EP3233292B1 - Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen - Google Patents

Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen Download PDF

Info

Publication number
EP3233292B1
EP3233292B1 EP15788368.7A EP15788368A EP3233292B1 EP 3233292 B1 EP3233292 B1 EP 3233292B1 EP 15788368 A EP15788368 A EP 15788368A EP 3233292 B1 EP3233292 B1 EP 3233292B1
Authority
EP
European Patent Office
Prior art keywords
liquid
workpiece
nozzle
liquid jet
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15788368.7A
Other languages
English (en)
French (fr)
Other versions
EP3233292A1 (de
Inventor
Uwe Iben
Jens-Peter Nagel
Malte Bickelhaupt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3233292A1 publication Critical patent/EP3233292A1/de
Application granted granted Critical
Publication of EP3233292B1 publication Critical patent/EP3233292B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • B05B1/083Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/022Cleaning travelling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • B08B3/024Cleaning by means of spray elements moving over the surface to be cleaned

Definitions

  • the present invention relates to a method for liquid jet stripping from surfaces, preferably for removing firmly adhering layers.
  • a device for generating a pulsed water jet is also known.
  • the JP 61-212353 and JP 53-103216 disclose nozzles for generating a water jet that EP 0 962 263 A2 a process and a system for removing hazardous coatings and US 2014/0042246 A1 a high pressure air and water nozzle.
  • the method according to the invention for stripping a surface has the advantage that the energy consumption is significantly reduced and a better quality of stripping is achieved.
  • a compression unit which compresses a liquid to generate a liquid jet, and a nozzle which is connected to the compression unit.
  • the nozzle has an outlet opening through which the compressed liquid emerges in the form of a liquid jet, and an interrupter unit which can interrupt or release a flow of the compressed liquid to the outlet opening.
  • the following process steps are carried out:
  • the liquid is compressed by the compressor unit, the outlet opening is brought up to the workpiece to be decoated up to a machining distance, the liquid jet is alternately released and interrupted by the interrupter unit, while at the same time the nozzle moves in one machining direction relative to the workpiece will.
  • the stripping process can be carried out more precisely, so that in particular coatings made of very hard and firmly adhering materials, such as metal layers, ceramic layers or DLC layers (diamond like carbon), can be easily removed from a metal workpiece, for example.
  • the liquid jet emerging in a pulsed manner shatters the coating, while the workpiece underneath is not damaged with a suitable machining distance and pulse duration.
  • the main effect here is that, in contrast to stripping with a continuous jet, the liquid has enough time between two pulses to flow away to the side so that the new pulse can effectively attach to the layer and detach it from the surface. Since the jet of liquid is not in nor on the If the liquid remaining on the surface of the workpiece has to penetrate, there is also no cavitation, which can lead to unwanted damage to the actual workpiece surface.
  • the machining angle between the workpiece surface and the liquid jet can be 90 °, but in an advantageous embodiment of the invention the machining angle is less than 90 °, preferably between 60 ° and 80 °.
  • This angular range has proven to be particularly advantageous in the case of very hard materials. It is advantageous to use a smaller machining angle, the harder the material of the coating and the better the coating adheres to the component surface.
  • the processing angle and the processing distance i.e. the distance between the outlet opening and the component surface, must be optimized for the hardness of the component, the hardness of the coating and the adhesion of the coating to the component surface in order to reliably detach the coating from the workpiece on the one hand and the Not to damage the workpiece surface.
  • the pulse duration is 100 to 1000 microseconds, the liquid jet being opened and closed periodically by the interrupter unit in an advantageous manner to generate liquid pulses. If the liquid pulses are generated periodically, the workpiece can be moved at a constant speed in one machining direction and the coating can be removed flat, linear or punctiform.
  • liquid pulses are generated per second, that is to say the liquid pulses are sprayed onto the workpiece at a frequency of 25 to 500 Hz.
  • the frequency of the liquid pulses depends on the processing speed, i.e. the speed at which the nozzle moves relative to the workpiece and on the thickness and the material properties of the coating.
  • the distance between the nozzle opening and the workpiece surface during machining is 0.5 to 3.0 mm, preferably 1.0 to 2.0 mm. This distance enables efficient stripping of the Workpiece ensured without the water splashing back could damage the nozzle.
  • the nozzle is moved relative to the workpiece at a speed of 10 to 1200 mm / min, the feed speed depending on the thickness of the coating, its material properties and the pulse frequency of the liquid jet.
  • the nozzle has a nozzle body with a longitudinal bore, the longitudinal bore forming a pressure space into which the compressed liquid is introduced.
  • the interrupter unit is formed by a nozzle needle which is arranged to be longitudinally movable within the pressure chamber and which opens and closes the outlet opening through its longitudinal movement.
  • This nozzle known for example from high-pressure fuel injection, enables precise liquid pulses to be generated in the desired duration and at the desired frequency.
  • FIG. 1 an apparatus for carrying out the stripping process according to the invention is shown.
  • the liquid that is used for stripping is kept in a liquid container 1, for example purified water, but other liquids are also possible.
  • the liquid is fed from the liquid container 1 via a line 2 to a compressor unit 3, for example a high-pressure pump, in which the liquid is compressed and fed via a high-pressure line 4 into a high-pressure collection chamber 5, where the compressed liquid is held.
  • the high-pressure collecting space 5 serves to compensate for pressure fluctuations in order to be able to carry out the liquid jet stripping at a constant high pressure without the compressor unit 3 having to be readjusted at short time intervals.
  • a pressure line 7 leads from the high-pressure collecting chamber 5 to a nozzle 10, the nozzle 10 having an interrupter unit 8, here in the form of a 2/2-way valve, and an outlet opening 11 in the form of a narrowed passage for the liquid, so that from the outlet opening 11 a Liquid jet 14 emerges, which is sharply focused and hits a workpiece 15 while the method is being carried out.
  • the workpiece 15 is provided with a coating 22 which adheres firmly to the workpiece 15, for example a lacquer coating or a layer of paint which is applied to the surface of a preferably metallic workpiece.
  • the method according to the invention is carried out as follows: In the nozzle 10 there is compressed liquid via the pressure line 7, the interrupter unit 8 being closed at the beginning. To generate a pulsed liquid jet 14, the interrupter unit 8 is now closed and opened at regular intervals, so that a pulsed liquid jet 14 emerges through the outlet opening 11 and strikes the surface of the workpiece 15. When the liquid strikes the workpiece 15, the coating 22 is shattered and the fragments of the coating 22 become with the Washed away the draining liquid. As a result, the coating 22 is removed in the areas of the workpiece surface acted upon by the liquid jet 14, with the areas in which the coating 22 is to be removed can be processed in a targeted manner by moving the workpiece 15 in a processing direction.
  • the coating 22 can be removed flat, or only linearly or punctiformly, depending on the desired application. It can also be provided that the workpiece 15 is not moved relative to the nozzle 10, but rather the nozzle 10 is moved relative to the workpiece 15 by a suitable device. A combination of both movements is also conceivable, as is clamping that allows more complex movements of the workpiece in order to decoat different sides of the workpiece. It is also possible to decoat the workpiece in several work steps, with the liquid jet processing the workpiece surface several times and thus removing the coating particularly gently.
  • FIG. 2 shows a schematic representation of a nozzle 10, which can be used in the method according to the invention, with the workpiece 15 to be stripped is.
  • a pressure chamber 17 is formed between the wall of the bore 13 and the nozzle needle 18, into which the highly compressed liquid is introduced via the pressure line 7.
  • the nozzle needle 18 interacts with a nozzle seat 20 so that when the nozzle needle 18 rests on the nozzle seat 20, the pressure chamber 17 is separated from the injection opening 11, which is designed as a bore in the nozzle body 10. If the nozzle needle 18 lifts off the nozzle seat 20, then liquid flows out of the pressure chamber 17 through the outlet opening 11 and forms a liquid jet 14 which strikes the workpiece 15.
  • the nozzle needle 18 is periodically moved up and down and thus releases the liquid jet 14 or interrupts the supply of liquid.
  • the workpiece 15 is moved in a machining direction, it being irrelevant whether the workpiece or the nozzle is moved or both at the same time.
  • the nozzle body 10 and thus the liquid jet 14 can be aligned perpendicular to the surface 115 of the workpiece, but it can also be the case that the liquid jet 14 hits the workpiece surface at a machining angle ⁇ , the machining angle ⁇ then being less than 90 °.
  • the machining angle ⁇ is defined as the smallest angle between the liquid jet 14 and the workpiece surface 115. If the liquid jet 14 hits the workpiece surface 115, the liquid jet 14 shatters the coating 22 on the surface 115 of the workpiece 15 in this area.
  • the liquid jet 14 can start directly on the coating 22, which particularly with very hard coating materials such as ceramics, hard metal layers or also DLC layers (diamond like carbon) smashes the coating more effectively and easily and thus faster and more thorough processing makes possible.
  • very hard coating materials such as ceramics, hard metal layers or also DLC layers (diamond like carbon) smashes the coating more effectively and easily and thus faster and more thorough processing makes possible.
  • the machining can also be carried out with a larger machining angle, so that the optimal machining angle can be optimized depending on the hardness of the coating, the hardness of the workpiece and the adhesion of the coating to the workpiece surface.
  • FIG 4 the time course of the liquid jet is shown schematically, the amount of liquid escaping per unit of time Q being plotted on the ordinate and the time t on the abscissa.
  • a jet of liquid 14 is periodically ejected from the nozzle 10, the individual pulses having a time t p and a time interval from one another of t a .
  • the pulses can, as shown here, follow one another periodically and all have the same design, or different pulses can also be generated, which follow one another regularly or at variable time intervals.
  • the duration of the liquid pulses t p is less than 1000 microseconds, preferably 100 to 1000 microseconds, in order to achieve optimum processing, depending on the material.
  • Pulsed liquid jet cutting is particularly suitable for Stripping of metallic workpieces and of hard and strongly adhering coatings, for example ceramic layers, layers made of hard metal (chrome, titanium, vanadium) and for diamond-like layers such as DLC layers (diamond like carbon).
  • the pulsed liquid jet stripping results in significantly better processing results and shorter processing times compared to the continuous jet liquid jet stripping.
  • the use of energy for stripping can be reduced by a factor of 20, since on the one hand less liquid has to be compressed and on the other hand processing with lower pressures gets by: the liquid is held within the nozzle 12 at a pressure of, for example, 2500 bar, which is compared to the usual known continuous wave liquid jet stripping, where a pressure of up to 6000 bar is used, is significantly reduced.
  • the machining distance of the nozzle 10 to the workpiece 15, in Figure 1 and Figure 2 denoted by d is preferably 0.5 to 3.0 mm, preferably 1.0 to 2.0 mm. With this machining distance d, an optimal effect is achieved without having to reckon with damage to the nozzle due to back-splashing liquid.
  • the pulsed liquid jet has a diameter of approx. 150 ⁇ m at a pressure of approx. 2500 bar, whereby a lower liquid pressure can also be used.
  • Optimal machining angles ⁇ are 60 ° to 80 °, cycle rates at a pulse frequency of more than 40 Hz and a pulse duration of 1000 ⁇ s or less, the cycle rate must be matched to the feed rate of the machining, ie. H. the faster the feed rate, the higher the cycle rate.
  • the liquid jet is periodically interrupted by means of the interrupter unit in order to achieve the liquid pulses.
  • the term “interrupt” does not necessarily mean a complete closure of the outlet opening at the nozzle. It can also be provided that the interrupter unit only throttles the liquid jet very strongly, but still some liquid emerges at low pressure between the liquid pulses. The effects described are also achieved provided that the Throttling is sufficiently strong. A throttling to 80 to 90% of the amount of liquid per time unit Q that emerges when the nozzle 10 is open is sufficient.

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Flüssigkeitsstrahl-Entschichten von Oberflächen, vorzugsweise zum Entfernen von fest anhaftenden Schichten.
  • Stand der Technik
  • Aus dem Stand der Technik sind Verfahren bekannt, wie mit Flüssigkeitsstrahlen, die mit hohem Druck aus einer Düse austreten, Oberflächen entschichtet werden können. Dabei können sowohl Verunreinigungen von einer Oberfläche entfernt werden als auch Farb- oder Lackschichten, Metallschichten oder Keramikschichten, die sehr fest an der Oberfläche haften. Aus der DE 195 29 749 A1 ist ein Verfahren zum Entschichten einer Oberfläche mit Hilfe eines Wasserstrahls bekannt, bei dem der Wasserstrahl mit einem Druck von 600 bis 6000 bar aus einer Düse austritt und auf die zu entschichtende Oberfläche trifft. Dabei wird die Abtragung mit einem kontinuierlichen Wasserstrahl erreicht, dem gegebenenfalls Abrasivmittel beigemischt werden.
  • Da die Verdichtung des Wassers viel Energie benötigt und der Flüssigkeitsstrahl bzw. der Wasserstrahl im Dauerstrich betrieben wird, ist diese Werkstoffbearbeitung nur mit einer hohen Leistung möglich, die bei den üblichen bekannten Anlagen einige zehn Kilowatt betragen kann. Entsprechend hoch sind die Betriebskosten einer solchen Anlage. Auch die Zumischung von Abrasivstoffen, die vom Wasser mitgerissen werden und mit hoher Energie auf die Werkstückoberfläche auftreffen und so die Wirkung des Wasserstrahls verbessern, erhöhen die Kosten weiter, da sich das verbrauchte Wasser nur dann in den Kreislauf zurückführen lässt, wenn die Abrasivstoffe vorher in einem aufwendigen Verfahren herausgefiltert werden. Auch die Entsorgung des mit Abrassivstoffen versetzten Wassers kann hohe Kosten verursachen. Zudem steigen die Anforderungen an alle Bauteile des Systems, die mit dem mit Abrassivstoffen versetzten Wasser in Kontakt kommen.
  • Aus der US 2012/0007009 A1 ist weiterhin eine Vorrichtung zur Erzeugung eines gepulsten Wasserstrahls bekannt. Die JP 61-212353 und JP 53-103216 offenbaren Düsen zur Erzeugung eines Wasserstrahls, die EP 0 962 263 A2 ein Verfahren und eine Anlage zur Entfernung von gefährdenden Beschichtungen und US 2014/0042246 A1 eine Hochdruck-Luft- und Wasserdüse.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Verfahren zur Entschichtung einer Oberfläche weist demgegenüber den Vorteil auf, dass der Energieverbrauch deutlich reduziert ist und eine bessere Qualität bei der Entschichtung erreicht wird. Dazu wird beim erfindungsgemäßen Verfahren zum Entschichten eine Verdichtereinheit eingesetzt, die eine Flüssigkeit zur Erzeugung eines Flüssigkeitsstrahls verdichtet, und eine Düse, die mit der Verdichtereinheit verbunden ist. Die Düse weist eine Austrittsöffnung auf, durch die die verdichtete Flüssigkeit in Form eines Flüssigkeitsstrahls austritt, und eine Unterbrechereinheit, die eine Strömung der verdichteten Flüssigkeit zu der Austrittsöffnung unterbrechen oder freigeben kann. Dabei werden folgende Verfahrensschritte durchgeführt: Die Flüssigkeit wird durch die Verdichtereinheit verdichtet, die Austrittsöffnung wird an das zu entschichtende Werkstück bis auf eine Bearbeitungsdistanz herangeführt, der Flüssigkeitsstrahl wird durch die Unterbrechereinheit abwechselnd freigegeben und unterbrochen, wobei gleichzeitig die Düse gegenüber dem Werkstück in einer Bearbeitungsrichtung bewegt wird.
  • Durch den gepulsten Flüssigkeitsstrahl kann die Entschichtung präziser durchgeführt werden, so dass sich insbesondere Beschichtungen aus sehr harten und fest anhaftenden Materialien, wie Metallschichten, Keramikschichten oder DLC-Schichten (diamond like carbon), gut von einem beispielsweise metallischem Werkstück abtragen lassen. Der gepulst austretende Flüssigkeitsstrahl zertrümmert die Beschichtung, während das darunter liegende Werkstück bei einer geeigneten Bearbeitungsdistanz und Pulsdauer nicht beschädigt wird. Dabei kommt vor allem der Effekt zum Tragen, dass im Gegensatz zur Entschichtung mit einem Dauerstrahl die Flüssigkeit zwischen zwei Pulsen genügend Zeit hat, seitlich wegzufließen, so dass der neue Puls effektiv an der Schicht ansetzen und diese von der Oberfläche ablösen kann. Da der Flüssigkeitsstrahl nicht in noch auf der Oberfläche des Werkstücks verbleibende Flüssigkeit eindringen muss, entsteht auch keine Kavitation, die zu ungewollten Beschädigungen an der eigentlichen Werkstückoberfläche führen kann.
  • Der Bearbeitungswinkel zwischen der Werkstückoberfläche und dem Flüssigkeitsstrahl kann 90° betragen, jedoch beträgt der Bearbeitungswinkel in einer vorteilhaften Ausgestaltung der Erfindung weniger als 90°, vorzugsweise zwischen 60° und 80°. Dieser Winkelbereich hat sich insbesondere bei sehr harten Werkstoffen als vorteilhaft erwiesen. Dabei ist es von Vorteil, einen umso kleineren Bearbeitungswinkel zu verwenden, je härter das Material der Beschichtung ist und je besser die Beschichtung auf der Bauteiloberfläche haftet. Der Bearbeitungswinkel und die Bearbeitungsdistanz, also der Abstand der Austrittsöffnung von der Bauteiloberfläche, muss dabei auf die Härte des Bauteils, die Härte der Beschichtung und die Anhaftung der Beschichtung auf der Bauteiloberfläche optimiert werden, um die Beschichtung einerseits sicher vom Werkstück zu lösen und andererseits die Werkstückoberfläche nicht zu beschädigen.
  • In einer vorteilhaften Ausgestaltung der Erfindung beträgt die Pulsdauer 100 bis 1000 µs, wobei der Flüssigkeitsstrahl durch die Unterbrechereinheit periodisch zur Erzeugung von Flüssigkeitspulsen in vorteilhafter Weise geöffnet und geschlossen wird. Werden die Flüssigkeitspulse periodisch erzeugt, kann das Werkstück mit einer gleichmäßigen Geschwindigkeit in einer Bearbeitungsrichtung bewegt werden und so die Beschichtung flächig, linienhaft oder punktuell abgetragen werden.
  • In einer weiteren vorteilhaften Ausgestaltung werden zwischen 25 und 500 Flüssigkeitspulse pro Sekunde erzeugt, die Flüssigkeitspulse also mit einer Frequenz von 25 bis 500 Hz auf das Werkstück gespritzt. Die Frequenz der Flüssigkeitspulse richtet sich nach der Bearbeitungsgeschwindigkeit, also der Geschwindigkeit, mit der sich die Düse relativ zum Werkstück bewegt und nach der Dicke und den Materialeigenschaften der Beschichtung.
  • In einer weiteren vorteilhaften Ausgestaltung ist der Abstand der Düsenöffnung zur Werkstückoberfläche während der Bearbeitung 0,5 bis 3,0 mm, vorzugsweise 1,0 bis 2,0 mm. Durch diesen Abstand wird eine effiziente Entschichtung des Werkstücks sichergestellt, ohne dass das zurückspritzende Wasser zu einer Beschädigung der Düse führen könnte.
  • In einer weiteren vorteilhaften Ausgestaltung wird die Düse relativ zum Werkstück mit einer Geschwindigkeit von 10 bis 1200 mm/min bewegt, wobei die Vorschubgeschwindigkeit von der Dicke der Beschichtung, dessen Materialeigenschaft und der Pulsfrequenz des Flüssigkeitsstrahls abhängt.
  • In einer weiteren vorteilhaften Ausgestaltung weist die Düse einen Düsenkörper mit einer Längsbohrung auf, wobei die Längsbohrung einen Druckraum bildet, in den die verdichtete Flüssigkeit eingeführt wird. Die Unterbrechereinheit wird durch eine innerhalb des Druckraums längsbeweglich angeordnete Düsennadel gebildet, die durch ihre Längsbewegung die Austrittsöffnung öffnet und schließt. Durch diese beispielsweise aus der Kraftstoffhochdruckeinspritzung bekannte Düse lassen sich präzise Flüssigkeitspulse in der gewünschten Dauer und mit der gewünschten Frequenz erzeugen.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
  • Zeichnung
  • In der Zeichnung ist zur Illustration des erfindungsgemäßen Verfahren Folgendes dargestellt:
    • In Figur 1 eine schematische Darstellung einer Vorrichtung zur Durchführung des erfindungsgemäßen Flüssigkeitsstrahl-Entschichtungsverfahrens, in
    • Figur 2 eine ebenfalls schematische Darstellung der Düse zum Entschichten und die
    • Figur 3 zeigt einen vergrößerten, schematischen Querschnitt durch das Werkstück im Bereich, in dem der Flüssigkeitsstrahl auf das Werkstück trifft, und
    • Figur 4 eine schematische Darstellung des zeitlichen Verlaufs der abgegebenen Flüssigkeitsmenge der Düse.
    Beschreibung der Ausführungsbeispiele
  • In Figur 1 ist eine Vorrichtung zur Durchführung des erfindungsgemäßen Entschichtungsverfahrens dargestellt. In einem Flüssigkeitsbehälter 1 wird die Flüssigkeit vorgehalten, die zum Entschichten Verwendung findet, beispielswese gereinigtes Wasser, jedoch sind auch andere Flüssigkeiten möglich. Die Flüssigkeit wird aus dem Flüssigkeitsbehälter 1 über eine Leitung 2 einer Verdichtereinheit 3 zugeführt, beispielsweise einer Hochdruckpumpe, in der die Flüssigkeit verdichtet und über eine Hochdruckleitung 4 in einen Hochdrucksammelraum 5 eingespeist wird, wo die verdichtete Flüssigkeit vorgehalten wird. Der Hochdrucksammelraum 5 dient dazu, Druckschwankungen auszugleichen, um so das Flüssigkeitsstrahlentschichten mit einem konstant hohen Druck durchführen zu können, ohne dass die Verdichtereinheit 3 in kurzen Zeitabständen nachgeregelt werden muss. Vom Hochdrucksammelraum 5 führt eine Druckleitung 7 zu einer Düse 10, wobei die Düse 10 eine Unterbrechereinheit 8, hier in Form eines 2/2-Wegeventils, und eine Austrittsöffnung 11 aufweist in Form eines verengten Durchgangs für die Flüssigkeit, sodass aus der Austrittsöffnung 11 ein Flüssigkeitsstrahl 14 austritt, der scharf gebündelt ist und während der Durchführung des Verfahrens auf ein Werkstück 15 trifft. Das Werkstück 15 ist mit einer Beschichtung 22 versehen, die fest auf dem Werkstück 15 haftet, beispielsweise eine Lackbeschichtung oder eine Farbschicht, die auf die Oberfläche eines vorzugsweise metallischen Werkstücks aufgebracht ist.
  • Das erfindungsgemäße Verfahren wird folgendermaßen durchgeführt: In der Düse 10 liegt über die Druckleitung 7 verdichtete Flüssigkeit an, wobei die Unterbrechereinheit 8 zu Beginn geschlossen ist. Zur Erzeugung eines gepulsten Flüssigkeitsstrahls 14 wird die Unterbrechereinheit 8 nun in regelmäßigen Abständen geschlossen und geöffnet, sodass durch die Austrittsöffnung 11 ein gepulster Flüssigkeitsstrahl 14 austritt, der auf die Oberfläche des Werkstücks 15 trifft. Beim Auftreffen der Flüssigkeit auf dem Werkstück 15 wird die Beschichtung 22 zertrümmert und die Bruchstücke der Beschichtung 22 werden mit der abfließenden Flüssigkeit weggespült. Dadurch wird die Beschichtung 22 in den vom Flüssigkeitsstrahl 14 beaufschlagten Bereichen der Werkstückoberfläche abgetragen, wobei durch eine Bewegung des Werkstücks 15 in einer Bearbeitungsrichtung gezielt die Bereiche bearbeitet werden können, in denen die Beschichtung 22 abgetragen werden soll. Dabei kann die Beschichtung 22 flächig abgetragen werden, oder auch nur linien- oder punktförmig, je nach gewüschtem Anwendungsfall. Es kann auch vorgesehen sein, nicht das Werkstück 15 relativ zur Düse 10, sondern die Düse 10 durch eine geeignete Vorrichtung relativ zum Werkstück 15 zu bewegen. Auch eine Kombination aus beiden Bewegungen ist denkbar, ebenso eine Einspannung, die komplexere Bewegungen des Werkstücks zulässt, um verschiedene Seiten des Werkstücks zu entschichten. Ebenso ist es möglich, das Werkstück in mehreren Arbeitsschritten zu entschichten, wobei der Flüssigkeitsstrahl die Werkstückoberfläche mehrfach bearbeitet und so die Beschichtung besonders schonend abträgt.
  • Figur 2 zeigt dazu eine schematische Darstellung einer Düse 10, die bei dem erfindungsgemäßen Verfahren zum Einsatz kommen kann, mit dem zu entschichtenden Werkstück 15. Die hier gezeigte Düse 10 weist einen Düsenkörper 12 auf, in dem eine Bohrung 13 mit einer darin längsverschiebbar angeordnet Düsennadel 18 ausgebildet ist. Zwischen der Wand der Bohrung 13 und der Düsennadel 18 ist ein Druckraum 17 ausgebildet, in den die hochverdichtete Flüssigkeit über die Druckleitung 7 eingeführt wird. Die Düsennadel 18 wirkt mit einem Düsensitz 20 zusammen, sodass bei Anlage der Düsennadel 18 auf dem Düsensitz 20 der Druckraum 17 von der Einspritzöffnung 11 getrennt ist, die als Bohrung im Düsenkörper 10 ausgebildet ist. Hebt die Düsennadel 18 vom Düsensitz 20 ab, so fließt Flüssigkeit aus dem Druckraum 17 durch die Austrittsöffnung 11 und bildet einen Flüssigkeitsstrahl 14, der auf das Werkstück 15 trifft.
  • Zum Entschichten des Werkstücks wird die Düsennadel 18 periodisch auf- und abbewegt und gibt so den Flüssigkeitsstrahl 14 frei oder unterbricht die Flüssigkeitszufuhr. Das Werkstück 15 wird in einer Bearbeitungsrichtung bewegt, wobei es unerheblich ist, ob das Werkstück oder die Düse bewegt wird oder auch beide gleichzeitig.
  • Die Düsenkörper 10 und damit der Flüssigkeitsstrahl 14 kann senkrecht auf zur Oberfläche 115 des Werkstücks ausgerichtet sein, es kann aber auch vorgehen sein, dass der Flüssigkeitsstrahl 14 unter einem Bearbeitungswinkel α auf die Werkstückoberfläche trifft, wobei der Bearbeitungswinkel α dann weniger als 90° beträgt. Der Bearbeitungswinkel α ist dabei als kleinster Winkel zwischen dem Flüssigkeitsstrahl 14 und der Werkstückoberfläche 115 definiert. Trifft der Flüssigkeitsstrahl 14 auf die Werkstückoberfläche 115, so zertrümmert der Flüssigkeitsstrahl 14 die Beschichtung 22 auf der Oberfläche 115 des Werkstücks 15 in diesem Bereich. Der Flüssigkeitsstrahl 14 kann durch den spitzen Winkel direkt an der Beschichtung 22 ansetzen, was insbesondere bei sehr harten Beschichtungsmaterialien, wie Keramik, harte Metallschichten oder auch DLC-Schichten (diamond like carbon) die Beschichtung effektiver und leichter zertrümmert und damit eine schnellere und gründlichere Bearbeitung möglich macht.
  • Je härter ein Werkstoff ist, desto bessere Ergebnisse werden mit kleineren Bearbeitungswinkeln α erzielt. Bei weicheren Werkstoffen kann die Bearbeitung auch mit einem größeren Bearbeitungswinkel durchgeführt werden, so dass der optimale Bearbeitungswinkel je nach Härte der Beschichtung, der Härte des Werkstücks und der Anhaftung der Beschichtung auf der Werkstückoberfläche optimiert werden kann.
  • In Figur 4 ist der zeitliche Verlauf des Flüssigkeitsstrahls schematisch dargestellt, wobei auf der Ordinate die ausgetretene Flüssigkeitsmenge pro Zeiteinheit Q abgetragen ist und auf der Abszisse die Zeit t. Durch das Öffnen und Schließen der Unterbrechereinheit 8 wird aus der Düse 10 periodisch ein Flüssigkeitsstrahl 14 ausgestoßen, wobei die einzelnen Pulse einer Zeit t p aufweisen und einen zeitlichen Abstand zueinander von t a. Die Pulse können, wie hier dargestellt, periodisch aufeinander folgen und alle gleich ausgebildet sein oder es können auch verschiedene Pulse erzeugt werden, die regelmäßig oder in variablen zeitlichen Abständen aufeinander folgen.
  • Die Dauer der Flüssigkeitspulse t p beträgt weniger als 1000 µs, vorzugsweise 100 bis 1000 µs, um je nach Werkstoff eine optimale Bearbeitung zu erreichen. Besonders gut eignet sich das gepulste Flüssigkeitsstrahlschneiden zum Entschichten von metallischen Werkstücken und von harten und stark anhaftenden Beschichtungen, beispielsweise keramische Schichten, Schichten aus Hartmetall (Chrom, Titan, Vanadium) und für diamantartige Schichten, wie DLC-Schichten (diamond like carbon). Durch das gepulste Flüssigkeitsstrahlentschichten ergibt sich gegenüber dem Dauerstrahl-Flüssigkeitsstrahlentschichten deutlich bessere Bearbeitungsergebnisse und kürzere Bearbeitungszeiten. Gleichzeitig kann der Energieeinsatz beim Entschichten bis zu einem Faktor 20 gesenkt werden, da einerseits weniger Flüssigkeit verdichtet werden muss und andererseits eine Bearbeitung mit geringeren Drücken auskommt: Die Flüssigkeit wird innerhalb der Düse 12 mit einem Druck von beispielsweise 2500 bar vorgehalten, was gegenüber dem sonst bekannten Dauerstrich-Flüssigkeitsstrahlentschichten, wo mit einem Druck von bis zu 6000 bar gearbeitet wird, deutlich reduziert ist.
  • Die Bearbeitungsdistanz der Düse 10 zum Werkstück 15, in Figur 1 und Figur 2 mit d bezeichnet, beträgt vorzugsweise 0,5 bis 3,0 mm, bevorzugt 1,0 bis 2,0 mm. Bei dieser Bearbeitungsdistanz d erreicht man eine optimale Wirkung, ohne dass durch zurückspritzende Flüssigkeit mit einer Beschädigung der Düse gerechnet werden muss.
  • Der gepulste Flüssigkeitsstrahl weist einen Durchmesser von ca. 150 µm auf bei einem Druck von etwa 2500 bar, wobei auch mit geringerem Flüssigkeitsdruck gearbeitet werden kann. Optimale Bearbeitungswinkel α betragen 60° bis 80°, Taktraten bei einer Pulsfrequenz von mehr als 40 Hz und einer Pulsdauer von 1000 µs oder weniger, wobei die Taktrate auf die Vorschubgeschwindigkeit der Bearbeitung abgestimmt werden muss, d. h. die Taktrate muss umso höher sein, je schneller die Vorschubgeschwindigkeit ist.
  • Der Flüssigkeitsstrahl wird zur Erzielung der Flüssigkeitspulse periodisch mittels der Unterbrechereinheit unterbrochen. Im Kontext dieser Erfindung bezeichnet der Begriff "unterbrechen" jedoch nicht notwendigerweise ein völliges Verschließen der Austrittsöffnung an der Düse. Es kann auch vorgesehen sein, dass die Unterbrechereinheit den Flüssigkeitsstrahl nur sehr stark drosselt, jedoch zwischen den Flüssigkeitspulsen noch etwas Flüssigkeit mit geringem Druck austritt. Die beschriebenen Effekte werden auch dann erreicht, vorausgesetzt, dass die Drosselung ausreichend stark ist. Dabei ist eine Drosselung auf 80 bis 90 % der Flüssigkeitsmenge pro Zeiteinheit Q ausreichend, die im geöffneten Zustand der Düse 10 austritt.

Claims (9)

  1. Verfahren zum Flüssigkeitsstrahl-Entschichten einer Oberfläche eines Werkstücks (15) mit einer Verdichtereinheit (3), die eine Flüssigkeit zur Erzeugung eines Flüssigkeitsstrahls verdichtet, und mit einer Düse (10), die mit der Verdichtereinheit (3) verbunden ist und die eine Austrittsöffnung (11) aufweist, durch die die verdichtete Flüssigkeit in Form eines Flüssigkeitsstrahls (14) austritt, und mit einer Unterbrechereinheit (8), die eine Strömung der verdichteten Flüssigkeit zu der Austrittsöffnung (11) unterbrechen oder freigeben kann, gekennzeichnet durch folgende Verfahrensschritte:
    - Verdichteten der Flüssigkeit durch die Verdichtereinheit (3),
    - Annähern der Austrittsöffnung (11) an die Oberfläche des Werkstück (15) bis auf eine Bearbeitungsdistanz (d), wobei die Bearbeitungsdistanz so eingestellt wird, dass der Flüssigkeitsstrahl (14) die zu entfernende Beschichtung (22) von der Oberfläche des Werkstücks (15) löst, ohne das Werkstück (15) selbst zu beschädigen,
    - Abwechselnd freigeben und unterbrechen des Flüssigkeitsstrahls (14) aus der Austrittsöffnung (11) durch die Unterbrechereinheit (8), wobei gleichzeitig die Düse relativ zum Werkstück (15) in einer Bearbeitungsrichtung (24) bewegt wird, wobei
    - der Bearbeitungswinkel (a) zwischen dem Flüssigkeitsstrahl (14) und der Bearbeitungsrichtung (24) 60° bis 80° beträgt und
    - die Pulsdauer (tp) des Flüssigkeitsstrahls (14) 100 bis 1000 µs beträgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein Bearbeitungswinkel (a) zwischen der Werkstückoberfläche (115) und dem Flüssigkeitsstrahl (14) weniger als 90° beträgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Bearbeitungswinkel (a) in Abhängigkeit von der Härte des Werkstücks (15), der Härte der Beschichtung (22) und der Anhaftung der Beschichtung (22) auf der Oberfläche (115) optimiert wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Flüssigkeitsstrahl (14) durch die Unterbrechereinheit (8) periodisch zur Erzeugung von Flüssigkeitspulsen geöffnet und geschlossen wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Unterbrechereinheit (8) in der Düse (10) angeordnet ist.
  6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass zwischen 25 und 500 Flüssigkeitspulse pro Sekunde erzeugt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Bearbeitungsdistanz (d) der Austrittsöffnung (11) zur Werkstückoberfläche während der Bearbeitung 0,5 bis 3,0 mm beträgt, vorzugsweise 1,0 bis 2,0 mm.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Düse (10) während der Bearbeitung relativ zur Werkstückoberfläche mit einer Vorschubgeschwindigkeit von 10 bis 1200 mm pro Minute bewegt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Düse (10) einen Düsenkörper (12) mit einer Bohrung (13) aufweist und die Bohrung (13) einen Druckraum (17) bildet, in den die verdichtete Flüssigkeit zugeführt wird, wobei die Unterbrechereinheit (8) durch eine innerhalb des Druckraums (17) längsbeweglich angeordnete Düsennadel (18) gebildet wird, die durch ihre Längsbewegung die Austrittsöffnung (11) öffnet und schließt.
EP15788368.7A 2014-12-18 2015-10-27 Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen Active EP3233292B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014226432.4A DE102014226432A1 (de) 2014-12-18 2014-12-18 Verfahren zum Flüssigkeitsstrahl-Entschichten von Oberflächen
PCT/EP2015/074893 WO2016096218A1 (de) 2014-12-18 2015-10-27 Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen

Publications (2)

Publication Number Publication Date
EP3233292A1 EP3233292A1 (de) 2017-10-25
EP3233292B1 true EP3233292B1 (de) 2021-09-08

Family

ID=54366200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15788368.7A Active EP3233292B1 (de) 2014-12-18 2015-10-27 Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen

Country Status (3)

Country Link
EP (1) EP3233292B1 (de)
DE (1) DE102014226432A1 (de)
WO (1) WO2016096218A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218057A1 (de) * 2016-09-21 2018-03-22 Robert Bosch Gmbh Vorrichtung und Verfahren zum Fluidstrahlschneiden mit abrasiven Partikeln
DE102017205682A1 (de) * 2017-04-04 2018-10-04 Robert Bosch Gmbh Vorrichtung und Verfahren zum Hochdruck-Fluidstrahlschneiden
DE102017219248A1 (de) * 2017-10-26 2019-05-02 Robert Bosch Gmbh Vorrichtung und Verfahren zum Behandeln eines Bauteils
CN107795282B (zh) * 2017-11-21 2023-10-27 中南大学 双控制道脉冲射流球齿钻头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835101B2 (ja) * 1977-02-22 1983-07-30 春信 三浦 高圧水の噴射ノズル
US4731125A (en) * 1984-04-19 1988-03-15 Carr Lawrence S Media blast paint removal system
JPS61212353A (ja) * 1985-03-15 1986-09-20 Yasui Sangyo Kk 洗浄用噴射ノズル
DE4105379C2 (de) * 1991-02-21 1995-06-29 Bosch Gmbh Robert Waschvorrichtung für Abdeckscheiben von Kraftfahrzeugleuchten
US7299732B1 (en) * 1994-10-24 2007-11-27 United Technologies Corporation Honeycomb removal
DE19529749C2 (de) 1995-08-12 1997-11-20 Ot Oberflaechentechnik Gmbh Verfahren zum schichtweisen Abtragen von Material von der Oberfläche eines Werkstückes sowie Vorrichtung zur Durchführung dieses Verfahrens
ATE283734T1 (de) * 1998-06-06 2004-12-15 Johannes-Albert Mieden Verfahren und anlage zur entfernung von gefährdenden beschichtungen
DE102008037247A1 (de) * 2008-08-09 2010-02-11 Dürr Ecoclean GmbH Vorrichtung und Verfahren zum Erzeugen eines gepulsten Strahls eines flüssigen Fluids
US8505583B2 (en) * 2010-07-12 2013-08-13 Gene G. Yie Method and apparatus for generating high-speed pulsed fluid jets
US10166556B2 (en) * 2012-08-07 2019-01-01 Vac-Tron Equipment, Llc Pulsating high pressure air and water nozzle

Also Published As

Publication number Publication date
EP3233292A1 (de) 2017-10-25
WO2016096218A1 (de) 2016-06-23
DE102014226432A1 (de) 2016-06-23

Similar Documents

Publication Publication Date Title
EP3233397B1 (de) Verfahren zum flüssigkeitsstrahlschneiden
EP3230025B1 (de) Verfahren zum flüssigkeitsstrahlschneiden
EP2741862B1 (de) Vorrichtung zum erzeugen eines pulsierenden mit druck beaufschlagten fluidstrahls
EP3233292B1 (de) Verfahren zum flüssigkeitsstrahl-entschichten von oberflächen
EP2723508B1 (de) Vorrichtung zum behandeln von werkstücken
EP1920873B1 (de) Verfahren zum Laserstrahlschneiden eines metallischen Bauteils
EP3804863A1 (de) Applikationsverfahren und applikationsanlage
DE4341869A1 (de) Entfernung von harten Überzügen mit Ultrahochdruck-Flachstrahlen
WO2011151313A1 (de) Verfahren zum herstellen einer schicht mittels kaltgasspritzen und verwendung einer solchen schicht
EP2533911B1 (de) Verfahren zum abtragen von overspray thermischer spritzschichten
DE69008695T2 (de) Verfahren zum Entfernen einer Schicht auf Stücken durch die Projektion eines Hochdruckwasserstrahles.
DE3906579C2 (de)
WO2018184798A1 (de) Vorrichtung und verfahren zum hochdruck-fluidstrahlschneiden
EP3655195A1 (de) Fluidstrahlschneidvorrichtung
EP3530408A1 (de) Vorrichtung zum hochdruckfluidstrahlschneiden
DE102018207717A1 (de) Vorrichtung zur Erzeugung eines Hochdruckfluidstrahls
DE102018207720A1 (de) Vorrichtung zur Erzeugung eines Hochdruck-Fluidstrahls
EP3700711B1 (de) Vorrichtung und verfahren zum behandeln eines bauteils
EP2397256B1 (de) Vorrichtung und Verfahren zum Schneiden eines beschichteten Werkstücks
WO2018054634A1 (de) Vorrichtung und verfahren zum fluidstrahlschneiden mit abrasiven partikeln
EP3822023B1 (de) Vorrichtung zur trockeneisbehandlung von oberflächen sowie verfahren zur behandlung von oberflächen
DE102020201719A1 (de) Verfahren und Vorrichtung zum Schneiden und/oder Bearbeiten eines Werkstücks mittels eines druckbeaufschlagten pulsierenden Fluidstrahls
DE102019200566A1 (de) Vorrichtung und Verfahren zur Erzeugung eines Hochdruckwasserstrahls
EP3763481A1 (de) Verfahren zum erzeugen eines co2-schnee-strahls
WO2021115704A1 (de) Verfahren zur oberflächenbehandlung eines implantats

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1428094

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015177

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20211028

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220110

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211229

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015177

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

26N No opposition filed

Effective date: 20220609

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1428094

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 9