EP3248280A1 - Speichersystem zum speichern elektrischer energie - Google Patents

Speichersystem zum speichern elektrischer energie

Info

Publication number
EP3248280A1
EP3248280A1 EP16700914.1A EP16700914A EP3248280A1 EP 3248280 A1 EP3248280 A1 EP 3248280A1 EP 16700914 A EP16700914 A EP 16700914A EP 3248280 A1 EP3248280 A1 EP 3248280A1
Authority
EP
European Patent Office
Prior art keywords
diode
memory system
voltage
energy
intermediate circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16700914.1A
Other languages
English (en)
French (fr)
Inventor
Christopher Betzin
Jacob Johan Rabbers
Holger WOLFSCHMIDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3248280A1 publication Critical patent/EP3248280A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/46Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a storage system for storing electrical energy.
  • a converter for converting the DC voltage into a AC voltage which is connected via a DC link to the energy storage; and a diode reverse-connected in the intermediate circuit in parallel with the energy storage and the inverter for limiting a voltage in the intermediate circuit.
  • the memory system comprises a further diode for limiting the voltage in the intermediate circuit, which is connected in the intermediate circuit in parallel to the energy store and the inverter in the reverse direction.
  • the diode is a semiconductor diode with pn junction or a Schottky diode. This technical advantage is achieved, for example, that overvoltage in the ⁇ circular efficiently can be dissipated.
  • the memory system comprises a resistor which is connected in series with the diode.
  • the resistor has a size of 0.1 ⁇ to 100 ⁇ , preferably 1 ⁇ to 10 ⁇ . This is for example the technical advantage is achieved that damage to the diode is prevented due to high performance.
  • the diode is a high-current diode with a permissible breakdown current of greater than 60 A.
  • the technical advantage is achieved that overvoltages can be short-circuited with high currents without the diode is damaged.
  • the diode is a Zener diode, an avalanche diode or a suppressor diode. This example just ⁇ if the technical advantage achieved by the efficient voltage stabilization is achieved.
  • the memory system comprises further zener diodes, which are connected in series with the zener diode.
  • the memory system comprises a DC voltage converter for increasing the DC voltage of the energy store.
  • the technical advantage is achieved, for example, that the voltage of the energy storage for the inverter he ⁇ can be increased.
  • the diode comprises a cooling. This game, be achieved at the technical advantage ⁇ that Be ⁇ damage the diode can be prevented by heat.
  • the cooling is realized by a contact of the diode with a heat sink. As a result, for example, the technical advantage achieved that the cooling can be realized with a ge ⁇ wrestling effort.
  • Fig. 1 is a view of a memory system
  • Fig. 2 is a characteristic of a diode.
  • Fig. 1 shows a view of a memory system 100 for SpeI ⁇ Chern electrical energy.
  • the memory system 100 comprises an energy store 101 for generating a DC voltage, a converter 103 for converting the DC voltage into an AC voltage, which is connected via an intermediate circuit 105 to the energy storage 101; and a diode 107 reverse-connected in the DC link 105 in parallel with the power storage 101 and the inverter 103 to limit a voltage in the DC link 105.
  • the inverter is an inverter for converting the DC voltage to an AC voltage. This produces a parallel connection of the diode 107 in the reverse direction in the intermediate circuit 105 of the energy store 101 and of the converter 107.
  • the energy storage 101 may be a mechanical, an electrical, electrochemical, a chemical energy storage or a heat storage.
  • a mechanical energy storage is for example a flywheel (flywheel), a pumped storage power plant ⁇ or a pressure accumulator.
  • An electrical or electrochemical energy store 101 is, for example, a super-capacitor or a battery.
  • a chemical energy storage 101 uses, for example, hydrogen, methane or methanol. In contrast, uses a heat storage
  • the diode 107 in the intermediate circuit 105 can be embodied as a p-n-doped semiconductor crystal transition or as a metal-semiconductor junction (Schottky diode).
  • the diode 107 may also be designed as a Zener diode. In this case, a series connection of Zener diodes is advantageous in order to achieve the required breakdown voltage.
  • the inverter 103 is, for example, an inverter or inverter for converting the direct current into an alternating current having a predetermined frequency.
  • the memory system 100 comprises a combination of diode 107 and resistor 109, so that not the complete power is applied to the diode 107.
  • the resistor 109 used is typi cally dimensioned ⁇ between 1 ⁇ and 10 ⁇ .
  • the area may to 0.1 ⁇ to 1 ⁇ , and between 10 ⁇ and 100 ⁇ he ⁇ be got. Also possible are resistors smaller than 0.1 ⁇ and larger than 100 ⁇ .
  • the diode 107 serves as passive overvoltage protection to limit the voltage in the DC link.
  • the intermediate circuit 105 can be protected passively. This represents an overvoltage protection, which is guaranteed until the breakdown voltage of the diode 107 is exceeded.
  • the diode 107 becomes conductive and then acts as a bypass. The voltage in the intermediate circuit Zvi ⁇ 105 or energy storage 101 to rise no further, and the excessive current flows through the diode 107th
  • both the maximum voltage of the memory system 100 is limited and allows a bypass current through the diode 107 during operation.
  • an over- Monitoring the voltage by means of a voltage measurement, controllable contactors and a controller with software accounts. Therefore, a passive surge protection of the overall system is ensured by means of simple components, which must not be monitored by means of software or mechanical compo nents ⁇ includes.
  • FIG. 2 shows a characteristic of the diode 107, which allows a voltage breakdown as of a negative voltage. Up to this point, the diode 107 is almost without current flow.
  • the characteristic curve of the diode 107 comprises a breakdown region 205, a stopband 203 and a passband 201. In the stopband 203, the current rises up to the first stop
  • the memory system 100 includes incorporating one or more reverse biased diodes 107 into the intermediate circuit 105 of an energy storage 101 connected to an inverter 103, such as an inverter or AC / DC converter.
  • a Hochstrom e execution of the diode 107 with a zu ⁇ permissible current greater than 60 A is also possible, so that the resistor 109 can be replaced. Due to the transient behavior of the converter 103 and the diode 107, current only briefly reaches when the diode breakdown voltage is reached, for example, shorter than ls. In this case, only short-term performance occurs at the diode 107. In Lan ⁇ Ger power, cooling of the diode may be seen ⁇ 107 before, for example via a befes- saturated at the diode heat sink. In general, it is possible to use a plurality of diodes 107 in series in order to reduce the resulting power per diode 107. A parallel connection a plurality of diodes 107 is another way to reduce the on ⁇ falling power per diode 107.
  • the voltage in the intermediate circuit 105 is typically between 500 V and 800 V. This voltage range can, however, be extended as desired.
  • a DC-DC converter i. a DC / DC controller, are used to realize a first voltage increase of the energy storage device 101.

Abstract

Die vorliegende Erfindung betrifft ein Speichersystem (100) zum Speichern elektrischer Energie, mit einem Energiespeicher (101) zum Erzeugen einer Gleichspannung; einem Umrichter (103) zum Umrichten der Gleichspannung in eine Wechselspannung, der über einen Zwischenkreis (105) mit dem Energiespeicher (101) verbunden ist; und einer Diode (107), die in dem Zwischenkreis (105) parallel zu dem Energiespeicher (101) und dem Umrichter (103) in Sperrrichtung geschaltet ist, zum Begrenzen einer Spannung in dem Zwischenkreis (105).

Description

Beschreibung
Speichersystem zum Speichern elektrischer Energie Die vorliegende Erfindung betrifft ein Speichersystem zum Speichern elektrischer Energie.
Der steigende Bedarf an Speichersystemen erfordert einen hohen Sicherheitsstandard während des Betriebs und Schutzmecha- nismen für den Fehlerfall. Die Verbindung eines Energiespei¬ chers als Gleichspannungsquelle oder -Senke an ein Wechsels¬ pannungsnetz wird über einen Wechselrichter realisiert. Hierbei existiert ein Gleichspannungszwischenkreis zwischen Ener¬ giespeicher und Wechselrichter, in dem Überspannungen auftre- ten können.
Derzeitige Methoden um den Zwischenkreis, um den Energiespei¬ cher und den Wechselrichter zu schützen, verwenden Schütze, die im Fehlerfall öffnen. Diese Schütze werden durch einen Controller mit passender Software elektrisch angesteuert und bei Überschreiten eines Spannungslevels ausgelöst, um sowohl eine Beschädigung des Wechselrichters als auch des Energie¬ speichers zu verhindern. Es ist die Aufgabe der vorliegenden Erfindung ein Speichersystem zum Speichern elektrischer Energie anzugeben, durch das mit einfachen Mitteln sowohl ein Energiespeicher als auch ein Umrichter vor einer Überspannung geschützt werden können. Diese Aufgabe wird durch einen Gegenstand nach den unabhängi¬ gen Ansprüchen gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche, der Beschreibung und der Figuren . Gemäß einem ersten Aspekt wird die Aufgabe durch ein Spei¬ chersystem zum Speichern elektrischer Energie gelöst, mit einem Energiespeicher zum Erzeugen einer Gleichspannung;
einem Umrichter zum Umrichten der Gleichspannung in eine Wechselspannung, der über einen Zwischenkreis mit dem Energiespeicher verbunden ist; und einer Diode, die in dem Zwischenkreis parallel zu dem Energiespeicher und dem Umrichter in Sperrrichtung geschaltet ist, zum Begrenzen einer Spannung in dem Zwischenkreis. Dadurch wird der technische Vorteil er¬ reicht, dass durch die Verwendung der in Sperrrichtung betriebenen Diode in Parallelschaltung zwischen Energiespeicher und Umrichter der Zwischenkreis passiv geschützt werden kann. Eine Überwachung der Spannung mit einer Spannungsmessung, steuerbaren Schützen und ein Controller mit Software können entfallen .
In einer vorteilhaften Ausführungsform des Speichersystems umfasst das Speichersystem eine weitere Diode zum Begrenzen der Spannung in dem Zwischenkreis, die in dem Zwischenkreis parallel zu dem Energiespeicher und dem Umrichter in Sperrrichtung geschaltet ist. Dadurch wird beispielsweise der technische Vorteil erreicht, dass sich die an einer Diode an¬ fallende Leistung im Falle einer Überspannung reduziert und ein redundanter Überspannungsschutz realisiert wird.
In einer weiteren vorteilhaften Ausführungsform des Speichersystems ist die Diode eine Halbleiterdiode mit p-n-Übergang oder eine Schottky-Diode . Dadurch wird beispielsweise der technische Vorteil erreicht, dass Überspannungen im Zwischen¬ kreis effizient abgeführt werden können.
In einer weiteren vorteilhaften Ausführungsform des Speichersystems umfasst das Speichersystem einen Widerstand, der in Serie mit der Diode geschaltet ist. Dadurch wird beispiels¬ weise der technische Vorteil erreicht, dass die anfallende die Leistung im Falle einer Überspannung nicht vollständig an der Diode anfällt. In einer weiteren vorteilhaften Ausführungsform des Speichersystems weist der Widerstand eine Größe von 0,1 Ω bis 100 Ω, vorzugsweise 1 Ω bis 10 Ω auf. Dadurch wird beispielsweise der technische Vorteil erreicht, dass eine Beschädigung der Diode aufgrund hoher Leistung verhindert wird.
In einer weiteren vorteilhaften Ausführungsform des Speicher- Systems ist die Diode eine hochstromfähige Diode mit einem zulässigen Durchbruchstrom von größer als 60 A. Dadurch wird beispielsweise der technische Vorteil erreicht, dass auch Überspannungen mit hohen Strömen kurzgeschlossen werden können, ohne dass die Diode beschädigt wird.
In einer weiteren vorteilhaften Ausführungsform des Speichersystems ist die Diode eine Zener-Diode, eine Avalanche-Diode oder eine Suppressordiode . Dadurch wird beispielsweise eben¬ falls der technische Vorteil erreicht, dass eine effiziente Spannungsstabilisierung erreicht wird.
In einer weiteren vorteilhaften Ausführungsform des Speichersystems umfasst das Speichersystem weitere Zenerdioden, die in Serie mit der Zenerdiode geschaltet sind. Dadurch wird beispielsweise der technische Vorteil erreicht, dass die Durchbruchsspannung erhöht wird.
In einer weiteren vorteilhaften Ausführungsform des Speichersystems umfasst das Speichersystem einen Gleichspannungswand- 1er zum Erhöhen der Gleichspannung des Energiespeichers. Dadurch wird beispielsweise der technische Vorteil erreicht, dass die Spannung des Energiespeichers für den Umrichter er¬ höht werden kann. In einer weiteren vorteilhaften Ausführungsform des Speichersystems umfasst die Diode eine Kühlung. Dadurch wird bei¬ spielsweise der technische Vorteil erreicht, dass eine Be¬ schädigung der Diode durch Wärme verhindert werden kann. In einer weiteren vorteilhaften Ausführungsform des Speichersystems ist die Kühlung durch einen Kontakt der Diode mit einem Kühlkörper realisiert. Dadurch wird beispielsweise der technische Vorteil erreicht, dass die Kühlung mit einem ge¬ ringen Aufwand realisiert werden kann.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben.
Es zeigen:
Fig. 1 eine Ansicht eines Speichersystems; und
Fig. 2 eine Kennlinie einer Diode.
Fig. 1 zeigt eine Ansicht eines Speichersystems 100 zum Spei¬ chern elektrischer Energie. Das Speichersystem 100 umfasst einen Energiespeicher 101 zum Erzeugen einer Gleichspannung, einen Umrichter 103 zum Umrichten der Gleichspannung in eine Wechselspannung, der über einen Zwischenkreis 105 mit dem Energiespeicher 101 verbunden ist; und eine Diode 107, die in dem Zwischenkreis 105 parallel zu dem Energiespeicher 101 und dem Umrichter 103 in Sperrrichtung geschaltet ist, zum Begrenzen einer Spannung in dem Zwischenkreis 105. Der Umrichter ist beispielsweise ein Wechselrichter zum Umrichten der Gleichspannung in eine Wechselspannung. Dadurch entsteht eine Parallelschaltung der Diode 107 in Sperrrichtung in dem Zwi- schenkreis 105 des Energiespeichers 101 und des Umrichters 107.
Der Energiespeicher 101 kann ein mechanischer, ein elektrischer, elektrochemischer, ein chemischer Energiespeicher oder ein Wärmespeicher sein. Ein mechanischer Energiespeicher ist beispielsweise ein Schwungrad (Flywheel) , ein Pumpspeicher¬ kraftwerk oder ein Druckspeicher. Ein elektrischer oder elektrochemischer Energiespeicher 101 ist beispielsweise ein Su- perkondensator oder eine Batterie. Ein chemischer Energie- Speicher 101 verwendet beispielsweise Wasserstoff, Methan oder Methanol. Demgegenüber verwendet ein Wärmespeicher
Dampf, Warmwasser, PCM-Materialen oder Carbonatschmelzen . Bei einer nicht-elektrischen Speicherung von Energie wird die Gleichspannung mithilfe einer Umwandlungsvorrichtung erzeugt. Wird beispielsweise Energie in der Bewegung eines Schwungrads gespeichert, kann ein Generator verwendet werden, um aus der Bewegungsenergie eine gleichgerichtete Spannung zu erzeugen.
Die Diode 107 im Zwischenkreis 105 kann als p-n dotierter Halbleiterkristallübergang oder als Metall-Halbleiter-Übergang (Schottky-Diode) ausgeführt werden. Die Diode 107 kann auch als Zener-Diode ausgeführt sein. In diesem Fall ist eine Serienschaltung von Zener-Dioden vorteilhaft, um die benötigte Durchbruchsspannung zu erreichen. Der Umrichter 103 ist beispielsweise ein Wechselrichter oder Inverter zum Umrichten des Gleichstroms in einen Wechselstrom mit einer vorgegebenen Frequenz .
Das Speichersystem 100 umfasst eine Kombination aus Diode 107 und Widerstand 109, damit nicht die komplette Leistung an der Diode 107 anfällt. Der eingesetzte Widerstand 109 wird typi¬ scherweise zwischen 1 Ω und 10 Ω dimensioniert. Der Bereich kann auf 0.1 Ω bis 1 Ω als auch zwischen 10 Ω und 100 Ω er¬ weitert werden. Möglich sind auch Widerstände kleiner 0.1 Ω und größer 100 Ω.
Die Diode 107 dient als passiver Überspannungsschutz, um die Spannung im Zwischenkreis zu limitieren. Durch die Verwendung einer in Sperrrichtung betriebenen Diode 107 in Parallelschaltung zwischen Energiespeicher 101 und dem Umrichter 103 kann der Zwischenkreis 105 passiv geschützt werden. Dies stellt einen Überspannungsschutz dar, der bis zum Überschrei- ten der Durchbruchsspannung der Diode 107 gewährleistet ist. Beim Überschreiten der Durchbruchsspannung wird die Diode 107 leitend und fungiert dann als Bypass. Die Spannung im Zwi¬ schenkreis 105 oder Energiespeicher 101 steigen nicht weiter an und der überhöhte Strom fließt durch die Diode 107.
Durch die Diode 107 wird sowohl die Maximalspannung des Speichersystems 100 beschränkt als auch im Betrieb ein Bypass- Strom durch die Diode 107 ermöglicht. Dadurch kann eine Über- wachung der Spannung mittels einer Spannungsmessung, steuerbaren Schützen und einem Controller mit Software entfallen. Daher ist mittels einfacher Bauteile ein passiver Überspannungsschutz des Gesamtsystems gewährleistet, der nicht mit- tels Software überwacht werden muss oder mechanische Kompo¬ nenten beinhaltet.
Fig. 2 zeigt eine Kennlinie der Diode 107, die ab einer ge¬ wissen negativen Spannung einen Spannungsdurchbruch erlaubt. Bis zu diesem Punkt ist die Diode 107 nahezu ohne Stromdurch- fluss. Die Kennlinie der Diode 107 umfasst einen Durchbruch- bereich 205, einen Sperrbereich 203 und einen Durchlassbereich 201. Im Sperrbereich 203 steigt der Strom bis zur
Sperrspannung zunächst langsam an. Im Durchbruchbereich 205 jenseits der Sperrspannung steigt der Strom durch die Diode 107 sprungartig an.
Eine Skalierung für die Anwendung in dem Energiespeichersystem 100 kann je nach Anforderungen und Einsatzgebiet durchge- führt werden. Das Speichersystem 100 umfasst eine Einbindung einer oder mehrerer in Sperrrichtung betriebenen Dioden 107 in den Zwischenkreis 105 eines Energiespeichers 101, der mit einem Umrichter 103 verbunden ist, wie beispielsweise eine Wechselrichter oder AC/DC-Wandler .
Eine hochstromfähige Ausführung der Diode 107 mit einem zu¬ lässigen Strom größer als 60 A ist ebenfalls möglich, so dass der Widerstand 109 ersetzt werden kann. Aufgrund des tran- sienten Verhaltens des Umrichters 103 und der Diode 107 fließt bei Erreichen der Diodendurchbruchspannung nur kurzzeitig Strom, beispielsweise kürzer als ls. In diesem Fall tritt an der Diode 107 nur kurzfristig Leistung auf. Bei län¬ gerer Leistungsaufnahme kann eine Kühlung der Diode 107 vor¬ gesehen sein, beispielsweise über einen an der Diode befes- tigten Kühlkörper. Im Allgemeinen ist ein Einsatz mehrerer Dioden 107 in Serienschaltung möglich, um die anfallende Leistung pro Diode 107 zu reduzieren. Eine Parallelschaltung mehrerer Dioden 107 ist eine weitere Möglichkeit, um die an¬ fallende Leistung pro Diode 107 zu reduzieren.
Die Spannung im Zwischenkreis 105 liegt typischerweise zwi- sehen 500 V und 800 V. Dieser Spannungsbereich kann jedoch beliebig erweitert werden. Vor dem Energiespeicher 101 kann ein Gleichspannungswandler, d.h. ein DC/DC-Steller, eingesetzt werden, um eine erste Spannungserhöhung des Energiespeichers 101 zu realisieren.
Alle in Verbindung mit einzelnen Ausführungsformen der Erfindung erläuterten und gezeigten Merkmale können in unterschiedlicher Kombination in dem erfindungsgemäßen Gegenstand vorgesehen sein, um gleichzeitig deren vorteilhafte Wirkungen zu realisieren.
Der Schutzbereich der vorliegenden Erfindung ist durch die Ansprüche gegeben und wird durch die in der Beschreibung erläuterten oder den Figuren gezeigten Merkmale nicht be- schränkt.

Claims

Patentansprüche
1. Speichersystem (100) zum Speichern elektrischer Energie, mit :
einem Energiespeicher (101) zum Erzeugen einer Gleichspannung;
einem Umrichter (103) zum Umrichten der Gleichspannung in eine Wechselspannung, der über einen Zwischenkreis (105) mit dem Energiespeicher (101) verbunden ist; und
einer Diode (107), die in dem Zwischenkreis (105) parallel zu dem Energiespeicher (101) und dem Umrichter (103) in Sperrrichtung geschaltet ist, zum Begrenzen einer Spannung in dem Zwischenkreis (105).
2. Speichersystem (100) nach Anspruch 1, wobei das Speichersystem (100) eine weitere Diode (107) zum Begrenzen der Spannung in dem Zwischenkreis (105) umfasst, die in dem Zwischen¬ kreis (105) parallel zu dem Energiespeicher (101) und dem Um¬ richter (103) in Sperrrichtung geschaltet ist.
3. Speichersystem (100) nach einem der vorangehenden Ansprüche, wobei die Diode (107) eine Halbleiterdiode mit p-n- Übergang oder eine Schottky-Diode ist.
4. Speichersystem (100) nach einem der vorangehenden Ansprüche, wobei das Speichersystem (100) einen Widerstand (109) umfasst, der in Serie mit der Diode (107) geschaltet ist.
5. Speichersystem (100) nach Anspruch 4, wobei der Widerstand (109) eine Größe von 0,1 Ω bis 100 Ω, vorzugsweise 1 Ω bis
10 Ω aufweist.
6. Speichersystem (100) nach einem der vorangehenden Ansprüche, wobei die Diode (107) eine hochstromfähige Diode mit einem zulässigen Durchbruchstrom von größer als 60 A ist.
7. Speichersystem (100) nach einem der vorangehenden Ansprüche, wobei die Diode (107) eine Zener-Diode, eine Avalanche- Diode oder eine Suppressordiode ist.
8. Speichersystem (100) nach Anspruch 7, wobei das Speichersystem (100) weitere Zenerdioden umfasst, die in Serie mit der Zenerdiode (107) geschaltet sind.
9. Speichersystem (100) nach einem der vorangehenden Ansprü- che, wobei das Speichersystem (100) einen Gleichspannungs¬ wandler zum Erhöhen der Gleichspannung des Energiespeichers (101) umfasst.
10. Speichersystem (100) nach einem der vorangehenden Ansprü- che, wobei die Diode (107) eine Kühlung umfasst.
11. Speichersystem (100) nach Anspruch 10, wobei die Kühlung durch einen Kontakt der Diode (107) mit einem Kühlkörper realisiert ist.
12. Speichersystem (100) nach einem der vorangehenden Ansprüche, wobei das Speichersystem (100) weitere Dioden umfasst, die parallel geschaltet sind.
EP16700914.1A 2015-02-24 2016-01-19 Speichersystem zum speichern elektrischer energie Withdrawn EP3248280A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015203269.8A DE102015203269A1 (de) 2015-02-24 2015-02-24 Speichersystem zum Speichern elektrischer Energie
PCT/EP2016/050978 WO2016134885A1 (de) 2015-02-24 2016-01-19 Speichersystem zum speichern elektrischer energie

Publications (1)

Publication Number Publication Date
EP3248280A1 true EP3248280A1 (de) 2017-11-29

Family

ID=55174647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16700914.1A Withdrawn EP3248280A1 (de) 2015-02-24 2016-01-19 Speichersystem zum speichern elektrischer energie

Country Status (5)

Country Link
US (1) US20180076706A1 (de)
EP (1) EP3248280A1 (de)
CN (1) CN107258048A (de)
DE (1) DE102015203269A1 (de)
WO (1) WO2016134885A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019111378A1 (de) * 2019-05-02 2020-11-05 Dehn Se + Co Kg Asymmetrische Überspannungsschutzvorrichtung, Gleichstromschaltungsanordnung sowie Gleichstromnetz

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3571609A (en) * 1969-08-20 1971-03-23 Gen Lab Associates Inc Ignition apparatus selectively operable at different levels of discharge energy
US4181863A (en) * 1976-04-03 1980-01-01 Ferranti Limited Photodiode circuit arrangements
JPS56124671A (en) * 1980-03-07 1981-09-30 Hitachi Ltd Igniting apparatus
DE3037120C2 (de) * 1980-10-01 1986-04-03 Siemens AG, 1000 Berlin und 8000 München Überspannungsschutzanordnung mit Z-Diode
US4719401A (en) * 1985-12-04 1988-01-12 Powerplex Technologies, Inc. Zener diode looping element for protecting a battery cell
US4825081A (en) * 1987-12-01 1989-04-25 General Electric Company Light-activated series-connected pin diode switch
US4948989A (en) * 1989-01-31 1990-08-14 Science Applications International Corporation Radiation-hardened temperature-compensated voltage reference
JP3716618B2 (ja) * 1998-05-14 2005-11-16 日産自動車株式会社 組電池の制御装置
JP3955396B2 (ja) * 1998-09-17 2007-08-08 株式会社ルネサステクノロジ 半導体サージ吸収素子
JP2002100761A (ja) * 2000-09-21 2002-04-05 Mitsubishi Electric Corp シリコンmosfet高周波半導体デバイスおよびその製造方法
FR2833776B1 (fr) * 2001-10-09 2005-09-09 Valeo Equip Electr Moteur Alternateur a pont de redressement, notamment pour vehicule automobile
US6798170B2 (en) * 2002-02-08 2004-09-28 Valence Technology, Inc. Electrical power source apparatuses, circuits, electrochemical device charging methods, and methods of charging a plurality of electrochemical devices
JP2004350493A (ja) * 2003-04-28 2004-12-09 Matsushita Electric Ind Co Ltd モータ駆動用インバータ制御装置とこれを用いた空気調和機
KR100622972B1 (ko) * 2005-06-17 2006-09-13 삼성전자주식회사 전력변환기의 제어장치 및 제어방법
US7356441B2 (en) * 2005-09-28 2008-04-08 Rockwell Automation Technologies, Inc. Junction temperature prediction method and apparatus for use in a power conversion module
DE102006053810A1 (de) * 2006-11-15 2008-05-21 Robert Bosch Gmbh Gleichrichter-Brückenschaltung mit Load-Dump-Schutz
AT504439B8 (de) * 2007-05-10 2008-09-15 Siemens Ag Oesterreich Schaltungsanordnung mit wenigstens zwei in serie geschalteten kondensatoren
US8149552B1 (en) * 2008-06-30 2012-04-03 Automation Solutions, LLC Downhole measurement tool circuit and method to balance fault current in a protective inductor
JP4771180B2 (ja) * 2008-08-28 2011-09-14 トヨタ自動車株式会社 組電池および組電池の制御システム
US8000077B2 (en) * 2008-12-15 2011-08-16 Jye-Chau SU DC noise absorbing device for preventing surges and regulating voltages
JP4706987B2 (ja) * 2009-07-15 2011-06-22 ダイキン工業株式会社 電力変換回路
US8660156B2 (en) * 2009-09-03 2014-02-25 Lawrence Livermore National Security, Llc Method and system for powering and cooling semiconductor lasers
DE102010060463B4 (de) * 2010-11-09 2013-04-25 Sma Solar Technology Ag Schaltungsanordnung zur Potentialeinstellung eines Photovoltaikgenerators und Photovoltaikanlage
EP2523296A1 (de) * 2011-05-11 2012-11-14 Siemens Aktiengesellschaft Schaltungsanordnung zum Bereitstellen eines Überspannungsschutzes und Verfahren zu deren Betrieb
CN103904961A (zh) * 2012-12-28 2014-07-02 车王电子股份有限公司 直流马达模块及其功率驱动装置
JP2014138532A (ja) * 2013-01-18 2014-07-28 Fuji Electric Co Ltd 電力変換装置

Also Published As

Publication number Publication date
US20180076706A1 (en) 2018-03-15
DE102015203269A1 (de) 2016-08-25
CN107258048A (zh) 2017-10-17
WO2016134885A1 (de) 2016-09-01

Similar Documents

Publication Publication Date Title
AT504439B1 (de) Schaltungsanordnung mit wenigstens zwei in serie geschalteten kondensatoren
WO2007023064A1 (de) Stromrichterschaltung mit verteilten energiespeichern
DE102010001924B4 (de) Überspannungsbegrenzungseinrichtung für Gleichspannungsnetze
DE2325853A1 (de) Batterieschutzschaltung fuer notbeleuchtungssysteme
DE102010052136A1 (de) Schaltungsanordnungen für elektronisch gesteuerte DC-Netze
DE102014214984A1 (de) Kurzschlussschutzvorrichtung
CN110808606A (zh) 柔性直流输电及换流阀的功率模块防过压电路
DE102011053013A1 (de) Vorrichtung und Verfahren zur Symmetrierung der Spannungsaufteilung von in Reihe geschalteten Energiespeichern
DE112014000318T5 (de) Überspannungsschutz für Antriebe mit einer variablen Frequenz
EP0569351B1 (de) Batterieladesystem mit fehleranzeige
EP3248280A1 (de) Speichersystem zum speichern elektrischer energie
DE102022208265A1 (de) Verfahren zum Betreiben einer Vorrichtung mit einem elektrochemischen Energiespeicher und eine derartige Vorrichtung
DE102015215878A1 (de) Schutzvorrichtung für eine elektrische Last, Spannungskonverter mit einer Schutzvorrichtung und Verfahren zum Schutz einer elektrischen Last
DE102015201260A1 (de) Überspannungsschutzvorrichtung für ein Fahrzeugsteuergerät
WO2006003191A1 (de) Verfahren und einrichtung zum schutz vor überspannungen in gleichstrominselnetzen
DE102019214078A1 (de) Elektrisches Energiespeichersystem mit Ladungsbegrenzungsvorrichtung sowie Verfahren zum Betrieb eines elektrischen Energiespeichersystems
DE102007058613A1 (de) Sperrwandler
DE112014006555B4 (de) Kommutierungsschaltung
CN213461127U (zh) 应用于物联网设备的输入电源保护电路
DE102007027081B4 (de) Überspannungsschutz-Vorrichtung für einen Wechselrichter eines Windenergie-Konverters
DE102020108591A1 (de) Thyristor-Gleichrichter mit verbessertem Stromstossverhalten und Elektromotorantrieb mit einem entsprechenden Thyristor-Gleichrichter
EP1382105B1 (de) Diodenanordnung mit zenerdioden und generator
DE10149113A1 (de) Spannungsversorgungsvorrichtung, insbesondere für ein Kfz-Bordnetz, mit Schutzfunktion zum Schutz elektronischer Bauelemente vor Überspannungen
WO2023025609A1 (de) Verfahren zum betreiben einer vorrichtung mit einem elektrochemischen energiespeicher und eine derartige vorrichtung
AT522349A1 (de) Vorrichtung zum Ableiten von Blitzstromspannungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210619