über die Reaktionskraft des Elastomers auf eine der Stirnseiten des Elastomerteils, über die Reaktionskraft des Elastomers auf Verschlüsse, die beispielsweise aus zwei Schalen bestehen und das Stützelement beziehungsweise den Statormantel zusammenhalten etcetera.
  • Mit Hilfe des erfindungsgemäßen Regelalgorithmus wird eine Korrelation beispielsweise aus Druck, Drehmoment, Durchfluss, Drehzahl und der vorhandenen Vorspannung im Elastomer hergestellt und daraufhin eine entsprechende Verstellposition zur Einstellung des Verstellmechanismus ermittelt, der geeignet sein sollte, den optimalen Betriebspunkt einzustellen. Nach automatisierter Justierung des Verstellmechanismus werden die physikalischen Betriebsparameter der Exzenterschneckenpumpe erneut gemessen und daraus ermittelt, ob der optimale Betriebszustand erreicht ist. Entsprechen die gemessenen Betriebsparameter nicht den gewünschten Soll- Parametern, so wird erneut ein Verstellweg berechnet und der Verstellmechanismus entsprechend eingestellt.
  • Gemäß einer bevorzugten Ausbildungsform der Erfindung ist der eigentliche Regelparameter der im Elastomer vorherrschende Spannungszustand, der beispielsweise in einer indirekten Form gemessen wird und in Kombination mit weiteren Betriebsparametern, wie beispielsweise der Drehzahl der Exzenterschneckenpumpe oder ähnlichem einen Verstellweg x und / oder eine Verstellrichtung mit inkrementaler Annäherung an den gewünschten Soll- Wert ausgibt.
  • Vorzugsweise ist vorgesehen, dass die Einstellung des berechneten Verstellweg x und / oder die Verstellrichtung mit inkrementaler Annäherung erfolgt. Insbesondere erfolgt also eine schrittweise Annäherung an die optimale Einstellung des Verstellmechanismus. Bei einer Soll- Ist- Abweichung außerhalb einer festgelegten Toleranz wird der Verstellmechanismus um einen festgelegten Betrag verstellt. Der erfindungsgemäße Regelalgorithmus legt aufgrund des Soll- Ist- Vergleichs und den innerhalb des Regelalgorithmus hinterlegten Daten die Richtung der Verstellung fest, die Größe der Verstellung entspricht einem vorbestimmten Betrag. Auf diese Weise erfolgt eine insbesondere inkrementale Annäherung an einen gewünschten Soll- Wert, solange bis die gemessene Soll- Ist- Abweichung innerhalb der festgelegten Toleranz liegt.
  • Erfindungsgemäß umfasst der Verstellmechanismus zwei am Stator- Rotor- System angeordnete Einstellelemente, die zueinander distanzvariabel sind. In einer ersten Arbeitsposition weisen die beiden Einstellelemente einen ersten Abstand zueinander auf und in einer zweiten Arbeitsposition weisen die beiden Einstellelemente einen zweiten Abstand zueinander auf, wobei der erste Abstand ungleich dem zweiten Abstand ist. In der zweiten Arbeitsposition sind der Querschnitt und die Länge des Elastomerteils des Stators gegenüber dem Querschnitt und der Länge des Elastomerteils in der ersten Arbeitsposition verändert.
  • Erfindungsgemäß besteht zwischen dem Verstellmechanismus und dem Stator eine mechanische Koppelung und / oder Verbindung, insbesondere besteht eine solche Koppelung und / oder Verbindung zwischen dem Verstellmechanismus und dem Elastomerteil des Stators. Durch Änderung des relativen Abstands zwischen den beiden Einstellelementen des Verstellmechanismus wird eine Veränderung des Querschnitts und der Länge des Elastomerteils des Stators bewirkt.
  • Erfindungsgemäß ist vorgesehen, dass eines der Einstellelemente ortsfest am Stator-Rotor- System angeordnet ist und das andere Einstellelement positionsvariabel am Stator- Rotor- System angeordnet ist. Dabei ist das erste Einstellelement ortsfest an dem Stützelement beziehungsweise dem Statormantel angeordnet und das zweite Einstellelement positionsvariabel am Elastomerteil des Stators angeordnet. Gemäß einer bevorzugten Ausführungsform ist das erste Einstellelement ortsfest an einem Flansch an einem freien Ende des Stützelements beziehungsweise Statormantels angeordnet und das zweite positionsvariable Einstellelement ist an einem freien Ende des Elastomerteils des Stators angeordnet.
  • Gemäß einer Ausführungsform der Erfindung wird durch die Steuerung ein Aktor angesteuert, der eine Neupositionierung des zweiten positionsvariablen Einstellelements bewirkt und somit eine Änderung des relativen Abstands zwischen dem zweiten positionsvariablen Einstellelement und dem ersten ortsfesten Einstellelement bewirkt. Die Einstellung des relativen Abstandes zwischen den beiden Einstellelementen kann auf unterschiedliche Art und Weise erfolgen. Als Aktoren können beispielsweise Keilelemente, Keilringe, Mechanismen mit Spindelverstellung, Zylinder unterstützte Mechanismen etcetera dienen.
  • Gemäß einer Ausführungsform der Erfindung kann mindestens ein erster Sensor an einer ortsfesten, dem Stator- Rotor- System zugeordneten, Komponente der Exzenterschneckenpumpe angeordnet sein, der bestimmte physikalische Parameter des Stator- Rotor- System detektieren kann. Alternativ oder zusätzlich kann mindestens ein zweiter Sensor an dem Stator- Rotor- System, insbesondere an dem Elastomerteil des Stators angeordnet sein. Weiterhin kann alternativ oder zusätzlich mindestens ein dritter Sensor an dem Verstellmechanismus angeordnet sein.
  • Beispielsweise ist der mindestens eine erste Sensor zur Messung des Drucks, der Drehzahl, Drehmoment, der Temperatur und / oder des Volumenstroms der Exzenterschneckenpumpe ausgebildet, während der mindestens eine zweite Sensor zur direkten oder indirekten Messung der Vorspannung zwischen Stator und Rotor des Stator-Rotor- Systems ausgebildet ist. Der zweite Sensor kann beispielsweise ein Piezoelement, eine Kraftmessdose oder ein dielektrisches Elastomer sein. Der zweite Sensor kann auch derart ausgebildet sein, dass damit die Reaktionskräfte des Elastomermaterials gemessen werden können, während der mindestens eine dritte Sensor zur Messung der Position des zweiten positionsvariablen Einstellelements und / oder zur Messung des relativen Abstands zwischen dem ersten ortsfesten Einstellelement und dem zweiten positionsvariablen Einstellelement ausgebildet sein kann.
  • Die Erfindung betrifft weiterhin ein Verfahren zum Anpassen des Betriebszustands einer Exzenterschneckenpumpe mit einem oben beschriebenen Stator- Rotor- System.
  • Zuerst erfolgt eine Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe. Hierbei werden sensorisch mindestens ein physikalischer Ist-Betriebsparameter betreffend die Exzenterschneckenpumpe und / oder mindestens ein physikalischer Ist- Betriebsparameter betreffend das Elastomerteil des Stator- Rotor-Systems und / oder mindestens ein physikalischer Ist- Betriebsparameter des Verstellmechanismus ermittelt. Anschließend werden die sensorisch ermittelten Ist-Betriebsparameter mit bekannten beziehungsweise gewünschten Soll-Betriebsparametern verglichen. Der Vergleich erfolgt insbesondere anhand von in der Steuerung gespeicherten Daten. Wird bei dem Vergleich eine Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern ermittelt, so erfolgt eine Ansteuerung des Verstellmechanismus zum Einstellen des Stators. Die Einstellung des neuen Betriebszustands wird dabei mittels einer Kontrolle mindestens eines physikalischen Ist- Betriebsparameters überwacht.
  • Gemäß einer ersten bevorzugten Ausführungsform wird bei Ermittlung einer Abweichung zwischen den gemessenen Ist- Betriebsparametern und den Soll-Betriebsparametern eine notwendige Verstellung eines Verstellwegs des Verstellmechanismus berechnet und dieser entsprechend angesteuert und der berechnete Verstellweg eingestellt, was zu einem Nachstellen beziehungsweise Einstellen des Stators führt, insbesondere zu einer Änderung des Querschnitts und der Länge des Elastomerteils des Stators.
  • Gemäß einer alternativen Ausführungsform wird der Betriebszustand durch eine inkrementale Annäherung an einen idealen Betriebspunkt eingestellt. Dem Regelprinzip beziehungsweise Regelalgorithmus liegt dabei folgendes Funktionsprinzip zugrunde: Einer ersten Drehzahl einer Exzenterschneckenpumpe ist ein Volumenstrom zugeordnet. Insbesondere würde dies bei einem 100% volumetrischen Wirkungsgrad der Volumenstrom genau dem Volumen betragen, das durch die einzelnen Förderelemente (Förderkammern) entsprechend der Drehzahl von der Saugseite zur Druckseite der Exzenterschneckenpumpe gefördert wird.
  • Die optimale Einstellung des Betriebspunkts der Exzenterschneckenpumpe erfolgt nun folgendermaßen: Betrachtet man den Volumenstrom bei einer konstanten Drehzahl über einen bestimmten Verstellbereich, so ist festzustellen, dass dieser über einen längeren Bereich zumindest weitgehend konstant ist. Das hierfür notwendige Antriebsdrehmoment ist jedoch nicht konstant. Wird die Vorspannung gelöst, sinkt das Drehmoment durch die geringeren Reibverluste aufgrund der verringerten Vorspannung. In dem Bereich, in dem keine Änderung des Volumenstromes erfolgt, da noch keine oder nur eine geringe Rückströmung auftritt, steigt der Wirkungsgrad der Exzenterschneckenpumpe, Erst wenn ein Betriebspunkt erreicht ist, in dem zunehmend Rückströmung aufgrund der verringerten Vorspannung auftritt, sinkt der Wirkungsgrad der Exzenterschneckenpumpe. Der Punkt des höchsten Wirkungsgrad kann anschaulich so beschrieben werden: Der ideale Betriebspunkt der Pumpe liegt genau da, in dem gerade so viel Vorspannung zwischen Rotor und Stator vorhanden ist, so dass es zu keiner beziehungsweise geringer Rückströmung kommt. Der ideale Betriebspunkt ist also der Punkt, in dem im Rotor- Stator- System gerade so viel Vorspannung erzeugt wird wie nötig ist, um den notwendigen Gegendruck mit möglichst geringer Rückströmung des Mediums erzeugen zu können.
  • Diese Funktionsweise wird für den Regelalgorithmus verwendet, wobei insbesondere eine inkrementale Annäherung erfolgt, um den idealen Betriebszustand einzustellen. Gemäß einer Ausführungsform der Erfindung verwendet der Regelalgorithmus vorzugsweise das nachfolgend beschriebene Messprinzip: Zuerst werden bestimmte Betriebsparameter der Exzenterschneckenpumpe erfasst. Beispielsweise erfolgt eine Messung des Drucks, der Drehzahl, des Drehmoments (Motorstrom) oder anderer Betriebsparameter mittels geeigneter Sensoren. Beispielsweise kann auch der Volumenstrom vermittels eines Volumenstrommessers, einer Messblende oder Ähnlichem erfasst werden.
  • Nunmehr fährt der Verstellmechanismus in eine zumindest weitgehend geschlossene Position, z.B. bei der die beiden Einstellelemente maximal einander angenähert sind. Dadurch wird der Gummi des Elastomerteils verpresst, so dass sich die Vorspannung im Stator- Rotor- System erhöht-und dadurch eine Rückströmung minimiert wird.
  • Nachdem sichergestellt ist, dass ein Bereich ausreichender Verpressung eingestellt ist, wird der Verstellmechanismus langsam und kontrolliert wieder geöffnet. Dabei bleibt der Volumenstrom anfangs bis zu einem bestimmten Punkt weitgehend konstant. An einem bestimmten Punkt bricht der Volumenstrom ein, da die Rückströmung im Stator-Rotor-System zunimmt. Der ideale Betriebspunkt befindet sich kurz vor diesem Einbruchspunkt. Der ideale Betriebspunkt kann auch als ein bestimmter Bereich gesehen werden, in dem die Exzenterschneckenpumpe ihren besten Wirkungsgrad zeigt.
  • Vorzugsweise wird die Einstellung der Vorspannung in bestimmten Zeitabständen eigenständig durch das Verstellsystem innerhalb des Rotor- Stator- Systems durchgeführt. Dadurch kann eine aktive Einstellung beziehungsweise Anpassung an variierende Betriebsbedingungen der Pumpe gewährleistet werden.
  • Alternativ kann anhand der gemessenen Betriebsparameter und der inkrementalen Verstellprozedur die Vorspannung des Rotor- Stator- Systems soweit erhöht, bis ein Maximum des Volumenstroms erreicht wird. Bei Erreichen eines Maximums des Volumenstroms wird die Vorspannung nochmals um eine festgelegte Anzahl an Verstellinkrementen erhöht. Somit ist sichergestellt, dass der iBP überschritten wurde. Durch anschließendes inkrementales Lösen der Vorspannung wird der iBP ermittelt, und eingestellt. Diese Prozedur wird in festgelegten Zeitabständen wiederholt. Somit wird auf sich ändernde Betriebszustände reagiert.
  • Gemäß einer bevorzugten Ausführungsform erfolgt im Anschluss an die Verstellung des Verstellmechanismus nach einer definierten Zeitspanne eine erneute Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe und Vergleich mit den Soll- Betriebsparametern. Dabei wird der Erfolg des Verstellens kontrolliert. Besteht weiterhin eine Abweichung zwischen den Ist- Betriebsparametern und den Soll-Betriebsparametern der Exzenterschneckenpumpe, insbesondere eine Abweichung außerhalb eines festgelegten Toleranzbereichs, erfolgt eine erneute Ansteuerung und Einstellung des Verstellmechanismus. Konnte durch die Einstellung des Verstellmechanismus und somit Nachstellung beziehungsweise Einstellen des Stators die Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern ausreichend reduziert werden, so erfolgt keine weitere Verstellung. Stattdessen wird der eingestellte Betriebszustand der Exzenterschneckenpumpe nach einer definierten weiteren Zeitspanne erneut durch vorbeschriebene sensorische Messungen überprüft.
  • Wird dagegen bei der ersten Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe keine Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern ermittelt, insbesondere keine Abweichung außerhalb des festgelegten Toleranzbereichs, so erfolgt nach einer definierten Zeitspanne eine erneute Abfrage des Ist- Betriebszustandes der Exzenterschneckenpumpe durch Messung der Ist-Betriebsparameter und wiederum ein Vergleich derselben mit den Soll-Betriebsparametern. Durch die regelmäßige Abfrage in definierten Zeitabständen wird das Stator- Rotor- System im laufenden Betrieb ständig überwacht. Somit kann eine Abweichung vom gewünschten Betriebszustand im laufenden Betrieb zeitnah nachreguliert und angepasst werden.
  • Gemäß einer Ausführungsform der Erfindung wird sensorisch der Druck, die Drehzahl, das Drehmoment, die Temperatur und / oder der Volumenstrom der Exzenterschneckenpumpe ermittelt. Alternativ oder zusätzlich werden die Vorspannung zwischen Rotor und Stator und / oder die Reaktionskräfte des Elastomermaterials des Elastomerteils gemessen. Weiterhin kann sensorisch die Position mindestens eines Einstellelementes des Verstellmechanismus und /oder der relative Abstand zwischen zwei Einstellelementen des Verstellmechanismus ermittelt werden.
  • Da der Verstellmechanismus zwei distanzvariable Einstellelemente umfasst, erfolgt erfindungsgemäß die Verstellung des Verstellmechanismus, indem der relative Abstand zwischen den beiden Einstellelementen vergrößert oder verkleinert wird. Die Abstandsänderung zwischen den beiden Einstellelementen bewirkt eine Veränderung des Querschnitts und der Länge des gekoppelten Elastomerteils des Stator- Rotor- Systems. Hierbei berechnet der Regelmechanismus aufgrund sensorisch ermittelter physikalischer Parameter des Stator-Rotor- Systems einen Soll- Abstand zwischen den beiden Einstellelementen und berechnet insbesondere den Verstellweg des zweiten positionsvariablen Einstellelementes. Anschließend wird der Verstellmechanismus angesteuert und die berechnete Position des zweiten positionsvariablen Einstellelementes eingestellt, insbesondere wird dadurch der berechnete Abstand zwischen den beiden Einstellelementen eingestellt. Nach einem weiteren Zeitintervall werden die physikalischen Betriebsparameter erneut ermittelt. Ist die Abweichung vom gewünschten Ist- Wert reduziert, so stellt dies den neuen Betriebszustand der Exzenterschneckenpumpe dar. Durch weiteres Nachstellen beziehungsweise Einstellen, kann der neue Betriebszustand der Exzenterschneckenpumpe an den gewünschten optimalen Betriebszustand weiter angenähert werden. Ist die Abweichung vom gewünschten Ist- Wert nicht reduziert, so erfolgt eine weitere Verstellung des Verstellmechanismus. Die Erfindung bezieht sich also auf eine auf ein Stator- Rotor-System für eine Exzenterschneckenpumpe und auf eine Regelung eines solchen Systems. Die Erfindung betrifft insbesondere ein automatisches Regelsystem zur Variation der Vorspannung zwischen dem Stator und dem Rotor einer Exzenterschneckenpumpe, das heißt zwischen einem weichen Bauteil - dem Elastomerteil - und einem härteren Bauteil - dem Stützelement, beispielsweise einem sogenannten Statormantel. Ein wesentlicher Vorteil besteht darin, dass die Exzenterschneckenpumpe zu jedem Zeitpunkt im optimalen Betriebspunkt betrieben werden kann, was zu einer deutlichen Steigerung der Energieeffizienz des Stator- Rotor-Systems führt.
  • Die automatische Regelung der Vorspannung führt insbesondere zu einem automatischen Verschleißausgleich, so dass ein Stator länger verwendet werden kann. Durch eine festgelegte Prozedur beim Ein- und/oder Ausschalten kann durch das Einstellen des Stators das Losbrechmoment verringert werden.
  • Weiterhin kann mit dem automatischen Regelsystem die Vorspannung zwischen Stator und Rotor vorteilhaft an die Viskosität des geförderten Mediums angepasst werden.
  • Das Verfahren kann alternativ oder zusätzlich zu den beschriebenen Merkmalen ein oder mehrere Merkmale und / oder Eigenschaften der zuvor beschriebenen Vorrichtung umfassen. Ebenfalls kann die Vorrichtung alternativ oder zusätzlich einzelne oder mehrere Merkmale und / oder Eigenschaften des beschriebenen Verfahrens aufweisen.
  • Figurenbeschreibung
  • Im Folgenden sollen Ausführungsbeispiele die Erfindung und ihre Vorteile anhand der beigefügten Figuren näher erläutern. Die Größenverhältnisse der einzelnen Elemente zueinander in den Figuren entsprechen nicht immer den realen Größenverhältnissen, da einige Formen vereinfacht und andere Formen zur besseren Veranschaulichung vergrößert im Verhältnis zu anderen Elementen dargestellt sind.
    • Figur 1 zeigt eine schematische Teil- Ansicht eines bekannten Stator- Rotor-Systems (Stand der Technik).
    • Figur 2 zeigt eine schematische Teil- Ansicht einer ersten Ausführungsform eines erfindungsgemäßem Stator- Rotor- Systems mit Verstellmechanismus.
    • Figur 3 zeigt schematisch einen Ablauf eines Regelmechanismus zum Einstellen des Stator- Rotor- Systems.
    • Figur 4 stellt den idealen Betriebspunkt in Abhängigkeit von einem Verstellweg des Verstellmechanismus dar.
  • Für gleiche oder gleich wirkende Elemente der Erfindung werden identische Bezugszeichen verwendet. Ferner werden der Übersicht halber nur Bezugszeichen in den einzelnen Figuren dargestellt, die für die Beschreibung der jeweiligen Figur erforderlich sind. Die dargestellten Ausführungsformen stellen lediglich Beispiele dar, wie die erfindungsgemäße Vorrichtung oder das erfindungsgemäße Verfahren ausgestaltet sein können und stellen keine abschließende Begrenzung dar.
  • Figur 1 zeigt eine schematische Teil- Ansicht eines bekannten Stator- Rotor-Systems 1 für eine Exzenterschneckenpumpe. Ein solches System 1 umfasst einen in der Regel metallischen, eingängig gewendelten Rotor (nicht dargestellt) und einen Stator 3 mit einem zweigängigen Gewinde. Beim Betrieb der Exzenterschneckenpumpe vollführt der Rotor mit seiner Figurenachse eine exzentrische Drehbewegung um die Statorlängsachse X3. Der Stator 3 umfasst einen Elastomerteil 4 und einen Statormantel 5, wobei keine feste Verbindung zwischen Elastomerteil 4 und Statormantel 5 besteht.
  • Figur 2 zeigt eine schematische Teil- Ansicht einer ersten Ausführungsform eines erfindungsgemäßem Stator- Rotor- Systems 10 mit Verstellmechanismus 12 zum Nachstellen beziehungsweise Einstellen des Stators 3. Der Verstellmechanismus 12 umfasst ein erstes feststehendes Einstellelement 13 und ein zweites positionsvariables Einstellelement 14. Eine Abstandsänderung der beiden Einstellelemente 13, 14 zueinander bewirkt eine Verformung des Elastomers und somit eine Änderung des Querschnitts und / oder der Länge des Elastomerteils 4 des Stators 3 und somit ein Nachstellen beziehungsweise Einstellen des Elastomerteils 4 des Stators 3. Insbesondere dient ein Flansch 23 am Statormantel 5 als feststehendes Einstellelement 13 und ein am freien Ende 8 des Elastomerteils 4 angeordnetes Betätigungselement 24 dient als positionsvariables Einstellelement 14.
  • Der Verstellmechanismus 12 ist mit dem Regelsystem 30 gekoppelt und wird durch dieses angesteuert und kontrolliert. Das Regelsystem 30 umfasst eine Steuerung 32 und mindestens einen Sensor 35 zur Messung von physikalischen Betriebsparametern des Stator- Rotor- Systems 10 beziehungsweise der Exzenterschneckenpumpe. Insbesondere ist mindestens ein erster Sensor 36 an der Exzenterschneckenpumpe vorgesehen, zur Messung des Pumpendrucks, der Drehzahl, der Temperatur und / oder des Volumenstroms. Weiterhin kann mindestens ein zweiter Sensor 37 am Elastomerteil 4 angeordnet sein, der beispielsweise die Vorspannung zwischen Rotor und Stator 3 oder Reaktionskräfte des Elastomermaterials ermittelt. Zudem kann mindestens ein dritter Sensor 38 am Verstellmechanismus 12 vorgesehen sein, der beispielsweise die Position des positionsvariablen Einstellelements 14 beziehungsweise den relativen Abstand zwischen dem feststehenden Einstellelement 13 und dem positionsvariablen Einstellelement 14 detektiert. Die sensorisch ermittelten Daten werden der Steuerung 32 übermittelt, die diese mit Soll- Betriebsparametern vergleicht und bei einer Abweichung zwischen den gemessenen Ist- Betriebsparametern und den Soll- Betriebsparametern eine entsprechende Verstellung des Verstellsystems 12 ansteuert, insbesondere eine Verstellung, bei der der relative Abstand zwischen dem feststehenden Einstellelement 13 und dem positionsvariablen Einstellelement 14 verändert wird, wodurch eine Verformung des Elastomers und somit eine Änderung des Querschnitts und / oder der Länge des Elastomerteils 4 des Stators 3 bewirkt wird.
  • Figur 3 zeigt schematisch einen Ablauf eines Regelmechanismus zum Einstellen des Stator- Rotor- Systems 10 gemäß Figur 2. Der erfindungsgemäße Regelmechanismus stellt einen Zusammenhang zwischen verschiedenen physikalischen Betriebsparametern des Stator- Rotor- Systems 10 beziehungsweise der Exzenterschneckenpumpe und dem Verschleißzustand des Stators 3 bzw. der Vorspannung zwischen Stator 3 und Rotor der Exzenterschneckenpumpe her. Beispielsweise wird ein Zusammenhang zwischen den physikalischen Parametern Druck, Durchfluss, Drehzahl und / oder Viskosität und dem Verschleißzustand des Stators 3 bzw. der Vorspannung zwischen Stator 3 und Rotor hergestellt. Der direkteste Parameter, der diese Zusammenhänge miteinander vereint, ist der Spannungszustand im Elastomermaterial. Diese kann entweder direkt über eine entsprechende Sensorik 37 im Elastomermaterial bestimmt werden, oder indirekt über die Reaktionskraft des Elastomers auf andere Bauteile, beispielsweise auf die Statorwandung, insbesondere den Statormantel 5, oder die Stirnseite des Elastomerteils 4, auf Verschlusselemente des Statormantels 5, auf den Rotor des Stator- Rotor- Systems 10 etcetera.
  • Alternativ und / oder zusätzlich können an der Exzenterschneckenpumpe messbare Parameter herangezogen werden, beispielsweise der Pumpendruck, die Drehzahl, mit der die Exzenterschneckenpumpe betrieben wird, die Temperatur, der Volumenstrom des geförderten Mediums etcetera.
  • Mit Hilfe des erfindungsgemäßen Regelalgorithmus wird eine Korrelation beispielsweise aus Druck, Durchfluss, Drehzahl und der benötigten Vorspannung hergestellt und daraufhin ein entsprechender Verstellweg zur Einstellung des Verstellmechanismus12 ermittelt, der geeignet sein sollte, den optimalen Betriebspunkt einzustellen. Insbesondere können Sensoren 38 vorgesehen sein, die den Ist- Zustand des Verstellsystems ermitteln, insbesondere die Position des positionsvariablen Einstellelements 14 beziehungsweise den relativen Abstand zwischen dem feststehenden Einstellelement 13 und dem positionsvariablen Einstellelement 14 und / oder Sensoren, 38, die bei Verstellung der Position des positionsvariablen Einstellelements 14 die Einstellung der gewünschten Soll- Position überwachen.
  • Die sensorisch ermittelten Betriebsparameter geben eine Auskunft über den Betriebszustand der Exzenterschneckenpumpe. Die Betriebsparameter werden durch die Steuerung 32 (vergleiche Figur 2) mit definierten Betriebsparametern verglichen, die beispielsweise in einem Kennfeld oder in einer Tabelle in der Steuerung 32 gespeichert sind. Ergibt sich zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern keine Abweichung, so erfolgt keine Reaktion des Systems. Stattdessen werden die Ist-Betriebsparametern nach einem Zeitintervall Δt1 erneut gemessen und einem Vergleich unterzogen, so dass eine regelmäßige Überwachung beziehungsweise Kontrolle des Betriebszustands der Exzenterschneckenpumpe bzw. des Stator- Rotor- Systems 10 erfolgt.
  • Ergibt sich zwischen den Ist- Betriebsparametern und den Soll-Betriebsparametern dagegen eine Abweichung, ermittelt die Steuerung 32 anhand eines gespeicherten Kennfelds beziehungsweise einer gespeicherten Tabelle die notwendige Verstellung des Verstellmechanismus 12 und steuert diesen entsprechend an. Nach automatisierter Justierung des Verstellmechanismus 12 werden die physikalischen Betriebsparameter der Exzenterschneckenpumpe beziehungsweise des Stator- Rotor-Systems 10 nach einem weiteren Zeitintervall Δt2 erneut gemessen und daraus wiederum ermittelt, ob der optimale Betriebszustand erreicht ist beziehungsweise beibehalten wird. Entsprechen die gemessenen Betriebsparameter nicht den gewünschten Soll-Betriebsparametern, so wird durch die Steuerung 32 erneut ein Verstellweg berechnet und der Verstellmechanismus 12 entsprechend nachgestellt. Insbesondere erfolgt eine inkrementale Einstellung durch einen Regelalgorithmus, wie sie nachfolgend im Zusammenhang mit Figur 4 beschrieben wird.
  • Auch wenn durch die Verstellung der gewünschte optimale Betriebszustand der Exzenterschneckenpumpe erreicht wurde, erfolgt eine permanente Überwachung durch regelmäßige Ermittlung der Betriebsparameter in definierten Zeitintervallen Δt3 und gegebenenfalls erneuter Nachjustierung des Verstellmechanismus, um die optimale Verformung des Elastomers und somit den optimalen Betriebszustand der Exzenterschneckenpumpe im laufenden Betrieb zu erzielen.
  • Figur 4 stellt die Einstellung eines idealen Betriebspunkts in Abhängigkeit von einem Verstellweg n des Verstellmechanismus dar. Einer bestimmten Drehzahl einer Exzenterschneckenpumpe ist ein bestimmter Volumenstrom Q zugeordnet. Insbesondere würde bei einem 100% volumetrischen Wirkungsgrad der Volumenstrom Q genau dem Volumen betragen, das durch die einzelnen Förderelemente (Förderkammern) entsprechend der Drehzahl von der Saugseite zur Druckseite der Exzenterschneckenpumpe gefördert wird.
  • Die optimale Einstellung eines idealen Betriebspunkts iBP der Exzenterschneckenpumpe erfolgt nun folgendermaßen: Betrachtet man bei einer konstanten Drehzahl über einen bestimmten Verstellweg n des Verstellmechanismus den Volumenstrom Q, so ist festzustellen, dass der Volumenstrom Q über einen längeren Verstellweg n fast konstant ist. Das notwendige Drehmoment (im Diagramm der Figur 4 nicht dargestellt) ist jedoch nicht konstant. Wird die Vorspannung gelöst, indem die Einstellelemente des Verstellmechanismus entsprechend eingestellt und / oder neu positioniert werden, sinkt das Drehmoment durch die geringeren Reibungsverluste aufgrund der niedrigeren Vorspannung. In einem in einem in der Regel großen Verstellbereich, in dem zumindest weitgehend keine Änderung des Volumenstromes Q erfolgt, da noch keine oder nur eine geringe Rückströmung auftritt, steigt der Wirkungsgrad der Exzenterschneckenpumpe. Erst wenn ein Betriebspunkt erreicht ist, in dem zunehmend Rückströmung auftritt, sinkt der Wirkungsgrad der Exzenterschneckenpumpe. Der Punkt des höchsten Wirkungsgrad stellt den idealen Betriebspunkt iBP dar und kann anschaulich so beschrieben werden: Der ideale Betriebspunkt iBP der Exzenterschneckenpumpe liegt genau in dem Bereich des Verstellwegs n des Verstellmechanismus, in dem gerade so viel Vorspannung zwischen Rotor und Stator vorhanden ist, dass es zu keiner beziehungsweise weitgehend keiner Rückströmung kommt. Der ideale Betriebspunkt iBP ist also der Punkt, in dem im Rotor-Stator- System gerade so viel Vorspannung erzeugt wird, wie nötig ist, um den notwendigen Gegendruck ohne Rückströmung des Mediums zu erzeugen.
  • Diese Funktionsweise wird für den neuen Regelalgorithmus verwendet, wobei insbesondere eine inkrementale Annäherung an den idealen Betriebszustand iBP erfolgt. Gemäß einer Ausführungsform der Erfindung verwendet der Regelalgorithmus folgendes Messprinzip:
    1. 1. Erfassen von Betriebsparametern der Exzenterschneckenpumpe, beispielsweise Druck, Drehzahl, Drehmoment (Motorstrom), gegebenenfalls Erfassen des Volumenstroms Q, wobei die Messung beispielsweise mittels eines Volumenstrommessers, einer Messblende oder Ähnlichem erfolgt
    2. 2. Einstellung des Rotor- Stator- Systems über den Verstellmechanismus: Zuerst fährt die Verstellung zu. Der Gummi des Elastomerteils wird verpresst, so dass die Rückströmung = 0 beziehungsweise weitgehend 0 ist. Insbesondere sinkt bei zunehmender Verpressung der Volumenstrom Q, da das Kammervolumen der Pumpkammern der Exzenterschneckenpumpe immer kleiner wird.
    3. 3. wenn sichergestellt ist, dass man sich im Bereich ausreichender Verpressung befindet, wird die Verstellung wieder aufgefahren. Dabei bleibt der Volumenstrom Q anfangs bis zu einem bestimmten Punkt konstant. An diesem Punkt bricht der Volumenstrom Q ein, da die Rückströmung im Stator-Rotor-System zunimmt. Der ideale Betriebspunkt iBP befindet sich kurz vor diesem Einbruchspunkt. Der Bereich ausreichender Verpressung kann beispielsweise anhand der Messwerte für den Volumenstrom Q ermittelt werden. Beim Verschließen des Verstellmechanismus steigt der Volumenstrom Q an. Wenn sich dieser nicht mehr ändert beziehungsweise wenn der Volumenstrom Q leicht fällt, ist das Maximum überschritten.
    4. 4. Die Einstellung nach Punkt 3 wird in bestimmten Zeitabständen eigenständig innerhalb des Rotor- Stator- Systems durchgeführt, sodass eine aktive Einstellung beziehungsweise Anpassung auf variierende Betriebsbedingungen der Pumpe gewährleistet ist.
  • Die Erfindung wurde unter Bezugnahme auf eine bevorzugte Ausführungsform beschrieben. Es ist jedoch für einen Fachmann vorstellbar, dass Abwandlungen oder Änderungen der Erfindung gemacht werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.
  • Bezugszeichenliste
  • 1
    Stator- Rotor- System
    3
    Stator
    4
    Elastomerteil
    5
    Statormantel
    8
    freies Ende
    10
    Stator- Rotor- System
    12
    Verstellmechanismus
    13
    erstes feststehendes Einstellelement
    14
    zweites positionsvariables Einstellelement
    23
    Flansch
    24
    Betätigungselement
    30
    Regelsystem
    32
    Steuerung
    35
    Sensor
    36
    erster Sensor
    37
    zweiter Sensor
    38
    dritter Sensor
    Δt
    Zeitintervall
    iBP
    Idealer Betriebspunkt
    n
    Verstellweg
    Q
    Volumenstrom
    X
    Längsachse

Claims (15)

  1. Exzenterschneckenpumpe mit Stator- Rotor- System (10) umfassend einen Rotor mit einer Rotorschnecke und einen Stator (3) mit einem Innengewinde, der Stator (3) umfassend ein Stützelement (5) und ein Elastomerteil (4), wobei das Stützelement (5) das Elastomerteil (4) zumindest bereichsweise vollumfänglich umschließt wobei die freien äußeren Endbereiche des Elastomerteils (4) über das Stützelement (5) hinausragen und nicht von diesem umschlossen sind, wobei das Stator- Rotor-System (10) einen Verstellmechanismus (12) zum Einstellen des Stators (3) aufweist, wobei der Verstellmechanismus (12) ein positionsvariables Einstellelement (13) und ein feststehendes Einstellelement (14) umfasst, wobei der Verstellmechanismus (12) über eine Steuerung (32) mit mindestens einem Sensor (35) zur Ermittlung von Ist-Betriebsparametern des Stator- Rotor- Systems (10) und / oder der Exzenterschneckenpumpe gekoppelt ist, wobei eine Ansteuerung des Verstellmechanismus (12) unter Berücksichtigung der mittels mindestens einen Sensors (35) ermittelten Ist- Betriebsparametern durch die Steuerung (32) durchführbar ist, wobei die zwei am Stator- Rotor- System (10) angeordnete Einstellelemente (13, 14) des Verstellmechanismus (12) die zueinander distanzvariabel sind, wobei zwischen den Einstellelementen (13, 14) des Verstellmechanismus (12) und dem Stator (3) eine mechanische Koppelung und / oder Verbindung besteht, so dass mittels einer Änderung des relativen Abstands zwischen den beiden Einstellelementen (13, 14) eine Veränderung des Querschnitts und der Länge des Elastomerteils (4) des Stators (3) bewirkbar ist, dadurch gekennzeichnet, dass das eine erste Einstellelement (13) ortsfest am Stützelement (5) angeordnet ist und das andere zweite Einstellelement (14) positionsvariabel am Elastomerteil (4) angeordnet ist, insbesondere an einem freien äußeren Endbereich des Elastomerteils (4).
  2. Exzenterschneckenpumpe nach Anspruch 1, wobei das zweite positionsvariable Einstellelement (14) zur Änderung des Abstands gegenüber dem ersten ortsfesten Einstellelement (13) durch einen über die Steuerung (32) angesteuerten Aktor neu positionierbar ist.
  3. Exzenterschneckenpumpe nach Anspruch 1 oder 2, wobei mindestens ein erster Sensor (36) an der Exzenterschneckenpumpe angeordnet ist und / oder wobei mindestens ein zweiter Sensor (37) an dem Elastomerteil (4) des Stators (3) angeordnet ist und / oder wobei mindestens ein dritter Sensor (38) an dem Verstellmechanismus (12) angeordnet ist.
  4. Exzenterschneckenpumpe nach Anspruch 3, wobei der erste Sensor (36) zur Messung des Drucks, der Drehzahl, der Temperatur und / oder des Volumenstroms der Exzenterschneckenpumpe ausgebildet ist und / oder wobei der zweite Sensor (37) zur Messung der Vorspannung und / oder von Reaktionskräften des Elastomermaterials des Elastomerteils (4) ausgebildet ist und / oder wobei der dritte Sensor (38) zur Messung der Position des zweiten positionsvariablen Einstellelements (14) und / oder zur Messung des Abstands zwischen dem ersten ortsfesten Einstellelement (13) und dem zweiten positionsvariablen Einstellelement (14) ausgebildet ist.
  5. Verfahren zum Anpassen des Betriebszustands einer Exzenterschneckenpumpe mit Stator- Rotor- System (10) gemäß einem der Ansprüche 1 bis 4, das Stator- Rotor-System (10) umfassend einen Rotor, einen Stator (3) und einen Verstellmechanismus (12) zum Einstellen des Stators (3), der Stator (3) umfassend einen Elastomerteil (4) und ein Stützelement (5), das Verfahren umfassend folgende Verfahrensschritte:
    a. Abfrage eines Ist- Betriebszustandes der Exzenterschneckenpumpe durch sensorische Ermittlung mindestens eines physikalischen Ist-Betriebsparameters betreffend die Exzenterschneckenpumpe und / oder sensorische Ermittlung mindestens eines physikalischen Ist-Betriebsparameters betreffend das Elastomerteil (4) und / oder sensorische Ermittlung mindestens eines physikalischen Ist- Betriebsparameters betreffend den Verstellmechanismus (12);
    b. Vergleich des mindestens einen Ist- Betriebsparameters mit bekannten Soll-Betriebsparametern;
    c. bei Ermittlung einer Abweichung zwischen den gemessenen Ist-Betriebsparametern und den Soll- Betriebsparametern eine Ansteuerung des Verstellmechanismus (12) zum Einstellen des Stators (3) erfolgt,
    d. wobei die Einstellung des neuen Betriebszustands mittels einer Kontrolle mindestens eines physikalischen Ist- Betriebsparameters überwacht wird.
  6. Verfahren nach Anspruch 5, wobei bei Ermittlung einer Abweichung zwischen den gemessenen Ist- Betriebsparametern und den Soll- Betriebsparametern eine Berechnung eines Verstellwegs (n) des Verstellmechanismus (12) durchgeführt wird und wobei der Verstellmechanismus (12) zum Einstellen eines idealen Betriebspunktes (iBP) des Stators (3) entsprechend angesteuert und der berechnete Verstellweg (n) eingestellt wird.
  7. Verfahren nach Anspruch 5, wobei bei Ermittlung einer Abweichung zwischen den gemessenen Ist- Betriebsparametern und den Soll- Betriebsparametern die Anpassung des Betriebszustands durch eine Einstellung eines idealen Betriebspunktes (iBP) mittels einer inkrementalen Annäherung erfolgt.
  8. Verfahren nach Anspruch 7, wobei der Verstellmechanismus (12) in eine zumindest weitgehend geschlossene Position mit einer erhöhten Vorspannung im Stator- Rotor-System (10) überführt wird, wobei anschließend durch ein kontrolliertes Öffnen des Verstellmechanismus (12) der ideale Betriebspunkt (iBP) eingestellt wird, an dem die Exzenterschneckenpumpe ihren besten Wirkungsgrad zeigt.
  9. Verfahren nach einem der Ansprüche 5 bis 8, wobei im Anschluss an die Verstellung des Verstellmechanismus (12) nach einer definierten Zeitspanne (Δt2) eine erneute Abfrage der Ist- Betriebsparameter der Exzenterschneckenpumpe und Vergleich mit den Soll- Betriebsparametern erfolgt.
  10. Verfahren nach Anspruch 9, wobei bei bestehender Abweichung zwischen den Ist-Betriebsparametern und den Soll- Betriebsparametern eine erneute Ansteuerung des Verstellmechanismus (12) erfolgt.
  11. Verfahren nach Anspruch 9, wobei bei ausreichender Reduzierung der Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern der eingestellte Betriebszustand der Exzenterschneckenpumpe nach einer definierten Zeitspanne (Δt3) erneut überprüft wird.
  12. Verfahren einem der Ansprüche 5 bis 9, wobei bei fehlender Abweichung zwischen den Ist- Betriebsparametern und den Soll- Betriebsparametern nach einer definierten Zeitspanne (Δt1) eine erneute Abfrage der Ist- Betriebsparameter der Exzenterschneckenpumpe und Vergleich mit den Soll- Betriebsparametern erfolgt.
  13. Verfahren nach einem der Ansprüche 5 bis 12, wobei sensorisch der Druck, die Drehzahl, die Temperatur und / oder der Volumenstroms der Exzenterschneckenpumpe ermittelt wird und / oder wobei sensorisch die Vorspannung zwischen Rotor und Stator (3) ermittelt wird und / oder wobei sensorisch Reaktionskräfte des Elastomermaterials des Elastomerteils (4) ermittelt werden und / oder wobei sensorisch die Position mindestens eines Einstellelementes (13, 14) des Verstellmechanismus (12) ermittelt wird und / oder wobei sensorisch der Abstand zwischen zwei Einstellelementen (13, 14) des Verstellmechanismus (12) gemessen wird.
  14. Verfahren nach einem der Ansprüche 5 bis 13, wobei die Verstellung des Verstellmechanismus (12) erfolgt, indem der Abstand zwischen zwei Einstellelementen (13, 14) des Verstellmechanismus (12) vergrößert oder verkleinert wird, wobei durch die Abstandsänderung zwischen den beiden Einstellelementen (13, 14) eine Veränderung des Querschnitts und der Länge des gekoppelten Elastomerteils (4) des Stator- Rotor- Systems (10) erfolgt.
  15. Verfahren nach einem der Ansprüche 5 bis 14, wobei die ermittelte Abweichung eine Ansteuerung des Verstellmechanismus (12) nur dann auslöst, wenn die ermittelte Abweichung außerhalb eines festgelegten Toleranzbereiches liegt.
EP16708338.5A 2015-01-29 2016-01-29 Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren Active EP3250829B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015101353 2015-01-29
DE102015112248.0A DE102015112248A1 (de) 2015-01-29 2015-07-28 Exzenterschneckenpumpe und Verfahren zum Anpassen des Betriebszustands einer Exzenterschneckenpumpe
PCT/DE2016/000033 WO2016119775A1 (de) 2015-01-29 2016-01-29 Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren

Publications (2)

Publication Number Publication Date
EP3250829A1 EP3250829A1 (de) 2017-12-06
EP3250829B1 true EP3250829B1 (de) 2020-08-05

Family

ID=56410000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16708338.5A Active EP3250829B1 (de) 2015-01-29 2016-01-29 Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren

Country Status (10)

Country Link
US (1) US20180010604A1 (de)
EP (1) EP3250829B1 (de)
JP (1) JP2018507345A (de)
KR (1) KR20170096638A (de)
CN (1) CN107208630A (de)
AU (1) AU2016212425B2 (de)
DE (2) DE102015112248A1 (de)
RU (1) RU2017130347A (de)
WO (1) WO2016119775A1 (de)
ZA (1) ZA201704734B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101352A1 (de) * 2015-01-29 2016-08-04 Netzsch Pumpen & Systeme Gmbh Stator-Rotor-System und Verfahren zum Einstellen eines Stators in einem Stator-Rotor-System
GB201514001D0 (en) * 2015-08-07 2015-09-23 Edwards Ltd Pumps
DE102017100715A1 (de) * 2017-01-16 2018-07-19 Hugo Vogelsang Maschinenbau Gmbh Regelung der Spaltgeometrie in einer Exzenterschneckenpumpe
DE102018111120A1 (de) * 2018-05-09 2019-11-14 J. Wagner Gmbh Verfahren zum Betrieb einer Fördervorrichtung und Fördervorrichtung
DE102019130981A1 (de) 2019-11-15 2021-05-20 Seepex Gmbh Exzenterschneckenpumpe
DE102020111386A1 (de) * 2020-04-27 2021-10-28 Vogelsang Gmbh & Co. Kg Zustandserfassung an Exzenterschneckenpumpen
CN112099220A (zh) * 2020-09-30 2020-12-18 青岛大学附属医院 一种新型病理检验用多向式显微镜托架
DE102021103615A1 (de) * 2021-02-16 2022-08-18 Vieweg GmbH Dosier- und Mischtechnik Exzenterschnecken-Dosiervorrichtung und Verfahren zur Steuerung einer Exzenterschnecken-Dosiervorrichtung
DE102021131427A1 (de) 2021-11-30 2023-06-01 Vogelsang Gmbh & Co. Kg Exzenterschneckenpumpe mit Arbeitszustellung und Ruhezustellung sowie Verfahren zum Steuern der Exzenterschneckenpumpe
DE102022119147A1 (de) 2022-07-29 2024-02-01 Ruhr-Universität Bochum, Körperschaft des öffentlichen Rechts Verfahren zur Bestimmung oder Überwachung des Förderstroms einer Exzenterschneckenpumpe

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3433269A1 (de) 1984-09-11 1986-03-20 Gummi-Jäger KG GmbH & Cie, 3000 Hannover Stator fuer exzenterschneckenpumpen
EP0292594A1 (de) 1987-05-27 1988-11-30 FOREG Aktiengesellschaft Statormantel für Exzenterschneckenpumpen
DD279043A1 (de) * 1988-12-29 1990-05-23 Hydrogeologie Nordhausen Halle Stator fuer exzenterschneckenpumpen
DE4312123C2 (de) 1993-04-14 1997-11-20 Artemis Kautschuk Kunststoff Stator für Exzenterschneckenpumpen
DE4403979C2 (de) 1994-02-09 2002-09-05 Artemis Kautschuk Kunststoff Stator für Exzenterschneckenpumpen
GB2338268A (en) * 1998-02-24 1999-12-15 Orbit Pumps Ltd Stator assembly
US6358027B1 (en) * 2000-06-23 2002-03-19 Weatherford/Lamb, Inc. Adjustable fit progressive cavity pump/motor apparatus and method
DE10157143B4 (de) 2001-11-21 2007-01-11 Netzsch-Mohnopumpen Gmbh Wartungsintervallanzeige für Pumpen
DE202005008989U1 (de) 2005-06-07 2005-08-11 Seepex Gmbh + Co Kg Exzenterschneckenpumpe
DE102005042559A1 (de) 2005-09-08 2007-03-15 Netzsch-Mohnopumpen Gmbh Statorsystem
CN101796301B (zh) * 2007-08-17 2013-05-15 西派克有限公司 设有分体型定子的偏心螺杆泵
JP5382639B2 (ja) 2008-03-27 2014-01-08 兵神装備株式会社 回転容積型ポンプの流量制御方法と同流量制御システム
JP5060402B2 (ja) 2008-06-18 2012-10-31 クライムプロダクツ株式会社 保護フィルムの剥離装置
JP5412684B2 (ja) 2009-06-05 2014-02-12 兵神装備株式会社 一軸偏心ねじポンプに使用するゴム製部材の劣化診断方法及び装置
JP5424202B2 (ja) 2009-11-30 2014-02-26 兵神装備株式会社 ポンプ用異常検出装置、及び、方法
JP5821058B2 (ja) * 2010-12-27 2015-11-24 兵神装備株式会社 一軸偏心ねじポンプ
DE102014112552B4 (de) * 2014-09-01 2016-06-30 Seepex Gmbh Exzenterschneckenpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016119775A1 (de) 2016-08-04
RU2017130347A3 (de) 2019-03-01
DE102015112248A1 (de) 2016-08-04
JP2018507345A (ja) 2018-03-15
AU2016212425B2 (en) 2019-06-13
KR20170096638A (ko) 2017-08-24
CN107208630A (zh) 2017-09-26
RU2017130347A (ru) 2019-03-01
AU2016212425A1 (en) 2017-07-13
ZA201704734B (en) 2018-08-29
DE112016000540A5 (de) 2017-12-21
EP3250829A1 (de) 2017-12-06
US20180010604A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
EP3250829B1 (de) Exzenterschneckenpumpe mit einem automatischen verstellsystem und einstellverfahren
EP3250828B1 (de) Stator-rotor-system und verfahren zum einstellen eines stators in einem stator-rotor-system
EP3568596B1 (de) Regelung der spaltgeometrie in einer exzenterschneckenpumpe
EP2550454B1 (de) Verfahren zum regeln einer dosierpumpe
EP0702755A1 (de) Mehrstufenregler für schmiermittelpumpen mit kontinuierlich veränderbarem fördervolumen
WO2015176866A1 (de) Lenkgetriebe
EP2504578A2 (de) Schraubenspindelpumpe mit integriertem druckbegrenzungsventil
EP1283971A1 (de) Geregelte pumpe
WO2008154665A2 (de) Exzenterpumpe
DE202012013094U1 (de) Elektrischer Zylinder und elektrisches Zylindersystem
DE202011052114U1 (de) Innenzahnradpumpe
DE102011101648A1 (de) Schraubenmaschine, insbesondere Schraubenspindelpumpe
EP1672156A1 (de) Drehtürantrieb
EP1929154B1 (de) Kolbenpumpe
CH656674A5 (de) Dosierpumpe.
DE102006018285A1 (de) Pumpe, insbesondere Zahnradpumpe oder Flügelzellenpumpe
WO2017194508A1 (de) Schraubenspindelpumpe
DE102014117483A1 (de) Verstellbare Pumpeinheit für eine Verdrängerpumpe
DE102007051352A1 (de) Hydraulische Zahnradmaschine und Verfahren zur Ansteuerung einer hydraulischen Zahnradmaschine
EP3080457B1 (de) Verdichter
DE102013212002A1 (de) Innenzahnradpumpe für die Förderung von Fluid
AT3212U1 (de) Radialkolbenpumpe
DE102019106503A1 (de) Sicherheitskupplung mit Druckregulierung
EP1555436B1 (de) Zahnradpumpe mit Fördermengenregelung
EP2157318A2 (de) Hydraulikversorgungseinheit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190416

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1299074

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010727

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010727

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1299074

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230131

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240201

Year of fee payment: 9

Ref country code: GB

Payment date: 20240124

Year of fee payment: 9