EP3247973B1 - Schwergewichtstorpedo, transportschlitten und flugzeug - Google Patents

Schwergewichtstorpedo, transportschlitten und flugzeug Download PDF

Info

Publication number
EP3247973B1
EP3247973B1 EP16703906.4A EP16703906A EP3247973B1 EP 3247973 B1 EP3247973 B1 EP 3247973B1 EP 16703906 A EP16703906 A EP 16703906A EP 3247973 B1 EP3247973 B1 EP 3247973B1
Authority
EP
European Patent Office
Prior art keywords
torpedo
parachute
heavyweight
aircraft
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16703906.4A
Other languages
English (en)
French (fr)
Other versions
EP3247973A1 (de
Inventor
Knud Lämmle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP3247973A1 publication Critical patent/EP3247973A1/de
Application granted granted Critical
Publication of EP3247973B1 publication Critical patent/EP3247973B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B19/00Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means
    • F42B19/46Marine torpedoes, e.g. launched by surface vessels or submarines; Sea mines having self-propulsion means adapted to be launched from aircraft

Definitions

  • the invention relates to a heavyweight torpedo for launching into a body of water out of sight of a target with a parachute, a parachute torpedo linkage and a parachute solvent, as well as a transport carriage and an aircraft.
  • a heavyweight torpedo is eg off US 3,713,387 A1 known.
  • the object of the invention is to improve the prior art.
  • Such a heavyweight torpedo in contrast to previously used torpedoes, can be spent out of sight of a target and or very far from a target in a body of water.
  • this is due to the fact that the heavy-weight torpedo has sufficient energy for the drive system and other systems, which ensures that the programmed target is achieved in particular by means of a high-precision waypoint navigation and the associated attack operation can be performed.
  • modifications to a missile are not necessary.
  • any special bomb shafts or other mechanical devices since such a heavyweight torpedo can be sold with conventional means of transport into the water.
  • the risk is minimized that the aircraft, which spends the heavyweight torpedo is destroyed during a mission. This is particularly the case because the aircraft can operate outside the visibility of the target to be destroyed.
  • slow and / or difficult to maneuver transport aircraft or transport helicopters can be used, which can spend the heavyweight torpedo, for example, in a normal operating altitude of, for example, 50m or 100m above a water surface.
  • torpedoes can not be brought near targets to be destroyed.
  • the two-stage parachute solvent on the one hand a safe movement of the torpedo and on the other easy handling can be ensured.
  • securing mechanisms can be provided which are each initiated and / or completed by the two stages.
  • the "heavyweight torpedo" or occasionally the heavyweight torpedo has a length of at least 4m. The greater the distance from the drop point to the target to be destroyed, the longer the heavy weight torpedo can be configured. In particular, such a heavyweight torpedo has a length of more than 5m or even more than 6m. While prior art lightweight torpedoes only have a length between 1m to 3m and a diameter of 15cm to 20cm, a heavy weight torpedo generally has a diameter greater than 45cm or even 60cm. Typical diameter data are given in inches (") and are for a heavyweight torpedo, for example 19" or 21 ".
  • settling into a body of water is meant, in particular, the movement or discharge of the heavy-weight torpedo into a lake, river or sea out of an aircraft. The place where this is done is referred to in particular as the drop point.
  • the "target” is a watercraft or other structure, especially man-made, on or in or below a body of water.
  • this includes ships, submarines, platforms and the like.
  • a “parachute” is understood to mean, in particular, a technical device which spends the heavyweight torpedo from a settling height substantially intact into the water. An integrity is given in particular if, after the abandonment of the heavyweight torpedo can successfully continue its use.
  • the parachute in particular increases the air resistance or generates a dynamic lift, which reduces the falling speed of the heavyweight torpedo.
  • such a parachute on a mostly made of cloth or silk cap in which partially the air is jammed.
  • it is the parachute and a so-called load parachute.
  • a "parachute torpedo link” is a mechanical link between the heavyweight torpedo and the parachute.
  • the parachute release solves this connection to separate the parachute and heavy weight torpedo.
  • the "parachute solvent” means that remove the parachute or act in the operation of the parachute that the heavyweight torpedo without the retarding effect of the parachute, the use in or under water can continue substantially unhindered.
  • the parachute release means can be mechanically implemented, such as a mechanically removable bolt, or can also act due to chemical or electrical action or even by means of a blast.
  • the parachute solvent is passively formed by means of a predetermined breaking point which, when the torpedo is started under water, causes the parachute to be "torn off".
  • the parachute solvent may be an explosive device which, in a defined manner, detaches the parachute or device connected to the parachute.
  • the first stage "release" the predetermined breaking point, so that breaks in the second stage, the predetermined breaking point.
  • a split pin can be arranged in the notch of a predetermined breaking point, which stabilizes the predetermined breaking point, so that the predetermined breaking point holds during the first stage and before activating the second stage, the split pin is removed, so that the predetermined breaking point breaks.
  • the first stage deactivates any securing means, so that the separation of the parachute can be made only.
  • the heavy weight torpedo comprises a water entry detection means, wherein the parachute solvent and the water entry detection means are arranged such that, at a first stage initiation, the parachute release means are at a defined height above a water level, at a water contact of the torpedo, at a partial dive of the torpedo or at activated by a submerged torpedo.
  • the parachute solvent can only be used when the heavy weight torpedo is spent or will be spent undamaged. Furthermore, depending on the position of the heavyweight torpedo certain functionalities can be activated.
  • the water entry detection means detect a distance to a water surface or recognize the contact with the water surface or can determine to at which time at least parts of the torpedo are already immersed in the water.
  • the “water level” or the “water surface” is the water level, averaged over time in particular, in which any wave movements have already been averaged.
  • a "partial immersion” is to be assumed in particular if at least 5% and less than 95% of the torpedo volume are below the water level. Full immersion is assumed to be from a submerged volume of 95%.
  • the water inlet detection means comprise a pressure sensor, a sonar, a conductivity sensor and / or a distance sensor.
  • the pressure sensor can use the determination of the air pressure to determine the height above the water level.
  • the discharge height was made available to the torpedo as the measured value during the discharge and the air pressure relevant for the height was determined in advance by the pressure sensor for calibration.
  • an alternative pressure sensor may detect the penetration of the torpedo into the water due to the corresponding pressure load on a heavy duty torpedo housing.
  • a pressure sensor may for example be designed as strain gauges, which determines such pressure changes by means of downstream electronics.
  • the active sonar which is usually present in the heavy-weight torpedo in the bow, can already emit a sound signal in the flight phase, for example, which is reflected by the water surface and determines height information on the basis of the Doppler effect or the transceiver duration.
  • the sonar can determine when it is immersed in the water, since this changes the characteristic behavior of the emitted sound.
  • a conductivity sensor which detects, for example, the salinity of the water, can determine that parts of the torpedo are located in the water.
  • the sonar can be used as a distance sensor and an optical system which evaluates, for example, a laser beam or an optical signal of a light emitting diode.
  • altitude information from the aircraft in combination with a time measurement can be used as a water inlet detection means.
  • the parachute torpedoheck ingredient be arranged so that the drive means experience the least mechanical stress when entering the water.
  • the parachute is arranged in a collapsed state in a parachute cartridge.
  • a torpedo can be provided with activated parachute.
  • the parachute release means may release both the parachute itself and the parachute cartridge.
  • the heavy-weight torpedo can be set up in such a way that the heavy-weight torpedo is activated with or after an activation of the parachute, ie during or after the first stage.
  • the activation of the heavy-weight torpedo comprises, in particular, the activation of the energy section, because in particular with the batteries used with the activation of a combination of different chemical substances takes place and it could possibly lead to overheating of a torpedo, if the torpedo is not sent on its mission mission.
  • the heavyweight torpedo has a data memory which has aircraft data, in particular aircraft navigation data.
  • a heavy-weight torpedo needs the most accurate initial position and / or direction data.
  • the torpedo may receive the position and / or direction data from the aircraft to start with that data as a fix and / or as an initial orientation.
  • the parachute torpedo connection can have a first predetermined breaking point and / or a second predetermined breaking point, wherein in particular the first predetermined breaking point during initiation of the first step and / or the second predetermined breaking point during Disconnecting the parachute breaks or breaks.
  • one of the two predetermined breaking points or can both predetermined breaking points have a predetermined breaking point, for example in the form of a splint. The breaking point protection prevents in particular the breaking of the corresponding secured breaking point.
  • a "predetermined breaking point” is generally in particular a design element provided by design and / or mechanical and / or physical measures or designs. Especially in case of overload, this element will deliberately and predictably fail, thereby keeping a possible damage in an overall system small or to achieve a special function. At the planned breakpoint is often a notch or scoring found. Due to the notch effect here the component is significantly weakened.
  • the parachute torpedo connection has a securing means, which is set up in such a way that the securing means is released when the first stage is initiated.
  • securing means in particular the predetermined breaking point protection described above can be used.
  • An electronic or electromechanical securing means is also included.
  • the securing means may comprise a pin, in particular a split pin, which is destroyed or removed upon initiation of the first stage.
  • the object is achieved by a transport carriage for a transport aircraft for a heavyweight torpedo described above.
  • the pin is connected to the transport carriage. Thus, after activating the parachute and thus the first stage, the pin remains on the transport carriage and the second stage of activation is enabled.
  • the object is achieved by an aircraft, in particular a transport aircraft, which has a previously described heavyweight torpedo or a transport carriage described above.
  • a system may be provided which spits heavyweight torpedoes out of the air into a body of water out of sight of a target by means of a parachute.
  • aircraft includes all flying equipment such as transport aircraft or helicopters.
  • the aircraft may have an openable tailgate, on which, in an open state, the Heavyweight torpedo is deductible.
  • the Herkules C130 and the Transall C160 have such an openable tailgate.
  • the aircraft has at least one data line which is connected to the heavy-weight torpedo for data exchange.
  • navigation and / or mission data can still be transmitted to the heavyweight torpedo at a very late point in time.
  • a transport aircraft 101 has an openable tailgate 102. Disposed inside the transport plane 101 is a heavyweight torpedo 103 of 5.0 m in length and 19 "in diameter on a transport carriage (not shown) .
  • the heavyweight torpedo 103 has a sonic head 105, a drive 107 and a parachute cassette 109 with an associated one Parachute 111.
  • heavyweight torpedo 103 is connected to the navigation computer via a data line (not shown) and to the energy system of transport aircraft 101 via a power supply line (not shown).
  • a mechanical connection 141 of the parachute cartridge 109 with the heavyweight torpedo 103 has a first notch, which is designed as predetermined breaking points.
  • the first notch 145 is stabilized by a splint 147.
  • the splint 147 is connected via a metal wire to the transport carriage.
  • the folded parachute 111 is activated by opening the parachute cassette 109.
  • the parachute 111 opens and, due to the (traveling) wind engaging in the parachute cap, the heavyweight torpedo 103 is removed from the rear of the transport aircraft 101 [see Fig. 1 a.)].
  • the splint 147 connected to the transport carriage is pulled off and the first notch 145 is activated as a predetermined breaking point.
  • the heavyweight torpedo 103 aligns vertically with its torpedo head in the direction of the water surface 121 [see Fig. 1 b.)], wherein the first notch 145 is designed to hold this load.
  • the heavyweight torpedo 103 tracks its mission and destroys the out-of-sight target (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

  • Die Erfindung betrifft ein Schwergewichtstorpedo zum Absetzen in ein Gewässer außerhalb einer Sichtweite eines Ziels mit einem Fallschirm, einer Fallschirmtorpedoverbindung und einem Fallschirmlösemittel, sowie einen Transportschlitten und ein Flugzeug. Eine solche Schwergewichtstorpedo ist z.B. aus US 3,713,387 A1 bekannt.
  • Üblicherweise werden heutzutage ausschließlich Leichtgewichttorpedos von Luftfahrzeugen aus gestartet. Dabei werden die Leichtgewichtstorpedos in die Nähe insbesondere eines getauchten zu zerstörenden Ziels verbracht und laufen das Ziel nach dem Wassereintritt über eigene Sensoren gesteuert an. Zum einen führt das dazu, dass das Luftfahrzeug sehr nah an das zu zerstörende Ziel heranfliegen muss, da die Reichweite der eingesetzten Torpedos nicht ausreicht. Mithin werden im Allgemeinen lediglich Leichtgewichtstorpedos mittels Flugzeugen oder Luftfahrzeugen verbracht. Zudem ist es im Allgemeinen erforderlich spezielle Bombenschächte oder Halterungen für derartige Torpedos am Luftfahrzeug anzubringen. Dies führt dazu, dass separate, spezialisierte Verbringsysteme sowie deren Infrastruktur für die Torpedos bereitgestellt werden müssen.
  • Aufgabe der Erfindung ist es den Stand der Technik zu verbessern.
  • Gelöst wird die Aufgabe durch ein Schwergewichtstorpedo nach dem Anspruch 1.
  • Ein derartiger Schwergewichtstorpedo kann, im Gegensatz zu bisher eingesetzten Torpedos, außerhalb der Sichtweite eines Ziels und oder in sehr großer Entfernung zu einem Ziel in ein Gewässer verbracht werden. Dies liegt unter anderem daran, dass der Schwergewichtstorpedo über einen ausreichenden Energievorrat für das Antriebssystem und andere Systeme verfügt, welcher gewährleistet, dass das programmierte Ziel insbesondere mittels einer hochpräzisen Wegpunktnavigation erreicht wird und die zugehörige Angriffsoperation durchgeführt werden kann. Weiterhin sind Modifikationen an einem Flugkörper nicht notwendig. Somit entfallen etwaige spezielle Bombenschächte oder sonstige mechanische Vorrichtungen, da ein derartiges Schwergewichtstorpedo mit üblichen Verbringungsmitteln in das Gewässer abgesetzt werden kann.
  • Zudem wird die Gefahr minimiert, dass das Fluggerät, welches den Schwergewichtstorpedo verbringt, während eines Einsatzes zerstört wird. Dies ist insbesondere deshalb der Fall, da dass Fluggerät außerhalb der Sichtweiten des zu zerstörenden Ziels agieren kann.
  • Insbesondere können somit langsame und/oder schwer manövrierbare Transportflugzeuge oder Transporthubschrauber eingesetzt werden, welche beispielsweise in einer üblichen Operationshöhe von beispielsweise 50m oder 100m über einer Wasseroberfläche das Schwergewichtstorpedo verbringen können.
  • Üblicherweise können mit derartigen "langsamen" und/oder "schwerfälligen" Fluggeräten keine Torpedos in die Nähe von zu zerstörenden Zielen verbracht werden.
  • Durch die zweistufigen Fallschirmlösemittel kann zum einen ein sicheres Verbringen des Torpedos und zum anderen eine einfache Handhabung gewährleistet werden. Zudem können Sicherungsmechanismen vorgesehen sein, welche durch die beiden Stufen jeweils eingeleitet und/oder abgeschlossen werden.
  • Folgendes Begriffliche sei erläutert:
  • Der "Schwergewichtstorpedo" oder gelegentlich auch das Schwergewichtstorpedo weist eine Länge von mindestens 4m auf. Je größer der Abstand vom Abwurfpunkt zu dem zu zerstörenden Ziel ist, desto länger kann der Schwergewichtstorpedo ausgestaltet sein. Insbesondere weist ein derartiges Schwergewichtstorpedo eine Länge von mehr als 5m oder sogar mehr als 6m auf. Während Leichtgewichttorpedos nach dem Stand der Technik lediglich eine Länge zwischen 1m bis 3m und einen Durchmesser von 15cm bis 20cm aufweisen, weist ein Schwergewichtstorpedo im Allgemeinen einen Durchmesser von mehr als 45cm oder sogar 60cm auf. Übliche Durchmesserangaben werden in Zoll (") angegeben und liegen bei einem Schwergewichtstorpedo beispielweise bei 19" oder 21".
  • Unter "Absetzen in ein Gewässer" wird insbesondere das Verbringen oder der Abwurf des Schwergewichtstorpedos in einen See, Fluss oder ein Meer aus einem Luftfahrzeug heraus verstanden. Der Ort an dem dies durchgeführt wird, wird insbesondere als Abwurfpunkt bezeichnet.
  • "Außerhalb einer Sichtweite eines Ziels" bedeutet insbesondere, dass vom höchsten Punkt des Ziels oder, bei einem getauchten Fahrzeug" von der Wasseroberfläche aus das verbringende Luftfahrzeug optisch auf einer Geraden nicht zu erfassen ist, da sich das Luftfahrzeug insbesondere "hinter dem Horizont" beim Absetzen des Schwergewichtstorpedos befindet. Typische Einsatzhöhen für ein derartiges Luftfahrzeug liegen unterhalb von 100, insbesondere unterhalb von 50m und insbesondere unterhalb von 30m.
  • Bei dem "Ziel" handelt es sich insbesondere um ein Wasserfahrzeug oder eine sonstige insbesondere vom Menschen geschaffene Struktur auf oder in oder unterhalb eines Gewässers. Insbesondere sind damit Schiffe, U-Boote, Plattformen und dergleichen umfasst.
  • Unter einem "Fallschirm" wird insbesondere ein technisches Gerät verstanden, welches den Schwergewichtstorpedo aus einer Absetzhöhe im Wesentlichen unversehrt in das Gewässer verbringt. Eine Unversehrtheit ist dabei insbesondere gegeben, wenn nach dem Verbringen der Schwergewichtstorpedo seinen Einsatz erfolgreich fortführen kann. Bei dem Absetzvorgang vergrößert der Fallschirm insbesondere den Luftwiderstand oder erzeugt einen dynamischen Auftrieb, welcher die Fallgeschwindigkeit des Schwergewichtstorpedos verringert. Insbesondere weist ein derartiger Fallschirm eine meist aus Stoff oder Seide gefertigte Kappe auf, in welcher teilweise die Luft gestaut wird. Insbesondere handelt es sich bei dem Fallschirm und einen sogenannten Lastenfallschirm.
  • Eine "Fallschirmtorpedoverbindung" ist eine mechanische Verbindung zwischen dem Schwergewichtstorpedo und dem Fallschirm. Insbesondere lösen die Fallschirmlösemittel diese Verbindung, um den Fallschirm und den Schwergewichtstorpedo voneinander zu trennen.
  • Bei den "Fallschirmlösemittel" handelt es sich um Einrichtungen, welche den Fallschirm entfernen oder derart in die Funktionsweise des Fallschirm einwirken, dass der Schwergewichtstorpedo ohne die retardierende Wirkung des Fallschirmes den Einsatz im oder unter Wasser im Wesentlichen ungehindert fortführen kann.
  • Die Fallschirmlösemittel können dabei insbesondere mechanisch umgesetzt werden, wie beispielsweise ein mechanisch entfernbarer Bolzen, oder können auch aufgrund chemischer oder elektrischer Wirkung oder gar mittels einer Sprengung wirken. Lösungsgemäß ist das Fallschirmlösemittel passiv mittels einer Sollbruchstelle ausgebildet, welche beim Starten des Torpedos unter Wasser dazu führt, dass der Fallschirm "abgerissen" wird. Insbesondere kann das Fallschirmlösemittel ein Sprengsatz sein, welcher definiert den Fallschirm oder mit dem Fallschirm verbundene Einrichtung absprengt. Insbesondere kann die erste Stufe die Sollbruchstelle "freigeben", sodass in der zweiten Stufe die Sollbruchstelle bricht. Beispielsweise kann ein Splint in der Kerbe einer Sollbruchstelle angeordnet sein, welcher die Sollbruchstelle stabilisiert, sodass die Sollbruchstelle während der ersten Stufe hält und vor dem Aktivieren der zweiten Stufe der Splint entfernt wird, sodass die Sollbruchstelle bricht. Insbesondere deaktiviert die erste Stufe etwaige Sicherungsmittel, sodass das Abtrennen des Fallschirms erst erfolgen kann.
  • In einer Ausführungsform weist der Schwergewichtstorpedo ein Wassereintrittsdetektionsmittel auf, wobei das Fallschirmlösemittel und das Wassereintrittsdetektionsmittel derart eingerichtet sind, dass, bei initiierter erster Stufe, die Fallschirmlösemittel in einer definierten Höhe oberhalb eines Wasserspiegels, beim einem Wasserkontakt des Torpedos, bei einem Teileintauch des Torpedos oder bei einem eingetauchten Torpedo aktiviert werden.
  • Somit können die Fallschirmlösemittel erst dann eingesetzt werden, wenn das Schwergewichtstorpedo unbeschädigt verbracht ist oder verbracht werden wird. Weiterhin können abhängig von der Position des Schwergewichtstorpedos bestimmte Funktionalitäten aktiviert werden.
  • Die Wassereintrittsdetektionsmittel ermitteln insbesondere einen Abstand zu einer Wasseroberfläche oder erkennen den Kontakt mit der Wasseroberfläche oder können feststellen, zu welchem Zeitpunkt zumindest Teile des Torpedos bereits in das Gewässer eingetaucht sind.
  • Der "Wasserspiegel" oder die "Wasseroberfläche" ist der insbesondere über die Zeit gemittelte Wasserspiegel, bei dem etwaige Wellenbewegungen bereits gemittelt sind.
  • Von einem "Teileintauchen" ist insbesondere dann auszugehen, wenn sich wenigstens 5% und weniger als 95% des Torpedovolumens unterhalb des Wasserspiegels befinden. Von einem vollständigen Eintauchen wird ab einem eingetauchten Volumen von 95% ausgegangen.
  • In einer weiteren Ausführungsform weisen die Wassereintrittsdetektionsmittel einen Drucksensor, ein Sonar, ein Leitfähigkeitssensor und/oder einen Abstandssensor auf.
  • Somit können unterschiedlich physikalisch-technische Messmethoden verwendet werden, um die Position des Schwergewichtstorpedos in Bezug zu dem Wasserspiegel zu bestimmen.
  • So kann beispielweise der Drucksensor anhand der Bestimmung des Luftdruckes die Höhe über dem Wasserspiegel bestimmen. Insbesondere wurde dabei beim Abwurf die Abwurfhöhe dem Torpedo als Messwertwert zur Verfügung gestellt und der für die Höhe relevante Luftdruck zum Kalibrieren vorab durch den Drucksensor bestimmt.
  • Auch kann ein alternativer Drucksensor das Eindringen des Torpedos in das Gewässer aufgrund der entsprechenden Druckbelastung auf ein Gehäuse des Schwergewichtstorpedos feststellen. Ein derartiger Drucksensor kann beispielsweise als Dehnungsmessstreifen ausgestaltet sein, welcher derartige Druckveränderungen mittels nachgeschalteter Elektronik ermittelt.
  • Das üblicherweise in dem Schwergewichtstorpedo im Bug vorhandene aktive Sonar kann beispielsweise in der Flugphase bereits ein Schallsignal aussenden, welches von der Wasseroberfläche reflektiert wird und eine Höheninformation aufgrund des Dopplereffekts oder der Sendeempfangsdauer bestimmen. Insbesondere kann das Sonar feststellen wann es in das Gewässer eingetaucht ist, da sich dadurch das charakteristische Verhalten des ausgesandten Schalls verändert.
  • Auch ein Leitfähigkeitssensor, welcher beispielsweise die Salinität des Gewässers detektiert, kann bestimmen, dass Teile des Torpedos im Wasser befindlich sind.
  • Neben dem Sonar kann als Abstandssensor auch ein optisches System eingesetzt werden, welches beispielsweise einen Laserstrahl oder ein optisches Signal einer Leuchtdiode auswertet.
  • Auch der Einsatz der Höheninformation aus dem Luftfahrzeug in Kombination mit einer Zeitmessung kann als Wassereintrittsdetektionsmittel genutzt werden.
  • Um insbesondere die empfindlichen Antriebselemente des Schwergewichtstorpedos zu schützen, kann der Fallschirm torpedoheckseitig angeordnet sein, so dass die Antriebsmittel die geringste mechanische Belastung beim Eintritt in das Gewässer erfahren.
  • In einer weiteren Ausführungsform ist der Fallschirm in einem zusammengelegten Zustand in einer Fallschirmkassette angeordnet. Somit kann vorteilhafterweise ein Torpedo mit aktivierbarem Fallschirm bereitgestellt werden. In dieser Ausführungsform können die Fallschirmlösemittel sowohl den Fallschirm selbst als auch die Fallschirmkassette lösen.
  • Es ist teilweise äußerst schwierig einen bereits aktivierten Torpedo zu bergen. Andererseits kann ein aktivierter Torpedo, welches noch nicht für den Einsatz verbracht wurde, eine Gefahr darstellen. Um möglichst spät und dennoch sicher einen Schwergewichtstorpedo zu aktivieren, kann der Schwergewichtstorpedo derart eingerichtet sein, dass ein Aktivieren des Schwergewichtstorpedos mit oder nach einem Aktivieren des Fallschirms erfolgt, also während oder nach der ersten Stufe erfolgt.
  • Dabei umfasst das Aktivieren des Schwergewichtstorpedos insbesondere das Aktivieren der Energiesektion, weil insbesondere bei den verwendeten Batterien mit dem Aktivieren ein Zusammenführen verschiedener chemischer Stoffe erfolgt und es gegebenenfalls zu einer Überhitzung eines Torpedos kommen könnte, falls der Torpedo nicht auf seine Einsatzmission geschickt wird.
  • In einer weiteren Ausführungsform weist der Schwergewichtstorpedo einen Datenspeicher auf, welcher Flugzeugdaten, insbesondere Flugzeugnavigationsdaten, aufweist.
  • Um optimal Navigieren zu können, benötigt ein Schwergewichtstorpedo möglichst genaue Anfangspositions- und/oder Richtungsdaten. Für den Fall, dass der Schwergewichtstorpedo von einem Luftfahrzeug abgesetzt wird, kann der Torpedo die Positions- und/oder Richtungsdaten vom Luftfahrzeug erhalten, um mit diesen Daten als Fix und/oder als Erstorientierung zu starten.
  • Um eine konstruktiv einfache mechanische Realisierung der Fallschirmlösemittel bereitzustellen kann die Fallschirmtorpedoverbindung eine erste Sollbruchstelle und/oder eine zweite Sollbruchstelle aufweisen, wobei insbesondere die erste Sollbruchstelle bei dem Initiieren der ersten Stufe und/oder die zweite Sollbruchstelle beim Abtrennen des Fallschirms bricht oder brechen. Zudem kann eine der beiden Sollbruchstellen oder können beide Sollbruchstellen eine Sollbruchstellensicherung aufweisen, z.B. in Form eines Splints. Die Sollbruchstellensicherung verhindert insbesondere das Brechen der entsprechen gesicherten Sollbruchstelle.
  • Eine "Sollbruchstelle" ist allgemein insbesondere ein durch konstruktive und/oder mechanische und/oder physikalische Maßnahmen oder Auslegungen vorgesehenes Konstruktionselement. Insbesondere im Überlastfall wird dieses Element gezielt und vorhersagbar versagen, um hierdurch einen möglichen Schaden in einem Gesamtsystem klein zu halten oder eine besondere Funktion zu erreichen. An der geplanten Bruchstelle ist häufig eine Kerbe oder eine Einritzung zu finden. Durch die Kerbwirkung ist hier das Bauteil entscheidend geschwächt.
  • In einer Ausführungsform weist die Fallschirmtorpedoverbindung ein Sicherungsmittel auf, welches derart eingerichtet ist, dass das Sicherungsmittel beim Initiieren der ersten Stufe entsichert.
  • Als "Sicherungsmittel" kann insbesondere die zuvor beschriebene Sollbruchstellensicherung verwendet werden. Auch ein elektronisches oder elektromechanisches Sicherungsmittel ist mit umfasst.
  • Um eine einfache mechanische Realisierung des Sicherungsmittels bereitzustellen, kann das Sicherungsmittel einen Stift, insbesondere einen Splint, aufweisen, welcher beim Initiieren der ersten Stufe zerstört oder entfernt wird.
  • In einem weiteren Aspekt wird die Aufgabe gelöst durch einen Transportschlitten für ein Transportflugzeug für einen zuvor beschriebenen Schwergewichtstorpedo.
  • Dies bietet den Vorteil, dass übliche bisher schon verwendete Transportschlitten und Sicherungsmittel für den Abwurf aus Transportflugzeugen verwendet werden können, welche vorliegend einen erfindungsgemäßen Schwergewichtstorpedo aufweisen.
  • Diese Art der Verbringung verringert die Kosten und setzt bisher erfolgreich getestete Systeme ein. Ein spezieller Umbau des Luftfahrzeugs ist nicht erforderlich. Zudem können Lösemittel vorgesehen sein, welche den Torpedo nach dem Aktivieren des Fallschirmes von dem Transportschlitten befreien. Auch kann der Transportschlitten im Flugzeug verbleiben und lediglich der Schwergewichtstorpedo durch Aktivieren des Fallschirmes ausgesetzt werden.
  • In einer Ausführungsform ist der Stift mit dem Transportschlitten verbunden. Somit verbleibt nach einem Aktivieren des Fallschirms und somit der ersten Stufe der Stift am Transportschlitten und die zweite Stufe des Aktivierens ist freigegeben.
  • In einem zusätzlichen Aspekt wird die Aufgabe gelöst durch ein Flugzeug, insbesondere ein Transportflugzeug, welches einen zuvor beschriebenen Schwergewichtstorpedo oder einem zuvor beschriebenen Transportschlitten aufweist.
  • Somit kann ein System bereitgestellt werden, welches Schwergewichtstorpedos aus der Luft in ein Gewässer außerhalb der Sichtweite eines Ziels mittels eines Fallschirmes verbringt.
  • Unter dem Begriff "Flugzeug" sind sämtliche fliegenden Einrichtungen wie beispielsweise Transportflugzeuge oder Hubschrauber umfasst.
  • Insbesondere für den Fall, dass es sich bei dem Flugzeug um ein Transportflugzeug oder einen Transporthubschrauber handelt, kann das Flugzeug eine öffenbare Heckklappe aufweisen, über die, in einem geöffneten Zustand, der Schwergewichtstorpedo absetzbar ist. Beispielsweise weisen die Herkules C130 und die Transall C160 eine derartige öffenbare Heckklappe auf.
  • Damit Flugdaten oder sonstige Daten, welche in dem Luftfahrzeug vorgehalten werden, ermittelt oder über die Systeme des Luftfahrzeug weitergeleitet werden dem Schwergewichtstorpedo aufgeprägt werden können, weist das Flugzeug mindestens eine Datenleitung auf, welche mit dem Schwergewichtstorpedo datenaustauschend verbunden ist. Somit können zu einem sehr späten Zeitpunkt noch Navigations- und/oder Missionsdaten an den Schwergewichtstorpedo übermittelt werden.
  • Im Weiteren wird die Erfindung anhand von Ausführungsbeispielen erläutert. Es zeigt
  • Figur 1
    eine schematische Darstellung zum Absetzen eines Schwergewichtstorpedos in ein Gewässer mittels eines Flugzeuges und dem zugehörigen Abtrennen des Fallschirmes und eine mechanische Ausgestaltung einer Fallschrimtorpedoverbindung.
  • Ein Transportflugzeug 101 weist eine öffenbare Heckklappe 102 auf. Im Inneren des Transportflugzeuges 101 ist ein Schwergewichtstorpedo 103 mit einer Länge von 5,0 m und einem Durchmesser von 19" auf einem Transportschlitten (nicht dargestellt) angeordnet. Der Schwergewichtstorpedo 103 weist einen Sonarkopf 105, einen Antrieb 107 sowie eine Fallschirmkassette 109 mit einem zugehörigen Fallschirm 111 auf. Zudem ist der Schwergewichtstorpedo 103 über eine Datenleitung (nicht dargestellt) mit dem Navigationsrechner und über eine Stromversorgungsleitung (nicht dargestellt)mit dem Energiesystem des Transportflugzeugs 101 verbunden.
  • Eine mechanische Verbindung 141 der Fallschirmkassette 109 mit dem Schwergewichtstorpedo 103 weist eine erste Kerbe auf, welche als Sollbruchstellen ausgebildet ist. Die erste Kerbe 145 wird durch einen Splint 147 stabilisiert. Der Splint 147 ist über einen Metalldraht mit dem Transportschlitten verbunden.
  • Um den Schwergewichtstorpedo 103 in das Gewässer zu verbringen, werden zuerst die Navigationsdaten zzgl. der Information in welcher Richtung Norden liegt an den Schwergewichtstorpedo 103 übermittelt. Anschließend wird bei geöffneter Heckklappe 102 der gefaltete Fallschirm 111 durch ein Öffnen der Fallschirmkassette 109 aktiviert. Dadurch öffnet sich der Fallschirm 111 und aufgrund des in der Fallschirmkappe eingreifenden (Fahrt-)Windes wird der Schwergewichtstorpedo 103 heckseitig aus dem Transportflugzeug 101 verbracht [siehe in Fig. 1 a.)].Die Kräfte ziehen an der mechanischen Verbindung, wobei die erste Kerbe 145 aufgrund der stabilisierenden Wirkung des Splints 147 nicht bricht. Beim Verlassen des Flugzeugs wird der mit dem Transportschlitten verbundene Splint 147 abgezogen und die erste Kerbe 145 als Sollbruchstelle aktiviert.
  • Aufgrund der Gewichtskraft richtet sich der Schwergewichtstorpedo 103 vertikal mit seinem Torpedokopf in Richtung Wasseroberfläche 121 aus [siehe Fig. 1 b.)], wobei die erste Kerbe 145 für dies Belastung haltend ausgestaltet ist.
  • In einer ersten Alternativen [siehe Fig. 1 c1] reduzieren sich die Zugkräfte auf die Verbindung 141 und die erste Kerbe 145 bricht aufgrund der Druckkräfte.
  • In einer zweiten Alternative [siehe Fig. 1 c2)] taucht der Schergewichtstorpedo 103 vollständig mitsamt der Fallschirmkassette 109 und dem Fallschirm 111 in das Gewässer ein. Anschließend wird der Heckantrieb 107 gestartet, sodass der Schwergewichtstorpedo 103 in Fahrtrichtung 131 bewegt wird.
  • Aufgrund der nun durch die Bremswirkung des Fallschirms 111 wirkenden (Zug-)Kräfte an der Kerbe 145 bricht die Kerbe 145 und die Fallschirmkassette 109 mitsamt dem Fallschirm 111 wird in Abtrennrichtung 113 abgetrennt. Der Schwergewichtstorpedo 103 verfolgt seine Mission und zerstört das außerhalb der Sichtweite liegende Ziel (nicht dargestellt).
  • Bezugszeichenliste
  • 101
    Transportflugzeug
    102
    Heckklappe
    103
    Schwergewichtstorpedo
    105
    Sonarkopf
    107
    Antrieb
    109
    Fallschirmkassette
    111
    Fallschirm
    113
    Abtrennrichtung Fallschirm
    121
    Wasseroberfläche
    131
    Fahrtrichtung Schwergewichtstorpedo
    141
    Kassettenverbindung
    143
    erste Kerbe
    145
    zweite Kerbe
    147
    Splint

Claims (15)

  1. Schwergewichtstorpedo (103) zum Absetzen in ein Gewässer außerhalb einer Sichtweite eines Ziels mit einem Fallschirm (111), einer Fallschirmtorpedoverbindung (141) und einem Fallschirmlösemittel (145), wobei das Fallschirmlösemittel zweistufig ausgestaltet ist, wobei die erste Stufe durch ein Aktivieren des Fallschirms und die Kräfte des Fallschirms auf den Schwergewichtstorpedo initiiert und die zweite Stufe durch das Initiieren der ersten Stufe in einen Aktivierungsmodus versetzt werden und die zweite Stufe ein Abtrennen des Fallschirms umfasst, dadurch gekennzeichnet, dass die Fallschirmtorpedoverbindung eine erste Sollbruchstelle (145) und/oder eine zweite Sollbruchstelle aufweist, wobei die erste Sollbruchstelle bei dem Initiieren der ersten Stufe und/oder die zweite Sollbruchstelle beim Abtrennen des Fallschirms bricht oder brechen.
  2. Schwergewichtstorpedo nach Anspruch 1, gekennzeichnet durch ein Wassereintrittsdetektionsmittel, wobei das Fallschirmlösemittel und das Wassereintrittsdetektionsmittel derart eingerichtet sind, dass, bei initiierter erster Stufe, die Fallschirmlösemittel in einer definierten Höhe oberhalb eines Wasserspiegels, bei einem Wasserkontakt des Torpedos, bei einem Teileintauch des Torpedos oder bei einem eingetauchten Torpedo aktiviert werden.
  3. Schwergewichtstorpedo nach Anspruch 2, dadurch gekennzeichnet, dass die Wassereintrittsdetektionsmittel einen Drucksensor, ein Sonar (105), einen Leitfähigkeitssensor und/oder einen Abstandssensor aufweisen.
  4. Schwergewichtstorpedo nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Wassereintrittsdetektionsmittel torpedobugseitig angeordnet sind.
  5. Schwergewichtstorpedo nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Fallschirm torpedoheckseitig angeordnet ist.
  6. Schwergewichtstorpedo nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in einem zusammengelegten Zustand der Fallschirm in einer Fallschirmkassette (109) angeordnet ist.
  7. Schwergewichtstorpedo nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Schwergewichtstorpedo derart eingerichtet ist, dass ein Aktivieren des Schwergewichtstorpedos mit oder nach einem Aktivieren des Fallschirms oder mit oder nach dem Abtrennen des Fallschirms erfolgt.
  8. Schwergewichtstorpedo nach einem der vorherigen Ansprüche, gekennzeichnet durch einen Datenspeicher, welcher Flugzeugdaten, insbesondere Flugzeugnavigationsdaten, aufweist.
  9. Schwergewichtstorpedo nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Fallschirmtorpedoverbindung ein Sicherungsmittel (147) aufweist, welches derart eingerichtet ist, dass das Sicherungsmittel beim Initiieren der ersten Stufe entsichert.
  10. Schwergewichtstorpedo nach Anspruch 10, dadurch gekennzeichnet, dass das Sicherungsmittel einen Stift, insbesondere einen Splint, aufweist, welcher beim Initiieren der ersten Stufe zerstört oder entfernt wird.
  11. Transportschlitten für ein Transportflugzeug, mit einem Schwergewichtstorpedo nach einem der vorherigen Ansprüche.
  12. Transportschlitten nach Anspruch 11, dadurch gekennzeichnet, dass der Stift mit dem Transportschlitten verbunden ist.
  13. Flugzeug (101), insbesondere Transportflugzeug, welches ein Schwergewichtstorpedo nach einem der Ansprüche 1 bis 10 oder einen Transportschlitten nach Anspruch 11 oder 12 aufweist.
  14. Flugzeug nach Anspruch 13, gekennzeichnet durch eine öffenbare Heckklappe (102), durch die, in einem geöffneten Zustand, das Schwergewichtstorpedo verbringbar ist.
  15. Flugzeug nach Anspruch 13 oder 14, gekennzeichnet durch eine Datenleitung, welche mit dem Schwergewichtstorpedo datenaustauschend verbunden ist.
EP16703906.4A 2015-01-20 2016-01-13 Schwergewichtstorpedo, transportschlitten und flugzeug Active EP3247973B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015100733 2015-01-20
DE102015109408.8A DE102015109408A1 (de) 2015-01-20 2015-06-12 Schwergewichtstorpedo, Transportschlitten und Flugzeug
PCT/DE2016/100016 WO2016116097A1 (de) 2015-01-20 2016-01-13 Schwergewichtstorpedo, transportschlitten und flugzeug

Publications (2)

Publication Number Publication Date
EP3247973A1 EP3247973A1 (de) 2017-11-29
EP3247973B1 true EP3247973B1 (de) 2019-03-06

Family

ID=56293660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16703906.4A Active EP3247973B1 (de) 2015-01-20 2016-01-13 Schwergewichtstorpedo, transportschlitten und flugzeug

Country Status (3)

Country Link
EP (1) EP3247973B1 (de)
DE (2) DE102015109408A1 (de)
WO (1) WO2016116097A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE729952C (de) * 1941-06-13 1943-01-05 Deutsches Riech Vertreten Durc Bremse fuer aus Flugzeugen abzuwerfende Lasten
US3713387A (en) * 1969-03-20 1973-01-30 Us Navy High speed fail safe weapon retarding system
US5816535A (en) * 1996-04-10 1998-10-06 Lockheed Martin Corporation Emergency cargo extraction parachute jettison system
US6024326A (en) * 1998-04-20 2000-02-15 The United States Of America As Represented By The Secretary Of The Navy Water-impact release mechanism
SG123624A1 (en) * 2004-12-17 2006-07-26 Singapore Tech Dynamics Pte An apparatus for altering the course of travellingof a moving article and a method thereof
DE102006001189A1 (de) * 2006-01-10 2007-07-19 Lfk-Lenkflugkörpersysteme Gmbh Vorrichtung für das automatische Abstoßen von Waffen von einer Ausziehplattform nach Fallschirm-Extraktion
JP2008209076A (ja) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd 魚雷投下用誘導装置
ES2469850T3 (es) * 2010-09-11 2014-06-20 Mbda Deutschland Gmbh Procedimiento de lanzamiento de un artefacto volador no tripulado desde una aeronave

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2016116097A1 (de) 2016-07-28
DE112016000385A5 (de) 2017-11-02
DE102015109408A1 (de) 2016-07-21
EP3247973A1 (de) 2017-11-29

Similar Documents

Publication Publication Date Title
EP3247972B1 (de) Schwergewichtstorpedo zum absetzen in ein gewässer ausserhalb einer sichtweite eines ziels sowie transportschlitten und flugzeug
DE102008034618B4 (de) Verfahren zum Abkoppeln eines unbemannten Flugkörpers von einem Trägerluftfahrzeug
DE102011013875A1 (de) Bergungs- und Abbremsvorrichtung für frei im All fliegende Objekte
WO2006032310A1 (de) Verfahren und system zur vernichtung einer lokalisierten mine
DE102009059803A1 (de) Vorrichtung und Verfahren zur Erhöhung einer Radlast eines Fahrzeugs bei einem Bremsvorgang
EP2228781A2 (de) Vorrichtung zum Bewegen eines Prüfkörpers sowie Verfahren zum Prüfen oder Charakterisieren von Fahrerassitenzsystemen
EP2337740A2 (de) Flugkörper mit zumindest einem bremsfallschirm sowie befestigungsvorrichtung zur befestigung eines bremsfallschirms an einem flugkörper
EP3247973B1 (de) Schwergewichtstorpedo, transportschlitten und flugzeug
EP2236975B1 (de) Verfahren zum Abkoppeln eines Flugkörpers von einem Trägerluftfahrzeug
DE2452053A1 (de) Einrichtung zum starten von raketengetriebenen flugkoerpern
EP1806287B1 (de) Vorrichtung und Verfahren für das automatische Abstossen von Waffen von einer Ausziehplattform nach Fallschirm-Extraktion
EP2428445A2 (de) Verfahren zum Absetzen eines unbemannten Flugkörpers aus einem Luftfahrzeug
EP2381205A1 (de) Verfahren zum Simulieren einer Mission eines unbemannten bewaffneten Flugkörpers
EP1674818B1 (de) Flugkörper
DE102012015491A1 (de) Anordnung aus einem Luftfahrzeug und einer abwerfbaren Luftfahrzeug-Außenlast sowie Verfahren zur Ermittlung von für einen Abwurf einer Außenlast von einem Luftfahrzeug zulässigen Flugzuständen und Parametern einer Abgangsregelung für die Außenlast
DE3800329C2 (de)
DE102015014602B3 (de) Flugschreibervorrichtung
EP2216619B1 (de) Flugabbruchvorrichtung für einen Flugkörper
DE102004024858B4 (de) Verfahren zur Steuerung eines Lenkflugkörpers und Lenkflugkörper
EP3659929A1 (de) System zur unterstützung eines start- und/oder landevorgangs, luftfahrzeug und verfahren hierzu
DE102008050377B4 (de) Vorrichtung zur Vergrößerung des Aufklärungsradius' einer Basis
DE102023104248B3 (de) Terminierungssystem zum Einleiten eines Absturzes eines Luftfahrzeugs
DE102020134583B4 (de) Schutz von Hubschraubern gegen Dynamic Rollover
DE3433434A1 (de) Ausziehvorrichtung fuer einen fallschirm
DE2740655A1 (de) Automatische suchkopfeinweisung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ATLAS ELEKTRONIK GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181015

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1105147

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016003631

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190306

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016003631

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

26N No opposition filed

Effective date: 20191209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1105147

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230119

Year of fee payment: 8

Ref country code: IT

Payment date: 20230120

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

Ref country code: GB

Payment date: 20240119

Year of fee payment: 9