EP3246426B1 - Procédé de fabrication d'une tôle d'acier épaisse de haute ténacité et de haute résistance - Google Patents

Procédé de fabrication d'une tôle d'acier épaisse de haute ténacité et de haute résistance Download PDF

Info

Publication number
EP3246426B1
EP3246426B1 EP16737217.6A EP16737217A EP3246426B1 EP 3246426 B1 EP3246426 B1 EP 3246426B1 EP 16737217 A EP16737217 A EP 16737217A EP 3246426 B1 EP3246426 B1 EP 3246426B1
Authority
EP
European Patent Office
Prior art keywords
less
steel
temperature
toughness
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16737217.6A
Other languages
German (de)
English (en)
Other versions
EP3246426A1 (fr
EP3246426A4 (fr
Inventor
Shigeki KITSUYA
Katsuyuki Ichimiya
Kazukuni Hase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of EP3246426A1 publication Critical patent/EP3246426A1/fr
Publication of EP3246426A4 publication Critical patent/EP3246426A4/fr
Application granted granted Critical
Publication of EP3246426B1 publication Critical patent/EP3246426B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/024Forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B2001/028Slabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a method for manufacturing a thick-walled high-toughness high-strength steel plate for use in steel structures in construction, bridges, shipbuilding, offshore structures, construction and industrial machinery, tanks, penstocks, and the like.
  • the surface of the steel plate has high toughness
  • the inner part of the steel plate has high strength and toughness.
  • the steel plate has a thickness of 100 mm or more and a yield strength of 620 MPa or more.
  • steel for use in construction, bridges, shipbuilding, offshore structures, construction and industrial machinery, tanks, penstocks, and other fields is welded to have a desired shape.
  • the strength and thickness of steel to be used have also been greatly increased.
  • the cooling rate is higher on the surface of a steel plate than in the half-thickness portion.
  • a martensite structure having low toughness is formed on the surface of the steel plate.
  • a high-strength steel plate having a thickness of 100 mm or more rarely has both high surface toughness and high strength and toughness of the inner part thereof.
  • Non Patent Literature 1 describes a material having a thickness of 210 mm
  • Non Patent Literature 2 describes a material having a thickness of 180 mm.
  • CN 102605280 A describes a method for manufacturing an ultra-thick high-strength high low-temperature toughness steel plate for ocean platforms, wherein the steel plate comprises, in weight percentage, 0.10-0.24% of C, 0.05-0.35% of Si, 0.60-1.15% of Mn, not more than 0.015% of P, not more than 0.005% of S, 0.01-0.030% of Ti, 1.45-1.75% of Cr, 0.15-0.44% of Mo, 0.80-2.50% of Ni, 0.010-0.070% of Nb, 0.020-0.080% of V, 0.02-0.06% of Alt, 0.001-0.004% of Ca, not more than 0.006% of N, 0.0007-0.0030% of B, the balance being Fe and unavoidable impurities and whereing the steel plate has a system of C, Ni-Cr-Mo alloyed and Nb-V-Ti microalloyed, and has a yield strength not smaller than 690MPa, a tensile strength not smaller than 770MPa
  • the present invention has been made to solve such problems and aims to provide a method for manufacturing a thick-walled high-toughness high-strength steel plate that has high surface toughness and high strength and toughness of the inner part thereof.
  • the present inventors have extensively studied the microstructure control factors that satisfy high toughness of the surface of a thick-walled steel plate having a yield strength of 620 MPa or more and a thickness of 100 mm or more and also satisfy high strength and toughness of the half-thickness portion of the thick-walled steel plate, and have found the following.
  • the present invention provides a method for manufacturing a thick-walled high-toughness high-strength steel plate having a thickness of 100 mm or more and having a yield strength of 620 MPa or more and high toughness.
  • the thick-walled high-toughness high-strength steel plate can be used to manufacture steel structures having high safety.
  • a thick-walled high-toughness high-strength steel plate manufactured according to the present invention has a composition containing, on a mass percent basis, C: 0.08% to 0.20%, Si: 0.40% or less (including 0%), Mn: 0.5% to 5.0%, P: 0.010% or less (including 0%), S: 0.0050% or less (including 0%), Cr: 3.0% or less (including 0%), Ni: 0.1% to 5.0%, Al: 0.010% to 0.080%, N: 0.0070% or less (including 0%), and O: 0.0025% or less (including 0%).
  • the symbol "%" in the component content refers to "% by mass”.
  • C is an element useful for achieving the strength necessary for structural steel at low cost. This effect requires a C content of 0.08% or more. In a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding, however, a C content of more than 0.20% significantly deteriorates toughness of the base metal and weld. Thus, the C content has an upper limit of 0.20%. The C content preferably ranges from 0.08% to 0.14%.
  • Si is added for deoxidation.
  • a steel plate according to the present invention does not necessarily contain Si.
  • a Si content of more than 0.40% significantly deteriorates toughness of the base metal and heat-affected zone.
  • the Si content is 0.40% or less, preferably 0.05% to 0.3%, more preferably 0.1% to 0.3%.
  • Mn is added to ensure high strength of the base metal. This effect is insufficient at a Mn content of less than 0.5%.
  • a Mn content of more than 5.0% promotes center segregation, results in a larger casting defect of the slab, and deteriorates mechanical properties of the base metal in a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding.
  • the Mn content has an upper limit of 5.0%.
  • the Mn content preferably ranges from 0.6% to 2%, more preferably 0.6% to 1.6%.
  • a P content of more than 0.010% significantly deteriorates toughness of the base metal and heat-affected zone.
  • the P content is preferably minimized (may be zero) and is limited to 0.010% or less.
  • a S content of more than 0.0050% significantly deteriorates toughness of the base metal and heat-affected zone.
  • the S content is preferably minimized (may be zero) and is 0.0050% or less.
  • the Cr is an element effective in strengthening the base metal. However, an excessively high Cr content deteriorates weldability. Thus, the Cr content is 3.0% or less, preferably 0.1% to 2%, more preferably 0.7% to 1.7%. The Cr content may be 0%.
  • Ni is an element useful for improving the strength of steel and the toughness of the heat-affected zone. This effect requires a Ni content of 0.1% or more. However, a Ni content of more than 5.0% significantly deteriorates economic efficiency. Thus, the Ni content has an upper limit of 5.0%.
  • the Ni content preferably ranges from 0.4% to 4%, more preferably 0.8% to 3.8%.
  • Al is added for sufficient deoxidation of molten steel.
  • An Al content of less than 0.010% is insufficient for the effect.
  • an Al content of more than 0.080% deteriorates toughness of the base metal due to an increased dissolved Al content in the base metal in a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding.
  • the Al content is 0.080% or less, preferably 0.030% to 0.080%, more preferably 0.030% to 0.070%.
  • N together with Ti, forms a nitride and thereby performs refinement of the structure and improves the toughness of the base metal and heat-affected zone in a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding.
  • the toughness can be improved by a constituent other than N.
  • a steel plate according to the present invention does not necessarily contain N.
  • the N content is preferably 0.0015% or more.
  • a N content of more than 0.0070% deteriorates toughness of the base metal due to an increased dissolved N content in the base metal and deteriorates toughness of the heat-affected zone due to the formation of coarse carbonitride.
  • the N content is 0.0070% or less, preferably 0.006% or less, more preferably 0.005% or less.
  • O content of more than 0.0025% significantly deteriorates toughness due to the formation of a hard oxide in steel.
  • the O content is preferably minimized (may be zero) and is 0.0025% or less.
  • a thick-walled high-toughness high-strength steel plate manufactured according to the present invention can contain at least one of Cu, Mo, V, Nb, and Ti in order to further improve strength and/or toughness.
  • Cu can improve the strength of steel without reducing toughness.
  • a Cu content of more than 0.50% may cause a crack on the surface of a steel plate during hot working.
  • the Cu content, if any, is 0.50% or less.
  • Mo contributes to high strength of the base metal in a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding.
  • a Mo content of more than 1.50% results in increased hardness and deteriorates toughness due to the precipitation of alloy carbide.
  • the Mo content if any, has an upper limit of 1.50%.
  • the Mo content preferably ranges from 0.2% to 0.8%.
  • V 0.400% or less
  • V contributes to improved strength and toughness of the base metal in a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding.
  • V precipitates as VN and is effective in decreasing the amount of dissolved N.
  • a V content of more than 0.400% deteriorates toughness due to the precipitation of hard VC.
  • the V content, if any, is preferably 0.400% or less, more preferably 0.01% to 0.1%.
  • Nb is effective in improving the strength of the base metal.
  • a Nb content of more than 0.100% deteriorates toughness of the base metal.
  • the Nb content has an upper limit of 0.100%.
  • the Nb content is preferably 0.025% or less.
  • Ti forms TiN during heating and effectively suppresses the coarsening of austenite.
  • Ti improves the toughness of the base metal and heat-affected zone.
  • a Ti content of more than 0.020% results in coarsening of Ti nitride and deteriorates toughness of the base metal.
  • the Ti content if any, ranges from 0.005% to 0.020%, preferably 0.008% to 0.015%.
  • a thick-walled high-toughness high-strength steel plate manufactured according to the present invention can further contain at least one of Mg, Ta, Zr, Y, B, Ca, and REM to improve the material quality.
  • Mg forms a stable oxide at high temperatures, effectively suppresses the coarsening of prior ⁇ grains in the heat-affected zone, and is effective in improving the toughness of the weld.
  • These effects require a Mg content of 0.0001% or more.
  • a Mg content of more than 0.0050% results in an increased number of inclusions and deteriorates toughness.
  • the Mg content, if any, is preferably 0.0050% or less, more preferably 0.0001% to 0.015%.
  • Ta 0.01% to 0.20%
  • Ta content 0.01% or more is effective.
  • a Ta content of more than 0.20% deteriorates toughness due to formation of precipitates.
  • the Ta content if any, ranges from 0.01% to 0.20%.
  • Zr is an element effective in improving strength.
  • a Zr content of 0.005% or more is effective in producing this effect.
  • a Zr content of more than 0.1% deteriorates toughness due to the formation of a coarse precipitate.
  • the Zr content, if any, ranges from 0.005% to 0.1%.
  • Y forms a stable oxide at high temperatures, effectively suppresses the coarsening of prior ⁇ grains in the heat-affected zone, and is effective in improving the toughness of the weld.
  • An Y content of 0.001% or more is effective in producing these effects.
  • an Y content of more than 0.01% results in an increased number of inclusions and deteriorates toughness.
  • the Y content, if any, ranges from 0.001% to 0.01%.
  • B segregates at austenite grain boundaries, suppresses ferrite transformation from the grain boundaries, and improves hardenability.
  • a B content of more than 0.0030% deteriorates hardenability and toughness due to the precipitation of B as a carbonitride.
  • the B content is 0.0030% or less.
  • the B content, if any, preferably ranges from 0.0003% to 0.0030%, more preferably 0.0005% to 0.002%.
  • Ca is an element useful for the morphology control of a sulfide inclusion. This effect requires a Ca content of 0.0005% or more. However, a Ca content of more than 0.0050% deteriorates cleanliness and toughness. Thus, the Ca content, if any, is preferably 0.0050% or less, more preferably 0.0005% to 0.0025%.
  • REM forms an oxide and a sulfide in steel and is effective in improving the material quality. This effect requires a REM content of 0.0005% or more. However, the effect levels off at a REM content of 0.0100% or more. Thus, the REM content, if any, is 0.0100% or less, preferably 0.0005% to 0.005%.
  • the present invention provides a steel plate having desirable characteristics even when the steel plate is manufactured from steel casted under conditions where the cooling rate of a slab surface during solidification is 1°C/s or less.
  • microsegregation needs to be reduced to achieve high toughness (vE-40 ⁇ 70 J) of the surface of a thick-walled high-toughness high-strength steel plate having a thickness of 100 mm or more, particularly manufactured from steel casted under conditions where the cooling rate of a slab surface during solidification is 1°C/s or less.
  • C L 0.2 ⁇ ⁇ 0.1 ⁇ 0.2 ⁇ Si ⁇ 0.03 ⁇ 1.1 ⁇ Mn ⁇ 0.12 ⁇ 0.2 ⁇ Cu ⁇ 0.11 ⁇ 3 ⁇ Ni + 0.025 ⁇ 1.2 ⁇ Cr + 0.1 ⁇ 0.5 ⁇ Mo + 0.2 ⁇ 0.04 ⁇ V ⁇ 0.05 ⁇ 0.06 ⁇ Al
  • the element symbols denote the respective alloy component contents (% by mass), and in the absence of an element, the element symbol is denoted by 0.
  • the C content needs to be specified depending on each component other than C, such as Si or Mn.
  • the effects of an alloying element on the C solid solubility limit (C L ) of the ⁇ phase were calculated using thermodynamic calculation software "Thermo-Calc". The result was used to determine the factor.
  • the factor "-0.1" for "Si” means that 1% Si decreases the C solid solubility limit of the ⁇ phase by 0.1%, and the C content of the base metal needs to be decreased to achieve the required percentage of the ⁇ phase.
  • the calculation of C L was based on the component of C: 0.12%, Si: 0.2%, Mn: 1.1%, Cu: 0.2%, Cr: 1.2%, Ni: 3%, Mo: 0.5%, V: 0.04% and Al: 0.06%, and the factors for the calculation of C L were determined by calculating a variation from the dissolved C content caused by a variation in each alloying element content.
  • the percentage (C L - C)/C L x 100 of C to be added relative to the C solid solubility limit in the ⁇ phase thus calculated is 30% or more, the percentage of the ⁇ phase at the beginning of the formation of the ⁇ phase can be 30% or more.
  • the reduction of area in the thickness direction at half the thickness of the plate is 40% or more when measured by a method described in the example.
  • the temperature "°C” refers to the temperature in the half-thickness portion except for the quenching temperature in the case of quenching without leaving to cool after rolling.
  • the quenching temperature in the case of quenching without leaving to cool after rolling is the surface temperature of the steel plate. This is because the temperature distribution of the steel plate in the thickness direction increases during rolling, and a decrease in the surface temperature of the steel plate needs to be considered.
  • the temperature of the half-thickness portion is determined, for example, by simulation calculation from the thickness, surface temperature, and cooling conditions. For example, the temperature of the half-thickness portion is determined by calculating the temperature distribution in the thickness direction using finite difference methods.
  • a molten steel having the composition described above is produced by a conventional method, such as with a converter, an electric furnace, or a vacuum melting furnace, and is formed into a piece of steel, such as a slab or billet, by a conventional casting method, such as a continuous casting process or an ingot casting process.
  • the cooling rate during solidification is determined by direct measurement with a thermocouple or by simulation calculation, such as heat-transfer calculation.
  • steel manufactured under conditions where the cooling rate of a surface during solidification is 1°C/s or less can preferably be used.
  • the thickness of the material may be reduced by slabbing.
  • a cast bloom or steel bloom having the composition described above is heated to a temperature in the range of 1200°C to 1350°C.
  • a reheating temperature of less than 1200°C results in not only an insufficient rolling reduction due to an increased load to achieve a predetermined cumulative rolling reduction in hot working but also low production efficiency due to additional heating as required during working.
  • the reheating temperature is 1200°C or more.
  • a large amount of additive alloying element as steel having a carbon equivalent of 0.65% or more according to the present invention results in a casting defect such as a center porosity or porous shrinkage cavity, having a much increased size in steel. In order to make them harmless by pressure bonding, the cumulative rolling reduction needs to be 25% or more.
  • a reheating temperature of more than 1350°C results in excessive energy consumption, increased likelihood of occurrence of surface flaws due to scales during heating, and increased repair load after hot forging.
  • the upper limit is 1350°C.
  • a cast bloom or steel bloom having the composition described above is heated to a temperature in the range of 1200°C to 1350°C.
  • a reheating temperature of less than 1200°C results in not only an insufficient rolling reduction due to an increased load to achieve a predetermined cumulative rolling reduction in hot working but also low production efficiency due to additional heating as required during working.
  • the reheating temperature is 1200°C or more.
  • the cumulative rolling reduction is 30% or more, preferably 40% or more in terms of good reduction of area (RA).
  • a reheating temperature of more than 1350°C results in excessive energy consumption, increased likelihood of surface flaws due to scales during heating, and increased repair load after hot forging.
  • the upper limit is 1350°C.
  • the heating temperature preferably ranges from 1000°C to 1200°C.
  • the Ac3 transformation temperature is calculated using the following formula (4).
  • Ac 3 937.2 ⁇ 476.5 C + 56 Si ⁇ 19.7 Mn ⁇ 16.3 Cu ⁇ 26.6 Ni ⁇ 4.9 Cr + 38.1 Mo + 124.8 V + 136.3 Ti + 198.4 Al + 3315 B
  • the element symbols in the formula (4) denote the respective alloy component contents (% by mass).
  • a steel plate is left to cool (for example, air cooling) after hot rolling or is rapidly cooled from the Ar3 temperature or more to 350°C or less without leaving to cool after hot rolling.
  • the steel plate is reheated to the Ac3 temperature to 1050°C and is rapidly cooled from the Ac3 temperature or more to 350°C or less.
  • the reason for the reheating temperature of 1050°C or less is that reheating at a high temperature of more than 1050°C results in coarsening of austenite grains and significantly deteriorates toughness of the base metal in a steel structure manufactured from a thick-walled high-toughness high-strength steel plate by welding.
  • the reheating temperature is the Ac3 temperature or more in order that the steel plate may entirely have an austenite structure.
  • the quenching temperature is the Ac3 temperature or more because the desirable characteristics are not obtained at a temperature below the Ac3 temperature due to the formation of a nonuniform structure composed of ferrite and austenite.
  • the quenching temperature is the Ar3 temperature or more for quenching from the austenite single phase region.
  • the rapid cooling stop temperature is a lower temperature selected from 350°C or less and the Ar3 temperature or less in order to ensure that the steel plate entirely has a transformed structure.
  • the stop temperature should be the Ar3 temperature or less and 350°C or less.
  • the Ar3 transformation temperature is calculated using the following formula (5).
  • Ar 3 910 ⁇ 310 C ⁇ 80 Mn ⁇ 20 Cu ⁇ 15 Cr ⁇ 55 Ni ⁇ 80 Mo
  • the element symbols in the formula (5) denote the respective alloy component contents (% by mass).
  • the rapid cooling method is industrially water cooling. It is desirable that the cooling rate be as high as possible.
  • the cooling method is not necessarily water cooling and may be gas cooling, for example.
  • quenching is sometimes repeated to strengthen steel. Although quenching may be repeated also in the present invention, final quenching requires rapid cooling to 350°C or less after heating to the Ac3 temperature to 1050°C and requires subsequent tempering at 450°C to 700°C.
  • Steel plate samples No. 1 to No. 38 were manufactured by melting and casting steel No. 1 to No. 30 listed in Table 1 under the conditions listed in Table 2, performing hot forging (except for the samples No. 5, No. 6, and No. 41) or slabbing (the samples No. 5, No. 6, and No. 41), hot-rolling the steel to form a steel plate having a thickness listed in Table 2, and subjecting the steel plate to water quenching and tempering.
  • the steel plate samples No. 1 to No. 38 were subjected to the following tests. In reheating and quenching in this example, the reheating temperature corresponds to the quenching temperature.
  • the percentage of the ⁇ phase is calculated using the formula (2) from C L calculated using the formula (3) with each base metal component and the C content of the base metal.
  • the cooling rate during solidification in the manufacture of steel is determined by heat-transfer calculation from the mold surface temperature data measured with a radiation thermometer.
  • a round bar tensile test piece ( ⁇ 12.5 mm, GL 50 mm) was taken from the half-thickness portion of each steel plate in the direction perpendicular to the rolling direction and was measured in terms of yield strength (YS) and tensile strength (TS).
  • Three 2-mm V-notched Charpy impact test specimens were taken from each surface and half-thickness portion of the steel plates.
  • the rolling direction was the longitudinal direction.
  • the absorbed energies of the test specimens were measured at a test temperature of -40°C in a Charpy impact test and were averaged (the average value for the test specimens taken from the half-thickness portion and the average value for the test specimens taken from the surface).
  • a round bar tensile test piece ( ⁇ 10 mm) was taken from a region including the half-thickness portion of each steel plate in the thickness direction and was measured in terms of reduction of area (RA).
  • the reduction of area is the percentage of the difference between the minimum cross-sectional area after the test specimen was broken and the original cross-sectional area relative to the original cross-sectional area.
  • Table 2 shows the test results.
  • the results showed that the steel plates of the examples having a steel composition according to the present invention (samples No. 1 to No. 21 and No. 41) had YS of 620 MPa or more, TS of 720 MPa or more, and toughness (vE-40) of 70 J or more at -40°C in the surface and half-thickness portion of the base metal, showing high strength and toughness of the base metal.
  • a comparison between Nos. 5 and 6 and No. 41 showed that reduction of area (RA) was also satisfactory under particular slabbing conditions.
  • the base metal had at least one of YS of less than 620 MPa, TS of less than 720 MPa, and toughness (vE-40) of less than 70 J, thus deteriorating characteristics.
  • Thickness of material Cooling rate during solidification °C/s Hot forging or slabbing Hot rolling Thickness of product (mm)
  • Type of heat treatment Final heat treatment conditions Mechanical properties of base metal (1/2t) Toughness of base metal (surface) Heating (°C) Cumulative rolling reduction (%) Heating (°C) Cumulative rolling reduction (%) Quenching temperature (°C) Cooling stop (°C) Tempering (°C) YS (MPa) TS (MPa) vE-40 (J) Tensile RA in thickness direction RA (%) vE-40 (J) 1 1 1000 0.32 1270 80 1130 43 100 Direct quenching 850 150 630 695 786 108 73 98 2 2 500 0.64 1230 65 1130 43 100 Reheating quenching 930 100 650 698 795 167 63 105 3 3 300 0.90 1200 30 1130 50 100 Reheating quenching 930 100 630 725 793 102 70 116 4 4 1000 0.33 1270 70 1160 43 150 Re

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (4)

  1. Procédé de fabrication d'une plaque d'acier épaisse à haute résistance et haute ténacité ayant une épaisseur de 100 mm ou plus, une limite d'élasticité de 620 MPa ou plus et comprenant, sur une base de pourcentage massique,
    C : 0,08 % à 0,20 %,
    Si : 0,40 % ou moins,
    Mn : 0,5 % à 5,0 %,
    P : 0,010 % ou moins,
    S : 0,0050 % ou moins,
    Cr : 3,0 % ou moins,
    Ni : 0,1 % à 5,0 %,
    Al : 0,010% à 0,080%,
    N : 0,0070 % ou moins et
    O : 0,0025 % ou moins,
    les formules (1) et (2) suivantes étant satisfaites, éventuellement au moins un élément parmi
    Cu : 0,50 % ou moins,
    Mo : 1,50 % ou moins,
    V : 0,400 % ou moins,
    Nb : 0,100 % ou moins,
    Ti : 0,005 % à 0,020 %,
    Mg : 0,0001 % à 0,0050 %,
    Ta : 0,01 % à 0,20 %,
    Zr : 0,005 % à 0,1 %,
    Y : 0,001 % à 0,01 %,
    B : 0,0030 % ou moins,
    Ca : 0,0005 % à 0,0050 %, et
    Terres rares : 0,0005 % à 0,0100 %,
    le reste étant du Fe et des impuretés inévitables, et comprenant une ténacité (vE-40) de 70 J ou plus à -40 °C dans la partie de surface du métal de base : Ceq IIW = C + Mn / 6 + Cu + Ni / 15 + Cr + Mo + V / 5 0,65
    Figure imgb0031
    C L C / C L × 100 30
    Figure imgb0032
    CL étant défini par la formule suivante : C L = 0,2 0,1 × 0,2 Si 0,03 × 1,1 Mn 0,12 × 0,2 Cu 0,11 × 3 Ni + 0,025 × 1,2 Cr + 0,1 × 0,5 Mo + 0,2 × 0,04 V 0,05 × 0,06 Al
    Figure imgb0033
    où les symboles d'éléments dans les formules représentent les teneurs respectives (% en masse) des constituants d'alliage, et en l'absence d'un élément, le symbole de l'élément est représenté par 0, et où
    une réduction de surface dans un sens épaisseur à la moitié de l'épaisseur de la plaque, qui est le pourcentage de la différence entre l'aire de section transversale minimum après la rupture d'une éprouvette en barreau à section ronde incluant la partie à la moitié de l'épaisseur de la plaque d'acier dans le sens épaisseur lors d'un essai de traction et l'aire de section transversale d'origine, rapportée à l'aire de section transversale d'origine, est de 40 % ou plus,
    le procédé comprenant :
    un chauffage de l'acier entre 1200 °C et 1350 °C,
    un forgeage à chaud de l'acier avec un taux de réduction cumulé de 25 % ou plus,
    un chauffage de l'acier à une température Ac3 ou plus et 1200 °C ou moins,
    un laminage à chaud de l'acier avec un taux de réduction par laminage cumulé de 40 % ou plus,
    un refroidissement naturel de l'acier,
    un réchauffage de l'acier à la température Ac3 ou plus et 1050 °C ou moins,
    un refroidissement rapide de l'acier depuis la température Ac3 ou plus jusqu'à une température inférieure qui est à la fois inférieure ou égale à 350 °C et inférieure ou égale à la température Ar3, et
    un revenu de l'acier à une température dans la plage de 450 °C à 700 °C.
  2. Procédé de fabrication d'une plaque d'acier épaisse à haute résistance et haute ténacité ayant une épaisseur de 100 mm ou plus, une limite d'élasticité de 620 MPa ou plus et comprenant, sur une base de pourcentage massique,
    C : 0,08 % à 0,20 %,
    Si : 0,40 % ou moins,
    Mn : 0,5 % à 5,0 %,
    P : 0,010 % ou moins,
    S : 0,0050 % ou moins,
    Cr : 3,0 % ou moins,
    Ni : 0,1 % à 5,0 %,
    Al : 0,010% à 0,080 %,
    N : 0,0070 % ou moins et
    O : 0,0025 % ou moins,
    les formules (1) et (2) suivantes étant satisfaites, éventuellement au moins un élément parmi
    Cu : 0,50 % ou moins,
    Mo : 1,50 % ou moins,
    V : 0,400 % ou moins,
    Nb : 0,100 % ou moins,
    Ti : 0,005 % à 0,020 %,
    Mg : 0,0001 % à 0,0050 %,
    Ta : 0,01 % à 0,20 %,
    Zr : 0,005 % à 0,1 %,
    Y : 0,001 % à 0,01 %,
    B : 0,0030 % ou moins,
    Ca : 0,0005 % à 0,0050 %, et
    Terres rares : 0,0005 % à 0,0100 %,
    le reste étant du Fe et des impuretés inévitables, et comprenant une ténacité (vE-40) de 70 J ou plus à -40 °C dans la partie de surface du métal de base : Ceq IIW = C + Mn / 6 + Cu + Ni / 15 + Cr + Mo + V / 5 0,65
    Figure imgb0034
    C L C / C L × 100 30
    Figure imgb0035
    CL étant défini par la formule suivante : C L = 0,2 0,1 × 0,2 Si 0,03 × 1,1 Mn 0,12 × 0,2 Cu 0,11 × 3 Ni + 0,025 × 1,2 Cr + 0,1 × 0,5 Mo + 0,2 × 0,04 V 0,05 × 0,06 Al
    Figure imgb0036
    où les symboles d'éléments dans les formules représentent les teneurs respectives (% en masse) des constituants d'alliage, et en l'absence d'un élément, le symbole de l'élément est représenté par 0, et où
    une réduction de surface dans un sens épaisseur à la moitié de l'épaisseur de la plaque, qui est le pourcentage de la différence entre l'aire de section transversale minimum après la rupture d'une éprouvette en barreau à section ronde incluant la partie à la moitié de l'épaisseur de la plaque d'acier dans le sens épaisseur lors d'un essai de traction et l'aire de section transversale d'origine, rapportée à l'aire de section transversale d'origine, est de 40 % ou plus,
    le procédé comprenant :
    un chauffage de l'acier entre 1200 °C et 1350 °C,
    un forgeage à chaud de l'acier avec un taux de réduction cumulé de 25 % ou plus,
    un chauffage de l'acier à une température Ac3 ou plus et 1200 °C ou moins,
    un laminage à chaud de l'acier avec un taux de réduction par laminage cumulé de 40 % ou plus,
    un refroidissement rapide de l'acier depuis une température Ar3 ou plus jusqu'à une température inférieure qui est à la fois inférieure ou égale à 350 °C et inférieure ou égale à la température Ar3, et
    un revenu de l'acier à une température dans la plage de 450 °C à 700 °C.
  3. Procédé de fabrication d'une plaque d'acier épaisse à haute résistance et haute ténacité ayant une épaisseur de 100 mm ou plus, une limite d'élasticité de 620 MPa ou plus et comprenant, sur une base de pourcentage massique, C : 0,08 % à 0,20 %,
    Si : 0,40 % ou moins,
    Mn : 0,5 % à 5,0 %,
    P : 0,010 % ou moins,
    S : 0,0050 % ou moins,
    Cr : 3,0 % ou moins,
    Ni : 0,1 % à 5,0 %,
    Al : 0,010% à 0,080 %,
    N : 0,0070 % ou moins et
    O : 0,0025 % ou moins,
    les formules (1) et (2) suivantes étant satisfaites, éventuellement au moins un élément parmi
    Cu : 0,50 % ou moins,
    Mo : 1,50 % ou moins,
    V : 0,400 % ou moins,
    Nb : 0,100 % ou moins,
    Ti : 0,005 % à 0,020 %,
    Mg : 0,0001 % à 0,0050 %,
    Ta : 0,01 % à 0,20 %,
    Zr : 0,005 % à 0,1 %,
    Y : 0,001 % à 0,01 %,
    B : 0,0030 % ou moins,
    Ca : 0,0005 % à 0,0050 %, et
    Terres rares : 0,0005 % à 0,0100 %,
    le reste étant du Fe et des impuretés inévitables, et comprenant une ténacité (vE-40) de 70 J ou plus à -40 °C dans la partie de surface du métal de base : Ceq IIW = C + Mn / 6 + Cu + Ni / 15 + Cr + Mo + V / 5 0,65
    Figure imgb0037
    C L C / C L × 100 30
    Figure imgb0038
    CL étant défini par la formule suivante : C L = 0,2 0,1 × 0,2 Si 0,03 × 1,1 Mn 0,12 × 0,2 Cu 0,11 × 3 Ni + 0,025 × 1,2 Cr + 0,1 × 0,5 Mo + 0,2 × 0,04 V 0,05 × 0,06 Al
    Figure imgb0039
    où les symboles d'éléments dans les formules représentent les teneurs respectives (% en masse) des constituants d'alliage, et en l'absence d'un élément, le symbole de l'élément est représenté par 0, et où
    une réduction de surface dans un sens épaisseur à la moitié de l'épaisseur de la plaque, qui est le pourcentage de la différence entre l'aire de section transversale minimum après la rupture d'une éprouvette en barreau à section ronde incluant la partie à la moitié de l'épaisseur de la plaque d'acier dans le sens épaisseur lors d'un essai de traction et l'aire de section transversale d'origine, rapportée à l'aire de section transversale d'origine, est de 40 % ou plus,
    le procédé comprenant :
    un chauffage de l'acier entre 1200 °C et 1350 °C,
    un dégrossissage de l'acier avec un taux de réduction par laminage cumulé de 40 % ou plus,
    un chauffage de l'acier à une température Ac3 ou plus et 1200 °C ou moins,
    un laminage à chaud de l'acier avec un taux de réduction par laminage cumulé de 40 % ou plus, un refroidissement naturel de l'acier,
    un réchauffage de l'acier à la température Ac3 ou plus et 1050 °C ou moins,
    un refroidissement rapide de l'acier depuis la température Ac3 ou plus jusqu'à une température inférieure qui est à la fois inférieure ou égale à 350 °C et inférieure ou égale à une température Ar3, et
    un revenu de l'acier à une température dans la plage de 450 °C à 700 °C.
  4. Procédé de fabrication d'une plaque d'acier épaisse à haute résistance et haute ténacité ayant une épaisseur de 100 mm ou plus, une limite d'élasticité de 620 MPa ou plus et comprenant, sur une base de pourcentage massique,
    C : 0,08 % à 0,20 %,
    Si : 0,40 % ou moins,
    Mn : 0,5 % à 5,0 %,
    P : 0,010 % ou moins,
    S : 0,0050 % ou moins,
    Cr : 3,0 % ou moins,
    Ni : 0,1 % à 5,0 %,
    Al : 0,010% à 0,080 %,
    N : 0,0070 % ou moins et
    O : 0,0025 % ou moins,
    les formules (1) et (2) suivantes étant satisfaites, éventuellement au moins un élément parmi
    Cu : 0,50 % ou moins,
    Mo : 1,50 % ou moins,
    V : 0,400 % ou moins,
    Nb : 0,100 % ou moins,
    Ti : 0,005 % à 0,020 %,
    Mg : 0,0001 % à 0,0050 %,
    Ta : 0,01 % à 0,20 %,
    Zr : 0,005 % à 0,1 %,
    Y : 0,001 % à 0,01 %,
    B : 0,0030 % ou moins,
    Ca : 0,0005 % à 0,0050 %, et
    Terres rares : 0,0005 % à 0,0100 %,
    le reste étant du Fe et des impuretés inévitables, et comprenant une ténacité (vE-40) de 70 J ou plus à -40 °C dans la partie de surface du métal de base : Ceq IIW = C + Mn / 6 + Cu + Ni / 15 + Cr + Mo + V / 5 0,65
    Figure imgb0040
    C L C / C L × 100 30
    Figure imgb0041
    CL étant défini par la formule suivante : C L = 0,2 0,1 × 0,2 Si 0,03 × 1,1 Mn 0,12 × 0,2 Cu 0,11 × 3 Ni + 0,025 × 1,2 Cr + 0,1 × 0,5 Mo + 0,2 × 0,04 V 0,05 × 0,06 Al
    Figure imgb0042
    où les symboles d'éléments dans les formules représentent les teneurs respectives (% en masse) des constituants d'alliage, et en l'absence d'un élément, le symbole de l'élément est représenté par 0, et où
    une réduction de surface dans un sens épaisseur à la moitié de l'épaisseur de la plaque, qui est le pourcentage de la différence entre l'aire de section transversale minimum après la rupture d'une éprouvette en barreau à section ronde incluant la partie à la moitié de l'épaisseur de la plaque d'acier dans le sens épaisseur lors d'un essai de traction et l'aire de section transversale d'origine, rapportée à l'aire de section transversale d'origine, est de 40 % ou plus,
    le procédé comprenant :
    un chauffage de l'acier entre 1200 °C et 1350 °C,
    un dégrossissage de l'acier avec un taux de réduction par laminage cumulé de 40 % ou plus,
    un chauffage de l'acier à une température Ac3 ou plus et 1200 °C ou moins,
    un laminage à chaud de l'acier avec un taux de réduction par laminage cumulé de 40 % ou plus,
    un refroidissement rapide de l'acier depuis une température Ar3 ou plus jusqu'à une température inférieure qui est à la fois inférieure ou égale à 350 °C et inférieure ou égale à la température Ar3, et
    un revenu de l'acier à une température dans la plage de 450 °C à 700 °C.
EP16737217.6A 2015-01-16 2016-01-15 Procédé de fabrication d'une tôle d'acier épaisse de haute ténacité et de haute résistance Active EP3246426B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015006670 2015-01-16
PCT/JP2016/000197 WO2016114146A1 (fr) 2015-01-16 2016-01-15 Tôle d'acier épaisse de haute ténacité et de haute résistance, et procédé de fabrication de celle-ci

Publications (3)

Publication Number Publication Date
EP3246426A1 EP3246426A1 (fr) 2017-11-22
EP3246426A4 EP3246426A4 (fr) 2018-01-10
EP3246426B1 true EP3246426B1 (fr) 2020-06-24

Family

ID=56405694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16737217.6A Active EP3246426B1 (fr) 2015-01-16 2016-01-15 Procédé de fabrication d'une tôle d'acier épaisse de haute ténacité et de haute résistance

Country Status (8)

Country Link
US (1) US20170369958A1 (fr)
EP (1) EP3246426B1 (fr)
JP (1) JP6048626B1 (fr)
KR (1) KR101994784B1 (fr)
CN (1) CN107208212B (fr)
CA (1) CA2969200C (fr)
SG (1) SG11201704242TA (fr)
WO (1) WO2016114146A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447253B2 (ja) * 2015-03-06 2019-01-09 新日鐵住金株式会社 溶接用高張力鋼
CN113737103A (zh) * 2017-09-08 2021-12-03 杰富意钢铁株式会社 钢板及其制造方法
JP6984319B2 (ja) * 2017-10-31 2021-12-17 日本製鉄株式会社 靭性に優れた低温用ニッケル含有鋼板およびその製造方法
KR101999024B1 (ko) * 2017-12-26 2019-07-10 주식회사 포스코 수소유기균열 저항성이 우수한 강재 및 그 제조방법
CN110318008B (zh) * 2019-06-20 2022-01-14 江阴兴澄特种钢铁有限公司 一种大厚度抗层状撕裂屈服强度960MPa级高强钢板及其生产方法
CN110172646A (zh) * 2019-06-24 2019-08-27 南京钢铁股份有限公司 一种船用储罐p690ql1钢板及制造方法
KR102255821B1 (ko) * 2019-09-17 2021-05-25 주식회사 포스코 저온 충격인성이 우수한 고강도 극후물 강재 및 이의 제조방법
KR102509355B1 (ko) 2020-12-21 2023-03-14 주식회사 포스코 표면품질 및 내 라멜라티어링 품질이 우수한 스팀드럼용 극후물 강재 및 그 제조방법
CN114032453B (zh) * 2021-10-14 2022-06-21 首钢集团有限公司 一种大厚度1000MPa级非调质高韧性结构用钢及其制备方法
KR20230094388A (ko) 2021-12-21 2023-06-28 주식회사 포스코 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
KR20230094389A (ko) 2021-12-21 2023-06-28 주식회사 포스코 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
CN114592156B (zh) * 2022-03-09 2023-08-18 广东一诺重工钢构有限公司 一种高强度钢梁及其加工工艺
KR20230171665A (ko) 2022-06-14 2023-12-21 주식회사 포스코 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128821A (en) * 1976-04-12 1977-10-28 Nippon Steel Corp Preparation of high tensile steel having superior low temperature toughness and yield point above 40 kg/pp2
JP2913426B2 (ja) * 1991-03-13 1999-06-28 新日本製鐵株式会社 低温靱性の優れた厚肉高張力鋼板の製造法
JP3333619B2 (ja) * 1994-02-24 2002-10-15 川崎製鉄株式会社 極厚鋼板の製造方法
JP3499705B2 (ja) * 1997-03-26 2004-02-23 株式会社神戸製鋼所 板厚方向での均質性に優れ、靱性の異方性の小さい950N/mm2級調質高張力鋼板およびその製造方法
JP2002210502A (ja) * 2001-01-19 2002-07-30 Kawasaki Steel Corp 極厚鋼材の製造方法
JP2002256380A (ja) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd 脆性亀裂伝播停止特性と溶接部特性に優れた厚肉高張力鋼板およびその製造方法
JP4792778B2 (ja) * 2005-03-29 2011-10-12 住友金属工業株式会社 ラインパイプ用厚肉継目無鋼管の製造方法
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5365217B2 (ja) * 2008-01-31 2013-12-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN101962741B (zh) * 2009-07-24 2012-08-08 宝山钢铁股份有限公司 一种调质钢板及其制造方法
JP2011153366A (ja) * 2010-01-28 2011-08-11 Nippon Steel Corp レーザ溶接用またはレーザ・アークハイブリッド溶接用の引張強さが1100MPa以上の高張力鋼板の製造方法
JP2011202214A (ja) 2010-03-25 2011-10-13 Jfe Steel Corp 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法
JP5924058B2 (ja) * 2011-10-03 2016-05-25 Jfeスチール株式会社 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
CN102605280A (zh) * 2012-03-15 2012-07-25 宝山钢铁股份有限公司 海洋平台用特厚高强度优良低温韧性钢板及其制造方法
JP5590271B1 (ja) * 2012-12-28 2014-09-17 新日鐵住金株式会社 降伏強度670〜870N/mm2、及び引張強さ780〜940N/mm2を有する鋼板
SG11201505732RA (en) * 2013-03-15 2015-08-28 Jfe Steel Corp Thick, tough, high tensile strength steel plate and production method therefor
KR101732997B1 (ko) * 2013-03-26 2017-05-08 제이에프이 스틸 가부시키가이샤 취성 균열 전파 정지 특성이 우수한 대입열 용접용 고강도 후강판 및 그의 제조 방법
WO2015140846A1 (fr) * 2014-03-20 2015-09-24 Jfeスチール株式会社 Tôle d'acier épaisse à haute ténacité et haute résistance à la traction et procédé de production s'y rapportant
KR101892839B1 (ko) * 2014-04-24 2018-08-28 제이에프이 스틸 가부시키가이샤 후강판 및 그 제조 방법
EP3222744B1 (fr) * 2014-11-18 2020-09-16 JFE Steel Corporation Feuille d'acier épaisse, haute dureté, haute ténacité ayant une excellente uniformité de matière

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107208212B (zh) 2020-01-17
SG11201704242TA (en) 2017-06-29
JP6048626B1 (ja) 2016-12-21
CA2969200A1 (fr) 2016-07-21
KR101994784B1 (ko) 2019-07-01
KR20170095307A (ko) 2017-08-22
CN107208212A (zh) 2017-09-26
WO2016114146A1 (fr) 2016-07-21
EP3246426A1 (fr) 2017-11-22
EP3246426A4 (fr) 2018-01-10
US20170369958A1 (en) 2017-12-28
JPWO2016114146A1 (ja) 2017-04-27
CA2969200C (fr) 2020-06-02

Similar Documents

Publication Publication Date Title
EP3246426B1 (fr) Procédé de fabrication d'une tôle d'acier épaisse de haute ténacité et de haute résistance
EP2942414B1 (fr) Tôle d'acier épaisse, solide et très résistante à la traction, et son procédé de production
EP3135787B1 (fr) Tôle d'acier et son procédé de fabrication
EP3239327B1 (fr) Matériau d'acier haute résistance pour récipient sous pression ayant une ténacité remarquable après traitement thermique post-soudure (pwht), et son procédé de production
EP3222744B1 (fr) Feuille d'acier épaisse, haute dureté, haute ténacité ayant une excellente uniformité de matière
EP3120941B1 (fr) Tôle d'acier épaisse à haute ténacité et haute résistance à la traction et procédé de production s'y rapportant
EP2589676B1 (fr) Plaque ou tôle d'acier résistant à l'abrasion avec d'excellentes propriétés en termes de ténacité d'une soudure et de résistance à la rupture différée
EP2481826B1 (fr) Matériau à base d'acier moulé à haute résistance et haute ténacité et son procédé de fabrication
EP2792761B1 (fr) Poutre en double t en acier de grande épaisseur à haute résistance
EP3026138A1 (fr) Matériau d'acier à grande résistance mécanique pour utilisation dans les puits de pétrole, et tube pour puits de pétrole
EP2400041B1 (fr) Matériau en acier apte au soudage et son procédé de production
EP3722448B1 (fr) Acier riche en mn, et procédé de fabrication de celui-ci
KR20200033901A (ko) 고 Mn 강 및 그 제조 방법
JP5630321B2 (ja) 靭性に優れる高張力鋼板とその製造方法
EP3831973A1 (fr) Acier à haute teneur en manganèse et son procédé de production
EP3178954A1 (fr) Tôle en acier laminée à froid dotée d'excellentes propriétés de soudage par point, et procédé de fabrication de celle-ci
JPWO2019050010A1 (ja) 鋼板およびその製造方法
JP6536459B2 (ja) 厚鋼板およびその製造方法
JP6179609B2 (ja) 冷間加工性に優れた厚肉高強度鋼板の製造方法
RU2652281C1 (ru) Способ производства горячекатаных листов из высокопрочной стали
EP4245876A1 (fr) Tôle d'acier à haute robustesse et à haut rapport d'élasticité ayant une excellente stabilité thermique, et procédé de fabrication pour celle-ci

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20171208

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602016038711

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038000000

Ipc: C21D0009460000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/00 20060101ALI20200203BHEP

Ipc: C22C 38/16 20060101ALI20200203BHEP

Ipc: C21D 9/46 20060101AFI20200203BHEP

Ipc: C22C 38/46 20060101ALI20200203BHEP

Ipc: B21B 3/02 20060101ALN20200203BHEP

Ipc: C22C 38/12 20060101ALI20200203BHEP

Ipc: C21D 8/02 20060101ALI20200203BHEP

Ipc: C21D 9/00 20060101ALN20200203BHEP

Ipc: C22C 38/02 20060101ALI20200203BHEP

Ipc: C21D 7/13 20060101ALN20200203BHEP

Ipc: B21B 1/02 20060101ALN20200203BHEP

Ipc: C22C 38/48 20060101ALI20200203BHEP

Ipc: C22C 38/50 20060101ALI20200203BHEP

Ipc: C22C 38/58 20060101ALI20200203BHEP

Ipc: C22C 38/42 20060101ALI20200203BHEP

Ipc: B21B 3/00 20060101ALN20200203BHEP

Ipc: C21D 6/00 20060101ALI20200203BHEP

Ipc: C22C 38/08 20060101ALI20200203BHEP

Ipc: C22C 38/44 20060101ALI20200203BHEP

Ipc: C22C 38/54 20060101ALI20200203BHEP

Ipc: C22C 38/04 20060101ALI20200203BHEP

Ipc: C22C 38/06 20060101ALI20200203BHEP

INTG Intention to grant announced

Effective date: 20200219

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016038711

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1283965

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016038711

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230110

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231127

Year of fee payment: 9

Ref country code: FR

Payment date: 20231212

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231128

Year of fee payment: 9