EP1834005B1 - Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy - Google Patents

Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy Download PDF

Info

Publication number
EP1834005B1
EP1834005B1 EP05803315A EP05803315A EP1834005B1 EP 1834005 B1 EP1834005 B1 EP 1834005B1 EP 05803315 A EP05803315 A EP 05803315A EP 05803315 A EP05803315 A EP 05803315A EP 1834005 B1 EP1834005 B1 EP 1834005B1
Authority
EP
European Patent Office
Prior art keywords
weight
spheroidal
alloy according
cast alloy
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05803315A
Other languages
German (de)
French (fr)
Other versions
EP1834005A1 (en
Inventor
Werner Menk
Rolf Rietzscher
Andreas Hecker
Torsten Rieck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fischer Automotive AG
Original Assignee
Georg Fischer Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer Automotive AG filed Critical Georg Fischer Automotive AG
Priority to SI200531148T priority Critical patent/SI1834005T1/en
Publication of EP1834005A1 publication Critical patent/EP1834005A1/en
Application granted granted Critical
Publication of EP1834005B1 publication Critical patent/EP1834005B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite

Definitions

  • the invention relates to a nodular cast iron alloy for cast iron products having a high mechanical strength, a high wear resistance and at the same time a high toughness, comprising as non-iron components C, Si, P, Mg, Cr, Al, S, B, Cu, Mn and usual impurities.
  • a cast iron alloy with as non-iron constituents 1.0 to 2.5 wt.% C, 1.5 to 3.2 wt.% Si, less than 1.15 wt.% Mn, less than 0.5 wt.% S and 0.001 to 0.05 wt.% B known.
  • the graphite part is formed in a compact form. Because the alloy does not contain any Mg, nodular graphite or vermicular graphite, it has predominantly a graphite formation that looks similar to the tempered carbon knot of malleable cast iron.
  • the alloy contains 5 to 10% carbides in a predominantly pearlitic matrix, with the result that the elongation at break is relatively low.
  • To limit the formation of lamellar graphite and thus the To improve modulus of elasticity are added as alloying elements tellurium and bismuth. Higher fracture strain values are achieved by a subsequent heat treatment.
  • another cast iron alloy which preferably contains 3.7% by weight of C, 2.5% by weight of Si, 1.85% by weight of Ni, 0.85% by weight of Cu and 0.05% by weight of Mo.
  • This material is characterized by an elongation of 20 to 16% at a tensile strength of 500 to 900 MPa and a Brinell hardness of 180 to 290 HB.
  • These properties are achieved after a time-consuming heat treatment, which comprises in succession: 10 to 360 minutes austenitizing at temperatures between 750 and 790 ° C, rapid cooling in a salt bath at a temperature between 300 and 400 ° C, 1 to 3 hours annealing at Temperatures between 300 and 400 ° C and cooling to room temperature.
  • the material has a structure with an austenitic and ferritic microstructure.
  • the material is characterized by a lighter machinability than a cast iron, which was subjected in the usual way to an austempering.
  • nodular cast iron alloy for cast iron products with plastic ductility known, wherein the nodular cast iron alloy contains as non-iron constituents at least the elements C, Si, Mn, Cu, Mg, S and as admixtures of one or more elements from the group IIIb of the Periodic Table, wherein the alloy contains as admixture at least the element boron and wherein the Si content is more than 2.4%.
  • a nodular cast iron alloy for cast iron products having a high mechanical strength, a high wear resistance and at the same time a high toughness, comprising as non-iron components C, Si, P, Mg, Cr, Al, S, B, Cu, Mn and the usual Impurities according to claim 1, wherein the alloy contains 3.0 to 3.7% by weight C, 2.6 to 3.4% by weight Si, 0.02 to 0.05% by weight P, 0.025 to 0.045% by weight.
  • % Mg 0.01 to 0.03 wt% Cr, 0.003 to 0.017 wt% Al, 0.0005 to 0.012 wt% S, and 0.0004 to 0.002 wt% B, 0.1 to 1.5 %
  • Cu preferably 0.5 to 0.8% by weight of Cu and 0.1 to 1.0% by weight of Mn, preferably 0.15 to 0.2% by weight of Mn, balance Fe and unavoidable impurities.
  • the alloy has the best possible strength-elongation behavior. This is achieved by the nodular cast iron alloy containing 0.1 to 1.5 wt.% Cu, preferably 0.5 to 0.8 wt.% Cu. This is also achieved by the alloy containing 0.1 to 1.0 wt% Mn, preferably 0.15 to 0.2 wt% Mn.
  • the alloy has the best possible wear behavior. This is achieved in that the alloy 0.1 to 1.5 wt.% Cu, preferably 0.5 to 0.8 wt.% Cu and 0.1 to 1.0 wt.% Mn, preferably 0.15 to 0.2 wt.% Mn. This is also achieved by the alloy being 0.1 to 1.5 wt% Mn, preferably 0.5 to 1.0 wt% Mn, and 0.05 to 1.0 wt% Cu, preferably 0.05 contains up to 0.2 wt.% Cu.
  • the core idea of the invention is to specify a cast iron alloy which has a Brinell hardness of more than 220 and which is worn as uniformly as possible when used as a brake disk.
  • Lamellar graphite discs are inexpensive, but have less resistance to temperature changes. This can lead to so-called fire cracks after a short period of use, which continue to grow rapidly and lead to uneven surfaces. An uneven surface in turn leads to uneven temperature loading, irregular wear and so-called Bremsrubbeln.
  • axle and chassis parts for trucks and passenger cars such as wishbones, wheel and pivot bearings, which are exposed to high mechanical and dynamic loads and which must deform plastically in the event of a collision of the motor vehicle and must not break.
  • a brake disk was manufactured from the ductile iron alloy according to the invention.
  • the chemical composition was 3.34 wt.% C, 2.92 wt.% Si, 0.62 wt.% Cu, 0.17 wt.% Mn, 0.038 wt.% Mg, 0.025 wt.% P, 0.021 wt % Cr, 0.01% by weight Al, 0.001% by weight S and 0.0008% by weight B, remainder Fe and the usual impurities.
  • the brake disk was tested for spherulite number, graphite content, graphite shape and graphite size, perlite content and Brinell hardness. Samples from the brake disc were subjected to a tensile test to determine the strength-elongation behavior.
  • the Spärolitheniere is 384 +/- 76 spherulites per mm 2 .
  • the graphite content 9.7 +/- 0.7%.
  • the graphite mold according to DIN EN ISO 945 is 97.9% of the form VI.
  • the size distribution according to DIN EN ISO 945 is 45% of the size 8, 42% of the size 7 and 13% of the size 6.
  • the perlite content is 84 +/- 1%.
  • the Brinell hardness is 248 +/- 3 HB.
  • Tensile strength R p 0.2 474 MPa
  • tensile strength Rm 778 MPa
  • elongation at break A5 11.4%
  • elastic modulus E 165 to 170 kN / mm 2 .
  • FIG. 1 is the weight gain in grams per square meter and day shown by oxidation at 700 ° C in air.
  • the inventive material shows a weight gain of about 9 g / m 2 .d compared to a cast iron material for conventional brake discs with a weight gain of about 21 g / m 2 .D.
  • the fire cracking tests were conducted as follows: A 40 x 20 x 7 mm sample is subjected to at least 100 cycles consisting of heating to 700 ° C for 7 seconds and quenching in water for 6 seconds. Then cross-sections are made and examined under the microscope and photographed.
  • FIG. 2 is a microfoto of a commercial brake disc with a fire crack of 0.4 mm depth shown.
  • FIG. 3 is another microfoto of the inventive brake disc at the same magnification shown with a fire crack of 0.14 mm depth.
  • a wishbone for passenger cars was made from the nodular cast iron alloy according to the invention.
  • the chemical composition was 3.5% by weight of C, 2.85% by weight of Si, 0.63% by weight of Cu, 0.18% by weight of Mn, 0.038% by weight of Mg, 0.026 wt.% P, 0.029 wt.% Cr, 0.004 wt.% Al, 0.001 wt.% S and 0.0007 wt.% B, remainder Fe and the usual impurities.
  • Tensile strength R p 0.2 465 MPa
  • tensile strength Rm 757 Mpa
  • elongation at break A5 11.1%
  • modulus of elasticity E 165 to 170 kN / mm 2 .
  • the Brinell hardness is 258 +/- 3 HB.
  • a wheel carrier for passenger cars was manufactured from the ductile iron alloy according to the invention.
  • the chemical composition was 3.43 wt.% C, 3.38 wt.% Si, 0.71 wt.% Cu, 0.2 wt.% Mn, 0.037 wt.% Mg, 0.047 wt.% P, 0.043 wt % Cr, 0.012 wt.% Al, 0.004 wt.% S and 0.0008 wt.% B, balance Fe and the usual impurities.
  • Tensile strength R p 0.2 558 MPa
  • tensile strength Rm 862 MPa
  • elongation at break A5 6.1%.
  • the Brinell hardness is 288 HB.
  • the number of spherulites in the microstructure was found to be 455 spherulites per mm 2 .
  • FIG. 4 the elongation at break A5 is shown as a function of the tensile strength Rm.
  • the solid line indicates the minimum values according to standard EN 1563 for ductile iron castings of as-cast grades.
  • the measurements of the inventive material are listed according to the above examples 1 to 3.
  • FIG. 5 the elongation at break A5 in function of the yield strength R p 0.2 is shown.
  • the solid line indicates the minimum values according to standard EN 1563 for spheroidal graphite cast iron of as-cast grades.
  • the measurements of the inventive material are listed according to the above examples 1 to 3.
  • FIG. 6 shows the strength ranges with respect to the elongation at fracture of the materials aluminum casting alloys, ductile iron, ADI and the inventive material with the registered examples 1 to 3.
  • the uniformity of the structure is also achieved by a new casting process.
  • the mold is divided horizontally instead of vertically, with the brake discs are arranged horizontally and the filling of the mold is carried out from the center to the edge of the brake disc. This has the consequence that the mold is filled rotationally symmetrical and that the brake disc cools evenly after casting from inside to outside. This creates over the entire circumference of the brake disc a uniform, homogeneous structure. Subsequent heat treatment, which is time consuming and incurs costs, is no longer required.

Abstract

A spheriodal cast alloy for producing cast iron products with great mechanical strength, high-wear resistance and a high degree of ductility. The alloy comprises the following as non-iron components: between 2.5 and 2.8 wt. % C, between 2.4 and 3.4 wt. % Si, between 0.02 and 0.08 wt. % P, between 0.02 and 0.06 wt. % Mg, between 0.01 and 0.05 wt. % Cr, between 0.002 and 0.02 wt. % Al, between 0.0005 and 0.015 wt. % S, between 0.0002 and 0.002 wt. % B and conventional impurities. The alloy contains between 3.0 and 3.7 wt. % C, between 2.6 and 3.4 wt. % Si, between 0.02 and 0.05 wt. % P, between 0.025 and 0.045 wt. % Mg, between 0.01 and 0.03 wt. % Cr, between 0.003 and 0.017 wt. % Al, between 0.0005 and 0.012 wt. % S and between 0.0004 and 0.002 wt. % B. The alloy is used for example to produce chassis parts or brake discs in the automobile industry.

Description

Die Erfindung bezieht sich auf eine Sphärogusslegierung für Gusseisenprodukte mit einer hohen mechanischen Festigkeit, einer hohen Verschleissfestigkeit und gleichzeitig einer hohen Zähigkeit, umfassend als Nicht-Eisenbestandteile C, Si, P, Mg, Cr, Al, S, B, Cu, Mn und den üblichen Verunreinigungen.The invention relates to a nodular cast iron alloy for cast iron products having a high mechanical strength, a high wear resistance and at the same time a high toughness, comprising as non-iron components C, Si, P, Mg, Cr, Al, S, B, Cu, Mn and usual impurities.

Im Kraftfahrzeugbau werden Gusseisenlegierungen verwendet für die Herstellung von Gussteilen, die eine hohe Verschleissfestigkeit haben müssen, beispielsweise Bremsscheiben, die beim Bremsvorgang die kinetische Energie des Fahrzeuges in thermische Energie umwandeln müssen. Die Bremsscheiben können dabei Temperaturen bis ca. 850 °C erreichen. Beim Bremsvorgang werden nicht nur die Bremsbeläge, sondern auch die Bremsscheiben abgenutzt. Bremsscheiben weisen einen unregelmässigen Verschleiss auf und müssen oft noch während der Garantieperiode mit hohen Kosten für den Automobilhersteller ersetzt werden. Damit die Abnutzung an der Oberfläche der Bremsscheibe möglichst gleichmässig stattfindet, werden hohe Ansprüche an das Kristallgefüge und an die Homogenität des Gefüges gestellt. Durch ein geeignetes Giessverfahren kann die Homogenität verbessert werden.In the automotive industry cast iron alloys are used for the production of castings, which must have a high wear resistance, such as brake discs, which must convert the kinetic energy of the vehicle during the braking process into thermal energy. The brake discs can reach temperatures up to 850 ° C. When braking not only the brake pads, but also the brake discs are worn. Brake discs have an irregular wear and often have to be replaced during the warranty period with high costs for the car manufacturer. So that the wear on the surface of the brake disc takes place as evenly as possible, high demands are placed on the crystal structure and on the homogeneity of the structure. By a suitable casting process, the homogeneity can be improved.

Aus der GB 832 666 ist eine Gusseisenlegierung mit als Nicht-Eisenbestandteilen 1,0 bis 2,5 Gew.% C, 1,5 bis 3,2 Gew.% Si, weniger als 1,15 Gew.% Mn, weniger als 0,5 Gew.% S und 0,001 bis 0,05 Gew.% B bekannt. Nach dem Giessen bildet sich der Graphitanteil in der kompakten Form aus. Es liegt, weil die Legierung kein Mg enthält, kein Kugelgraphit oder Vermiculargraphit, sondern überwiegend eine Graphitausbildung vor, die ähnlich aussieht wie die Temperkohleknoten von Temperguss. Die Legierung enthält 5 bis 10 % Karbide in einer überwiegend perlitischen Matrix, was zur Folge hat, dass die Bruchdehnung relativ niedrig wird. Um die Bildung von Lamellengraphit zu begrenzen und somit den Elastizitätsmodulus zu verbessern, werden als Legierungselemente Tellur und Wismuth beigemischt. Höhere Bruchdehnungswerte werden durch eine anschliessende Wärmebehandlung erreicht.From the GB 832,666 is a cast iron alloy with as non-iron constituents 1.0 to 2.5 wt.% C, 1.5 to 3.2 wt.% Si, less than 1.15 wt.% Mn, less than 0.5 wt.% S and 0.001 to 0.05 wt.% B known. After casting, the graphite part is formed in a compact form. Because the alloy does not contain any Mg, nodular graphite or vermicular graphite, it has predominantly a graphite formation that looks similar to the tempered carbon knot of malleable cast iron. The alloy contains 5 to 10% carbides in a predominantly pearlitic matrix, with the result that the elongation at break is relatively low. To limit the formation of lamellar graphite and thus the To improve modulus of elasticity are added as alloying elements tellurium and bismuth. Higher fracture strain values are achieved by a subsequent heat treatment.

Aus der US 2004/0112479-A1 ist eine weitere Gusseisenlegierung bekannt, die vorzugsweise 3,7 Gew.% C, 2,5 Gew.% Si, 1,85 Gew.% Ni, 0,85 Gew.% Cu und 0,05 Gew.% Mo enthält. Dieser Werkstoff zeichnet sich aus durch eine Dehnung von 20 bis 16 % bei einer Zugfestigkeit von 500 bis 900 MPa und durch eine Brinell-Härte von 180 bis 290 HB. Diese Eigenschaften werden erreicht nach einer zeitaufwendigen Wärmebehandlung, die nacheinander folgende Schritte umfasst: 10 bis 360 Minuten Austenitisieren bei Temperaturen zwischen 750 und 790 °C, rasches Abkühlen in einem Salzbad auf einer Temperatur zwischen 300 und 400 °C, 1 bis 3 Stunden Austempern bei Temperaturen zwischen 300 und 400 °C und Abkühlen auf Raumtemperatur. Nach dieser Behandlung hat der Werkstoff ein Gefüge mit einer austenitischen und ferritischen Mikrostruktur. Der Werkstoff zeichnet sich aus durch eine leichtere maschinelle Bearbeitbarkeit als ein Gusseisen, das auf übliche Art einer Austemperung unterworfen wurde.From the US 2004/0112479-A1 For example, another cast iron alloy is known which preferably contains 3.7% by weight of C, 2.5% by weight of Si, 1.85% by weight of Ni, 0.85% by weight of Cu and 0.05% by weight of Mo. This material is characterized by an elongation of 20 to 16% at a tensile strength of 500 to 900 MPa and a Brinell hardness of 180 to 290 HB. These properties are achieved after a time-consuming heat treatment, which comprises in succession: 10 to 360 minutes austenitizing at temperatures between 750 and 790 ° C, rapid cooling in a salt bath at a temperature between 300 and 400 ° C, 1 to 3 hours annealing at Temperatures between 300 and 400 ° C and cooling to room temperature. After this treatment, the material has a structure with an austenitic and ferritic microstructure. The material is characterized by a lighter machinability than a cast iron, which was subjected in the usual way to an austempering.

Aus der DE 101 29 382 A1 ist eine Sphärogusslegierung für Gusseisenprodukte mit einer plastischen Verformbarkeit bekannt, wobei die Sphärogusslegierung als Nicht-Eisenbestandteile zumindest die Elemente C, Si, Mn, Cu, Mg, S und als Beimengungen eines oder mehrere Elemente aus der Gruppe IIIb des Periodensystems enthält, wobei die Legierung als Beimengung zumindest das Element Bor enthält und wobei der Si-Gehalt mehr als 2,4 % beträgt.From the DE 101 29 382 A1 is a nodular cast iron alloy for cast iron products with plastic ductility known, wherein the nodular cast iron alloy contains as non-iron constituents at least the elements C, Si, Mn, Cu, Mg, S and as admixtures of one or more elements from the group IIIb of the Periodic Table, wherein the alloy contains as admixture at least the element boron and wherein the Si content is more than 2.4%.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine Gusseisenlegierung anzugeben, die aus möglichst kostengünstigen Elementen hergestellt wird, wobei die Gussteile ohne eine zusätzliche Wärmebehandlung eine möglichst hohe Temperaturbeständigkeit und Festigkeit, insbesondere Verschleissfestigkeit und gleichzeitig eine sehr hohe Zähigkeit haben.Based on this prior art, it is an object of the invention to provide a cast iron alloy, which is made from the most cost-effective elements, the castings without an additional heat treatment the highest possible temperature resistance and strength, in particular wear resistance and at the same time have a very high toughness.

Diese Aufgabe wird durch eine Sphärogusslegierung für Gusseisenprodukte mit einer hohen mechanischen Festigkeit, einer hohen Verschleissfestigkeit und gleichzeitig einer hohen Zähigkeit, umfassend als Nicht-Eisenbestandteile C, Si, P, Mg, Cr, Al, S, B, Cu, Mn und den üblichen Verunreinigungen gemäß Anspruch 1 gelöst, wobei die Legierung 3,0 bis 3,7 Gew.% C, 2,6 bis 3,4 Gew.% Si, 0,02 bis 0,05 Gew.% P, 0,025 bis 0,045 Gew.% Mg, 0,01 bis 0,03 Gew.% Cr, 0,003 bis 0,017 Gew.% Al, 0,0005 bis 0,012 Gew.% S und 0,0004 bis 0,002 Gew.% B, 0,1 bis 1,5 Gew.% Cu, vorzugsweise 0,5 bis 0,8 Gew.% Cu und 0,1 bis 1,0 Gew.% Mn, vorzugsweise 0,15 bis 0,2 Gew.% Mn, Rest Fe und unvermeidbare Verunreinigungen enthält.This object is achieved by a nodular cast iron alloy for cast iron products having a high mechanical strength, a high wear resistance and at the same time a high toughness, comprising as non-iron components C, Si, P, Mg, Cr, Al, S, B, Cu, Mn and the usual Impurities according to claim 1, wherein the alloy contains 3.0 to 3.7% by weight C, 2.6 to 3.4% by weight Si, 0.02 to 0.05% by weight P, 0.025 to 0.045% by weight. % Mg, 0.01 to 0.03 wt% Cr, 0.003 to 0.017 wt% Al, 0.0005 to 0.012 wt% S, and 0.0004 to 0.002 wt% B, 0.1 to 1.5 % By weight of Cu, preferably 0.5 to 0.8% by weight of Cu and 0.1 to 1.0% by weight of Mn, preferably 0.15 to 0.2% by weight of Mn, balance Fe and unavoidable impurities.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den weiteren Ansprüchen 2-17.Preferred embodiments of the invention will become apparent from the further claims 2-17.

Es ist von Vorteil, dass die Legierung ein möglichst gutes Festigkeits-Dehnungsverhalten hat. Dies wird dadurch erreicht, dass die Sphärogusslegierung 0,1 bis 1,5 Gew.% Cu, vorzugsweise 0,5 bis 0,8 Gew.% Cu enthält. Dies wird auch dadurch erreicht, dass die Legierung 0,1 bis 1,0 Gew.% Mn, vorzugsweise 0,15 bis 0,2 Gew.% Mn enthält.It is advantageous that the alloy has the best possible strength-elongation behavior. This is achieved by the nodular cast iron alloy containing 0.1 to 1.5 wt.% Cu, preferably 0.5 to 0.8 wt.% Cu. This is also achieved by the alloy containing 0.1 to 1.0 wt% Mn, preferably 0.15 to 0.2 wt% Mn.

Es ist weiterhin auch von Vorteil dass die Legierung ein möglichst gutes Verschleissverhalten hat. Dies wird dadurch erreicht, dass die Legierung 0,1 bis 1,5 Gew.% Cu, vorzugsweise 0,5 bis 0,8 Gew.% Cu und 0,1 bis 1,0 Gew.% Mn, vorzugsweise 0,15 bis 0,2 Gew.% Mn enthält. Dies wird auch dadurch erreicht, dass die Legierung 0,1 bis 1,5 Gew.% Mn, vorzugsweise 0,5 bis 1,0 Gew.% Mn und 0,05 bis 1,0 Gew.% Cu, vorzugsweise 0,05 bis 0,2 Gew.% Cu enthält.It is also advantageous that the alloy has the best possible wear behavior. This is achieved in that the alloy 0.1 to 1.5 wt.% Cu, preferably 0.5 to 0.8 wt.% Cu and 0.1 to 1.0 wt.% Mn, preferably 0.15 to 0.2 wt.% Mn. This is also achieved by the alloy being 0.1 to 1.5 wt% Mn, preferably 0.5 to 1.0 wt% Mn, and 0.05 to 1.0 wt% Cu, preferably 0.05 contains up to 0.2 wt.% Cu.

Der Kerngedanke der Erfindung ist es eine Gusseisenlegierung anzugeben, die eine Brinellhärte von mehr als 220 aufweist und die bei dem Einsatz als Bremsscheibe möglichst gleichmässig abgenutzt wird. Der Graphit in der Gusseisenlegierung kann sphäroidal (=kugelförmig) oder vermicularThe core idea of the invention is to specify a cast iron alloy which has a Brinell hardness of more than 220 and which is worn as uniformly as possible when used as a brake disk. The graphite in the cast iron alloy may be spheroidal (= spherical) or vermicular

(=würmchenförmig), jedoch nicht lamellar (=plättchenförmig) ausgebildet sein. Bremsscheiben mit Lamellargraphit sind zwar preisgünstig, weisen aber eine geringere Beständigkeit gegen Temperaturwechsel auf. Dadurch kann es schon nach kurzer Einsatzzeit zu so genannten Brandrissen kommen, die schnell weiter wachsen und zu Unebenheiten der Oberfläche führen. Eine unebene Oberfläche führt wiederum zu ungleichmässiger Temperaturbelastung, unregelmässigem Verschleiss und zum so genannten Bremsrubbeln.(= worm-shaped), but not lamellar (= platelet-shaped) be formed. Lamellar graphite discs are inexpensive, but have less resistance to temperature changes. This can lead to so-called fire cracks after a short period of use, which continue to grow rapidly and lead to uneven surfaces. An uneven surface in turn leads to uneven temperature loading, irregular wear and so-called Bremsrubbeln.

Weitere Anwendungen der erfindungsgemässen Sphärogusslegierung sind Achs- und Fahrwerksteile für Lastkraftwagen und für Personenkraftwagen, wie beispielsweise Querlenker, Radträger und Schwenklager, welche hohen mechanischen und dynamischen Belastungen ausgesetzt sind und welche sich im Falle eines Zusammenstosses des Kraftwagens plastisch verformen müssen und nicht brechen dürfen.Other applications of the inventive nodular cast iron alloy are axle and chassis parts for trucks and passenger cars, such as wishbones, wheel and pivot bearings, which are exposed to high mechanical and dynamic loads and which must deform plastically in the event of a collision of the motor vehicle and must not break.

Beispiel 1example 1

Eine Bremsscheibe wurde aus der erfindungsgemässen Sphärogusslegierung gefertigt. Die chemische Zusammensetzung betrug 3,34 Gew.% C, 2,92 Gew.% Si, 0,62 Gew.% Cu, 0,17 Gew.% Mn, 0,038 Gew.% Mg, 0,025 Gew.% P, 0,021 Gew.% Cr, 0,01 Gew.% Al, 0,001 Gew.% S und 0,0008 Gew.% B, Rest Fe und den üblichen Verunreinigungen. Die Bremsscheibe wurde untersucht auf Sphärolithenzahl, Graphitgehalt, Graphitform und Graphitgrösse, Perlitgehalt und Brinellhärte. Proben aus der Bremsscheibe wurden einem Zugversuch unterworfen um das Festigkeits-Dehnungsverhalten festzustellen. Die Spärolithenzahl beträgt 384 +/- 76 Sphärolithen pro mm2. Der Graphitgehalt 9,7 +/-0,7 %. Die Graphitform nach DIN EN ISO 945 ist zu 97.9 % von der Form VI. Die Grössenverteilung nach DIN EN ISO 945 ist 45 % der Grösse 8, 42 % der Grösse 7 und 13 % der Grösse 6. Der Perlitgehalt beträgt 84 +/- 1%. Die Brinellhärte beträgt 248 +/- 3 HB. Beim Zugversuch wurden folgende Werte festgestellt: Dehngrenze Rp 0.2 = 474 MPa, Zugfestigkeit Rm = 778 MPa, Bruchdehnung A5 =11,4 % und Elastizitätsmodulus E = 165 bis 170 kN/mm2.A brake disk was manufactured from the ductile iron alloy according to the invention. The chemical composition was 3.34 wt.% C, 2.92 wt.% Si, 0.62 wt.% Cu, 0.17 wt.% Mn, 0.038 wt.% Mg, 0.025 wt.% P, 0.021 wt % Cr, 0.01% by weight Al, 0.001% by weight S and 0.0008% by weight B, remainder Fe and the usual impurities. The brake disk was tested for spherulite number, graphite content, graphite shape and graphite size, perlite content and Brinell hardness. Samples from the brake disc were subjected to a tensile test to determine the strength-elongation behavior. The Spärolithenzahl is 384 +/- 76 spherulites per mm 2 . The graphite content 9.7 +/- 0.7%. The graphite mold according to DIN EN ISO 945 is 97.9% of the form VI. The size distribution according to DIN EN ISO 945 is 45% of the size 8, 42% of the size 7 and 13% of the size 6. The perlite content is 84 +/- 1%. The Brinell hardness is 248 +/- 3 HB. Tensile strength R p 0.2 = 474 MPa, tensile strength Rm = 778 MPa, elongation at break A5 = 11.4% and elastic modulus E = 165 to 170 kN / mm 2 .

Im Vergleich mit den bekannten Werkstoffen für Bremsscheiben konnte ein wesentlich besseres Oxidationsverhalten (siehe Figur 1) und eine stark reduzierte Neigung zu Brandrissbildung (siehe Figuren 2 und 3) festgestellt werden. Das Oxidationsverhalten und somit auch das Verschleissverhalten wird wesentlich verbessert durch die Zugabe einer Mischung von Kupfer und/oder Mangan zur Sphärogusslegierung.In comparison with the known materials for brake discs could a much better oxidation behavior (see FIG. 1 ) and a greatly reduced tendency to fire cracking (see FIGS. 2 and 3 ). The oxidation behavior and thus the wear behavior is substantially improved by the addition of a mixture of copper and / or manganese to ductile iron alloy.

In Figur 1 ist die Gewichtszunahme in Gramm pro Quadratmeter und Tag durch Oxidation bei 700°C an Luft dargestellt. Der erfindungsgemässe Werkstoff zeigt eine Gewichtszunahme von ca. 9 g/m2.d im Vergleich zu einem Gusseisenwerkstoff für konventionelle Bremsscheiben mit einer Gewichtszunahme von ca. 21 g/m2.d.In FIG. 1 is the weight gain in grams per square meter and day shown by oxidation at 700 ° C in air. The inventive material shows a weight gain of about 9 g / m 2 .d compared to a cast iron material for conventional brake discs with a weight gain of about 21 g / m 2 .D.

Die Versuche zur Prüfung auf Brandrissbildung wurden wie folgt durchgeführt: Eine Probe mit den Abmessungen 40 x 20 x 7 mm wird mindestens 100 Zyklen bestehend aus 7 Sekunden Aufheizen auf 700°C und 6 Sekunden Abschrecken in Wasser unterworfen. Anschliessend werden Querschliffe hergestellt und unter dem Mikroskop untersucht und fotografiert.The fire cracking tests were conducted as follows: A 40 x 20 x 7 mm sample is subjected to at least 100 cycles consisting of heating to 700 ° C for 7 seconds and quenching in water for 6 seconds. Then cross-sections are made and examined under the microscope and photographed.

In Figur 2 ist ein Mikrofoto einer handelsüblichen Bremsscheibe mit einem Brandriss von 0,4 mm Tiefe dargestellt. In Figur 3 ist ein weiteres Mikrofoto der erfindungsgemässen Bremsscheibe bei gleicher Vergrösserung mit einem Brandriss von 0,14 mm Tiefe dargestellt.In FIG. 2 is a microfoto of a commercial brake disc with a fire crack of 0.4 mm depth shown. In FIG. 3 is another microfoto of the inventive brake disc at the same magnification shown with a fire crack of 0.14 mm depth.

Beispiel 2Example 2

Ein Querlenker für Personenkraftwagen wurde aus der erfindungsgemässen Sphärogusslegierung gefertigt. Die chemische Zusammensetzung betrug 3,5 Gew.% C, 2,85 Gew.% Si, 0,63 Gew.% Cu, 0,18 Gew.% Mn, 0,038 Gew.% Mg, 0,026 Gew.% P, 0,029 Gew.% Cr, 0,004 Gew.% Al, 0,001 Gew.% S und 0,0007 Gew.% B, Rest Fe und den üblichen Verunreinigungen. Beim Zugversuch wurden folgende Werte festgestellt: Dehngrenze Rp 0.2 = 465 MPa, Zugfestigkeit Rm = 757 Mpa, Bruchdehnung A5 =11,1 % und Elastizitätsmodulus E = 165 bis 170 kN/mm2. Die Brinellhärte beträgt 258 +/- 3 HB.A wishbone for passenger cars was made from the nodular cast iron alloy according to the invention. The chemical composition was 3.5% by weight of C, 2.85% by weight of Si, 0.63% by weight of Cu, 0.18% by weight of Mn, 0.038% by weight of Mg, 0.026 wt.% P, 0.029 wt.% Cr, 0.004 wt.% Al, 0.001 wt.% S and 0.0007 wt.% B, remainder Fe and the usual impurities. Tensile strength R p 0.2 = 465 MPa, tensile strength Rm = 757 Mpa, elongation at break A5 = 11.1% and modulus of elasticity E = 165 to 170 kN / mm 2 . The Brinell hardness is 258 +/- 3 HB.

Beispiel 3Example 3

Ein Radträger für Personenkraftwagen wurde aus der erfindungsgemässen Sphärogusslegierung gefertigt. Die chemische Zusammensetzung betrug 3,43 Gew.% C, 3,38 Gew.% Si, 0,71 Gew.% Cu, 0,2 Gew.% Mn, 0,037 Gew.% Mg, 0,047 Gew.% P, 0,043 Gew.% Cr, 0,012 Gew.% Al, 0,004 Gew.% S und 0,0008 Gew.% B, Rest Fe und den üblichen Verunreinigungen. Beim Zugversuch wurden folgende Werte festgestellt: Dehngrenze Rp 0.2 = 558 MPa, Zugfestigkeit Rm = 862 MPa und Bruchdehnung A5 =6,1 %. Die Brinellhärte beträgt 288 HB. Die Sphärolithenzahl im Mikrogefüge wurde zu 455 Sphärolithen pro mm2 ermittelt.A wheel carrier for passenger cars was manufactured from the ductile iron alloy according to the invention. The chemical composition was 3.43 wt.% C, 3.38 wt.% Si, 0.71 wt.% Cu, 0.2 wt.% Mn, 0.037 wt.% Mg, 0.047 wt.% P, 0.043 wt % Cr, 0.012 wt.% Al, 0.004 wt.% S and 0.0008 wt.% B, balance Fe and the usual impurities. Tensile strength R p 0.2 = 558 MPa, tensile strength Rm = 862 MPa and elongation at break A5 = 6.1%. The Brinell hardness is 288 HB. The number of spherulites in the microstructure was found to be 455 spherulites per mm 2 .

In Figur 4 ist die Bruchdehnung A5 in Funktion der Zugfestigkeit Rm dargestellt. Die durchgezogene Linie gibt die Mindestwerte gemäss der Norm EN 1563 für Gusseisen mit Kugelgraphit von im Gusszustand hergestellten Sorten an. Die Messungen des erfindungsgemässen Werkstoffes sind gemäss der oben aufgeführten Beispiele 1 bis 3 mit eingetragen.In FIG. 4 the elongation at break A5 is shown as a function of the tensile strength Rm. The solid line indicates the minimum values according to standard EN 1563 for ductile iron castings of as-cast grades. The measurements of the inventive material are listed according to the above examples 1 to 3.

In Figur 5 ist die Bruchdehnung A5 in Funktion der Dehngrenze Rp 0.2 dargestellt. Die durchgezogene Linie gibt die Mindestwerte gemäss der Norm EN 1563 für Gusseisen mit Kugelgraphit an von im Gusszustand hergestellte Sorten an. Die Messungen des erfindungsgemässen Werkstoffes sind gemäss der oben aufgeführten Beispiele 1 bis 3 mit eingetragen.In FIG. 5 the elongation at break A5 in function of the yield strength R p 0.2 is shown. The solid line indicates the minimum values according to standard EN 1563 for spheroidal graphite cast iron of as-cast grades. The measurements of the inventive material are listed according to the above examples 1 to 3.

Die Werkstoffeigenschaften der erfindungsgemässen Sphärogusslegierung liegen damit weit über der Europäischen Norm EN 1563 für Gusseisen mit Kugelgraphit und erreichen sogar die Werte von ADI (= Austempered Ductile Iron), einem durch eine sehr aufwendige Wärmebehandlung erzeugten, in grösseren Wanddicken nur durch Zulegieren der teuren Elemente Nickel und/oder Molybdän realisierbaren und damit entsprechend teuren Eisengusswerkstoff, der in Europa unter EN 1564 genormt ist.The material properties of the nodular cast iron alloy according to the invention thus far exceed the European standard EN 1563 for spheroidal graphite cast iron and even reach the values of ADI (= A ustempered D uctile I ron), a signal generated by a very complex heat treatment in larger wall thicknesses only by alloying the expensive elements nickel and / or molybdenum realizable and thus correspondingly expensive cast iron material, the under in Europe EN 1564 is standardized.

Figur 6 zeigt die Festigkeitsbereiche gegenüber der Bruchdehnung der Werkstoffe Aluminiumgusslegierungen, Gusseisen mit Kugelgraphit, ADI und des erfindungsgemässen Werkstoffs mit den eingetragenen Beispielen 1 bis 3. FIG. 6 shows the strength ranges with respect to the elongation at fracture of the materials aluminum casting alloys, ductile iron, ADI and the inventive material with the registered examples 1 to 3.

Die Gleichmässigkeit des Gefüges wird auch durch ein neues Giessverfahren erreicht. Die Giessform wird waagrecht statt senkrecht geteilt, wobei die Bremsscheiben waagrecht angeordnet sind und die Befüllung der Giessform von der Mitte aus zum Rand der Bremsscheibe durchgeführt wird. Dies hat zur Folge, dass die Giessform rotationssymmetrisch gefüllt wird und dass die Bremsscheibe nach dem Giessen von Innen nach Aussen gleichmässig abkühlt. Dadurch entsteht über den gesamten Umfang der Bremsscheibe ein gleichmässiges, homogenes Gefüge. Eine nachträgliche Wärmebehandlung, die zeitaufwendig ist und Kosten verursacht, ist nicht mehr erforderlich.The uniformity of the structure is also achieved by a new casting process. The mold is divided horizontally instead of vertically, with the brake discs are arranged horizontally and the filling of the mold is carried out from the center to the edge of the brake disc. This has the consequence that the mold is filled rotationally symmetrical and that the brake disc cools evenly after casting from inside to outside. This creates over the entire circumference of the brake disc a uniform, homogeneous structure. Subsequent heat treatment, which is time consuming and incurs costs, is no longer required.

Claims (17)

  1. Spheroidal cast alloy for cast iron products with great mechanical strength, high wear resistance and at the same time a high degree of ductility, comprising as non-iron constituents C, Si, P, Mg, Cr, Al, S, B, Cu, Mn and the conventional impurities, characterized in that the spheroidal cast alloy contains 3.0 to 3.7% by weight C, 2.6 to 3.4% by weight Si, 0.02 to 0.05% by weight P, 0.025 to 0.045% by weight Mg, 0.01 to 0.03% by weight Cr, 0.003 to 0.017% by weight Al, 0.0005 to 0.009% by weight S, 0.0004 to 0.002% by weight B, 0.1 to 1.5% by weight Cu, preferably 0.5 to 0.8% by weight Cu and 0.1 to 1.0% by weight Mn, preferably 0.15 to 0.2% by weight Mn, the remainder being Fe and unavoidable impurities.
  2. Spheroidal cast alloy according to Claim 1, characterized in that the alloy contains 0.1 to 1.5% by weight Mn, preferably 0.5 to 1.0% by weight Mn, and 0.05 to 1.0% by weight Cu, preferably 0.05 to 0.2% by weight Cu.
  3. Spheroidal cast alloy according to Claim 1 or 2, characterized in that, immediately after casting and cooling, the graphite component is of a spheroidal and/or vermicular form in respect of over 90% of the graphite present.
  4. Spheroidal cast alloy according to at least one of Claims 1 to 3, characterized in that, immediately after casting and cooling, the crystalline structure of the cast part is of a pearlitic form in respect of 70 to 90%.
  5. Spheroidal cast alloy according to at least one of Claims 1 to 4, characterized in that, immediately after casting and cooling, the crystalline structure of the cast part has 200 to 700 spherulites per mm2.
  6. Spheroidal cast alloy according to at least one of Claims 1 to 5, characterized in that the cast part has a Brinell hardness of over 220.
  7. Spheroidal cast alloy according to at least one of Claims 1 to 6, characterized in that the graphite particles have a size distribution of at least 30% of size 8, 10% to 70% of size 7 and at most 20% of size 6 in accordance with DIN EN ISO 945.
  8. Spheroidal cast alloy according to at least one of Claims 1 to 7, characterized in that the cast part has an elongation at rupture A5 of 5 to 14% with a tensile strength Rm of 900 to 600 MPa.
  9. Spheroidal cast alloy according to at least one of Claims 1 to 8, characterized in that the cast part has an elongation at rupture A5 of 5 to 14% with a yield strength Rp0.2 of 600 to 400 MPa.
  10. Use of a spheroidal cast alloy according to at least one of Claims 1 to 9, for producing chassis parts in motor vehicles.
  11. Use of a spheroidal cast alloy according to at least one of Claims 1 to 9, for producing wishbones in motor vehicles.
  12. Use of a spheroidal cast alloy according to at least one of Claims 1 to 9, for producing wheel carriers in motor vehicles.
  13. Use of a spheroidal cast alloy according to at least one of Claims 1 to 9, for producing pivot bearings in motor vehicles.
  14. Use of a spheroidal cast alloy according to at least one of Claims 1 to 9, for producing brake disks in motor vehicles.
  15. Method for producing a cast part from a spheroidal cast alloy according to one of Claims 1 to 9, characterized in that, after the casting and cooling of the cast part, no heat treatment of the cast part is performed.
  16. Method according to Claim 15, characterized in that the cast part is a brake disc, the casting mold is divided horizontally and the brake disc is arranged horizontally in the casting mold.
  17. Method according to Claim 16, characterized in that the casting mold is filled rotationally symmetrically from the middle point of the brake disc.
EP05803315A 2004-11-22 2005-11-14 Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy Active EP1834005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200531148T SI1834005T1 (en) 2004-11-22 2005-11-14 Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004056331A DE102004056331A1 (en) 2004-11-22 2004-11-22 Ductile cast iron alloy and method for producing castings from nodular cast iron alloy
PCT/EP2005/012160 WO2006056334A1 (en) 2004-11-22 2005-11-14 Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy

Publications (2)

Publication Number Publication Date
EP1834005A1 EP1834005A1 (en) 2007-09-19
EP1834005B1 true EP1834005B1 (en) 2010-08-18

Family

ID=35453451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05803315A Active EP1834005B1 (en) 2004-11-22 2005-11-14 Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy

Country Status (16)

Country Link
US (1) US8771589B2 (en)
EP (1) EP1834005B1 (en)
JP (1) JP5145047B2 (en)
KR (1) KR100969840B1 (en)
CN (1) CN100529135C (en)
AT (1) ATE478164T1 (en)
AU (1) AU2005309042B2 (en)
BR (1) BRPI0518450B1 (en)
CA (1) CA2579817C (en)
DE (2) DE102004056331A1 (en)
ES (1) ES2349414T3 (en)
MX (1) MX2007005255A (en)
PT (1) PT1834005E (en)
SI (1) SI1834005T1 (en)
WO (1) WO2006056334A1 (en)
ZA (1) ZA200704658B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243920A1 (en) 2017-03-24 2017-11-15 Georg Fischer Automotive (Kunshan) Co Ltd. Spheroidal cast alloy

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE456749T1 (en) * 2007-09-11 2010-02-15 Fischer Georg Gmbh & Co Kg BEARING ARRANGEMENT FOR MOTOR VEHICLES
DE102008057947A1 (en) * 2008-11-19 2010-05-20 Mitec Automotive Ag Balance shaft for a reciprocating engine
EP2319639A1 (en) 2009-11-10 2011-05-11 Georg Fischer Automobilguss GmbH Cast iron axle leg with moulded steel core - method for manufacturing the axle leg
PL2471960T3 (en) 2010-12-30 2014-11-28 Infun S A Method for manufacturing a cast iron part and cast iron part thus obtained
JP6162364B2 (en) * 2012-02-24 2017-07-12 株式会社リケン High rigidity spheroidal graphite cast iron
CN102994860A (en) * 2012-11-26 2013-03-27 俞虹 Preparation method of nodular cast iron alloy
CN102994859A (en) * 2012-11-26 2013-03-27 俞虹 Nodular cast iron alloy and preparation method thereof
CN103572146A (en) * 2013-11-04 2014-02-12 虞雪君 Ductile cast iron alloy with high wear resistance
CN103572155A (en) * 2013-11-04 2014-02-12 虞雪君 Ductile cast iron alloy
DE102014214640A1 (en) * 2014-07-25 2016-01-28 Ford Global Technologies, Llc Method for producing a component from heat-treated cast iron
JP5952455B1 (en) * 2015-03-30 2016-07-13 株式会社リケン High rigidity spheroidal graphite cast iron
EP3170578B1 (en) * 2015-11-17 2021-06-30 GF Casting Solutions Kunshan Co. Ltd. Process for the production of a cast piece from cast iron with spheroidal graphite
CN108085579A (en) * 2016-11-21 2018-05-29 宜兴市帝洲新能源科技有限公司 A kind of ejection bar material of mechanical equipment
CN110484810A (en) * 2019-08-26 2019-11-22 山东金麒麟股份有限公司 A kind of spheroidal graphite cast-iron of high-load performance, production method, purposes and brake disc
CN110863134B (en) * 2019-11-29 2020-12-01 泛凯斯特汽车零部件(江苏)有限公司 Casting made of nodular cast iron and manufacturing method thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB832666A (en) 1957-06-10 1960-04-13 Gen Motors Corp Improved ferrous metal and methods of producing the same
DE2428821C3 (en) * 1974-06-14 1985-11-14 Goetze Ag, 5093 Burscheid Wear-resistant cast iron alloy with lamellar to nodular graphite precipitation
DE2440675C3 (en) * 1974-08-24 1984-06-20 Bergische Stahl-Industrie, 5630 Remscheid Use of spheroidal graphite cast iron for rotating bodies
SU524852A1 (en) * 1975-05-26 1976-08-15 Минский Филиал Научно-Исследовательского Института Технологии Автомобильной Промышленности Abrasion resistant cast iron
JPS5441216A (en) 1977-09-07 1979-04-02 Toyo Kogyo Co Wearrresistant spheroidal iron and slidinggproducts made of cast iron
JPS5754246A (en) * 1980-09-13 1982-03-31 Mazda Motor Corp Spheroidal graphite cast iron of excellent machinability
JPS6036755A (en) * 1983-08-08 1985-02-25 Kubota Ltd Composite cylinder liner
JPS60247036A (en) * 1984-05-22 1985-12-06 Mitsui Eng & Shipbuild Co Ltd Cv-cast iron cylinder liner
JPS616248A (en) * 1984-06-20 1986-01-11 Hitachi Metals Ltd Rotor provided with hub and its manufacture
GB8611958D0 (en) * 1986-05-16 1986-06-25 York Trailer Co Ltd Vehicle axles
SU1528808A1 (en) * 1987-04-29 1989-12-15 Научно-исследовательский институт автотракторных материалов Cast iron with spherical graphite for producing thin-wall castings
KR910002934B1 (en) * 1988-08-31 1991-05-10 삼성전자 주식회사 Call waiting and alternating method keyphone
CN1043754A (en) * 1988-12-21 1990-07-11 机械制造工艺科学生产联合公司 Spheroidal graphite cast iron
US5316068A (en) * 1989-01-20 1994-05-31 Aisin Seiki Kabushiki Kaisha Method for producing casting with functional gradient
DE3930137A1 (en) * 1989-09-09 1991-03-21 Bayer Ag SHOCK ABSORBER IN THE FORM OF A SHOCK ABSORBER
CN1051593A (en) * 1989-11-07 1991-05-22 沈阳飞机制造公司 Low chromium medium-Si, Mo ferrite ductile cast iron
SU1749294A1 (en) * 1990-10-08 1992-07-23 Производственное Объединение "Гомсельмаш" High strength cast iron
FI101816B (en) 1991-07-27 1998-08-31 Man B & W Diesel Ag Cylinder sleeve for an internal combustion engine
JPH09111394A (en) 1995-10-18 1997-04-28 Toyota Motor Corp Heat resistant spheroidal graphite cast iron
JP3964675B2 (en) * 1999-06-08 2007-08-22 旭テック株式会社 Non-austempered spheroidal graphite cast iron
DE10029189A1 (en) * 2000-06-19 2001-12-20 Fischer Georg Fahrzeugtech Suspension arm for car wheel comprises Y- shaped, one-piece casting with dumb-bell and kidney shaped apertures through it
DE10129382A1 (en) * 2001-06-20 2003-01-02 Fischer Georg Fahrzeugtech nodular cast iron
DE10233732A1 (en) * 2002-07-24 2004-02-05 Georg Fischer Fahrzeugtechnik Ag Cast iron alloy
MXPA05002433A (en) * 2002-09-04 2005-05-27 Intermet Corp Austempered cast iron article and a method of making the same.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243920A1 (en) 2017-03-24 2017-11-15 Georg Fischer Automotive (Kunshan) Co Ltd. Spheroidal cast alloy

Also Published As

Publication number Publication date
US20090047164A1 (en) 2009-02-19
AU2005309042A1 (en) 2006-06-01
JP2008520827A (en) 2008-06-19
KR100969840B1 (en) 2010-07-13
WO2006056334A1 (en) 2006-06-01
US8771589B2 (en) 2014-07-08
CN100529135C (en) 2009-08-19
KR20070083790A (en) 2007-08-24
DE502005010119D1 (en) 2010-09-30
SI1834005T1 (en) 2010-12-31
ZA200704658B (en) 2008-08-27
ATE478164T1 (en) 2010-09-15
DE102004056331A1 (en) 2006-05-24
CA2579817A1 (en) 2006-06-01
EP1834005A1 (en) 2007-09-19
BRPI0518450A2 (en) 2008-11-18
PT1834005E (en) 2010-11-08
JP5145047B2 (en) 2013-02-13
BRPI0518450B1 (en) 2014-09-30
AU2005309042B2 (en) 2008-11-20
CA2579817C (en) 2011-05-10
MX2007005255A (en) 2007-07-09
ES2349414T3 (en) 2011-01-03
CN101072890A (en) 2007-11-14

Similar Documents

Publication Publication Date Title
EP1834005B1 (en) Spheroidal cast alloy and method for producing cast parts from said spheroidal cast alloy
DE69835099T2 (en) BALL GRAPHITE CAST IRON ALLOY WITH MOLYBDEN AND ROTOR FOR DISC BRAKES MANUFACTURED THEREOF
US5904787A (en) Oil-tempered wire and method of manufacturing the same
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
DE202006006518U1 (en) Aluminum casting alloy, useful in production of safety components, contains silicon
DE2303802B2 (en) PROCESS FOR INCREASING THE STRENGTH AND TOUGHNESS OF DISPERSION-STRENGTHEN WEDNES
EP3243920B1 (en) Spheroidal cast alloy
DE102009048273A1 (en) Cast iron casting and method of making the same
DE19852734B4 (en) Spring with improved corrosion fatigue resistance
EP1468126B1 (en) Nodular graphite iron alloy
CH679402A5 (en)
EP1270747B1 (en) Spheroidal graphite cast iron
EP0693336A2 (en) Method of manufacturing of a cast iron alloy for brake disks and brake drums for vehicles
DE2440675C3 (en) Use of spheroidal graphite cast iron for rotating bodies
EP1152164B1 (en) Brake disc for motor vehicles, steel alloy and method for manufacturing said disc
DE102008050152B4 (en) High-strength, ductile cast iron alloy with nodular graphite and process for its production
AT411269B (en) ALUMINUM-SILICON ALLOYS WITH IMPROVED MECHANICAL PROPERTIES
DE102016122596A1 (en) Ultrahigh-strength spring steel
EP1992711B1 (en) Cast iron allow with lamellar graphite
DE3346089A1 (en) METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS
DE3706516C2 (en) Titanium- and aluminum-containing cast iron alloy for the production of highly stressed engine parts
AT516736A4 (en) Wheel tire for a rail wheel
DE102004031284A1 (en) Brake pad for high performance disc brake for passenger vehicle, comprises stainless steel material manufactured using casting technique
DE102019202505A1 (en) Friction brake body for a friction brake, friction brake and method for producing a friction brake body
KR20060040953A (en) Method for manufacturing globular graphite cast iron for chassis parts of vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071107

R17C First examination report despatched (corrected)

Effective date: 20071115

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEORG FISCHER AG

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005010119

Country of ref document: DE

Date of ref document: 20100930

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20101029

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20101220

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 8095

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101218

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20101026

Year of fee payment: 6

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E009068

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

BERE Be: lapsed

Owner name: GEORG FISCHER AUTOMOTIVE A.G.

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

26N No opposition filed

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010119

Country of ref document: DE

Effective date: 20110519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20121126

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20121203

Year of fee payment: 8

Ref country code: IE

Payment date: 20121120

Year of fee payment: 8

Ref country code: BG

Payment date: 20121113

Year of fee payment: 8

Ref country code: CZ

Payment date: 20121107

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20121029

Year of fee payment: 8

Ref country code: SK

Payment date: 20121113

Year of fee payment: 8

Ref country code: PT

Payment date: 20120515

Year of fee payment: 8

Ref country code: GB

Payment date: 20121120

Year of fee payment: 8

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GEORG FISCHER AG, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: GEORG FISCHER GMBH, DE

Free format text: FORMER OWNER: GEORG FISCHER AUTOMOTIVE AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010119

Country of ref document: DE

Owner name: GEORG FISCHER GMBH, DE

Free format text: FORMER OWNER: GEORG FISCHER AUTOMOTIVE AG, SCHAFFHAUSEN, CH

Effective date: 20130320

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 478164

Country of ref document: AT

Kind code of ref document: T

Owner name: GEORG FISCHER GMBH, DE

Effective date: 20140131

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140514

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131114

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 8095

Country of ref document: SK

Effective date: 20131114

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131114

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131114

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131115

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131114

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131115

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201125

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201119

Year of fee payment: 16

Ref country code: FR

Payment date: 20201120

Year of fee payment: 16

Ref country code: CH

Payment date: 20201118

Year of fee payment: 16

Ref country code: IT

Payment date: 20201124

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210122

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 478164

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211114

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211115

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231113

Year of fee payment: 19

Ref country code: SE

Payment date: 20231120

Year of fee payment: 19

Ref country code: DE

Payment date: 20231121

Year of fee payment: 19