EP3243920A1 - Spheroidal cast alloy - Google Patents
Spheroidal cast alloy Download PDFInfo
- Publication number
- EP3243920A1 EP3243920A1 EP17162715.1A EP17162715A EP3243920A1 EP 3243920 A1 EP3243920 A1 EP 3243920A1 EP 17162715 A EP17162715 A EP 17162715A EP 3243920 A1 EP3243920 A1 EP 3243920A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- cast iron
- casting
- iron alloy
- mpa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 79
- 239000000956 alloy Substances 0.000 title claims abstract description 79
- 229910001141 Ductile iron Inorganic materials 0.000 claims abstract description 52
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000005266 casting Methods 0.000 claims abstract description 30
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 229910001018 Cast iron Inorganic materials 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 9
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 230000003068 static effect Effects 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 239000010439 graphite Substances 0.000 claims description 16
- 229910002804 graphite Inorganic materials 0.000 claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 14
- 239000010451 perlite Substances 0.000 claims description 11
- 235000019362 perlite Nutrition 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000009826 distribution Methods 0.000 claims description 3
- 239000000969 carrier Substances 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 238000005275 alloying Methods 0.000 abstract description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 29
- 230000015572 biosynthetic process Effects 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/04—Cast-iron alloys containing spheroidal graphite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/10—Making spheroidal graphite cast-iron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
- C22C37/08—Cast-iron alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/10—Cast-iron alloys containing aluminium or silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D15/00—Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
- C21D5/04—Heat treatments of cast-iron of white cast-iron
- C21D5/06—Malleabilising
- C21D5/14—Graphitising
Definitions
- the invention relates to a nodular cast iron alloy with pearlitic-ferritic structure for cast iron products with a high static strength of 0.2% proof stress ⁇ 600 MPa and a tensile strength ⁇ 750 MPa with a good ductility of at least 2% until a ductile state without subsequent heat treatment 10%, comprising the non-iron components C, Si, P, Mg, S, Mn and Ni and the usual impurities.
- Possible applications for motor vehicle construction are, for example, chassis components such as wheel carriers, vehicle structural parts and crankshafts.
- a higher strength bainitic nodular cast iron alloy having 2 to 4% by weight of Ni and 0.05 to 0.45 by weight of Mn is known as non-iron components, and the Ni-Mn margin is to adjust the variable ratio of strength to elongation.
- the non-iron components are preferably 3.1 to 4% wt.% C and 1.8 to 3 wt.% Si.
- a material of this composition with this microstructure is characterized by a tensile strength of 650 to 850 MPa and a 0.2% proof stress of ⁇ 500 MPa with an elongation at break of 14.5 to 7%.
- Another cast iron alloy is known, which is described as high and wear resistant and corrosion resistant. It is composed of 3 to 4.2 wt.% C, 1 to 3.5 wt.% Si, 1 to 6 wt.% Ni, ⁇ 5 wt.% Cr, ⁇ 3 wt.% Cu, ⁇ 3 wt.% Mo, ⁇ 1% by weight Mn, ⁇ 1% by weight V, ⁇ 0.4 % P, ⁇ 0.1% by weight S, ⁇ 0.08% by weight Mg, ⁇ 0.3% by weight Sn and manufacturing impurities.
- nodular cast iron alloy From CA 122 40 66 A1 / US 448 49 53 A a higher-strength nodular cast iron alloy is known, wherein the nodular cast iron alloy as non-iron constituents 3 to 3.6 wt.% C, 3.5 to 5 wt.% Si, 0.7 to 5 wt.% Ni, 0 to 0.3 wt.% Mo, 0.2 to 0.4 wt. % Mn, ⁇ 0.06 wt% P and ⁇ 0.015 wt% S.
- From the US 370 22 69 A is a high strength high alloyed nodular cast iron alloy whose non-iron constituents comprise 2.6 to 4 wt% C, 1.5 to 4 wt% Si, 6 to 11 wt% Ni, ⁇ 7 wt% Co, ⁇ 0.4 wt% Mo, ⁇ 1 wt% Mn and ⁇ 0.2 wt% Cr.
- the high tensile strength of ⁇ 1000 MPa is due to a fine-grained bainitic structure, the target structure must be adjusted by means of a required heat treatment in the form of tempering, which in turn requires more effort.
- 35 04 A describes an iron-based higher alloy cast material whose non-iron constituents comprise 0.8 to 3.5 wt% C, 1 to 7 wt% Si, 5 to 15 wt% Ni, ⁇ 1 wt% Mn, ⁇ 2 wt% Cr, ⁇ 0.1% by weight of at least one element of the group Mg, Ca and Ce and ⁇ 2 wt.% Of at least one element of the group Mo, Nb, Ti and V.
- the material has a hardness of at least 250 HV at a microstructural content of at least 30% martensite, the Graphite formation is predominantly spherulitic.
- the target product is a lapping disk, preferably for use in semiconductor production.
- From the US 354 94 30 A is a high-strength bainitic ductile iron alloy known, wherein the nodular cast iron alloy as non-iron constituents 2.9 to 3.9 wt.% C, 1.7 to 2.6 wt.% Si, 3.2 to 7 wt.% Ni, 0.15 to 0.4 wt.% Mo, ⁇ 0.2 wt. % Cr and ⁇ 1 wt.% Mn.
- the alloy is characterized by a high tensile strength ⁇ 820 MPa, a 0.2% proof stress of ⁇ 520 MPa with an elongation at break of at least 2%.
- a heat treatment is required; in addition, locally used cooling molds may be required for larger wall thicknesses.
- DE 180 85 15 A1 a high strength nodular cast iron alloy whose non-iron components comprise 2.9 to 3.9 wt% C, 1.7 to 2.6 wt% Si, 3.2 to 7 wt% Ni, 0.15 to 0.4 wt% Mo, ⁇ 0.1 wt% Mg, 0 to 1 wt.% Mn and 0 to 0.25 wt.% Cr at a total content of Mo and Cr of at most 0.5 wt.%.
- This material has a tensile strength of ⁇ 1000 MPa and a 0.2% proof stress of ⁇ 750 MPa with an elongation at break of at least 4%.
- the central feature of the material is a heat treatment in the form of a tempering of several hours at temperatures of 200 to 315 ° C, since the specified parameters can not be achieved without starting the matrix structure.
- Out EP 1 834 005 B1 is a high-strength, mainly pearlitic ductile iron alloy known for automotive applications. This contains the non-iron components 3.0 to 3.7 wt.% C, 2.6 to 3.4 wt.% Si, 0.02 to 0.05 % P, 0.025 to 0.045 wt% Mg, 0.01 to 0.03 wt% Cr, 0.003 to 0.017 wt% Al, 0.0005 to 0.012 wt% S and 0.0004 to 0.002 wt% B, 0.1 to 1.5 wt. % Cu, 0.1 to 1.0 wt% Mn and unavoidable impurities.
- the chassis components produced in this composition already have a tensile strength of 600 to 900 MPa, a 0.2% proof stress of 400 to 600 at an elongation at break of 14 to 5% already in the cast state without an additional heat treatment.
- the nodular cast iron alloy according to the invention comprising 2.8 to 3.7% by weight C, 1.5 to 4% by weight Si, 1 to 6.2% by weight Ni, 0.02 to 0.05% by weight P, 0.025 to 0.06% by weight Mg, 0.01 to 0.03 wt.% Cr, 0.003 to 0.3 wt.% Al, 0.0005 to 0.012 wt.% S, 0.03 to 1.5 wt.% Cu and 0.1 to 2 wt.% Mn, remainder Fe and unavoidable impurities achieved, the nodular cast iron alloy in the cast state without subsequent heat treatment achieves a high static strength of a 0.2% proof stress ⁇ 600 MPa and a tensile strength ⁇ 750 MPa with simultaneously good ductility of an elongation at break A5 of 2 to 10%.
- the matrix structure surrounding the spherulitic graphite precipitates is perlitic-ferritic with> 50% perlite, preferably the perlite is finely striated and the ferrite is globular.
- the nodular cast iron alloy according to the invention differs markedly from that of the present invention US 585 35 04 A known alloy with a partially overlapping Ni alloy region.
- there is a difference to this DE 10 2004 040 056 A1 well-known cast iron alloy since mechanical properties of a needle-like ferrite differ significantly from those of a globular formed ferrite.
- the nodular cast iron alloy is formed as a sand nodular cast iron alloy.
- the core idea of the invention is to specify a nodular cast iron alloy which can be used on the basis of suitably coordinated compositions of the nodular cast iron alloy according to the invention and the resulting combinations of mechanical properties in motor vehicle construction, for example for axle and chassis parts which must plastically deform in the event of a collision of the motor vehicle and not allowed to break, but also for structural parts and crankshafts, which are exposed to high dynamic loads.
- the nodular cast iron alloy according to the invention already satisfies moderate alloy additions compared with austenitic nodular cast iron alloys.
- Ni and Si are known to increase the 0.2% proof stress. This is attributed on the one hand to the solid solution hardening (Si and Ni), on the other hand to a pearlite refining by lowering the austenite-ferrite transformation temperature to lower temperatures (Ni). It is advantageous that the alloy has the highest possible 0.2% proof strength at not inconsiderable elongation at break values (high lightweight potential). This is achieved primarily by the nodular cast iron alloy having from 1 to 6.2% by weight of Ni, preferably 2.5 to 5.2% by weight of Ni and particularly preferably 4 to 5.2% by weight of Ni.
- the nodular cast iron alloy according to the invention has a distinct advantage over the alloy DE 10 2004 040 056 A1 with similar Ni content limits, so even with small wall thicknesses of about 8 mm, a sure martensittransports structure is achieved without the need for a subsequent annealing.
- the nodular cast iron alloy according to the invention this is possible by observing certain composition ratios of Ni, Si and Mn contents.
- the sum of the contents of Ni and Si is ⁇ 9 wt.%,
- the ratio should be (Ni + 0.5 * Mn) / (1.5 * Si) do not exceed 1.5.
- Levels of Si ⁇ 1.5 wt% increase the risk of carbide formation, in the worst case, white whitening may result.
- Si> 4 wt.% Lead to a significant decrease in the elongation at break and also increase the risk of martensite formation due to the reduced carbon solubility in austenite.
- the Si content must also be limited for the reason that silicon shifts the austenite-ferrite transformation temperature toward higher temperatures and thus counteracts pearlite refinement aimed at via nickel additions.
- the alloying of 0.03 to 1.5% by weight of Cu takes place - in particular with respect to the limits specified for the ductile iron alloy according to the invention, low Ni contents and simultaneously high Si contents - to secure> 50% of the predominantly pearlitic microstructure for achieving the mechanical properties.
- Perlite, remainder ferrite, while ferrite is preferably globular.
- Mn is in increasing proportions a scrap companion. For an increase in yield strength, Mn is advantageous up to a moderate level. Mn also lowers the martensite start temperature and can thus help to reduce the risk of martensite formation in faster cooling thin-walled component parts.
- the upper limit for the nodular cast iron alloy according to the invention of 2% by weight Mn is due to a strong embrittlement due to carbide formation, but an increase of segregating grain boundary carbides, especially with simultaneously higher Si contents, can be observed even at lower Mn contents.
- the alloying of 0.003 to 0.3 wt.% Al can be carried out in order to achieve a further increase in strength through solid solution hardening.
- the Al content must be limited to ⁇ 0.3% by weight, since Al simultaneously acts as a ferrite stabilizer and thus, contrary to the predominantly pearlitic microstructure with> 50% perlite necessary for the mechanical properties.
- the graphite content is in the casting condition immediately after the casting process, i. after casting and cooling in the mold, formed spherical to more than 90% of the graphite present.
- the matrix structure of the casting immediately after the casting process in the cast state, ie after casting and cooling in the mold, is formed to 50 to 90% pearlitic.
- the structure of the casting immediately after the casting process in the cast state, i. after casting and cooling in the mold from 200 to 1200 spherulites per mm 2.
- the graphite particles preferably have a size distribution of at least 5% of the size 8, 40% to 70% of the size 7 and at most 35% of the size 6 according to DIN EN ISO 945.
- the casting has a Brinell hardness of 260 to 320 HBW.
- the yield strength Rp0.2 is shown as a function of the breaking elongation A5.
- Registered is the described embodiment of the inventive nodular cast iron alloy as well as representatives of the standardized in DIN EN 1563 and DIN EN 1564 ductile iron alloys.
- the gray lines in Figure 2 combine the minimum values according to the standard DIN EN 1563 for spheroidal graphite cast irons of grades produced in the cast state.
- the solid black line in Figure 2 combines the minimum values according to DIN EN 1564 for spheroidal graphite cast iron of heat-treated ADI grades.
- Black dashed lines show patented nodular cast iron alloys from Georg Fischer ( EP 1 834 005 B1 and EP 1 270 747 B1 ).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
- Heat Treatment Of Steel (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Abstract
Sphärogusslegierung sowie Gussstücke und deren Herstellverfahren mit perlitischferritischem Gefüge für Gusseisenprodukte mit einer hohen Festigkeit bei gleichzeitig guter Duktilität und Zähigkeit bereits im Gusszustand, umfassend als Nicht-Eisenbestandteile C, Si, Ni, Mn, Cu, Mg, Cr, Al, P, S und den üblichen Verunreinigungen, dadurch gekennzeichnet, dass die Sphärogusslegierung 2.8 bis 3.7 Gew.% C, 1.5 bis 4 Gew.% Si, 1 bis 6.2 Gew.% Ni, 0.02 bis 0.05 Gew.% P, 0.025 bis 0.06 Gew.% Mg, 0.01 bis 0.03 Gew.% Cr, 0.003 bis 0.3 Gew.% Al, 0.0005 bis 0.012 Gew.% S, 0.03 bis 1.5 Gew.% Cu und 0.1 bis 2 Gew.% Mn, Rest Fe und unvermeidbare Verunreinigungen enthält, wobei die Sphärogusslegierung im Gusszustand ohne anschliessende Wärmebehandlung eine hohe statische Festigkeit von einer 0.2%-Dehngrenze ¥600 MPa und einer Zugfestigkeit ¥750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung A5 von 2 bis 10 % erreicht.Nodular cast iron alloy as well as castings and their manufacturing processes with a pearlitic-ferritic structure for cast iron products with a high strength combined with good ductility and toughness already in the cast state, comprising as non-iron components C, Si, Ni, Mn, Cu, Mg, Cr, Al, P, S and the usual impurities, characterized in that the nodular cast iron alloy 2.8 to 3.7% by weight of C, 1.5 to 4% by weight Si, 1 to 6.2% by weight Ni, 0.02 to 0.05% by weight of P, 0.025 to 0.06% by weight Mg, 0.01 to 0.03 wt.% Cr, 0.003 to 0.3% by weight Al, 0.0005 to 0.012% by weight S, 0.03 to 1.5 wt.% Cu and 0.1 to 2% by weight of Mn, the balance Fe and unavoidable impurities, whereby the nodular cast iron alloy in the cast state without subsequent heat treatment has a high static strength of a 0.2% yield strength of ¥600 MPa and a tensile strength of ¥750 MPa with at the same time good ductility of one Elongation at break A5 of 2 to 10% achieved.
Description
Die Erfindung bezieht sich auf eine Sphärogusslegierung mit perlitisch-ferritischem Gefüge für Gusseisenprodukte mit einer bereits im Gusszustand ohne anschliessende Wärmebehandlung hohen statischen Festigkeit von einer 0.2%-Dehngrenze ≥ 600 MPa und einer Zugfestigkeit ≥ 750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung 2 % bis 10 %, umfassend die Nicht-Eisenbestandteile C, Si, P, Mg, S, Mn und Ni sowie die üblichen Verunreinigungen. Einsatzmöglichkeiten für den Kraftfahrzeugbau sind beispielsweise Fahrwerkskomponenten wie Radträger, Fahrzeug-Strukturteile sowie Kurbelwellen.The invention relates to a nodular cast iron alloy with pearlitic-ferritic structure for cast iron products with a high static strength of 0.2% proof stress ≥600 MPa and a tensile strength ≥750 MPa with a good ductility of at least 2% until a ductile state without
Im Kraftfahrzeugbau werden zunehmend höherfeste Gusseisenlegierungen verwendet, die sich zur Potentialausschöpfung einer Gewichtsreduzierung durch höhere Festigkeiten auszeichnen. Aus Kostengründen im Fokus stehen dabei möglichst der Verzicht auf jegliche Wärmbehandlungsprozesse sowie ein Erreichen der geforderten mechanischen Eigenschaften bei lediglich moderaten Legierzusätzen.In the automotive industry increasingly high-strength cast iron alloys are used, which are characterized for potential exploitation of a weight reduction by higher strengths. For reasons of cost, the focus is as far as possible on the renunciation of any heat treatment processes and achieving the required mechanical properties with only moderate alloying additions.
Aus der
Aus der
Aus der CA 122 40 66 A1 /
Aus der
In der
Aus der
Ferner beschreibt
Aus
Ausgehend von diesem Stand der Technik ist es zentrale Aufgabe der Erfindung, eine hochfeste Sphärogusslegierung anzugeben, deren Anforderungen an die 0.2%-Dehngrenze, Zugfestigkeit und Bruchdehnung bereits im Gusszustand ohne weiteres Zutun erreicht werden, die vorteilhaft im Gegensatz zu den bekannten hochfesten Gusseisenlegierungen wie z.B. ADI-Werkstoffen (=Austempered Ductile Iron) also keiner gesonderten Wärmebehandlung bedarf.Starting from this prior art, it is a central object of the invention to provide a high-strength ductile iron alloy, the requirements of the 0.2% proof strength, tensile strength and elongation at break already in the cast state without further action are achieved, which advantageously in contrast to the known high-strength cast iron alloys such. ADI materials (= Austempered Ductile Iron) so no separate heat treatment required.
Diese Aufgabe wird durch die erfindungsgemässe Sphärogusslegierung beinhaltend 2.8 bis 3.7 Gew.% C, 1.5 bis 4 Gew.% Si, 1 bis 6.2 Gew.% Ni, 0.02 bis 0.05 Gew.% P, 0.025 bis 0.06 Gew.% Mg, 0.01 bis 0.03 Gew.% Cr, 0.003 bis 0.3 Gew.% Al, 0.0005 bis 0.012 Gew.% S, 0.03 bis 1.5 Gew.% Cu und 0.1 bis 2 Gew.% Mn, Rest Fe und unvermeidbare Verunreinigungen erreicht, wobei die Sphärogusslegierung im Gusszustand ohne anschliessende Wärmebehandlung eine hohe statische Festigkeit von einer 0.2%-Dehngrenze ≥600 MPa und einer Zugfestigkeit ≥ 750 MPa bei gleichzeitig guter Duktilität von einer Bruchdehnung A5 von 2 bis 10 % erreicht.This object is achieved by the nodular cast iron alloy according to the invention comprising 2.8 to 3.7% by weight C, 1.5 to 4% by weight Si, 1 to 6.2% by weight Ni, 0.02 to 0.05% by weight P, 0.025 to 0.06% by weight Mg, 0.01 to 0.03 wt.% Cr, 0.003 to 0.3 wt.% Al, 0.0005 to 0.012 wt.% S, 0.03 to 1.5 wt.% Cu and 0.1 to 2 wt.% Mn, remainder Fe and unavoidable impurities achieved, the nodular cast iron alloy in the cast state without subsequent heat treatment achieves a high static strength of a 0.2% proof stress ≥600 MPa and a tensile strength ≥ 750 MPa with simultaneously good ductility of an elongation at break A5 of 2 to 10%.
Das die sphärolithischen Graphitausscheidungen umgebende Matrixgefüge ist dabei perlitisch-ferritisch ausgebildet mit > 50 % Perlit, vorzugsweise liegen der Perlit feinstreifig und der Ferrit globular vor. Auch dadurch unterscheidet sich die erfindungsgemässe Sphärogusslegierung neben den mechanischen Eigenschaften und dem Verzicht auf die Karbidbildner Mo, Nb, Ti und V deutlich von der aus
Vorzugsweise ist die Sphärogusslegierung als Sand-Sphärogusslegierung ausgebildet.Preferably, the nodular cast iron alloy is formed as a sand nodular cast iron alloy.
Der Kerngedanke der Erfindung ist es, eine Sphärogusslegierung anzugeben, die aufgrund geeignet abgestimmter Zusammensetzungen der erfindungsgemässen Sphärogusslegierung und den daraus resultierenden Kombinationen mechanischer Eigenschaften im Kraftfahrzeugbau eingesetzt werden kann beispielsweise für Achs- und Fahrwerksteile, welche sich im Falle eines Zusammenstosses des Kraftwagens plastisch verformen müssen und nicht brechen dürfen, aber auch für Strukturteile und Kurbelwellen, welche hohen dynamischen Belastungen ausgesetzt sind.The core idea of the invention is to specify a nodular cast iron alloy which can be used on the basis of suitably coordinated compositions of the nodular cast iron alloy according to the invention and the resulting combinations of mechanical properties in motor vehicle construction, for example for axle and chassis parts which must plastically deform in the event of a collision of the motor vehicle and not allowed to break, but also for structural parts and crankshafts, which are exposed to high dynamic loads.
Erwähnenswert ist, dass der erfindungsgemässen Sphärogusslegierung angesichts ihrer mechanischen Eigenschaften und Einsatzmöglichkeiten verglichen mit austenitischen Sphärogusslegierungen bereits moderate Legierungszusätze genügen.It is worth noting that, in view of their mechanical properties and possible applications, the nodular cast iron alloy according to the invention already satisfies moderate alloy additions compared with austenitic nodular cast iron alloys.
Ni und Si sind bekannt dafür, die 0.2%-Dehngrenze zu erhöhen. Dies wird einerseits auf die Mischkristallverfestigung zurückgeführt (Si und Ni), andererseits auf eine Perlitfeinung durch Absenkung der Austenit-Ferrit-Umwandlungstemperatur hin zu niedrigeren Temperaturen (Ni). Es ist von Vorteil, dass die Legierung eine möglichst hohe 0.2%-Dehngrenze bei nicht zu geringen Bruchdehnungswerten aufweist (hohes Leichtbaupotential). Dies wird in erster Linie dadurch erreicht, dass die Sphärogusslegierung 1 bis 6.2 Gew.% Ni, vorzugsweise 2.5 bis 5.2 Gew.% Ni und besonders bevorzugt 4 bis 5.2 Gew.% Ni aufweist.
Insbesondere in Verbindung mit 1.5 bis 4 Gew.% Si, vorzugsweise 2 bis 3.5 Gew.% Si und besonders bevorzugt 2.2 bis 3.3 Gew.% Si werden gute Festigkeitseigenschaften bei nicht zu geringen Bruchdehnungswerten erreicht. So liegt beispielsweise im Vergleich zu der aus
In particular in connection with 1.5 to 4 wt.% Si, preferably 2 to 3.5 wt.% Si and particularly preferably 2.2 to 3.3 wt.% Si good strength properties are achieved at not too low elongation at break values. For example, compared to the
Die Einhaltung der angegebenen unteren und oberen Grenzen für die Nicht-Eisenbestandteile Si und Ni sind entscheidend für das perlitisch-ferritische Zielgefüge und somit für die Erreichung der mechanischen Eigenschaften der erfindungsgemässen Sphärogusslegierung.
Bei Ni-Gehalten < 1 Gew.% ist keine merkliche Dehngrenzensteigerung zu verzeichnen, Gehalte > 6.2 Gew.% sind aufgrund eines erhöhten Risikos der Martensitbildung zu vermeiden. Hinsichtlich dieses Risikos der Martensitbildung weist die erfindungsgemässe Sphärogusslegierung einen deutlichen Vorteil auf gegenüber der Legierung aus
Gehalte an Si < 1.5 Gew.% erhöhen das Risiko der Karbidbildung, im schlimmsten Fall kann eine Weisserstarrung die Folge sein. Gehalte an Si > 4 Gew.% führen zu einem deutlichen Absinken der Bruchdehnung und erhöhen aufgrund der verringerten Kohlenstofflöslichkeit im Austenit ebenfalls das Risiko der Martensitbildung. Zudem ist der Si-Gehalt auch aus dem Grund zu begrenzen, als dass Silizium die Austenit-Ferrit-Umwandlungstemperatur hin zu höheren Temperaturen verschiebt und somit der über Nickel-Zugaben angestrebten Perlitfeinung entgegen wirkt.Compliance with the specified upper and lower limits for the non-iron constituents Si and Ni are decisive for the pearlitic-ferritic target structure and thus for the achievement of the mechanical properties of the ductile iron alloy according to the invention.
At Ni contents <1% by weight, there is no appreciable increase in yield strength. Contents> 6.2% by weight are to be avoided owing to an increased risk of martensite formation. With regard to this risk of martensite formation, the nodular cast iron alloy according to the invention has a distinct advantage over the
Levels of Si <1.5 wt% increase the risk of carbide formation, in the worst case, white whitening may result. Contents of Si> 4 wt.% Lead to a significant decrease in the elongation at break and also increase the risk of martensite formation due to the reduced carbon solubility in austenite. In addition, the Si content must also be limited for the reason that silicon shifts the austenite-ferrite transformation temperature toward higher temperatures and thus counteracts pearlite refinement aimed at via nickel additions.
Das Zulegieren von 0.03 bis 1.5 Gew.% Cu erfolgt - insbesondere bei bezogen auf die für die erfindungsgemässe Sphärogusslegierung angegebenen Grenzen niedrigen Ni-Gehalten bei gleichzeitig hohen Si-Gehalten - zur Sicherung des für die Erreichung der mechanischen Eigenschaften überwiegend perlitischen Gefüges mit > 50 % Perlit, Rest Ferrit, dabei Ferrit vorzugsweise globular ausgebildet.The alloying of 0.03 to 1.5% by weight of Cu takes place - in particular with respect to the limits specified for the ductile iron alloy according to the invention, low Ni contents and simultaneously high Si contents - to secure> 50% of the predominantly pearlitic microstructure for achieving the mechanical properties. Perlite, remainder ferrite, while ferrite is preferably globular.
Mn ist in zunehmenden Anteilen ein Schrottbegleiter. Für eine Steigerung der Dehngrenze ist Mn bis zu einem moderaten Gehalt vorteilhaft. Mn senkt zudem die Martensit-Starttemperatur und kann somit dazu beitragen, in schneller abkühlenden dünnwandigen Bauteil-Partien die Gefahr von Martensitbildung zu reduzieren. Die Obergrenze für die erfindungsgemässe Sphärogusslegierung von 2 Gew.% Mn ist durch eine starke Versprödung durch Karbidbildung bedingt, eine Zunahme von seigernden Korngrenzkarbiden insbesondere bei gleichzeitig höheren Si-Gehalten ist jedoch bereits bei tieferen Mn-Gehalten zu verzeichnen.Mn is in increasing proportions a scrap companion. For an increase in yield strength, Mn is advantageous up to a moderate level. Mn also lowers the martensite start temperature and can thus help to reduce the risk of martensite formation in faster cooling thin-walled component parts. The upper limit for the nodular cast iron alloy according to the invention of 2% by weight Mn is due to a strong embrittlement due to carbide formation, but an increase of segregating grain boundary carbides, especially with simultaneously higher Si contents, can be observed even at lower Mn contents.
Das Zulegieren von 0.003 bis 0.3 Gew.% Al kann erfolgen, um eine weitere Festigkeitssteigerung durch Mischkristallverfestigung zu erreichen. Der Gehalt an Al ist jedoch auf < 0.3 Gew.% zu begrenzen, da Al gleichzeitig als Ferritstabilisator wirkt und somit entgegen der für die mechanischen Eigenschaften notwendigen, überwiegend perlitischen Gefügeausbildung mit > 50 % Perlit.The alloying of 0.003 to 0.3 wt.% Al can be carried out in order to achieve a further increase in strength through solid solution hardening. However, the Al content must be limited to <0.3% by weight, since Al simultaneously acts as a ferrite stabilizer and thus, contrary to the predominantly pearlitic microstructure with> 50% perlite necessary for the mechanical properties.
Die Einhaltung der angegebenen oberen Grenzen für die Nicht-Eisenbestandteile Mn, Cu, Mg, Cr, Al, P, S sind entscheidend für die Erreichung der mechanischen Eigenschaften sowie die Bearbeitbarkeit von Gussteilen aus der erfindungsgemässen Sphärogusslegierung. Überhöhte Gehalte an Cu, Mg, Al und S können die Graphitausbildung negativ beeinflussen, entsprechende Abweichungen der Graphitgestalt von der angestrebten sphärolithischen Form führen zu deutlichen Verschlechterungen von Bruchdehnung und erreichbarer Festigkeit. Versprödend wirkt ebenfalls Cr, seinerseits durch Förderung der Karbidbildung.
Zu begrenzen ist P aufgrund der hinlänglich bekannten versprödenden Wirkung niedrigschmelzender P-reicher Phasen, die sich an Korngrenzen ausbilden können (ehemalige, P-angereicherte Restschmelzebereiche).Compliance with the upper limits specified for the non-iron components Mn, Cu, Mg, Cr, Al, P, S are crucial for achieving the mechanical properties and the machinability of castings from the ductile iron alloy according to the invention. Excessive contents of Cu, Mg, Al and S can adversely affect the graphite formation, and corresponding deviations of the graphite shape from the desired spherulitic form lead to significant deterioration of elongation at break and attainable strength. Also embrittling acts Cr, in turn, by promoting carbide formation.
P is limited due to the well-known embrittling effect of low-melting P-rich phases that can form at grain boundaries (former, P-enriched residual melt areas).
Vorzugsweise ist der Graphitanteil unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, zu mehr als 90 % des vorhandenen Graphits kugelförmig ausgebildet.Preferably, the graphite content is in the casting condition immediately after the casting process, i. after casting and cooling in the mold, formed spherical to more than 90% of the graphite present.
Vorteilhaft ist es, wenn das Matrixgefüge des Gussteiles unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, zu 50 bis 90 % perlitisch ausgebildet ist.It is advantageous if the matrix structure of the casting immediately after the casting process in the cast state, ie after casting and cooling in the mold, is formed to 50 to 90% pearlitic.
In einer vorteilhaften Ausführung weist das Gefüge des Gussteiles unmittelbar nach dem Giessprozess im Gusszustand, d.h. nach Giessen und Abkühlen in der Form, 200 bis 1200 Sphärolithen pro mm2 auf.In an advantageous embodiment, the structure of the casting immediately after the casting process in the cast state, i. after casting and cooling in the mold, from 200 to 1200 spherulites per mm 2.
Vorzugsweise weisen die Graphitteilchen eine Grössenverteilung von mindestens 5 % der Grösse 8, 40 % bis 70 % der Grösse 7 und höchstens 35 % der Grösse 6 gemäss DIN EN ISO 945 auf.The graphite particles preferably have a size distribution of at least 5% of the size 8, 40% to 70% of the size 7 and at most 35% of the size 6 according to DIN EN ISO 945.
Vorteilhaft ist es, wenn das Gussteil eine Brinellhärte von 260 bis 320 HBW aufweist.It is advantageous if the casting has a Brinell hardness of 260 to 320 HBW.
Ein Ausführungsbeispiel der Erfindung wird wie folgt beschrieben, wobei sich die Erfindung nicht nur auf oder durch das folgende Ausführungsbeispiel beschränkt.An embodiment of the invention will be described as follows, the invention not being limited only to or by the following embodiment.
Eine Y2-Probe wurde aus der erfindungsgemässen Sphärogusslegierung in Sand abgegossen. Die chemische Zusammensetzung beträgt 2.87 Gew.% C, 5.12 Gew.% Ni, 3.25 Gew.% Si, 0.03 Gew.% Cu, 0.22 Gew.% Mn, 0.046 Gew. % Mg, 0.037 Gew.% P, 0.022 Gew.% Cr, 0.013 Gew.% Al und 0.003 Gew.% S, Rest Fe und den üblichen Verunreinigungen. Die Summe der Gehalte Ni+Si beträgt somit ≈ 8.4 Gew.% (≤ 9 Gew.% bevorzugt), das Verhältnis (Ni+0.5*Mn)/(1.5*Si) ≈ 1.1 (≤ 1.5 bevorzugt).
Das Gussstück wurde im Gusszustand untersucht auf Sphärolithenzahl, Graphitgehalt, Graphitform und Graphitgrösse, Perlitgehalt, sowie auf Kennwerte aus dem Zugversuch, auf die Brinellhärte und Schlagarbeit. Die Sphärolithenzahl beträgt 218 Sphärolithen pro mm2, der Graphitgehalt 10.6 %. Die Graphitform nach DIN EN ISO 945 ist zu 94 % von der Form VI. Die Grössenverteilung nach DIN EN ISO 945
ist 8 % der Grösse 8, 57 % der Grösse 7 und 33 % der Grösse 6. Der Perlitgehalt der Matrix beträgt 79 % (Gefügeaufnahme siehe
Die Raumtemperatur-Zugversuche nach DIN EN ISO 6892-1 ergaben folgende Kennwerte:
- 0.2%-Dehngrenze: 658 bis 663 MPa,
- Zugfestigkeit: 884 bis 889 MPa,
- Bruchdehnung: 6.2 bis 7.9 %,
- Elastizitätsmodul (ermittelt über Regression im Bereich 100 - 300 MPa): 175 bis 186 GPa.
Damit liegen die Proben dieser Beispielvariante der erfindungsgemässen Sphärogusslegierung hinsichtlich der Zugprüfkennwerte bereits im Gusszustand in der Grössenordnung von ADI (=Austempered Ductile Iron), einem durch eine sehr aufwendige Wärmebehandlung erzeugten, in grösseren Wanddicken nur durch Zulegieren der Elemente Ni und/oder Mo realisierbaren und damit erwartungsgemäss teureren Sphärogusswerkstoff, der in
The casting was examined as cast for spherulite number, graphite content, graphite form and graphite size, perlite content, as well as for tensile strength, Brinell hardness and impact strength. The number of spherulites is 218 spherulites per mm 2, the graphite content is 10.6%. The graphite mold according to DIN EN ISO 945 is 94% of the form VI. The size distribution according to DIN EN ISO 945
is 8% of the size 8, 57% of the size 7 and 33% of the size 6. The pearlite content of the matrix is 79% (micrographs see
The room temperature tensile tests according to DIN EN ISO 6892-1 gave the following characteristics:
- 0.2% proof stress: 658 to 663 MPa,
- Tensile strength: 884 to 889 MPa,
- Elongation at break: 6.2 to 7.9%,
- Modulus of elasticity (determined by regression in the range 100-300 MPa): 175 to 186 GPa.
Thus, the samples of this example variant of the nodular cast iron alloy according to the invention are already cast in the cast state in the order of magnitude of ADI (= austempered ductile iron), produced by a very complex heat treatment, can be realized in larger wall thicknesses only by alloying the elements Ni and / or Mo. Expectantly more expensive nodular cast iron, which is standardized in Europe under
Zur Veranschaulichung ist in
Claims (13)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17162715.1A EP3243920B1 (en) | 2017-03-24 | 2017-03-24 | Spheroidal cast alloy |
BR102018004643A BR102018004643A2 (en) | 2017-03-24 | 2018-03-08 | nodular cast alloy |
MX2018003248A MX2018003248A (en) | 2017-03-24 | 2018-03-15 | Nodular cast alloy. |
US15/921,842 US20180274066A1 (en) | 2017-03-24 | 2018-03-15 | Nodular cast alloy |
KR1020180033303A KR20180108495A (en) | 2017-03-24 | 2018-03-22 | Nodular cast alloy |
CN201810244212.2A CN108624803A (en) | 2017-03-24 | 2018-03-23 | Spheroidal graphite cast alloy |
JP2018056599A JP7369513B2 (en) | 2017-03-24 | 2018-03-23 | Spheroidal graphite cast iron alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17162715.1A EP3243920B1 (en) | 2017-03-24 | 2017-03-24 | Spheroidal cast alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3243920A1 true EP3243920A1 (en) | 2017-11-15 |
EP3243920B1 EP3243920B1 (en) | 2020-04-29 |
Family
ID=58412966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17162715.1A Active EP3243920B1 (en) | 2017-03-24 | 2017-03-24 | Spheroidal cast alloy |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180274066A1 (en) |
EP (1) | EP3243920B1 (en) |
JP (1) | JP7369513B2 (en) |
KR (1) | KR20180108495A (en) |
CN (1) | CN108624803A (en) |
BR (1) | BR102018004643A2 (en) |
MX (1) | MX2018003248A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023110683A1 (en) * | 2021-12-13 | 2023-06-22 | Sediver | Grade of ductile iron with reinforced ferritic matrix |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109402496A (en) * | 2018-11-28 | 2019-03-01 | 精诚工科汽车系统有限公司 | Alloying element addition method for determination of amount and ductile cast iron casting and its casting and mold in ductile cast iron casting with uniform wall thickness |
US11618937B2 (en) | 2019-10-18 | 2023-04-04 | GM Global Technology Operations LLC | High-modulus, high-strength nodular iron and crankshaft |
CN113897538A (en) * | 2021-10-12 | 2022-01-07 | 安徽裕隆模具铸业有限公司 | High-strength and high-elongation as-cast QT500-18 nodular cast iron and preparation method thereof |
CN114411049B (en) * | 2021-12-29 | 2022-12-02 | 天润工业技术股份有限公司 | Low-cost and high-strength ferritic nodular cast iron and preparation method and application thereof |
US12044270B2 (en) * | 2022-03-25 | 2024-07-23 | GM Global Technology Operations LLC | Lightweight nodular iron crankshaft for heavy duty engine |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1808515A1 (en) | 1967-11-14 | 1969-07-17 | Int Nickel Ltd | Cast iron with spheroidal graphite |
US3702269A (en) | 1971-01-22 | 1972-11-07 | Int Nickel Co | Ultra high strength ductile iron |
US4484953A (en) | 1983-01-24 | 1984-11-27 | Ford Motor Company | Method of making ductile cast iron with improved strength |
US5853504A (en) | 1996-09-05 | 1998-12-29 | Kabushiki Kaisha Toshiba | Material for lapping tools and lapping surface plate using the same |
EP1225239A1 (en) | 1999-06-08 | 2002-07-24 | Asahi Tec Corporation | Non-austempered spheroidal graphite cast iron |
DE102004040056A1 (en) | 2004-08-18 | 2006-02-23 | Federal-Mogul Burscheid Gmbh | High- and wear-resistant, corrosion-resistant cast iron material |
DE102004056331A1 (en) * | 2004-11-22 | 2006-05-24 | Georg Fischer Fahrzeugtechnik Ag | Ductile cast iron alloy and method for producing castings from nodular cast iron alloy |
WO2006072663A2 (en) * | 2005-01-05 | 2006-07-13 | Metso Paper, Inc. | Ductile iron and method for manufacturing ductile iron for engineering components requiring strength and toughness |
EP1270747B1 (en) | 2001-06-20 | 2006-10-04 | Georg Fischer Fahrzeugtechnik AG | Spheroidal graphite cast iron |
DE102008050152A1 (en) * | 2008-10-01 | 2010-04-08 | Claas Guss Gmbh | Preparing ductile and highly solid cast iron comprises e.g. completely melting and heating a precursor at specific temperature, overheating, deslagging, adjusting tapping temperature, subjecting to magnesium treatment, casting and molding |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5917186B2 (en) * | 1977-03-30 | 1984-04-19 | 日立金属株式会社 | Spheroidal graphite cast iron and its manufacturing method |
JP3597211B2 (en) * | 1993-10-21 | 2004-12-02 | 株式会社日本製鋼所 | Spheroidal graphite cast iron with excellent high-temperature strength |
JP2001059127A (en) * | 1999-06-08 | 2001-03-06 | Asahi Tec Corp | Nodular graphite cast iron |
KR100681270B1 (en) * | 2005-09-05 | 2007-02-09 | 한금태 | Nodular cast iron |
JP2007327083A (en) * | 2006-06-06 | 2007-12-20 | I Metal Technology Co Ltd | Spheroidal graphite cast iron and its production method |
JP4963444B2 (en) * | 2007-06-21 | 2012-06-27 | 旭テック株式会社 | Spheroidal graphite cast iron member |
-
2017
- 2017-03-24 EP EP17162715.1A patent/EP3243920B1/en active Active
-
2018
- 2018-03-08 BR BR102018004643A patent/BR102018004643A2/en not_active Application Discontinuation
- 2018-03-15 MX MX2018003248A patent/MX2018003248A/en unknown
- 2018-03-15 US US15/921,842 patent/US20180274066A1/en not_active Abandoned
- 2018-03-22 KR KR1020180033303A patent/KR20180108495A/en not_active IP Right Cessation
- 2018-03-23 CN CN201810244212.2A patent/CN108624803A/en active Pending
- 2018-03-23 JP JP2018056599A patent/JP7369513B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1808515A1 (en) | 1967-11-14 | 1969-07-17 | Int Nickel Ltd | Cast iron with spheroidal graphite |
US3549430A (en) | 1967-11-14 | 1970-12-22 | Int Nickel Co | Bainitic ductile iron having high strength and toughness |
US3702269A (en) | 1971-01-22 | 1972-11-07 | Int Nickel Co | Ultra high strength ductile iron |
US4484953A (en) | 1983-01-24 | 1984-11-27 | Ford Motor Company | Method of making ductile cast iron with improved strength |
CA1224066A (en) | 1983-01-24 | 1987-07-14 | Roman M. Nowicki | Method of making ductile cast iron with improved strength |
US5853504A (en) | 1996-09-05 | 1998-12-29 | Kabushiki Kaisha Toshiba | Material for lapping tools and lapping surface plate using the same |
EP1225239A1 (en) | 1999-06-08 | 2002-07-24 | Asahi Tec Corporation | Non-austempered spheroidal graphite cast iron |
EP1270747B1 (en) | 2001-06-20 | 2006-10-04 | Georg Fischer Fahrzeugtechnik AG | Spheroidal graphite cast iron |
DE102004040056A1 (en) | 2004-08-18 | 2006-02-23 | Federal-Mogul Burscheid Gmbh | High- and wear-resistant, corrosion-resistant cast iron material |
DE102004056331A1 (en) * | 2004-11-22 | 2006-05-24 | Georg Fischer Fahrzeugtechnik Ag | Ductile cast iron alloy and method for producing castings from nodular cast iron alloy |
EP1834005B1 (en) | 2004-11-22 | 2010-08-18 | Georg Fischer Automotive AG | Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy |
WO2006072663A2 (en) * | 2005-01-05 | 2006-07-13 | Metso Paper, Inc. | Ductile iron and method for manufacturing ductile iron for engineering components requiring strength and toughness |
DE102008050152A1 (en) * | 2008-10-01 | 2010-04-08 | Claas Guss Gmbh | Preparing ductile and highly solid cast iron comprises e.g. completely melting and heating a precursor at specific temperature, overheating, deslagging, adjusting tapping temperature, subjecting to magnesium treatment, casting and molding |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023110683A1 (en) * | 2021-12-13 | 2023-06-22 | Sediver | Grade of ductile iron with reinforced ferritic matrix |
WO2023111403A1 (en) * | 2021-12-13 | 2023-06-22 | Sediver | Grade of ductile iron with reinforced ferritic matrix |
Also Published As
Publication number | Publication date |
---|---|
KR20180108495A (en) | 2018-10-04 |
CN108624803A (en) | 2018-10-09 |
US20180274066A1 (en) | 2018-09-27 |
EP3243920B1 (en) | 2020-04-29 |
JP2018162516A (en) | 2018-10-18 |
MX2018003248A (en) | 2018-11-09 |
JP7369513B2 (en) | 2023-10-26 |
BR102018004643A2 (en) | 2018-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3243920B1 (en) | Spheroidal cast alloy | |
JP4966316B2 (en) | Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof | |
EP2059623A1 (en) | Rustproof austenitic cast steel, method for production and use thereof | |
EP0091897B1 (en) | Strain hardening austenitic manganese steel and process for the manufacture thereof | |
DE102005027258B4 (en) | High carbon steel with superplasticity | |
CN110468341B (en) | 1400 MPa-level delayed fracture-resistant high-strength bolt and manufacturing method thereof | |
DE102010026808B4 (en) | Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use | |
DE112010003614T5 (en) | High strength screw | |
DE69702428T2 (en) | High-strength and high-tough heat-resistant cast steel | |
EP3788176A1 (en) | Medium manganese cold-rolled steel intermediate product having a reduced carbon fraction, and method for providing such a steel intermediate product | |
JP2007302950A (en) | High-strength spring steel wire superior in setting resistance | |
JPS61130456A (en) | High-strength bolt and its production | |
WO2009090228A1 (en) | Parts made of high-strength, ductile cast steel having a high manganese content, method for the production thereof, and use thereof | |
DE102016107787A1 (en) | Ultrahigh-strength spring steel | |
DE102008050152B4 (en) | High-strength, ductile cast iron alloy with nodular graphite and process for its production | |
DE102010012718A1 (en) | Density reduced ultra-high carbon containing lightweight steel, useful to manufacture component for motor vehicle, preferably to manufacture part of e.g. engine, comprises carbon, aluminum, silicon, chromium, manganese and balance of iron | |
DE10101159C2 (en) | Cast material with a ferritic structure and spheroidal graphite, in particular ferritic cast iron | |
DE102006038669A1 (en) | Steel material, in particular for the production of piston rings | |
WO2017167778A1 (en) | Steel having reduced density and method for producing a flat or long steel product from such a steel | |
WO2021063746A1 (en) | Method for producing a steel product and corresponding steel product | |
DE102004010917A1 (en) | Cast iron material with lamellar graphite formation used in making suspension seals comprises carbon, silicon, aluminum, manganese, sulfur, chromium, copper, tin, nitrogen and iron | |
DE102016208400A1 (en) | Ultrahigh-strength spring steel for a valve spring | |
EP3458623B1 (en) | Method for producing a steel material, and steel material | |
DE102014205392A1 (en) | Components made of a steel alloy and method for producing high-strength components | |
JP3416868B2 (en) | High-strength, low-ductility non-heat treated steel with excellent machinability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180515 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180820 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GF CASTING SOLUTIONS LEIPZIG GMBH Owner name: GF CASTING SOLUTIONS KUNSHAN CO. LTD. |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 15/00 20060101ALN20191017BHEP Ipc: C22C 37/08 20060101ALI20191017BHEP Ipc: C22C 37/10 20060101ALI20191017BHEP Ipc: C21C 1/10 20060101ALI20191017BHEP Ipc: C21D 5/14 20060101ALN20191017BHEP Ipc: C21D 5/00 20060101ALN20191017BHEP Ipc: C22C 37/04 20060101AFI20191017BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22D 15/00 20060101ALN20191018BHEP Ipc: C22C 37/04 20060101AFI20191018BHEP Ipc: C22C 37/08 20060101ALI20191018BHEP Ipc: C21D 5/00 20060101ALN20191018BHEP Ipc: C21D 5/14 20060101ALN20191018BHEP Ipc: C21C 1/10 20060101ALI20191018BHEP Ipc: C22C 37/10 20060101ALI20191018BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191106 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1263390 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017004938 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200730 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200831 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200829 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502017004938 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210324 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210324 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210324 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210324 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1263390 Country of ref document: AT Kind code of ref document: T Effective date: 20220324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200429 |