JP2018162516A - Nodular graphite cast iron alloy - Google Patents

Nodular graphite cast iron alloy Download PDF

Info

Publication number
JP2018162516A
JP2018162516A JP2018056599A JP2018056599A JP2018162516A JP 2018162516 A JP2018162516 A JP 2018162516A JP 2018056599 A JP2018056599 A JP 2018056599A JP 2018056599 A JP2018056599 A JP 2018056599A JP 2018162516 A JP2018162516 A JP 2018162516A
Authority
JP
Japan
Prior art keywords
mass
cast iron
iron alloy
spheroidal graphite
graphite cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018056599A
Other languages
Japanese (ja)
Other versions
JP7369513B2 (en
Inventor
パーピス コンラート
Papis Konrad
パーピス コンラート
ヴィアシュケ ゼバスティアン
Wierschke Sebastian
ヴィアシュケ ゼバスティアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fischer Eisenguss GmbH
GF Casting Solutions Kunshan Co Ltd
Georg Fischer GmbH
Fondium Mettmann GmbH
Fondium Singen GmbH
Original Assignee
Georg Fischer Eisenguss GmbH
GF Casting Solutions Kunshan Co Ltd
Georg Fischer GmbH
GF Casting Solutions Singen GmbH
GF Casting Solutions Mettmann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer Eisenguss GmbH, GF Casting Solutions Kunshan Co Ltd, Georg Fischer GmbH, GF Casting Solutions Singen GmbH, GF Casting Solutions Mettmann GmbH filed Critical Georg Fischer Eisenguss GmbH
Publication of JP2018162516A publication Critical patent/JP2018162516A/en
Application granted granted Critical
Publication of JP7369513B2 publication Critical patent/JP7369513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • C21D5/04Heat treatments of cast-iron of white cast-iron
    • C21D5/06Malleabilising
    • C21D5/14Graphitising

Abstract

PROBLEM TO BE SOLVED: To provide a high-strength nodular graphite cast iron alloy which is excellent in the 0.2% yield strength, tensile strength and elongation at break in a cast state and does not require a separate heat treatment.SOLUTION: The nodular graphite cast iron alloy having a pearlitic-ferritic structure for cast iron products, contains: 2.8 to 3.7 mass% of C; 1.5 to 4 mass% of Si; 1 to 6.2 mass% of Ni; 0.02 to 0.05 mass% of P; 0.025 to 0.06 mass% of Mg; 0.01 to 0.03 mass% of Cr; 0.003 to 0.3 mass% of Al; 0.0005 to 0.012 mass% of S; 0.03 to 1.5 mass% of Cu; 0.1 to 2 mass% of Mn; and the balance of Fe and unavoidable impurities. The nodular graphite cast iron alloy in a cast state even without subsequent heat treatment achieves a high static strength of a 0.2% yield strength of at least 600 MPa and a tensile strength of at least 750 MPa as well as good ductility of an elongation at break A5 of 2 to 10%.SELECTED DRAWING: Figure 1

Description

本発明は、非鉄成分のC、Si、P、Mg、S、MnおよびNi、ならびに通常の不純物を含み、鋳造状態で引き続き熱処理を行わなくても、既に≧600MPaの0.2%耐力および≧750MPaの引張強さの高い静的強度と同時に、2%〜10%の破断伸びの良好な延性を有する鋳鉄製品用のパーライト−フェライト状組織を有する球状黒鉛鋳鉄合金に関する。自動車製造用の使用可能性は、例えばホイールキャリア、車両構造部材、ならびにクランクシャフトのようなシャシ構成要素である。   The present invention includes non-ferrous components C, Si, P, Mg, S, Mn, and Ni, and normal impurities, and already has 0.2% proof stress of ≧ 600 MPa and ≧≧ The present invention relates to a spheroidal graphite cast iron alloy having a pearlite-ferrite-like structure for cast iron products having a good ductility with a tensile strength of 750 MPa and a high elongation at break of 2% to 10%. Usability for automobile manufacture is for example chassis components such as wheel carriers, vehicle structural members, and crankshafts.

自動車製造において、重量軽減の可能性を利用するために比較的高い強度により優れている、高硬質鋳鉄合金を使用することが次第に増えている。この場合、コストの理由から、できる限り、全ての熱処理プロセスを省略し、ならびに単に適度な合金添加で必要とされる機械特性を達成することが焦点となっている。   Increasingly, in the manufacture of automobiles, the use of high-hard cast iron alloys that are superior to their relatively high strength to take advantage of the possibility of weight reduction is increasing. In this case, for cost reasons, the focus is on omitting all heat treatment processes as much as possible, and simply achieving the mechanical properties required with moderate alloy addition.

欧州特許出願公開第1225239号明細書(EP 1 225 239 A1)からは、非鉄成分として、Ni2〜4質量%およびMn0.05〜0.45質量%を含有する高硬質ベイナイト球状黒鉛鋳鉄合金が公知であり、このNi−Mnスパンが、伸び率に対する強度の変化可能な比率の調節に利用される。この発明の実施のためには、非鉄成分のC 3.1〜4質量%およびSi 1.8〜3質量%が好ましい。この組織を有するこの組成の原材料は、650〜850MPaの引張強さ、および≧500MPaの0.2%耐力で、14.5〜7%の破断伸びにより優れている。これらの特性は、熱処理を行うことなく達成されるのだが、達成可能な強度は合金組成により制限されている。   From EP 1225239 (EP 1 225 239 A1), a high-hardness bainite spheroidal graphite cast iron alloy containing 2 to 4% by mass of Ni and 0.05 to 0.45% by mass of Mn is known as a non-ferrous component. This Ni-Mn span is used to adjust the ratio of changeable strength to elongation. For the practice of this invention, non-ferrous components C 3.1-4% by weight and Si 1.8-3% by weight are preferred. The raw material of this composition having this structure is superior in tensile elongation of 650 to 850 MPa and 0.2% proof stress of ≧ 500 MPa with a breaking elongation of 14.5 to 7%. These properties are achieved without heat treatment, but the achievable strength is limited by the alloy composition.

独国特許出願公開第102004040056号明細書(DE 10 2004 040 056 A1)からは、高張力および耐摩耗性で、かつ耐腐食性であると記載されている別の鋳鉄合金が公知である。この鋳鉄合金は、C 3〜4.2質量%、Si 1〜3.5質量%、Ni 1〜6質量%、Cr ≦5質量%、Cu ≦3質量%、Mo ≦3質量%、Mn ≦1質量%、V ≦1質量%、P ≦0.4質量%、S ≦0.1質量%、Mg ≦0.08質量%、Sn ≦0.3質量%および製造に起因する不純物から構成される。この別の合金範囲は、オーステナイト(<20%)、マルテンサイト(<30%)、パーライト(<50%)および炭化物(<15%)の多様な割合を有する>50%針状フェライトの多様なマトリックス組成を生じ、黒鉛形成は、球状黒鉛に限らず、バーミキュラ状および片状であることもある。ピストンリングの適用例に関して達成可能な曲げ破壊強さは、>1100MPaであり、硬さは320HB2.5であり、詳細には述べられていない高い靭性/延性が強調されている。しかし破断伸びは、特に組織内に15%までの炭化物含有率を有する合金バリエーションでは、明らかに低減されるであろう。わずかな肉厚(モジュール≦1.5cm)の場合にはさらに、<700℃の温度での焼戻しの形の付加的なプロセス工程が必要であることがある。   From German Offenlegungsschrift 10 200 404 0056 (DE 10 2004 040 056 A1) another cast iron alloy is known which is described as being high tension and wear resistant and corrosion resistant. This cast iron alloy has C 3 to 4.2 mass%, Si 1 to 3.5 mass%, Ni 1 to 6 mass%, Cr ≦ 5 mass%, Cu ≦ 3 mass%, Mo ≦ 3 mass%, Mn ≦ 1 mass%, V ≦ 1 mass%, P ≦ 0.4 mass%, S ≦ 0.1 mass%, Mg ≦ 0.08 mass%, Sn ≦ 0.3 mass% and impurities resulting from the production. The This alternate alloy range includes a variety of> 50% acicular ferrite with various proportions of austenite (<20%), martensite (<30%), pearlite (<50%) and carbide (<15%). A matrix composition is produced, and the graphite formation is not limited to spherical graphite, but may be vermicular or piece-like. The bend fracture strength achievable for piston ring applications is> 1100 MPa, the hardness is 320 HB2.5, highlighting the high toughness / ductility not mentioned in detail. However, the elongation at break will obviously be reduced, especially in alloy variations with up to 15% carbide content in the structure. In the case of small wall thicknesses (module ≦ 1.5 cm), additional process steps in the form of tempering at temperatures <700 ° C. may also be necessary.

カナダ国特許出願公開第1224066号明細書/米国特許第4484953号明細書(CA 122 40 66 A1/US 448 49 53 A)からは、高張力球状黒鉛鋳鉄合金が公知であり、この球状黒鉛鋳鉄合金は、非鉄成分としてC 3〜3.6質量%、Si 3.5〜5質量%、Ni 0.7〜5質量%、Mo 0〜0.3質量%、Mn 0.2〜0.4質量%、P ≦0.06質量%、およびS ≦0.015質量%を含む。この場合、記載された≧950MPaの引張強さ、≧550MPaの0.2%耐力、および6〜10%の破断伸びを達成するために、フェライト−ベイナイト組織が不可欠であり、このフェライト−ベイナイト組織は完全にフェライト化する熱処理が必ず必要であることが欠点である。   From Canadian Patent Application No. 1224066 / US Pat. No. 4,484,953 (CA 122 40 66 A1 / US 448 49 53 A), a high-tensile spheroidal graphite cast iron alloy is known, and this spheroidal graphite cast iron alloy is known. Is C 3 to 3.6 mass%, Si 3.5 to 5 mass%, Ni 0.7 to 5 mass%, Mo 0 to 0.3 mass%, Mn 0.2 to 0.4 mass as a non-ferrous component %, P ≦ 0.06 mass%, and S ≦ 0.015 mass%. In this case, the ferrite-bainite structure is indispensable in order to achieve the stated tensile strength of ≧ 950 MPa, 0.2% proof stress of ≧ 550 MPa and 6-10% elongation at break. The disadvantage is that a heat treatment that completely ferritizes is absolutely necessary.

米国特許第3702269号明細書(US 370 22 69 A)からは、高張力の高合金化された球状黒鉛鋳鉄合金が公知であり、この非鉄成分は、C 2.6〜4質量%、Si 1.5〜4質量%、Ni 6〜11質量%、Co ≦7質量%、Mo ≦0.4質量%、Mn ≦1質量%、およびCr ≦0.2質量%を含む。≧1000MPaの高い引張強さは、微細粒のベイナイト組織に限られ、この場合、この目標組織は焼戻しの形での必要な熱処理によって調節しなければならず、これはまたコストの増大を必要とする。   From U.S. Pat. No. 3,702,269 (US 370 22 69 A), a high-strength, highly alloyed spheroidal graphite cast iron alloy is known, the non-ferrous component comprising C 2.6-4 mass%, Si 1 5-4 mass%, Ni 6-11 mass%, Co ≦ 7 mass%, Mo ≦ 0.4 mass%, Mn ≦ 1 mass%, and Cr ≦ 0.2 mass%. A high tensile strength of ≧ 1000 MPa is limited to a fine grained bainite structure, in which case this target structure must be adjusted by the necessary heat treatment in the form of tempering, which also requires an increase in cost. To do.

米国特許第5853504号明細書(US 585 35 04 A)には、鉄を基礎とする高合金化された鋳造材料が記載されていて、この鋳造材料の非鉄成分は、C 0.8〜3.5質量%、Si 1〜7質量%、Ni 5〜15質量%、Mn ≦1質量%、Cr ≦2質量%、Mg、CaおよびCeの群の少なくとも1つの元素 ≦0.1質量%、およびMo、Nb、TiおよびVの群の少なくとも1つの元素 ≦2質量%を含む。この原材料は、少なくとも30%のマルテンサイトの組織割合で少なくとも250HVの硬さを有し、黒鉛形成は、主に球状である。目的生成物として、好ましくは半導体製造の際に使用するためのラッピングディスクが公知である。任意の熱処理にもかかわらず、合金中に含まれる5〜10%の炭化物およびマルテンサイト状マトリックスの大きすぎる部分に基づき、低すぎる破断伸びが生じる。これは、安全上の理由から、動的荷重がかかる自動車用鋳造製品、例えば構造部材/シャシ部材についての使用が除外される。   U.S. Pat. No. 5,853,504 (US 585 35 04 A) describes a highly alloyed casting material based on iron, the non-ferrous component of which is C 0.8-3. 5 wt%, Si 1-7 wt%, Ni 5-15 wt%, Mn ≤1 wt%, Cr ≤2 wt%, at least one element of the group of Mg, Ca and Ce ≤0.1 wt%, and At least one element of the group of Mo, Nb, Ti and V ≦ 2% by mass. This raw material has a hardness of at least 250 HV with a martensite structure proportion of at least 30%, and the graphite formation is mainly spherical. As target product, wrapping discs are preferably known for use in the production of semiconductors. Despite the optional heat treatment, the elongation at break is too low based on the 5-10% carbides contained in the alloy and the too large portion of the martensitic matrix. For safety reasons, this excludes the use of dynamically cast automotive castings such as structural / chassis members.

米国特許第3549430号明細書(US 354 94 30 A)からは、高張力のベイナイト状球状黒鉛鋳鉄合金が公知であり、この球状黒鉛鋳鉄合金は、非鉄成分として、C 2.9〜3.9質量%、Si 1.7〜2.6質量%、Ni 3.2〜7質量%、Mo 0.15〜0.4質量%、Cr ≦0.2質量%、およびMn ≦1質量%を含む。この合金は、≧820MPaの高い引張強さ、≧520MPaの0.2%耐力で、少なくとも2%の破断伸びにより優れている。これらの特性を達成するために熱処理が必要であり、さらに大きな肉厚の場合には局所的に使用される低温鋳造が必要となることがある。   From US Pat. No. 3,549,430 (US 354 94 30 A), a high-tensile bainite-like spheroidal graphite cast iron alloy is known, and this spheroidal graphite cast iron alloy has C 2.9 to 3.9 as a non-ferrous component. Including mass%, Si 1.7-2.6 mass%, Ni 3.2-7 mass%, Mo 0.15-0.4 mass%, Cr ≦ 0.2 mass%, and Mn ≦ 1 mass% . This alloy is excellent with a high tensile strength of ≧ 820 MPa, a 0.2% proof stress of ≧ 520 MPa and an elongation at break of at least 2%. Heat treatment is required to achieve these properties, and for even larger wall thicknesses, locally used low temperature casting may be required.

さらに、独国特許出願公開第1808515号明細書(DE 180 85 15 A1)は、高張力球状黒鉛鋳鉄合金を記載しており、この非鉄成分は、C 2.9〜3.9質量%、Si 1.7〜2.6質量%、Ni 3.2〜7質量%、Mo 0.15〜0.4質量%、Mg ≦0.1質量%、Mn 0〜1質量%、および最大0.5質量%のMoおよびCrの全体含有率でCr 0〜0.25質量%を含む。この原材料は、≧1000MPaの引張強さ、および≧750MPaの0.2%耐力で、少なくとも4%の破断伸びを有する。しかしながら、この原材料の主要な特徴は、温度200〜315℃で数時間という、焼戻しの形での熱処理である。というのもマトリックス組織の焼戻しなしでは、記載された特性値を達成することができないためである。   Furthermore, DE-A 1 808 515 (DE 180 85 15 A1) describes a high-tensile spheroidal graphite cast iron alloy, the non-ferrous component comprising C 2.9 to 3.9% by mass, Si 1.7-2.6 wt%, Ni 3.2-7 wt%, Mo 0.15-0.4 wt%, Mg ≤0.1 wt%, Mn 0-1 wt%, and max 0.5 It contains 0 to 0.25% by mass of Cr in the total content of Mo and Cr by mass%. This raw material has an elongation at break of at least 4% with a tensile strength of ≧ 1000 MPa and a 0.2% proof stress of ≧ 750 MPa. However, the main feature of this raw material is a heat treatment in the form of tempering at a temperature of 200-315 ° C. for several hours. This is because the described characteristic values cannot be achieved without tempering the matrix structure.

欧州特許第1834005号明細書(EP 1 834 005 B1)からは、自動車製造での用途のための高張力の、主にパーライト状の球状黒鉛鋳鉄合金が公知である。この球状黒鉛鋳鉄合金は、非鉄成分のC 3.0〜3.7質量%、Si 2.6〜3.4質量%、P 0.02〜0.05質量%、Mg 0.025〜0.045質量%、Cr 0.01〜0.03質量%、Al 0.003〜0.017質量%、S 0.0005〜0.012質量%、およびB 0.0004〜0.002質量%、Cu 0.1〜1.5質量%、Mn 0.1〜1.0質量%、および不可避的不純物を含む。この組成で作製されるシャシ構成要素は、付加的な熱処理を行わない鋳造状態で既に600〜900MPaの引張強さ、400〜600の0.2%耐力で、14〜5%の破断伸びを有する。   From EP 1 384 005 (EP 1 834 005 B1), high tension, mainly pearlitic, spheroidal graphite cast iron alloys are known for use in automobile production. This spheroidal graphite cast iron alloy has a non-ferrous component of C 3.0 to 3.7% by mass, Si 2.6 to 3.4% by mass, P 0.02 to 0.05% by mass, Mg 0.025 to 0. 045% by mass, Cr 0.01-0.03% by mass, Al 0.003-0.017% by mass, S 0.0005-0.012% by mass, and B 0.0004-0.002% by mass, Cu 0.1-1.5 mass%, Mn 0.1-1.0 mass%, and an unavoidable impurity are included. Chassis components made with this composition already have a tensile strength of 600-900 MPa in a cast state without additional heat treatment, a 0.2% proof stress of 400-600, and a breaking elongation of 14-5%. .

これらの先行技術を出発点として、本発明の中心的な課題は、0.2%耐力、引張強さおよび破断伸びについての要件が、他の助力なしに鋳造状態で既に達成される、好ましくは、公知の高張力鋳鉄合金、例えばADI原材料(=オーステンパダクタイル鉄(Austempered Ductile Iron))とは反対に、つまり個別の熱処理を必要としない高張力球状黒鉛鋳鉄合金を提供することである。   Starting from these prior arts, the central task of the present invention is that the requirements for 0.2% proof stress, tensile strength and elongation at break are already achieved in the cast state without other assistance, preferably In contrast to the known high-strength cast iron alloys, for example ADI raw materials (= Austempered Ductile Iron), it is to provide a high-tensile spheroidal graphite cast iron alloy which does not require a separate heat treatment.

この課題は、C 2.8〜3.7質量%、Si 1.5〜4質量%、Ni 1〜6.2質量%、P 0.02〜0.05質量%、Mg 0.025〜0.06質量%、Cr 0.01〜0.03質量%、Al 0.003〜0.3質量%、S 0.0005〜0.012質量%、Cu 0.03〜1.5質量%、およびMn 0.1〜2質量%、残部Feおよび不可避的不純物を含む本発明による球状黒鉛鋳鉄合金により達成され、この球状黒鉛鋳鉄合金は、その後の熱処理なしに鋳造状態で、≧600MPaの0.2%耐力および≧750MPaの引張強さの高い静的強度と同時に2〜10%の破断伸びA5の良好な延性を達成する。   This subject is C 2.8-3.7 mass%, Si 1.5-4 mass%, Ni 1-6.2 mass%, P 0.02-0.05 mass%, Mg 0.025-0. 0.06 mass%, Cr 0.01-0.03% by mass, Al 0.003-0.3 mass%, S 0.0005-0.012 mass%, Cu 0.03-1.5 mass%, and Accomplished by a spheroidal graphite cast iron alloy according to the present invention comprising 0.1-2% by weight of Mn, the balance Fe and unavoidable impurities, this spheroidal graphite cast iron alloy is 0.2 ≧ 600 MPa in the cast state without subsequent heat treatment. A good ductility with a breaking elongation A5 of 2-10% is achieved simultaneously with a high static strength with a% yield strength and a tensile strength of ≧ 750 MPa.

球状黒鉛析出物を取り囲むマトリックス組織は、この場合、>50%のパーライトでパーライト−フェライト状に形成され、好ましくはこのパーライトは微細な縞状で、かつフェライトは球状で存在する。またそれにより、本発明による球状黒鉛鋳鉄合金は、機械的特性および炭化物形成剤であるMo、Nb、TiおよびVが省略される以外に、部分的に重複するNi−合金領域を有する米国特許第5853504号明細書(US 585 35 04 A)から公知の合金とは明確に区別される。この点で同様に、独国特許出願公開第102004040056号明細書(DE 10 2004 040 056 A1)から公知の鋳鉄合金との相違が基礎づけられる。というのも針状フェライトの機械的特性は、球状に形成されたフェライトとは明らかに異なるためである。   The matrix structure surrounding the spheroidal graphite deposit is in this case formed in a pearlite-ferrite form with> 50% pearlite, preferably the pearlite is in fine stripes and the ferrite is spherical. Also, thereby, the spheroidal graphite cast iron alloy according to the present invention has a partially overlapping Ni-alloy region except that the mechanical properties and carbide forming agents Mo, Nb, Ti and V are omitted. From US Pat. No. 5,853,504 (US 585 35 04 A) it is clearly distinguished from known alloys. In this respect as well, the difference from the known cast iron alloy is based on DE 10 2004 404 0056 A1 (DE 10 2004 040 056 A1). This is because the mechanical properties of acicular ferrite are clearly different from those of spherically formed ferrite.

好ましくは、球状黒鉛鋳鉄合金は、砂型球状黒鉛鋳鉄合金として形成される。   Preferably, the spheroidal graphite cast iron alloy is formed as a sand-type spheroidal graphite cast iron alloy.

本発明の中心思想は、本発明による球状黒鉛鋳鉄合金の、適切に調整された組成、およびそれにより生じる機械特性の組合せに基づき自動車製造において、例えば、自動車の衝突の際に実際に変形してもよいが、破断してはならない車軸部材およびシャシ部材のためにも、高い動的負荷に曝される構造部材およびクランクシャフトのためにも使用することができる球状黒鉛鋳鉄合金を提供することである。   The central idea of the present invention is that in the manufacture of automobiles based on the combination of the appropriately adjusted composition of the spheroidal graphite cast iron alloy according to the invention and the resulting mechanical properties, for example, it is actually deformed in the event of an automobile collision. However, by providing a spheroidal graphite cast iron alloy that can be used for axle members and chassis members that must not break, as well as for structural members and crankshafts that are exposed to high dynamic loads. is there.

本発明による球状黒鉛鋳鉄合金は、その機械特性および使用可能性を考慮して、オーステナイト状球状黒鉛鋳鉄合金と比べて既に適度な合金添加で十分であることは言及するに値する。   It is worth mentioning that the spheroidal graphite cast iron alloy according to the present invention is already sufficient in terms of the addition of an appropriate alloy as compared with the austenitic spheroidal graphite cast iron alloy in view of its mechanical properties and availability.

NiおよびSiは、0.2%耐力を高めることが知られている。これは、一方で混晶凝固に起因し(SiおよびNi)、他方でオーステナイト−フェライト転移温度を低い温度に低下させることによるパーライト微細化に起因する(Ni)。この合金は、低すぎない破断伸び値で、できる限り高い0.2%耐力を有することが利点である(高い軽量化構造の可能性)。これは第一に、球状黒鉛鋳鉄合金が、Ni 1〜6.2質量%、好ましくはNi 2.5〜5.2質量%、特に好ましくはNi 4〜5.2質量%を有することにより達成される。   Ni and Si are known to increase the yield strength by 0.2%. This is on the one hand due to mixed crystal solidification (Si and Ni) and on the other hand due to pearlite refinement by lowering the austenite-ferrite transition temperature to a lower temperature (Ni). The alloy has the advantage of having as high a 0.2% proof stress as possible with a break elongation value not too low (possibility of a high weight-reducing structure). This is achieved firstly because the spheroidal graphite cast iron alloy has Ni 1-6.2% by mass, preferably Ni 2.5-5.2% by mass, particularly preferably Ni 4-5.2% by mass. Is done.

特にSi 1.5〜4質量%、好ましくはSi 2〜3.5質量%、特に好ましくはSi 2.2〜3.3質量%と関連して、低すぎない破断伸び値で良好な強度特性が達成される。例えば、同様に熱処理を必要としない欧州特許出願公開第1225239号明細書(EP 1 225 239 A1)から公知のベイナイト状合金と比べて、本発明のパーライト−フェライト状球状黒鉛鋳鉄合金の≧600MPaの0.2%耐力は、≧500MPaと比べて明らかに高い(引張強さも同様にいくらか高い)。例えば、欧州特許出願公開第1225239号明細書(EP 1 225 239 A1)で述べられた実施例は、550MPaを越える0.2%耐力の値を含まない。   Particularly good strength properties with a break elongation value not too low in relation to Si 1.5 to 4% by weight, preferably Si 2 to 3.5% by weight, particularly preferably Si 2.2 to 3.3% by weight Is achieved. For example, the pearlite-ferrite-like spheroidal graphite cast iron alloy of the present invention has a ≧ 600 MPa as compared with a bainite-like alloy known from EP 1225239 A1 which similarly does not require heat treatment. The 0.2% yield strength is clearly higher compared to ≧ 500 MPa (the tensile strength is somewhat higher as well). For example, the example described in EP 1225239 (EP 1 225 239 A1) does not include a 0.2% proof stress value exceeding 550 MPa.

非鉄成分のSiおよびNiについて記載された上限および下限の維持は、パーライト−フェライト状目標組織のために、かつそれにより本発明による球状黒鉛鋳鉄合金の機械的特性を達成するために重要である。   The maintenance of the upper and lower limits described for the non-ferrous components Si and Ni is important for the pearlite-ferritic target structure and thereby to achieve the mechanical properties of the spheroidal graphite cast iron alloy according to the invention.

<1質量%のNi含有率で、目立った耐力上昇は見られず、>6.2質量%の含有率は、マルテンサイト形成のリスクが高まることに基づき回避すべきである。マルテンサイト形成のこのリスクに関して、本発明による球状黒鉛鋳鉄合金は、独国特許出願公開第102004040056号明細書(DE 10 2004 040 056 A1)からの類似のNi含有率限度を有する合金と比べて明らかな利点を有しており、例えば、約8mmの低い肉厚の場合でさえ、後続する焼戻しを行う必要なしに、マルテンサイト不含の組織を確実に達成する。本発明による球状黒鉛鋳鉄合金の好ましい実施形態の場合に、これは、Ni含有率、Si含有率およびMn含有率に関して所定の組成比を維持することにより可能である。例えば、鋳造状態で本発明による球状黒鉛鋳鉄合金のマルテンサイト不含のパーライト−フェライト状組織のためには、NiとSiとの含有率の合計が≦9質量%であることが好ましく、同時に(Ni+0.5・Mn)/(1.5・Si)の比率が値1.5を上回らないことが好ましい。   <No significant increase in yield strength is seen at Ni content of 1% by weight, and a content of> 6.2% by weight should be avoided based on increased risk of martensite formation. With regard to this risk of martensite formation, the spheroidal graphite cast iron alloy according to the invention is evident in comparison with alloys with similar Ni content limits from DE 10 2004 404 0056 (DE 10 2004 040 056 A1). For example, even in the case of a low wall thickness of about 8 mm, a martensite-free structure is reliably achieved without the need for subsequent tempering. In the case of a preferred embodiment of the spheroidal graphite cast iron alloy according to the invention, this is possible by maintaining a predetermined composition ratio with respect to Ni content, Si content and Mn content. For example, for the martensite-free pearlite-ferrite structure of the spheroidal graphite cast iron alloy according to the present invention in the cast state, the total content of Ni and Si is preferably ≦ 9% by mass, It is preferred that the ratio of Ni + 0.5 · Mn) / (1.5 · Si) does not exceed the value 1.5.

<1.5質量%のSiの含有率は、炭化物形成のリスクを高め、最悪の場合には、白色凝固(Weisserstarrung)を生じる結果となることがある。>4質量%のSiの含有率は、破断伸びの明らかな低下を引き起こし、かつオーステナイト中での低められた炭素溶解度に基づき同様にマルテンサイト形成のリスクを高める。さらに、Si含有率は、ケイ素がオーステナイト−フェライト転移温度をより高い温度にシフトさせ、それによりニッケル添加により達成しようとするパーライト微細化に反対に作用するという理由から制限しなければならない。   A Si content of <1.5% by weight increases the risk of carbide formation and, in the worst case, can result in white solidification (Weisserstarrung). A Si content of> 4% by weight causes a clear decrease in the elongation at break and likewise increases the risk of martensite formation based on the reduced carbon solubility in austenite. Furthermore, the Si content must be limited because silicon shifts the austenite-ferrite transition temperature to higher temperatures, thereby adversely affecting the pearlite refinement that is to be achieved by nickel addition.

Cu 0.03〜1.5質量%の合金化は、ことに本発明による球状黒鉛鋳鉄合金について記載された限度に関して低いNi含有率で、同時に高いSi含有率で、機械的特性を達成するために、パーライト>50%、残部フェライトを有する主にパーライト状組織の確保のために行われ、この場合、フェライトは好ましくは球状に形成される。   The alloying of 0.03 to 1.5% by weight of Cu is intended to achieve mechanical properties with a low Ni content and at the same time a high Si content, especially with respect to the limits described for the spheroidal graphite cast iron alloy according to the invention In addition, it is performed mainly for securing a pearlite-like structure having pearlite> 50% and the balance ferrite, and in this case, the ferrite is preferably formed in a spherical shape.

Mnは、その割合が増加するとスクラップ随伴物となる。耐力の向上のために、適度な含有率までのMnは好ましい。さらにMnは、マルテンサイト開始温度を低下させ、かつそれにより、急速に冷却される薄い壁の部材部分において、マルテンサイト形成のリスクを低減することに寄与することができる。本発明による球状黒鉛鋳鉄合金について2質量%というMnの上限は、炭化物形成による著しい脆化に起因するが、ことに同時に比較的高いSi含有率で溶離する粒界炭化物の増加は、低いMn含有率の場合で既に記録すべきである。   Mn becomes a scrap accompaniment when its proportion increases. In order to improve the yield strength, Mn up to an appropriate content is preferable. Furthermore, Mn can contribute to lowering the martensite start temperature and thereby reducing the risk of martensite formation in the thin walled member portion that is rapidly cooled. The upper limit of 2 mass% Mn for the spheroidal graphite cast iron alloy according to the present invention is due to significant embrittlement due to carbide formation, but at the same time, the increase in grain boundary carbide eluting at a relatively high Si content causes a low Mn content. Should already be recorded in case of rate.

Al 0.003〜0.3質量%の合金添加は、混晶凝固によりさらに強度を向上させるために行うことができる。しかしながら、Alの含有率は<0.3質量%に制限すべきである。というのもAlは、同時にフェライト安定化剤として作用し、それにより機械的特性のために必要な、>50%パーライトを有する主なパーライト状組織形成に対抗するためである。   Alloy addition of 0.003 to 0.3 mass% Al can be performed in order to further improve the strength by mixed crystal solidification. However, the Al content should be limited to <0.3% by weight. This is because Al simultaneously acts as a ferrite stabilizer, thereby countering the formation of the main pearlitic structure with> 50% pearlite required for mechanical properties.

非鉄成分のMn、Cu、Mg、Cr、Al、P、Sについて記載された上限を維持することは、本発明による球状黒鉛鋳鉄合金からなる鋳造部品の機械特性ならびに加工性の達成のために重要である。Cu、Mg、AlおよびSに関して過剰に高い含有率は、黒鉛形成に不利な影響を及ぼしかねず、達成しようとする球状の形からの黒鉛形状の相応する相違が、破断伸びおよび達成可能な強度の明らかな悪化を引き起こす。同様に、Crは、それ自体炭化物形成を促進することにより脆化するように作用する。   Maintaining the stated upper limits for the non-ferrous components Mn, Cu, Mg, Cr, Al, P, S is important for achieving mechanical properties and workability of cast parts made of spheroidal graphite cast iron alloys according to the present invention It is. Excessively high contents for Cu, Mg, Al and S can have a detrimental effect on graphite formation, and the corresponding difference in the graphite shape from the spherical shape to be achieved is the elongation at break and the achievable strength. Cause obvious deterioration. Similarly, Cr acts to embrittle itself by promoting carbide formation.

Pは、粒界に形成されることがある低融点のP富有相(かつての、P富有残留溶融物領域)の十分に公知の脆化作用に基づき制限しなければならない。   P must be limited based on the well-known embrittlement effect of the low melting P-rich phase (formerly P-rich residual melt region) that may form at grain boundaries.

好ましくは、鋳造プロセス直後の黒鉛割合は、鋳造状態において、つまり鋳造され、かつ型内で冷却された後で、存在する黒鉛の90%より多くが球状に形成されている。   Preferably, the proportion of graphite immediately after the casting process is greater than 90% of the graphite present in the cast state, ie after casting and cooling in the mold.

鋳造部品のマトリックス構造が、鋳造プロセス直後で、鋳造状態において、つまり鋳造され、かつ型内で冷却された後で、50〜90%がパーライト状に形成されている場合が好ましい。   It is preferred if the matrix structure of the cast part is formed in a pearlite form immediately after the casting process, in the cast state, i.e. after casting and cooling in the mold.

好ましい実施態様では、鋳造部品の組織は、鋳造プロセス直後で、鋳造状態において、つまり鋳造され、かつ型内で冷却された後で、1mm2当たり200〜1200の球晶を有する。 In a preferred embodiment, the structure of the cast part has 200-1200 spherulites per mm 2 immediately after the casting process, in the cast state, ie after casting and cooling in the mold.

好ましくは、黒鉛粒子は、DIN EN ISO 945に従って、サイズ8少なくとも5%、サイズ7 40%〜70%、サイズ6最大で35%のサイズ分布を有する。   Preferably, the graphite particles have a size distribution of size 8 at least 5%, size 740% to 70%, size 6 up to 35% according to DIN EN ISO 945.

鋳造部品は260〜320HBWのブリネル硬さを有する場合が好ましい。   Preferably, the cast part has a Brinell hardness of 260 to 320 HBW.

本発明の実施例を次に説明するが、本発明は次の実施例だけに限定されるものではなく、または次の実施例によって限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples, or is not limited to the following examples.

Y2試料を、本発明による球状黒鉛鋳鉄合金から砂型中で鋳造した。この化学組成は、C 2.87質量%、Ni 5.12質量%、Si 3.25質量%、Cu 0.03質量%、Mn 0.22質量%、Mg 0.046質量%、P 0.037質量%、Cr 0.022質量%、Al 0.013質量%、およびS 0.003質量%、残部Feおよび通常の不純物である。したがって、Ni+Siの含有率の合計は、≒8.4質量%(好ましくは≦9質量%)、比率(Ni+0.5・Mn)/(1.5・Si)≒1.1(好ましくは≦1.5)である。この鋳造品を、鋳造状態で、球晶数、黒鉛含有率、黒鉛形状、および黒鉛サイズ、パーライト含有率、ならびに引張試験からの特性値、ブリネル硬さおよび衝撃仕事(衝撃エネルギー)に関して調査した。球晶数は1mm2当たり218の球晶であり、黒鉛含有率は10.6%である。DIN EN ISO 945による黒鉛形状は、94%が形状VIである。DIN EN ISO 945によるサイズ分布は、サイズ8 8%、サイズ7 57%、およびサイズ6 33%である。マトリックスのパーライト含有率は79%(組織画像は図1参照、残部成分:フェライト、球状に形成されている)である。ブリネル硬さは310±2 HBW5/750である。個々の試料の衝撃仕事は、それぞれ、室温で30.1J、−30℃で12.5Jであった。DIN EN ISO 6892-1による室温引張試験は、次の特性値を生じた:
− 0.2%耐力:658〜663MPa、
− 引張強さ:884〜889MPa、
− 破断伸び:6.2〜7.9%、
− 弾性係数(100〜300MPaの範囲内で回帰に関して測定):175〜186GPa。
A Y2 sample was cast from a spheroidal graphite cast iron alloy according to the present invention in a sand mold. This chemical composition is C 2.87 mass%, Ni 5.12 mass%, Si 3.25 mass%, Cu 0.03 mass%, Mn 0.22 mass%, Mg 0.046 mass%, P 0. 037% by mass, 0.022% by mass of Cr, 0.013% by mass of Al, and 0.003% by mass of S, the balance being Fe and normal impurities. Therefore, the total content of Ni + Si is approximately 8.4 mass% (preferably ≦ 9 mass%), and the ratio (Ni + 0.5 · Mn) / (1.5 · Si) ≈1.1 (preferably ≦ 1 .5). This cast product was investigated in the cast state with respect to the number of spherulites, graphite content, graphite shape, and graphite size, pearlite content, characteristic values from tensile tests, Brinell hardness and impact work (impact energy). The number of spherulites is 218 spherulites per mm 2 and the graphite content is 10.6%. 94% of the graphite shape according to DIN EN ISO 945 is shape VI. The size distribution according to DIN EN ISO 945 is size 88%, size 757%, and size 633%. The pearlite content of the matrix is 79% (see FIG. 1 for the structure image, remaining component: ferrite, formed in a spherical shape). The Brinell hardness is 310 ± 2 HBW5 / 750. The impact work of each sample was 30.1 J at room temperature and 12.5 J at −30 ° C., respectively. The room temperature tensile test according to DIN EN ISO 6892-1 yielded the following property values:
-0.2% yield strength: 658 to 663 MPa,
-Tensile strength: 884-889 MPa,
-Elongation at break: 6.2-7.9%,
-Modulus of elasticity (measured for regression within the range of 100-300 MPa): 175-186 GPa.

本発明による球状黒鉛鋳鉄合金の上記実施例と同じ溶融物から、引張試験ブランクも鋳造し、その鋳造肉厚は試験領域で約8mmであった。これから取り出された6mm引張試験片は、Y2試料結果に合格し、652MPaの0.2%耐力および872MPaの引張強さで、6.9%の破断伸びを達成することができた。   A tensile test blank was also cast from the same melt as the above example of the spheroidal graphite cast iron alloy according to the present invention, and the cast wall thickness was about 8 mm in the test area. The 6 mm tensile specimen taken out of this passed the Y2 sample result and was able to achieve a breaking elongation of 6.9% with a 0.2% proof stress of 652 MPa and a tensile strength of 872 MPa.

したがって、本発明による球状黒鉛鋳鉄合金のこれらの実施例バリエーションの試料は、引張試験特性値に関して、鋳造状態で既に、ADI(=オーステンパダクタイル鉄(Austempered Ductile Iron))の、極めて手間のかかる熱処理により作成された、より大きな肉厚で元素Niおよび/またはMoの合金化によってのみ実現可能で、かつそれにより、欧州においてEN 1564の下で規格化されている期待通りの高価な球状黒鉛鋳鉄原材料の等級にある。   Therefore, the samples of these example variations of the spheroidal graphite cast iron alloy according to the present invention are already in the cast state with respect to the tensile test property values, by an extremely laborious heat treatment of ADI (= Austempered Ductile Iron). Of the higher-priced nodular cast iron raw material as expected, which can only be realized by the alloying of the produced Ni and / or Mo with a larger wall thickness and is standardized under EN 1564 in Europe In the grade.

具体的に説明するために、図2において、破断伸びA5の関数としての耐力Rp0.2が示されている。本発明による球状黒鉛鋳鉄合金について記載された実施例、ならびにDIN EN 1563およびDIN EN 1564において規格化された球状黒鉛鋳鉄合金の代表物がプロットされている。図2中の灰色の実線は、鋳造状態で製造された種類の球状黒鉛を有する鋳鉄についてのDIN EN 1563規格による最小値を結ぶ。図2中の一貫した黒色の実線は、熱処理されたADI種類の球状黒鉛を有する鋳鉄についてのDIN EN 1564規格による最小値を結ぶ。Georg Fischer社の特許付与された球状黒鉛鋳鉄合金(欧州特許第1834005号明細書(EP 1 834 005 B1)および欧州特許第1270747号明細書(EP 1 270 747 B1))が、破線で黒色に示されている。   For the sake of illustration, FIG. 2 shows the yield strength Rp0.2 as a function of the breaking elongation A5. The examples described for the spheroidal graphite cast iron alloy according to the invention and representatives of the spheroidal graphite cast iron alloy standardized in DIN EN 1563 and DIN EN 1564 are plotted. The solid gray line in FIG. 2 connects the minimum values according to the DIN EN 1563 standard for cast iron with spheroidal graphite of the kind produced in the cast state. The consistent black solid line in FIG. 2 connects the minimum values according to the DIN EN 1564 standard for cast iron with heat-treated ADI type spheroidal graphite. Georg Fischer's patented spheroidal graphite cast iron alloys (EP 1834005 (EP 1 834 005 B1) and EP 1270747 (EP 1 270 747 B1)) are shown in black with dashed lines Has been.

本発明による球状黒鉛鋳鉄合金の組織画像Structure image of spheroidal graphite cast iron alloy according to the present invention 多様なGJS合金についての破断伸びA5の関数として耐力Rp0.2を示す。Yield strength Rp0.2 is shown as a function of elongation at break A5 for various GJS alloys.

Claims (13)

非鉄成分として、C、Si、Ni、Mn、Cu、Mg、Cr、Al、P、Sおよび通常の不純物を含み、鋳造状態で既に、高い強度と同時に良好な延性および靭性を有している、鋳鉄製品用のパーライト−フェライト状組織を有する球状黒鉛鋳鉄合金において、前記球状黒鉛鋳鉄合金は、
C 2.8〜3.7質量%、
Si 1.5〜4質量%、
Ni 1〜6.2質量%、
P 0.02〜0.05質量%、
Mg 0.025〜0.06質量%、
Cr 0.01〜0.03質量%、
Al 0.003〜0.3質量%、
S 0.0005〜0.012質量%、
Cu 0.03〜1.5質量%および
Mn 0.1〜2質量%、
残部Feおよび不可避的不純物を含み、前記球状黒鉛鋳鉄合金は、鋳造状態で引き続く熱処理を行わなくても600MPa以上の0.2%耐力および750MPa以上の引張強さの高い静的強度と同時に、2〜10%の破断伸びA5の良好な延性が達成されていることを特徴とする、球状黒鉛鋳鉄合金。
As a non-ferrous component, it contains C, Si, Ni, Mn, Cu, Mg, Cr, Al, P, S and usual impurities, and already has high strength and good ductility and toughness in the cast state. In a spheroidal graphite cast iron alloy having a pearlite-ferrite-like structure for cast iron products, the spheroidal graphite cast iron alloy is:
C 2.8 to 3.7% by mass,
Si 1.5-4% by mass,
Ni 1-6.2 mass%,
P 0.02-0.05 mass%,
Mg 0.025-0.06 mass%,
Cr 0.01-0.03% by mass,
0.003 to 0.3% by mass of Al,
S 0.0005-0.012 mass%,
Cu 0.03-1.5 mass% and Mn 0.1-2 mass%,
The spheroidal graphite cast iron alloy containing the balance Fe and unavoidable impurities is not limited to 0.2% proof stress of 600 MPa or more and high static strength of 750 MPa or more at the same time without performing the subsequent heat treatment in the cast state. Spheroidal graphite cast iron alloy characterized in that good ductility with a breaking elongation A5 of 10% is achieved.
前記合金は、Si 2〜3.5質量%、特に好ましくはSi 2.2〜3.3質量%を含み、NiとSiとの合金含有率の合計が≦9質量%であり、かつ同時に(Ni+0.5・Mn)/(1.5・Si)の比率が≦1.5であり、鋳造高温から室温までの冷却の際に50%超のパーライト、残部フェライトの純粋パーライト−フェライト状組織が生じていることを特徴とする、請求項1記載の球状黒鉛鋳鉄合金。   The alloy contains Si 2 to 3.5% by mass, particularly preferably Si 2.2 to 3.3% by mass, the total alloy content of Ni and Si is ≦ 9% by mass and simultaneously ( The ratio of Ni + 0.5 · Mn) / (1.5 · Si) is ≦ 1.5, and when cooling from high casting temperature to room temperature, more than 50% of pearlite, the pure pearlite-ferrite structure of the remaining ferrite The spheroidal graphite cast iron alloy according to claim 1, wherein the spheroidal graphite cast iron alloy is formed. 前記合金は、Ni 2.5〜5.2質量%、特に好ましくはNi 4.0〜5.2質量%を含み、NiとSiとの合金含有率の合計が≦9質量%であり、かつ同時に(Ni+0.5・Mn)/(1.5・Si)の比率が≦1.5であり、鋳造高温から室温までの冷却の際に50%超のパーライト、残部フェライトの純粋パーライト−フェライト状組織が生じていることを特徴とする、請求項1または2記載の球状黒鉛鋳鉄合金。   The alloy contains Ni 2.5-5.2% by weight, particularly preferably 4.0-5.2% by weight Ni, the total alloy content of Ni and Si is ≦ 9% by weight, and At the same time, the ratio of (Ni + 0.5 · Mn) / (1.5 · Si) is ≦ 1.5, and more than 50% of pearlite and the remaining ferrite pure pearlite-ferrite when cooling from high casting temperature to room temperature The spheroidal graphite cast iron alloy according to claim 1, wherein a structure is formed. 前記合金は、Mn 0.2〜0.5質量%、特に好ましくはMn 0.15〜0.4質量%を含み、NiとSiとの合金含有率の合計が≦9質量%であり、かつ同時に(Ni+0.5・Mn)/(1.5・Si)の比率が≦1.5であり、鋳造高温から室温までの冷却の際に50%超のパーライト、残部フェライトの純粋パーライト−フェライト状組織が生じていることを特徴とする、請求項1から3までのいずれか1項記載の球状黒鉛鋳鉄合金。   The alloy contains 0.2 to 0.5% by weight of Mn, particularly preferably 0.15 to 0.4% by weight of Mn, the total alloy content of Ni and Si is ≦ 9% by weight, and At the same time, the ratio of (Ni + 0.5 · Mn) / (1.5 · Si) is ≦ 1.5, and more than 50% of pearlite and the remaining ferrite pure pearlite-ferrite when cooling from high casting temperature to room temperature The spheroidal graphite cast iron alloy according to any one of claims 1 to 3, wherein a structure is formed. 前記合金は、Cu 0.03〜0.5質量%、特に好ましくはCu 0.03〜0.1質量%を含み、NiとSiとの合金含有率の合計が≦9質量%であり、かつ同時に(Ni+0.5・Mn)/(1.5・Si)の比率が≦1.5であり、鋳造高温から室温までの冷却の際に50%超のパーライト、残部フェライトの純粋パーライト−フェライト状組織が生じていることを特徴とする、請求項1記載の球状黒鉛鋳鉄合金。   The alloy contains 0.03-0.5 wt% Cu, particularly preferably 0.03-0.1 wt% Cu, the total alloy content of Ni and Si is ≤9 wt%, and At the same time, the ratio of (Ni + 0.5 · Mn) / (1.5 · Si) is ≦ 1.5, and more than 50% of pearlite and the remaining ferrite pure pearlite-ferrite when cooling from high casting temperature to room temperature 2. The spheroidal graphite cast iron alloy according to claim 1, wherein a texture is formed. 前記合金は、Al 0.003〜0.25質量%、特に好ましくはAl 0.003〜0.02質量%を含み、NiとSiとの合金含有率の合計が≦9質量%であり、かつ同時に(Ni+0.5・Mn)/(1.5・Si)の比率が≦1.5であり、鋳造高温から室温までの冷却の際に50%超のパーライト、残部フェライトの純粋パーライト−フェライト状組織が生じていることを特徴とする、請求項1記載の球状黒鉛鋳鉄合金。   The alloy contains Al 0.003 to 0.25% by mass, particularly preferably Al 0.003 to 0.02% by mass, the total alloy content of Ni and Si is ≦ 9% by mass, and At the same time, the ratio of (Ni + 0.5 · Mn) / (1.5 · Si) is ≦ 1.5, and more than 50% of pearlite and the remaining ferrite pure pearlite-ferrite when cooling from high casting temperature to room temperature 2. The spheroidal graphite cast iron alloy according to claim 1, wherein a texture is formed. 黒鉛割合は、鋳造および冷却の直後に、存在する黒鉛の90%より多くが球状に形成されていることを特徴とする、請求項1から6までのいずれか1項記載の球状黒鉛鋳鉄合金。   7. The spheroidal graphite cast iron alloy according to claim 1, wherein more than 90% of the existing graphite is formed into a spherical shape immediately after casting and cooling. 鋳造部品のパーライト−フェライト状マトリックス組織は、鋳造および冷却の直後に、55〜90%がパーライト状に形成されており、かつ残部のフェライトは、この場合、好ましくは球状に形成されていることを特徴とする、請求項1から7までのいずれか1項記載の球状黒鉛鋳鉄合金。   The pearlite-ferrite-like matrix structure of the cast part is that 55-90% is formed pearlite immediately after casting and cooling, and the remaining ferrite is preferably spherical in this case. The spheroidal graphite cast iron alloy according to any one of claims 1 to 7, characterized in that it is characterized. 鋳造部品の組織は、鋳造および冷却の直後に、1mm2当たり200〜1200の球晶を有していることを特徴とする、請求項1から8までのいずれか1項記載の球状黒鉛鋳鉄合金。 9. The spheroidal graphite cast iron alloy according to claim 1, wherein the structure of the cast part has 200 to 1200 spherulites per mm 2 immediately after casting and cooling. . 黒鉛粒子は、DIN EN ISO 945に従って、サイズ8少なくとも5%、サイズ7 40%〜70%、サイズ6最大で35%のサイズ分布を有していることを特徴とする、請求項1から9までのいずれか1項記載の球状黒鉛鋳鉄合金。   The graphite particles according to DIN EN ISO 945, having a size distribution of at least 5% in size 8, from 740% to 70% in size 7, and up to 35% in size 6 The spheroidal graphite cast iron alloy according to any one of the above. 鋳造部品は260〜320HBWのブリネル硬さを有していることを特徴とする、請求項1から10までのいずれか1項記載の球状黒鉛鋳鉄合金。   11. The spheroidal graphite cast iron alloy according to claim 1, wherein the cast part has a Brinell hardness of 260 to 320 HBW. 600MPa以上の0.2%耐力および750MPa以上の引張強さの高い静的強度と同時に、2〜10%の破断伸びA5の良好な延性を有している、自動車中のシャシ部材、好ましくは自動車中のホイールキャリア、自在軸受、車軸ガイド、クランクシャフトおよび/またはリアアクスルハウジングの製造のための、請求項1記載の球状黒鉛鋳鉄合金の使用。   A chassis member in an automobile, preferably an automobile, having a good ductility with a breaking elongation A5 of 2 to 10% simultaneously with a 0.2% proof stress of 600 MPa or more and a high static strength with a tensile strength of 750 MPa or more Use of the spheroidal graphite cast iron alloy according to claim 1 for the manufacture of wheel carriers, universal bearings, axle guides, crankshafts and / or rear axle housings. 請求項1記載の球状黒鉛鋳鉄合金からなる鋳造部品の製造方法において、前記鋳造部品の鋳造および冷却後に、前記鋳造部品の熱処理を行わず、かつ前記鋳造部品は、600MPa以上の0.2%耐力および750MPa以上の引張強さの高い静的強度と同時に、2〜10%の破断伸びA5の良好な延性を有していることを特徴とする、鋳造部品の製造方法。   2. The method for producing a cast part comprising a spheroidal graphite cast iron alloy according to claim 1, wherein the cast part is not heat-treated after casting and cooling, and the cast part has a 0.2% yield strength of 600 MPa or more. And a good ductility with a breaking elongation A5 of 2 to 10% at the same time as a high static strength with a high tensile strength of 750 MPa or more.
JP2018056599A 2017-03-24 2018-03-23 Spheroidal graphite cast iron alloy Active JP7369513B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17162715.1A EP3243920B1 (en) 2017-03-24 2017-03-24 Spheroidal cast alloy
EP17162715.1 2017-03-24

Publications (2)

Publication Number Publication Date
JP2018162516A true JP2018162516A (en) 2018-10-18
JP7369513B2 JP7369513B2 (en) 2023-10-26

Family

ID=58412966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056599A Active JP7369513B2 (en) 2017-03-24 2018-03-23 Spheroidal graphite cast iron alloy

Country Status (7)

Country Link
US (1) US20180274066A1 (en)
EP (1) EP3243920B1 (en)
JP (1) JP7369513B2 (en)
KR (1) KR20180108495A (en)
CN (1) CN108624803A (en)
BR (1) BR102018004643A2 (en)
MX (1) MX2018003248A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402496A (en) * 2018-11-28 2019-03-01 精诚工科汽车系统有限公司 Alloying element addition method for determination of amount and ductile cast iron casting and its casting and mold in ductile cast iron casting with uniform wall thickness
US11618937B2 (en) 2019-10-18 2023-04-04 GM Global Technology Operations LLC High-modulus, high-strength nodular iron and crankshaft
CN113897538A (en) * 2021-10-12 2022-01-07 安徽裕隆模具铸业有限公司 High-strength and high-elongation as-cast QT500-18 nodular cast iron and preparation method thereof
WO2023111403A1 (en) * 2021-12-13 2023-06-22 Sediver Grade of ductile iron with reinforced ferritic matrix
CN114411049B (en) * 2021-12-29 2022-12-02 天润工业技术股份有限公司 Low-cost and high-strength ferritic nodular cast iron and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134723A (en) * 1977-03-30 1978-11-24 Hitachi Metals Ltd Spheroidal graphite cast iron and method of making same
JPH07118790A (en) * 1993-10-21 1995-05-09 Japan Steel Works Ltd:The Spheroidal graphite cast iron excellent in high temperature strength
JP2001059127A (en) * 1999-06-08 2001-03-06 Asahi Tec Corp Nodular graphite cast iron
EP1225239A1 (en) * 1999-06-08 2002-07-24 Asahi Tec Corporation Non-austempered spheroidal graphite cast iron
KR100681270B1 (en) * 2005-09-05 2007-02-09 한금태 Nodular cast iron
JP2007327083A (en) * 2006-06-06 2007-12-20 I Metal Technology Co Ltd Spheroidal graphite cast iron and its production method
JP2009001865A (en) * 2007-06-21 2009-01-08 Asahi Tec Corp Spheroidal graphite cast iron member

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549430A (en) 1967-11-14 1970-12-22 Int Nickel Co Bainitic ductile iron having high strength and toughness
US3702269A (en) 1971-01-22 1972-11-07 Int Nickel Co Ultra high strength ductile iron
US4484953A (en) 1983-01-24 1984-11-27 Ford Motor Company Method of making ductile cast iron with improved strength
JP3691913B2 (en) 1996-09-05 2005-09-07 株式会社東芝 Polishing tool material and polishing surface plate using the same
DE10129382A1 (en) 2001-06-20 2003-01-02 Fischer Georg Fahrzeugtech nodular cast iron
DE102004040056A1 (en) 2004-08-18 2006-02-23 Federal-Mogul Burscheid Gmbh High- and wear-resistant, corrosion-resistant cast iron material
DE102004056331A1 (en) * 2004-11-22 2006-05-24 Georg Fischer Fahrzeugtechnik Ag Ductile cast iron alloy and method for producing castings from nodular cast iron alloy
FI118738B (en) * 2005-01-05 2008-02-29 Metso Paper Inc Globe Granite Cast Iron and Method of Manufacturing Globe Granite Cast Iron for Machine Construction Parts that Require Strength and Toughness
DE102008050152B4 (en) * 2008-10-01 2013-05-23 Claas Guss Gmbh High-strength, ductile cast iron alloy with nodular graphite and process for its production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134723A (en) * 1977-03-30 1978-11-24 Hitachi Metals Ltd Spheroidal graphite cast iron and method of making same
JPH07118790A (en) * 1993-10-21 1995-05-09 Japan Steel Works Ltd:The Spheroidal graphite cast iron excellent in high temperature strength
JP2001059127A (en) * 1999-06-08 2001-03-06 Asahi Tec Corp Nodular graphite cast iron
EP1225239A1 (en) * 1999-06-08 2002-07-24 Asahi Tec Corporation Non-austempered spheroidal graphite cast iron
KR100681270B1 (en) * 2005-09-05 2007-02-09 한금태 Nodular cast iron
JP2007327083A (en) * 2006-06-06 2007-12-20 I Metal Technology Co Ltd Spheroidal graphite cast iron and its production method
JP2009001865A (en) * 2007-06-21 2009-01-08 Asahi Tec Corp Spheroidal graphite cast iron member

Also Published As

Publication number Publication date
EP3243920B1 (en) 2020-04-29
BR102018004643A2 (en) 2018-10-30
EP3243920A1 (en) 2017-11-15
JP7369513B2 (en) 2023-10-26
CN108624803A (en) 2018-10-09
US20180274066A1 (en) 2018-09-27
KR20180108495A (en) 2018-10-04
MX2018003248A (en) 2018-11-09

Similar Documents

Publication Publication Date Title
JP7369513B2 (en) Spheroidal graphite cast iron alloy
Trudel et al. Effect of composition and heat treatment parameters on the characteristics of austempered ductile irons
JP4966316B2 (en) Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
JP4835424B2 (en) High strength spheroidal graphite cast iron
US20220162731A1 (en) Hot-working die steel, heat treatment method thereof and hot-working die
TW201303038A (en) Hot rolled steel sheet and manufacturing method thereof
KR102476628B1 (en) Forged parts of bainite steel and manufacturing method thereof
KR20160025518A (en) Spheroidal graphite cast iron
JP2007245217A (en) Composite rolling mill roll
JP3913935B2 (en) Hypoeutectic spheroidal graphite cast iron
US6537397B1 (en) Process for producing Fe-based member having high young&#39;s modulus, and Fe-based member having high young&#39;s modulus and high toughness
US20230323493A1 (en) Forged part of steel and a method of manufacturing thereof
JP2005146301A (en) High-strength hot-rolled steel plate superior in formability
JPH11131187A (en) Rapidly graphitizable steel and its production
JP2974822B2 (en) Centrifugal casting composite roll
JP2019151866A (en) Non-heat-treated steel and method for producing the same
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
CN113795604B (en) Nodular cast iron, method for producing nodular cast iron, and vehicle chassis component
JP2986236B2 (en) Composite roll with tough inner layer
JPH05171267A (en) Production of high toughness pearlite steel
JP2670937B2 (en) Manufacturing method of high strength bolt
JPH09272942A (en) High toughness aluminum alloy casting and its production
JP2021059752A (en) Spheroidal graphite cast iron excellent in strength and toughness and having low hardness
JPH0913141A (en) Ductile cast iron core material of roll
JPS6036756A (en) Composite cylinder liner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7369513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150