EP3233397A1 - Verfahren zum flüssigkeitsstrahlschneiden - Google Patents

Verfahren zum flüssigkeitsstrahlschneiden

Info

Publication number
EP3233397A1
EP3233397A1 EP15787556.8A EP15787556A EP3233397A1 EP 3233397 A1 EP3233397 A1 EP 3233397A1 EP 15787556 A EP15787556 A EP 15787556A EP 3233397 A1 EP3233397 A1 EP 3233397A1
Authority
EP
European Patent Office
Prior art keywords
liquid
workpiece
liquid jet
nozzle
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15787556.8A
Other languages
English (en)
French (fr)
Other versions
EP3233397B1 (de
Inventor
Jens-Peter Nagel
Malte Bickelhaupt
Uwe Iben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3233397A1 publication Critical patent/EP3233397A1/de
Application granted granted Critical
Publication of EP3233397B1 publication Critical patent/EP3233397B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • B24C1/045Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials

Definitions

  • the present invention relates to a method for liquid jet cutting, as it is preferably applied to the cutting of solid materials.
  • a device for liquid jet cutting which does not use a continuous water jet for dividing the material, but a pulsed water jet, in which the liquid jet is interrupted at regular intervals.
  • the pulsed liquid jet has the particular advantage that the cutting device manages with a relatively low pressure and above all is significantly more energy efficient than the known continuous jet cutting method.
  • the operating parameters are crucial.
  • the method according to the invention for liquid jet cutting has the advantage that an efficient and energy-saving cutting process is ensured, which additionally leads to an improved cutting edge, so that particularly smooth cut edges can be achieved.
  • the method for liquid jet cutting comprises a compressor unit which compresses a liquid for generating a liquid jet and a nozzle which is connected to the compressor unit.
  • the nozzle has an outlet opening through which the compressed liquid emerges in the form of a jet of liquid, and with an interrupter unit which can interrupt or release a flow of the compressed liquid to the outlet opening.
  • the following process steps are carried out: The liquid is passed through the
  • the outlet opening is brought to the workpiece to be machined to a machining distance
  • the liquid jet is alternately released and interrupted by the interrupter unit, while the nozzle is moved relative to the workpiece in a processing direction.
  • the machining angle between the workpiece surface and the liquid jet is less than 90 °. Due to the smaller processing angle in contrast to the known right angle, the effect of machining can be improved, especially for relatively hard workpieces. If the liquid jet impinges on the workpiece surface at a smaller processing angle, then an edge forms at the cutting end with a sharp machining angle in the workpiece against which the liquid jet can attack and thus better break up the material, in particular hard materials.
  • the machining angle is more than 60 °, preferably 60 ° to 80 °. This angle range has proved to be particularly advantageous for very hard materials. It is advantageous to use a smaller machining angle, the harder the material to be machined.
  • the pulse duration is 100 to 1000 ⁇ , wherein the liquid jet is opened and closed by the interrupter unit periodically for generating liquid pulses in an advantageous manner. If the liquid pulses are generated periodically, the workpiece can be moved in the machining direction at a uniform speed, so that a cutting line is formed in the workpiece.
  • liquid pulses per second are generated, ie the liquid pulses are sprayed onto the workpiece at a frequency of 25 to 500 Hz.
  • the frequency of the liquid pulses depends on the processing speed, ie the speed with which the nozzle moves relative to the workpiece and on the thickness and the material properties of the workpiece.
  • the distance of the nozzle opening to the workpiece surface during processing 0.5 to 2 mm, preferably 1 to 2 mm. This distance ensures efficient machining of the workpiece without the back splash of water leading to damage to the nozzle.
  • the nozzle is moved relative to the workpiece at a speed of 10 to 1200 mm / min, wherein the feed rate depends on the thickness of the workpiece and the material properties of the workpiece.
  • the nozzle has a nozzle body with a longitudinal bore, wherein the longitudinal bore forms a pressure chamber into which the compressed liquid is supplied.
  • the interrupter unit is formed by a nozzle needle arranged longitudinally movably within the pressure chamber, which opens and closes the outlet opening by its longitudinal movement.
  • this nozzle which is known, for example, from high-pressure fuel injection, it is possible to produce precise liquid pulses in the desired duration and at the desired frequency.
  • Figure 1 is a schematic representation of an apparatus for performing the liquid jet cutting method according to the invention, in
  • Figure 2 is a likewise schematic representation of the nozzle for liquid jet cutting and Figure 3 shows an enlarged, schematic cross section through the workpiece in the region in which the liquid jet divides the workpiece, and
  • Figure 4 is a schematic representation of the time course of the discharged liquid amount of the device. Description of the embodiments
  • FIG. 1 shows an apparatus for carrying out the invention
  • Liquid jet cutting process shown.
  • a tank 1 the liquid is stored, which is used for liquid jet cutting, for example, purified water, but other liquids are possible.
  • the liquid is supplied from the liquid tank 1 via a line 2 to a compressor unit 3, for example a high-pressure pump, where the liquid is compressed and fed via a high-pressure line 4 into a high-pressure collecting space 5, where the compressed liquid is kept.
  • the Hochschersammeiraum 5 serves to compensate for pressure fluctuations, so as to perform the liquid jet cutting at a constant high pressure, without the compressor unit 3 must be readjusted at short intervals.
  • the nozzle 10 has an interrupter unit 8, here in the form of a 2/2-way valve, and an outlet opening 11 in the form of a restricted passage for the liquid, so from the outlet opening 11 a Fluid jet 14 emerges, which is focused sharply and strikes a workpiece 15 during operation.
  • an interrupter unit 8 here in the form of a 2/2-way valve
  • an outlet opening 11 in the form of a restricted passage for the liquid, so from the outlet opening 11 a Fluid jet 14 emerges, which is focused sharply and strikes a workpiece 15 during operation.
  • the inventive method is carried out as follows: In the nozzle 10 is located on the pressure line 7 high-density liquid, the interrupter unit 8 is closed at the beginning. In order to generate a pulsed liquid jet 14, the interrupter unit 8 is now closed and opened at regular intervals so that a pulsed liquid jet 14 which hits the surface of the workpiece 15 emerges through the outlet opening 11. Upon impact of the liquid on the workpiece 15, the affected areas are shattered and washed away the fragments on the effluent liquid. Thereby, the workpiece is cut, wherein the cutting line is generated by a movement of the workpiece 15 in a machining direction, wherein it can also be provided that not the workpiece 15, but the nozzle 10 is moved by a suitable device relative to the workpiece 15.
  • FIG. 2 shows a schematic representation of a nozzle 10 according to the invention with the associated workpiece 15.
  • the nozzle 10 shown here has a nozzle body 12 in which a bore 13 is formed, in which a nozzle needle 18 is arranged to be longitudinally displaceable. Between the wall of the bore 13 and the nozzle needle 18, a pressure chamber 17 is formed, in which the highly compressed liquid is supplied via the pressure line 7.
  • the nozzle needle 18 cooperates with a nozzle seat 20, so that upon contact of the nozzle needle 18 on the nozzle seat 20, the pressure chamber 17 is separated from the injection port 11, which is formed as a bore in the nozzle body 10. If the nozzle needle 18 lifts off from the nozzle seat 20, liquid flows out of the pressure chamber 17 through the outlet opening 11 and forms a liquid jet 14 which strikes the workpiece 15.
  • the nozzle needle 18 is periodically moved up and down, thus releasing the liquid jet 14 or interrupts the liquid supply between two injections.
  • the workpiece 15 is moved in the machining direction 22, it is irrelevant whether the workpiece or the nozzle is moved or both simultaneously.
  • the nozzle body 10 and thus the liquid jet 14 are inclined at an operating angle ⁇ to the workpiece surface 115 of the workpiece 15, wherein the processing angle ⁇ is less than 90 °.
  • the machining angle ⁇ is defined between the liquid jet 14 and the workpiece surface 115 in the machining direction 22. If the liquid jet hits the workpiece surface 115, the liquid jet 14 shatters the material of the workpiece 15 in this area. Due to the inclination of the liquid jet 14 results in an edge 19 at the end of the cut, which includes an obtuse angle between the workpiece surface 115 and the section through the liquid jet 14, which is complemented in the ideal case with the processing angle ⁇ to 180 °, as shown in FIG 3 enlarged in a longitudinal section through the workpiece 15 is shown.
  • the liquid jet 14 can be smashed more easily by the acute angle at the edge 19, in particular in the case of very hard materials, by the liquid jet 14 and thus be cut more easily and in higher quality.
  • the machining can also be carried out with a larger machining angle, so that the optimum machining angle can be optimized depending on the hardness of the workpiece.
  • the time course of the liquid jet is shown schematically, wherein on the ordinate the leaked amount of liquid per unit time Q is removed and on the abscissa the time t.
  • a liquid jet 14 is periodically ejected from the nozzle 10, the individual pulses having a time t p and a time interval from each other of tg.
  • the pulses can, as shown here, follow each other periodically and all be of the same design, or different pulses can also be generated which follow one another regularly or at variable time intervals.
  • the duration of the liquid pulses t p is less than 1000 ⁇ , preferably 100 to 1000 ⁇ , in order to achieve an optimal cutting edge depending on the material.
  • Pulsed liquid jet cutting is particularly well suited for cutting glass fiber or carbon fiber plates (CFRP) or metal sheets, for example aluminum.
  • CFRP carbon fiber plates
  • pulsed liquid jet cutting offers an advantage over continuous jet liquid jet cutting with a significantly smoother cutting edge, ie fraying of the carbon fibers at the edge of the cut edge is largely prevented.
  • the energy input when cutting a CFRP board can be reduced by up to a factor of 20.
  • the pulsed water jet cutting comes with a lower pressure.
  • the liquid is held within the nozzle 12 at a pressure of, for example, 2500 bar, which is significantly reduced compared to the otherwise known continuous wave liquid jet cutting process, which usually operate at up to 6000 bar with correspondingly lower energy consumption.
  • the machining distance of the nozzle 10 to the workpiece 15, denoted d in FIG. 1 and FIG. 2, is preferably 0.5 to 2 mm, preferably 1 to 2 mm. With this machining distance d, one achieves an optimum effect, without must be reckoned by injecting liquid with damage to the nozzle.
  • the pulsed liquid jet cutting is suitable for CFRP materials in particular for plates having a thickness a up to 2 mm, wherein the diameter of the liquid jet is about 150 ⁇ .
  • the pressures used are about 2500 bar, although it is also possible to work with lower liquid pressure.
  • Optimum machining angles ⁇ are 60 ° to 80 °, clock rates at a pulse frequency of more than 40 Hz and a pulse duration of 1000 or less, wherein the clock rate must be adjusted to the feed rate of processing, d. H. the faster the feed rate, the higher the clock rate must be.
  • the liquid jet is interrupted periodically by means of the interrupter unit to achieve the liquid pulses.
  • interrupting does not necessarily refer to completely closing the orifice at the nozzle. It can also be provided that the interrupter unit throttles the liquid jet only very strongly, but still some liquid exits at low pressure between the liquid pulses. The described effects are also achieved, provided that the throttling is sufficiently strong. In this case, throttling to 80 to 90% of the liquid quantity per unit of time Q is sufficient, which exits unthrottled from the nozzle 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Verfahren zum Flüssigkeitsstrahlschneiden mit einer Verdichtereinheit (3), die eine Flüssigkeit zur Erzeugung eines Flüssigkeitsstrahls verdichtet, und mit einer Düse (10), die mit der Verdichtereinheit (3) verbunden ist und die eine Austrittsöffnung (11) aufweist, durch die die verdichtete Flüssigkeit in Form eines Flüssigkeitsstrahls (14) austritt. Durch eine Unterbrechereinheit (8) kann die eine Strömung der verdichteten Flüssigkeit zu der Austrittsöffnung (11) unterbrochen oder freigegeben werden. Dabei werden folgende Verfahrensschritte durchgeführt: Verdichten der Flüssigkeit durch die Verdichtereinheit (3), annähern der Austrittsöffnung (11) an ein zu bearbeitendes Werkstück (15) bis auf eine Bearbeitungsdistanz (d), abwechselnd freigeben und unterbrechen des Flüssigkeitsstrahls (14) durch die Unterbrechereinheit (8), wobei gleichzeitig die Düse relativ zum Werkstück in einer Bearbeitungsrichtung (22) bewegt wird und der Bearbeitungswinkel zwischen der Werkstückoberfläche (115) und dem Flüssigkeitsstrahl (14) weniger als 90° beträgt.

Description

Beschreibung Titel
Verfahren zum Flüssigkeitsstrahlschneiden
Die vorliegende Erfindung betrifft ein Verfahren zum Flüssigkeitsstrahlschneiden, wie es vorzugsweise zum Zerteilen von festen Werkstoffen angewandt wird.
Stand der Technik
Aus dem Stand der Technik sind Verfahren zum Flüssigkeitsstrahlschneiden von festen Werkstoffen seit längerer Zeit bekannt. Hierbei wird vorzugsweise Wasser mit einer Verdichtereinheit auf einen sehr hohen Druck verdichtet, der üblicherweise einige tausend bar beträgt. Die Flüssigkeit strömt anschließend durch eine Düse, tritt durch eine Austrittsöffnung aus und bildet dadurch einen Flüssigkeitsstrahl, der auf den zu zerteilenden Werkstoff gerichtet wird. Auf Grund der hohen Geschwindigkeit und des hohen Impulses des Wassers zertrümmert der Wasserstrahl den Werkstoff im Bereich des Flüssigkeitsstrahls und zerteilt ihn dadurch. Mit diesem Verfahren lassen sich feste Werkstoffe bearbeiten, beispielsweise Metall, Glas, Kunststoff, Holz und ähnliche Werkstoffe. Da die Verdichtung des Wassers viel Energie benötigt und der Flüssigkeitsstrahl bzw. der Wasserstrahl im Dauerstrich betrieben wird, ist diese Werkstoff bearbeitung nur mit einer hohen Leistung möglich, die bei den üblichen bekannten Anlagen einige zehn Kilowatt betragen kann. Entsprechend hoch sind die Betriebskosten einer solchen Anlage.
Um die Wirkung des Wasserstrahls zu verbessern ist es ebenfalls bekannt, Abrasivstoffe dem Wasserstrahl zuzumischen, die vom Wasser mitgerissen werden und mit hoher Energie auf die Werkstückoberfläche auftreffen und so die Wirkung des Wasserstrahls verbessern. Durch die Zumischung der Abrasivstoffe werden allerdings die Kosten weiter erhöht und das verbrauchte Wasser lässt sich nicht mehr ohne Weiteres in den Kreislauf zurückführen, da die Abrasivstoffe erst in einem aufwendigen Verfahren herausgefiltert werden müssten.
Aus der DE 10 2013 201 797 AI ist eine Vorrichtung zum Flüssigkeitsstrahlschneiden bekannt, die zum Zerteilen des Werkstoffs keinen kontinuierlichen Wasserstrahl verwendet, sondern einen gepulsten Wasserstrahl, bei dem der Flüssigkeitsstrahl in regelmäßigen Abständen unterbrochen wird. Der gepulste Flüssigkeitsstrahl hat insbesondere den Vorteil, dass die Schneideinrichtung mit einem relativ geringen Druck auskommt und vor allem deutlich energieeffizienter ist als die bekannten Dauerstrahlschneidverfahren. Für eine optimale Wirkung des Flüssigkeitsstrahlschneidens sind die Betriebsparameter jedoch von entscheidender Bedeutung.
Vorteile der Erfindung
Das erfindungsgemäße Verfahren zum Flüssigkeitsstrahlschneiden weist demgegenüber den Vorteil auf, dass ein effizientes und energiesparendes Schneidverfahren gewährleistet ist, was zusätzlich zu einer verbesserten Schnittkante führt, sodass besonders glatte Schnittkanten erreichbar sind. Dazu weist das Verfahren zum Flüssigkeitsstrahlschneiden eine Verdichtereinheit auf, die eine Flüssigkeit zur Erzeugung eines Flüssigkeitsstrahls verdichtet und eine Düse, die mit der Verdichtereinheit verbunden ist. Die Düse weist eine Austrittsöffnung auf, durch die die verdichtete Flüssigkeit in Form eines Flüssigkeitsstrahls austritt, und mit einer Unterbrechereinheit, die eine Strömung der verdichteten Flüssigkeit zu der Austrittsöffnung unterbrechen oder freigeben kann. Dabei werden folgende Verfahrensschritte durchgeführt: Die Flüssigkeit wird durch die
Verdichtereinheit verdichtet, die Austrittsöffnung wird an das zu bearbeitende Werkstück bis auf eine Bearbeitungsdistanz herangeführt, der Flüssigkeitsstrahl wird durch die Unterbrechereinheit abwechselnd freigegeben und unterbrochen, wobei gleichzeitig die Düse gegenüber dem Werkstück in einer Bearbeitungsrichtung bewegt wird. Hierbei beträgt der Bearbeitungswinkel zwischen der Werkstückoberfläche und dem Flüssigkeitsstrahl weniger als 90°. Durch den kleineren Bearbeitungswinkel im Gegensatz zu dem bekannten rechten Winkel lässt sich die Wirkung der Bearbeitung vor allem bei relativ harten Werkstücken verbessern. Trifft der Flüssigkeitsstrahl in einem kleineren Bearbeitungswinkel auf die Werkstückoberfläche, so bildet sich am Schnittende eine Kante mit einem spitzen Bearbeitungswinkel im Werkstück, an dem der Flüssigkeitsstrahl angreifen kann und so den Werkstoff, insbesondere harte Werkstoffe, besser zertrümmern kann.
In einer vorteilhaften Ausgestaltung der Erfindung beträgt der Bearbeitungswinkel mehr als 60°, vorzugsweise 60° bis 80°. Dieser Winkelbereich hat sich insbesondere bei sehr harten Werkstoffen als vorteilhaft erwiesen. Dabei ist es von Vorteil, einen umso kleineren Bearbeitungswinkel zu verwenden, je härter der zu bearbeitende Werkstoff ist.
In einer vorteilhaften Ausgestaltung der Erfindung beträgt die Pulsdauer 100 bis 1000 με, wobei der Flüssigkeitsstrahl durch die Unterbrechereinheit periodisch zur Erzeugung von Flüssigkeitspulsen in vorteilhafter Weise geöffnet und geschlossen wird. Werden die Flüssigkeitspulse periodisch erzeugt, kann mit einer gleichmäßigen Geschwindigkeit das Werkstück in Bearbeitungsrichtung bewegt werden, sodass eine Schnittlinie im Werkstück entsteht.
In einer weiteren vorteilhaften Ausgestaltung werden zwischen 25 und 500 Flüssigkeitspulse pro Sekunde erzeugt, die Flüssigkeitspulse also mit einer Frequenz von 25 bis 500 Hz auf das Werkstück gespritzt. Die Frequenz der Flüssigkeitspulse richtet sich nach der Bearbeitungsgeschwindigkeit, also der Geschwindigkeit, mit der sich die Düse relativ zum Werkstück bewegt und nach der Dicke und den Materialeigenschaften des Werkstücks.
In einer weiteren vorteilhaften Ausgestaltung ist der Abstand der Düsenöffnung zur Werkstückoberfläche während der Bearbeitung 0,5 bis 2 mm, vorzugsweise 1 bis 2 mm. Durch diesen Abstand wird eine effiziente Bearbeitung des Werkstücks sichergestellt, ohne dass das zurückspritzende Wasser zu einer Beschädigung der Düse führen könnte. In einer weiteren vorteilhaften Ausgestaltung wird die Düse relativ zum Werkstück mit einer Geschwindigkeit von 10 bis 1200 mm/min bewegt, wobei die Vorschubgeschwindigkeit von der Dicke des Werkstücks und den Materialeigenschaften des Werkstücks abhängt.
In einer weiteren vorteilhaften Ausgestaltung weist die Düse einen Düsenkörper mit einer Längsbohrung auf, wobei die Längsbohrung einen Druckraum bildet, in den die verdichtete Flüssigkeit zugeführt wird. Die Unterbrechereinheit wird durch eine innerhalb des Druckraums längsbeweglich angeordnete Düsennadel gebil- det, die durch ihre Längsbewegung die Austrittsöffnung öffnet und schließt.
Durch diese beispielsweise aus der Kraftstoffhochdruckeinspritzung bekannte Düse lassen sich präzise Flüssigkeitspulse in der gewünschten Dauer und mit der gewünschten Frequenz erzeugen.
Weitere Vorteile und vorteilhafte Ausgestaltungen sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
In der Zeichnung ist zur Illustration des erfindungsgemäßen Verfahren Folgendes dargestellt:
In Figur 1 eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Flüssigkeitsstrahl-Schneidverfahrens, in
Figur 2 eine ebenfalls schematische Darstellung der Düse zum Flüssigkeitsstrahlschneiden und die Figur 3 zeigt einen vergrößerten, schematischen Querschnitt durch das Werkstück im Bereich, in dem der Flüssigkeitsstrahl das Werkstück zerteilt, und
Figur 4 eine schematische Darstellung des zeitlichen Verlaufs der abgegebenen Flüssigkeitsmenge der Vorrichtung. Beschreibung der Ausführungsbeispiele
In Figur 1 ist eine Vorrichtung zur Durchführung des erfindungsgemäßen
Flüssigkeitsstrahlschneidverfahrens dargestellt. In einem Tank 1 wird die Flüssigkeit vorgehalten, die zum Flüssigkeitsstrahlschneiden Verwendung findet, bei- spielswese gereinigtes Wasser, jedoch sind auch andere Flüssigkeiten möglich. Die Flüssigkeit wird aus dem Flüssigkeitstank 1 über eine Leitung 2 einer Verdichtereinheit 3 zugeführt, beispielsweise einer Hochdruckpumpe, wo die Flüssigkeit verdichtet wird und über eine Hochdruckleitung 4 in einen Hochdrucksammeiraum 5 eingespeist wird, wo die verdichtete Flüssigkeit vorgehalten wird. Der Hochdrucksammeiraum 5 dient dazu, Druckschwankungen auszugleichen, um so das Flüssigkeitsstrahlschneiden mit einem konstant hohen Druck durchführen zu können, ohne dass die Verdichtereinheit 3 in kurzen Zeitabständen nachgeregelt werden muss. Vom Hochdrucksammeiraum 5 führt eine Druckleitung 7 zu einer Düse 10, wobei die Düse 10 eine Unterbrechereinheit 8, hier in Form eines 2/2-Wegeventils, und eine Austrittsöffnung 11 aufweist in Form eines verengten Durchgangs für die Flüssigkeit, sodass aus der Austrittsöffnung 11 ein Flüssigkeitsstrahl 14 austritt, der scharf gebündelt ist und während des Betriebs auf ein Werkstück 15 trifft.
Das erfindungsgemäße Verfahren wird folgendermaßen durchgeführt: In der Düse 10 liegt über die Druckleitung 7 hochverdichtete Flüssigkeit an, wobei die Unterbrechereinheit 8 zu Beginn geschlossen ist. Zur Erzeugung eines gepulsten Flüssigkeitsstrahls 14 wird die Unterbrechereinheit 8 nun in regelmäßigen Abständen geschlossen und geöffnet, sodass durch die Austrittsöffnung 11 ein gepulster Flüssigkeitsstrahl 14 austritt, der auf die Oberfläche des Werkstücks 15 trifft. Beim Auftreffen der Flüssigkeit auf dem Werkstück 15 werden die betroffenen Bereiche zertrümmert und die Bruchstücke über die abfließende Flüssigkeit weggespült. Dadurch wird das Werkstück zerteilt, wobei die Schnittlinie durch eine Bewegung des Werkstücks 15 in einer Bearbeitungsrichtung erzeugt wird, wobei auch vorgesehen sein kann, dass nicht das Werkstück 15, sondern die Düse 10 durch eine geeignete Vorrichtung relativ zum Werkstück 15 bewegt wird. Figur 2 zeigt dazu eine schematische Darstellung einer erfindungsgemäßen Düse 10 mit dem zugehörigen Werkstück 15. Die hier gezeigte Düse 10 weist einen Düsenkörper 12 auf, in dem eine Bohrung 13 ausgebildet ist, in dem eine Düsennadel 18 längsverschiebbar angeordnet ist. Zwischen der Wand der Bohrung 13 und der Düsennadel 18 ist ein Druckraum 17 ausgebildet, in den die hochverdichtete Flüssigkeit über die Druckleitung 7 zugeführt wird. Die Düsennadel 18 wirkt mit einem Düsensitz 20 zusammen, sodass bei Anlage der Düsennadel 18 auf dem Düsensitz 20 der Druckraum 17 von der Einspritzöffnung 11 getrennt ist, die als Bohrung im Düsenkörper 10 ausgebildet ist. Hebt die Düsennadel 18 vom Düsensitz 20 ab, so fließt Flüssigkeit aus dem Druckraum 17 durch die Austrittsöffnung 11 und bildet einen Flüssigkeitsstrahl 14, der auf das Werkstück 15 trifft.
Zum Zerschneiden des Werkstücks wird die Düsennadel 18 periodisch auf und ab bewegt und gibt so den Flüssigkeitsstrahl 14 frei oder unterbricht die Flüssigkeitszufuhr zwischen zwei Einspritzungen. Das Werkstück 15 wird in Bearbeitungsrichtung 22 bewegt, wobei es unerheblich ist, ob das Werkstück oder die Düse bewegt wird oder auch beide gleichzeitig.
Die Düsenkörper 10 und damit der Flüssigkeitsstrahl 14 sind in einem Bearbeitungswinkel α zur Werkstückoberfläche 115 des Werkstücks 15 geneigt, wobei der Bearbeitungswinkel α weniger als 90° beträgt. Der Bearbeitungswinkel α ist dabei zwischen dem Flüssigkeitsstrahl 14 und der Werkstückoberfläche 115 in Bearbeitungsrichtung 22 definiert. Trifft der Flüssigkeitsstrahl 14 auf die Werkstückoberfläche 115, so zertrümmert der Flüssigkeitsstrahl 14 das Material des Werkstücks 15 in diesem Bereich. Durch die Schrägstellung des Flüssigkeitsstrahls 14 ergibt sich eine Kante 19 am Ende des Schnitts, die einen stumpfen Winkel zwischen der Werkstückoberfläche 115 und dem Schnitt durch den Flüssigkeitsstrahl 14 einschließt, der sich im Idealfall mit dem Bearbeitungswinkel α zu 180° ergänzt, wie dies in Fig. 3 vergrößert in einem Längsschnitt durch das Werkstück 15 dargestellt ist. Der Flüssigkeitsstrahl 14 kann durch den spitzen Winkel an der Kante 19 insbesondere bei sehr harten Materialien durch den Flüssigkeitsstrahl 14 leichter zertrümmert und damit leichter und in höherer Qualität zerschnitten werden. Je härter ein Werkstoff ist, desto bessere Ergebnisse werden mit kleineren Bearbeitungswinkeln α erzielt. Bei weicheren Werkstoffen kann die Bearbeitung auch mit einem größeren Bearbeitungswinkel durchgeführt werden, so dass der optimale Bearbeitungswinkel je nach Härte des Werkstücks optimiert werden kann.
In Figur 4 ist der zeitliche Verlauf des Flüssigkeitsstrahls schematisch dargestellt, wobei auf der Ordinate die ausgetretene Flüssigkeitsmenge pro Zeiteinheit Q abgetragen ist und auf der Abszisse die Zeit t. Durch das Öffnen und Schließen der Unterbrechereinheit 8 wird aus der Düse 10 periodisch ein Flüssigkeitsstrahl 14 ausgestoßen, wobei die einzelnen Pulse einer Zeit tp aufweisen und einen zeitlichen Abstand zueinander von tg. Die Pulse können, wie hier dargestellt, periodisch aufeinander folgen und alle gleich ausgebildet sein oder es können auch verschiedene Pulse erzeugt werden, die regelmäßig oder in variablen zeitlichen Abständen aufeinander folgen.
Die Dauer der Flüssigkeitspulse tp beträgt weniger als 1000 με, vorzugsweise 100 bis 1000 με, um je nach Werkstoff eine optimale Schnittkante zu erreichen. Besonders gut eignet sich das gepulste Flüssigkeitsstrahlschneiden zum Zerteilen von Glasfaser- oder Kohlefaserplatten (CFK) oder von Metallblechen, beispielsweise Aluminium. Gerade bei der Bearbeitung von CFK- Werkstoffen bietet das gepulste Flüssigkeitsstrahlschneiden einen Vorteil gegenüber dem Dauerstrahl-Flüssigkeitsstrahlschneiden mit deutlich glatteren Schnittkante, d. h. das Ausfransen der Kohlefasern am Rand der Schnittkante wird weitgehend verhindert. Gleichzeitig kann der Energieeinsatz beim Zerteilen einer CFK-Platte bis zu einem Faktor 20 gesenkt werden. Darüber hinaus kommt das gepulste Wasserstrahlschneiden mit einem geringeren Druck aus. Die Flüssigkeit wird innerhalb der Düse 12 mit einem Druck von beispielsweise 2500 bar vorgehalten, was gegenüber den sonst bekannten Dauerstrich- Flüssigkeitsstrahlschneidverfahren, die üblicherweise bei bis zu 6000 bar arbeiten, deutlich reduziert ist mit entsprechend geringerem Energieaufwand.
Die Bearbeitungsdistanz der Düse 10 zum Werkstück 15, in Figur 1 und Figur 2 mit d bezeichnet, beträgt vorzugsweise 0,5 bis 2 mm, bevorzugt 1 bis 2 mm. Bei dieser Bearbeitungsdistanz d erreicht man eine optimale Wirkung, ohne dass durch zurückspritzende Flüssigkeit mit einer Beschädigung der Düse gerechnet werden muss.
Das gepulste Flüssigkeitsstrahlschneiden eignet sich bei CFK- Werkstoffen insbesondere für Platten mit einer Dicke a bis zu 2 mm, wobei der Durchmesser des Flüssigkeitsstrahls ca. 150 μηη beträgt. Die verwendeten Drücke betragen etwa 2500 bar, wobei auch mit geringerem Flüssigkeitsdruck gearbeitet werden kann. Optimale Bearbeitungswinkel α betragen 60° bis 80°, Taktraten bei einer Pulsfrequenz von mehr als 40 Hz und einer Pulsdauer von 1000 oder weniger, wobei die Taktrate auf die Vorschubgeschwindigkeit der Bearbeitung abgestimmt werden muss, d. h. die Taktrate muss umso höher sein, je schneller die Vorschubgeschwindigkeit ist.
Der Flüssigkeitsstrahl wird zur Erzielung der Flüssigkeitspulse periodisch mittels der Unterbrechereinheit unterbrochen. Im Kontext dieser Erfindung bezeichnet der Begriff "unterbrechen" jedoch nicht notwendigerweise ein völliges Verschließen der Austrittsöffnung an der Düse. Es kann auch vorgesehen sein, dass die Unterbrechereinheit den Flüssigkeitsstrahl nur sehr stark drosselt, jedoch zwischen den Flüssigkeitspulsen noch etwas Flüssigkeit mit geringem Druck austritt. Die beschriebenen Effekte werden auch dann erreicht, vorausgesetzt, dass die Drosselung ausreichend stark ist. Dabei ist eine Drosselung auf 80 bis 90 % der Flüssigkeitsmenge pro Zeiteinheit Q ausreichend, die ungedrosselt aus der Düse 10 austritt.

Claims

Ansprüche
1. Verfahren zum Flüssigkeitsstrahlschneiden mit einer Verdichtereinheit (3), die eine Flüssigkeit zur Erzeugung eines Flüssigkeitsstrahls verdichtet, und mit einer Düse (10), die mit der Verdichtereinheit (3) verbunden ist und die eine Austrittsöffnung (11) aufweist, durch die die verdichtete Flüssigkeit in Form eines Flüssigkeitsstrahls (14) austritt, und mit einer Unterbrechereinheit (8), die eine Strömung der verdichteten Flüssigkeit zu der Austrittsöffnung (11) unterbrechen oder freigeben kann, gekennzeichnet durch folgende Verfahrensschritte:
Verdichteten der Flüssigkeit durch die Verdichtereinheit (3),
Annähern der Austrittsöffnung (11) an ein zu bearbeitendes Werkstück (15) bis auf eine Bearbeitungsdistanz (d),
Abwechselnd freigeben und unterbrechen des Flüssigkeitsstrahls (14) aus der Austrittsöffnung (11) durch die Unterbrechereinheit (8), wobei gleichzeitig die Düse relativ zum Werkstück in einer Bearbeitungsrichtung (22) bewegt wird,
wobei ein Bearbeitungswinkel (a) zwischen der Werkstückoberfläche (115) und dem Flüssigkeitsstrahl (14) weniger als 90° beträgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bearbeitungswinkel (a) mehr als 60° beträgt, vorzugsweise 60° bis 80°.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Bearbeitungswinkel (a) in Abhängigkeit von der Härte des Werkstücks (15) variiert wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Bearbeitungswinkel (a) bei einem härteren Werkstück (15) kleiner und bei einem weicheren Werkstück (15) größer gewählt wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Pulsdauer (tp) des Flüssigkeitsstrahls (14) 100 bis 1000 is beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Flüssigkeitsstrahl (14) durch die Unterbrechereinheit (8) periodisch zur Erzeugung von Flüssigkeitspulsen geöffnet und geschlossen wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Unterbrechereinheit (8) in der Düse (10) angeordnet ist.
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass zwischen 25 und 500 Flüssigkeitspulse pro Sekunde erzeugt werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Bearbeitungsdistanz (d) der Austrittsöffnung (11) zur Werkstückoberfläche während der Bearbeitung 0,5 bis 2 mm beträgt, vorzugsweise 1,0 bis 2,0 mm.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Düse (10) während der Bearbeitung relativ zur Werkstückoberfläche mit einer Vorschubgeschwindigkeit von 10 bis 1200 mm pro Minute bewegt wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Düse (10) einen Düsenkörper (12) mit einer Bohrung (13) aufweist und die Bohrung (13) einen Druckraum (17) bildet, in den die verdichtete Flüssigkeit zugeführt wird, wobei die Unterbrechereinheit (8) durch eine innerhalb des Druckraums (17) längsbeweglich angeordnete Düsennadel (18) gebildet wird, die durch ihre Längsbewegung die Austrittsöffnung (11) öffnet und schließt.
EP15787556.8A 2014-12-15 2015-10-27 Verfahren zum flüssigkeitsstrahlschneiden Not-in-force EP3233397B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225904.5A DE102014225904A1 (de) 2014-12-15 2014-12-15 Verfahren zum Flüssigkeitsstrahlschneiden
PCT/EP2015/074889 WO2016096215A1 (de) 2014-12-15 2015-10-27 Verfahren zum flüssigkeitsstrahlschneiden

Publications (2)

Publication Number Publication Date
EP3233397A1 true EP3233397A1 (de) 2017-10-25
EP3233397B1 EP3233397B1 (de) 2018-08-29

Family

ID=54364325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15787556.8A Not-in-force EP3233397B1 (de) 2014-12-15 2015-10-27 Verfahren zum flüssigkeitsstrahlschneiden

Country Status (5)

Country Link
US (1) US20170326751A1 (de)
EP (1) EP3233397B1 (de)
CN (1) CN107000239A (de)
DE (1) DE102014225904A1 (de)
WO (1) WO2016096215A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020520B1 (de) * 2014-11-14 2018-01-03 HP Scitex Ltd Flüssigstickstoffstrahlstromverarbeitung von Papier, Kartons oder Pappe
DE102016124422A1 (de) * 2016-12-14 2018-06-14 Hammelmann GmbH Hochdruckplungerpumpe sowie Verfahren zur Funktionsunterbrechung eines Fluidstroms
DE102016225373A1 (de) * 2016-12-19 2018-06-21 Robert Bosch Gmbh Vorrichtung zur Erzeugung eines Fluidstrahls
DE102017206166A1 (de) 2017-04-11 2018-10-11 Robert Bosch Gmbh Fluidstrahlschneidvorrichtung
DE102017212324A1 (de) * 2017-07-19 2019-01-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Hochdruckfluidbearbeitung
DE102018202841A1 (de) * 2018-02-26 2019-08-29 Robert Bosch Gmbh Vordruck zum Hochdruckfluidstrahlschneiden
DE102018222135A1 (de) * 2018-12-18 2020-06-18 Robert Bosch Gmbh Düse zur Erzeugung eines Hochdruckwasserstrahls
DE102019004686A1 (de) * 2019-06-28 2020-12-31 Technische Universität Chemnitz Verfahren zur Bearbeitung einer Schneidkante eines Zerspanungs- oder Schneidwerkzeuges und Vorichtung zur Durchführung des Verfahrens

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777720B2 (ja) * 1988-11-22 1995-08-23 工業技術院長 ウォータージェット用ノズル
CA2035702C (en) * 1991-02-05 1996-10-01 Mohan Vijay Ultrasonically generated cavitating or interrupted jet
US5134347A (en) * 1991-02-22 1992-07-28 Comfortex Corporation Low power consumption wireless data transmission and control system
US7299732B1 (en) * 1994-10-24 2007-11-27 United Technologies Corporation Honeycomb removal
US5927329A (en) * 1997-05-30 1999-07-27 Jetec Company Apparatus for generating a high-speed pulsed fluid jet
CN101439521A (zh) * 2008-12-22 2009-05-27 陈涛 一种用于水刀切割机上的喷头结构
KR20120099387A (ko) * 2009-09-29 2012-09-10 피코드릴 에스 아 기판 절단 방법 및 절단 장치
US8423172B2 (en) * 2010-05-21 2013-04-16 Flow International Corporation Automated determination of jet orientation parameters in three-dimensional fluid jet cutting
US8505583B2 (en) * 2010-07-12 2013-08-13 Gene G. Yie Method and apparatus for generating high-speed pulsed fluid jets
DE102012224397A1 (de) * 2012-12-27 2014-07-03 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102013201797A1 (de) 2013-02-05 2014-08-07 Robert Bosch Gmbh Vorrichtung mit einer Hochdruckpumpe zum Fördern eines Fluids
CN203221551U (zh) * 2013-04-16 2013-10-02 黄山金仕特种包装材料有限公司 一种用于湿纸幅的分切装置
US9658613B2 (en) * 2014-01-22 2017-05-23 Omax Corporation Generating optimized tool paths and machine commands for beam cutting tools

Also Published As

Publication number Publication date
WO2016096215A1 (de) 2016-06-23
US20170326751A1 (en) 2017-11-16
EP3233397B1 (de) 2018-08-29
CN107000239A (zh) 2017-08-01
DE102014225904A1 (de) 2016-06-16

Similar Documents

Publication Publication Date Title
EP3233397B1 (de) Verfahren zum flüssigkeitsstrahlschneiden
EP3230025B1 (de) Verfahren zum flüssigkeitsstrahlschneiden
EP1159104B1 (de) Abschirmung gegen laserstrahlen
EP3233292B1 (de) Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen
EP3532245B1 (de) Vorrichtung zum abrasiven fluidstrahlschneiden
EP1618993B1 (de) Verfahren zum Schleifen und/oder Polieren von Oberflächen
EP0084672A2 (de) Vorrichtung zum Erzeugen eines vorzugsweise chemisch reaktionsfähigen Gemisches aus mindestens zwei Kunststoffkomponenten
DE3906579C2 (de)
WO2018188915A1 (de) Fluidstrahlschneidvorrichtung
EP3530408A1 (de) Vorrichtung zum hochdruckfluidstrahlschneiden
DE102018207717A1 (de) Vorrichtung zur Erzeugung eines Hochdruckfluidstrahls
DE102018207720A1 (de) Vorrichtung zur Erzeugung eines Hochdruck-Fluidstrahls
DE4431085C1 (de) Verfahren und Schneidkopf zum Abrasiv-Wasserstrahlschneiden
DE202012103541U1 (de) Vorrichtung zur Bearbeitung des Kantenbereichs einer mit einem Kantenband versehenen Platte
EP3700711B1 (de) Vorrichtung und verfahren zum behandeln eines bauteils
DE102012108721B4 (de) Verfahren zur Bearbeitung des Kantenbereichs einer mit einem Kantenband versehenen Platte sowie Vorrichtung zur Durchführung des Verfahrens
DE102022204734B4 (de) Hydraulischer Schalter und Bohrhammer
DE2908530A1 (de) Verfahren und vorrichtung zum schneiden und trennen von materialien mit hilfe eines hochdruck-fluessigkeitsstrahls
DE102019200566A1 (de) Vorrichtung und Verfahren zur Erzeugung eines Hochdruckwasserstrahls
DE102020201719A1 (de) Verfahren und Vorrichtung zum Schneiden und/oder Bearbeiten eines Werkstücks mittels eines druckbeaufschlagten pulsierenden Fluidstrahls
DE102006015389A1 (de) Verfahren und Vorrichtung zum Entgraten und Verrunden von Werkstücken
WO2018054634A1 (de) Vorrichtung und verfahren zum fluidstrahlschneiden mit abrasiven partikeln
DE102018222135A1 (de) Düse zur Erzeugung eines Hochdruckwasserstrahls
DE10243660A1 (de) Verfahren und Vorrichtung zum Schneiden von Werkstücken
WO2018095621A1 (de) Adapter zur erzeugung eines fluidstrahls und vorrichtung zum fluidstrahlschneiden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180509

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1034597

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005733

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180829

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181129

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005733

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181027

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180829

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151027

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201020

Year of fee payment: 6

Ref country code: GB

Payment date: 20201022

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201214

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1034597

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015005733

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031