EP3230664B1 - No-frost-kältegerät - Google Patents

No-frost-kältegerät Download PDF

Info

Publication number
EP3230664B1
EP3230664B1 EP15801445.6A EP15801445A EP3230664B1 EP 3230664 B1 EP3230664 B1 EP 3230664B1 EP 15801445 A EP15801445 A EP 15801445A EP 3230664 B1 EP3230664 B1 EP 3230664B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
refrigerator according
thermosiphon
passage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15801445.6A
Other languages
English (en)
French (fr)
Other versions
EP3230664A1 (de
Inventor
Niels Liengaard
Matthias Mrzyglod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP3230664A1 publication Critical patent/EP3230664A1/de
Application granted granted Critical
Publication of EP3230664B1 publication Critical patent/EP3230664B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/006Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect boiling cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/023Evaporators consisting of one or several sheets on one face of which is fixed a refrigerant carrying coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a refrigeration device, in particular a household refrigeration device, with an automatically defrosting evaporator.
  • a refrigeration device in particular a household refrigeration device, with an automatically defrosting evaporator.
  • Such refrigeration devices are also known as "no-frost refrigeration devices”.
  • the evaporator Since the evaporator always forms the coldest point in the storage chamber of a refrigeration device, moisture that is given off by the refrigerated goods or that enters the storage chamber with the ambient air when a door is opened is deposited on the evaporator.
  • the layer of ice that forms in this way hinders the exchange of heat between the evaporator and the rest of the storage chamber and must therefore be removed from time to time in order to ensure energy-efficient operation of the refrigeration device.
  • a refrigeration device with a multi-channel coextruded evaporator in which a main channel is provided to carry a refrigerant and a defrosting fluid can circulate between a secondary channel of the evaporator and an external heat source.
  • CA 894 525 A describes a refrigeration device with a refrigeration machine, the evaporator of which is arranged above the condenser and in which the evaporator and condenser can be connected in a standstill phase of the compressor in such a way that liquid refrigerant flows from the evaporator to the condenser and at the same time refrigerant vapor rises from the condenser to the evaporator.
  • the object of the invention is to create a refrigeration device that enables even more energy-efficient defrosting.
  • the object is achieved by a refrigeration device with the features of claim 1.
  • a refrigeration device with the features of claim 1.
  • the condenser With the help of the thermosiphon, a large amount of heat can be transported to the evaporator in a short time, which is taken from the condenser serving as a heat reservoir and therefore does not affect the energy balance of the refrigeration device.
  • the condenser If the refrigeration machine was still in operation immediately before the start of the defrosting process, the condenser is significantly warmer than the more distant surroundings, and its high temperature enables rapid heat transfer to the evaporator. After the defrosting process, the condenser can be colder than the more distant surroundings, which in turn improves the efficiency of the refrigeration machine when it resumes operation after defrosting.
  • the cooling that the condenser experiences through the defrosting of the evaporator of the first storage chamber can, however, also be made immediately usable again during the defrosting to cool the second storage chamber.
  • a passage, hereinafter referred to as the first passage, between an inner area in thermal contact with the evaporator and an outer area of the thermosiphon in thermal contact with the heat reservoir should be able to be shut off by a valve in order to prevent heat transfer to the evaporator outside the defrosting phases To suppress refrigeration device.
  • a control unit is provided in order to estimate an amount of ice that has accumulated on the evaporator and to open the valve if the estimated amount of ice exceeds a limit value.
  • Such control units are known per se, but are conventionally mostly used to switch an electrical defrost heater instead of the valve.
  • the heating power that the thermosiphon can supply to the evaporator is heavily dependent on the temperature of the heat reservoir, so that the duration of a defrosting process can vary.
  • the control unit should therefore be equipped with a temperature sensor on the inner area of the thermosiphon or be connected to the evaporator and set up to close the valve when the temperature detected by the temperature sensor exceeds a limit value.
  • the first passage extends downward from a lower end of the inner region to the outer region.
  • a heat transfer medium that condenses in the inner area of the thermosiphon during defrosting and collects at the lower end of the inner area can reach the outer area driven by gravity and evaporate there again.
  • a second passage is preferably also provided between the inner and outer area, so that heat carrier vapor can return from the outer area to the inner area via a different passage than the one through which the liquid heat carrier flows. In this way, the flows between the inner and outer areas do not interfere with each other, and a high heat transfer rate can be achieved without the need for forced circulation of the heat transfer medium.
  • the second passage should run at least in sections from the outer area downwards to the inner area. If the first passage is blocked by the valve and the inner area is considerably colder than the outer area, a stable temperature stratification can be achieved in the passage, which minimizes the flow of heat into the storage chamber via the second passage.
  • the inner area of the thermosiphon preferably comprises a heat transfer line that runs through the evaporator itself.
  • the evaporator is a lamellar evaporator
  • such a heat transfer line can - in the same way as usually a refrigerant line - cross the lamellar evaporator.
  • a refrigerant line and the heat transfer line can run next to one another on this.
  • the evaporator can comprise a multi-channel tube, one channel of the multi-channel tube carrying the refrigerant of the refrigerating machine and another channel carrying the heat transfer medium of the thermosiphon.
  • the outer area of the thermosiphon can include a heat transfer line that runs through the condenser.
  • Fig. 1 is a schematic representation of the refrigeration device according to the invention.
  • a body 1 each surrounded by a thermal insulation layer 2, two compartments, here a freezer compartment 3 and a normal refrigerator compartment 4, are cut out.
  • Evaporators 5, 6 of the two compartments 3, 4 are connected to a compressor 8 via a common suction line 7.
  • a condenser 9 is connected to an output of the compressor 8.
  • a line 10 emanating from the condenser 9 branches off at a directional control valve 11 into two capillaries 12, 13, each of which leads back to one of the evaporators 5, 6.
  • thermosiphon 14 for defrosting this layer of ice comprises an inner area 15 inside the freezer compartment 3 and an outer area 16 outside the thermal insulation layer 2.
  • the inner area 15 is formed by a heat transfer line 17 which runs through the evaporator 5; the outer region 16 is formed by a heat transfer line 18 in the condenser 9.
  • the outer area 16 is at least partially lower than the inner area 15, so that refrigerant condensed in the evaporator 5, which converges at a lowest point 19 of the heat transfer line 17 in the evaporator 5, is driven from there solely by gravity via a first passage 20 through the Thermal insulation layer 2 can flow to the condenser 9, provided that a valve 21 arranged in the first passage 20 is open.
  • thermosiphon 14 enables heat to be transported to the evaporator 5 only as long as the valve 21 is open.
  • An electronic control unit 24 is used to control the valve 21, which is designed to measure the amount of ice on the basis of various criteria known per se, such as the running time of the compressor 8 since the last defrosting process, the frequency of door openings in the freezer compartment 3 since the last defrosting process, etc. To estimate the evaporator 5 and to open the valve 21 as soon as the estimated amount of ice exceeds a limit value.
  • a temperature sensor 25 is attached to the evaporator 5 adjacent to the lowest point 19. As soon as the temperature detected by this temperature sensor 25 rises above 0 ° C. in the course of a defrosting process, it can be assumed that the evaporator 5 is free of ice; then the control unit 24 closes the valve 21 again.
  • Fig. 2 shows a schematic section through the thermal insulation layer 2 of the refrigeration device with the evaporator 5 arranged on the side of the freezer compartment 3 and the condenser 9 exposed on the outside.
  • the passage 20 slopes down its entire length to the outer area 16 of the heat siphon 14, on the condenser 9 so that heat transfer medium which condenses in the inner area 15 can automatically flow off to the outer area 16 when the valve 21 is open.
  • the valve 21 is closed, condensed heat transfer medium can accumulate in the inner area 15 and in the passage 20 above the valve 21, but does not get into the outer area 16.
  • the inner and outer areas 15, 16 of the thermosiphon 14 can, as in FIG Fig. 2 indicated, in the form of hollow plates which are in intimate thermal contact with the evaporator 5 or the condenser 9 on one of their main surfaces.
  • a structure is preferred in which the regions 15, 16 of the heat siphon each form integral components of the evaporator 5 and the condenser 9, respectively.
  • a first example of such a structure is shown Fig. 3 using the example of a rollbond heat exchanger.
  • tubes are side by side Heat transfer line 17 and a line 27 for the refrigerant circulated by the compressor 8 are laid.
  • FIG. 4 A corresponding arrangement of heat transfer line 17 and refrigerant line 27 is shown Fig. 4
  • the lines 17, 27 together with the wires 28 connecting them here form a wire tube heat exchanger which can be used both as an evaporator 5 and as a condenser 9.
  • Fig. 5 shows a side view of a fin evaporator.
  • the refrigerant line 27 forms, in a manner known per se, an upper and a lower layer 29, 30 of straight sections 34 which cross the lamellae 31 vertically and run in the direction of view of the viewer and which alternate with one another on the side of the evaporator facing the viewer or, in dashed lines shown, on the side facing away from it protruding arches 32 are connected.
  • Another arch 33 protruding beyond the lamellae 31 establishes a row connection between the two layers 29, 30.
  • the heat transfer line 17 also forms an upper and a lower layer 35, 36, but, unlike the layers 29, 30, these lie exactly in one plane so that they are continuously sloping over their entire length. In this way, liquid heat transfer medium, irrespective of where it forms in layers 35, 36, can flow freely in heat transfer line 17 to the lowest point 19 of evaporator 5 and from there to outer area 16 of heat siphon 14.
  • Fig. 6 shows a fragment of a heat exchanger formed from multi-channel tube 37.
  • the multi-channel pipe 37 extruded from metal, in particular aluminum, has a band-shaped elongated cross section and can easily be bent in an orientation in which its main surfaces 38, 39 form the outer and inner sides of a bend.
  • the channels 40 of the multi-channel pipe 37 each alternately belong to the heat transfer line 17 and the refrigerant line 27 and thus enable extremely rapid heating of the evaporator during defrosting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät, mit einem selbsttätig abtauenden Verdampfer. Derartige Kältegeräte sind auch als "No-Frost-Kältegeräte" bekannt.
  • Da der Verdampfer stets die kälteste Stelle in der Lagerkammer eines Kältegerätes bildet, schlägt sich Feuchtigkeit, die vom Kühlgut abgegeben wird oder die beim Öffnen einer Tür mit der Umgebungsluft in die Lagerkammer gelangt, am Verdampfer nieder. Die sich so bildende Eisschicht behindert den Wärmeaustausch zwischen dem Verdampfer und der übrigen Lagerkammer und muss daher, um einen energieeffizienten Betrieb des Kältegeräts zu gewährleisten, von Zeit zu Zeit beseitigt werden.
  • Bei den meisten herkömmlichen No-Frost-Kältegeräten ist zu diesem Zweck eine elektrische Heizung am Verdampfer angebracht. Diese Lösung ist zwar einfach und kostengünstig in der Fertigung, sie beeinträchtigt jedoch die Energieeffizienz des Kältegeräts, da zum einen eine große Mange an Heizenergie aufgewandt werden muss, um das Eis aufzutauen, und zum anderen nach dem Abtauen der Verdampfer und dessen Umgebung wieder auf Betriebstemperatur abgekühlt werden müssen. Wenn die Verteilung der Heizleistung nicht genau auf die Verteilung des Eises abgestimmt ist, werden die als erstes abgetauten Bereiche des Verdampfers von der Heizung nutzlos weit über den Gefrierpunkt aufgeheizt, was die Energieeffizienz zusätzlich beeinträchtigt.
  • Aus US 2014/0260364 A1 ist ein Kältegerät mit einem mehrkanalig koextrudierten Verdampfer bekannt, bei dem ein Hauptkanal vorgesehen ist, um ein Kältemittel zu führen, und ein Abtaufluid zwischen einem Nebenkanal des Verdampfers und einer externen Wärmequelle zirkulieren kann.
  • CA 894 525 A beschreibt ein Kältegerät mit einer Kältemaschine, deren Verdampfer oberhalb des Verflüssigers angeordnet ist und bei dem in einer Stillstandsphase des Verdichters Verdampfer und Verflüssiger so verbunden werden können, dass flüssiges Kältemittel vom Verdampfer zum Verflüssiger abfließt und gleichzeitig Kältemitteldampf vom Verflüssiger zum Verdampfer aufsteigt. Indem auf diese Weise Kondensation im Verdampfer und Verdampfung im Verflüssiger stattfinden, wird Wärme vom Verflüssiger zum Verdampfer transportiert und der Verdampfer abgetaut.
  • Aufgabe der Erfindung ist, ein Kältegerät zu schaffen, das eine noch energieeffizientere Abtauung ermöglicht.
  • Die Aufgabe wird gelöst durch ein Kältegerät mit den Merkmalen des Anspruchs 1. Mithilfe des Thermosiphons kann in kurzer Zeit eine große Wärmemenge zum Verdampfer transportiert werden, die aus dem als Wärmereservoir dienenden Verflüssiger entnommen wird und daher nicht die Energiebilanz des Kältegeräts beeinträchtigt. Wenn die Kältemaschine unmittelbar vor Beginn des Abtauvorgangs noch im Betrieb gewesen ist, ist der Verflüssiger deutlich wärmer als die entferntere Umgebung, und seine hohe Temperatur ermöglicht einen schnellen Wärmetransport zum Verdampfer. Nach dem Abtauvorgang kann der Verflüssiger kälter sein als die entferntere Umgebung, was wiederum die Effizienz der Kältemaschine verbessert, wenn diese nach dem Abtauen ihren Betrieb wieder aufnimmt. Die Kühlung, die der Verflüssiger durch das Abtauen des Verdampfers der ersten Lagerkammer erfährt, kann aber auch bereits während des Abtauens zum Kühlen der zweiten Lagerkammer unmittelbar wieder nutzbar gemacht werden.
  • Ein Durchgang, im Folgenden als erster Durchgang bezeichnet, zwischen einem in thermischem Kontakt mit dem Verdampfer stehenden inneren Bereich und einem in thermischem Kontakt mit dem Wärmereservoir stehenden äußeren Bereich des Thermosiphons sollte durch ein Ventil absperrbar sein, um einen Wärmetransport zum Verdampfer außerhalb der Abtauphasen des Kältegeräts unterdrücken zu können.
  • Erfindungsgemäß ist eine Steuereinheit vorgesehen, um eine am Verdampfer angesammelte Eismenge abzuschätzen und das Ventil zu öffnen, wenn die geschätzte Eismenge einen Grenzwert übersteigt. Derartige Steuereinheiten sind an sich bekannt, dienen aber herkömmlicherweise meist zum Schalten einer elektrischen Abtauheizung anstelle des Ventils. Die Heizleistung, die der Thermosiphon dem Verdampfer zuführen kann, ist stark von der Temperatur des Wärmereservoirs abhängig, so dass die Dauer eines Abtauvorgangs variieren kann. Um einen Abtauvorgang zu beenden, sollte die Steuereinheit daher mit einem Temperatursensor am inneren Bereich des Thermosiphons oder am Verdampfer verbunden und eingerichtet sein, das Ventil zu schließen, wenn die von dem Temperatursensor erfasste Temperatur einen Grenzwert übersteigt.
  • Vorzugsweise verläuft der erste Durchgang von einem unteren Ende des inneren Bereichs aus abwärts zum äußeren Bereich. So kann ein Wärmeträger, der während des Abtauens im inneren Bereich des Thermosiphons kondensiert und sich am unteren Ende des inneren Bereichs sammelt, schwerkraftgetrieben den äußeren Bereich erreichen und dort erneut verdampfen.
  • Vorzugsweise ist noch ein zweiter Durchgang zwischen innerem und äußerem Bereich vorgesehen, so dass Wärmeträgerdampf vom äußeren Bereich über einen anderen Durchgang in den inneren Bereich zurückkehren kann als den, über den der flüssige Wärmeträger abfließt. So behindern sich die Flüsse zwischen innerem und äußerem Bereich nicht gegenseitig, und es kann eine hohe Wärmetransportleistung erreicht werden, ohne dass eine Zwangsumwälzung des Wärmeträgers benötigt wird.
  • Der zweite Durchgang sollte wenigstens abschnittsweise vom äußeren Bereich abwärts zum inneren Bereich verlaufen. So kann, wenn der erste Durchgang durch das Ventil abgesperrt ist und der innere Bereich erheblich kälter ist als der äußere, eine stabile Temperaturschichtung im Durchgang erreicht werden, die den Wärmezufluss in die Lagerkammer über den zweiten Durchgang minimiert.
  • Um eine effiziente Wärmeübertragung auf die Eisschicht am Verdampfer zu erreichen, umfasst der innere Bereich des Thermosiphons vorzugsweise eine Wärmeträgerleitung, die durch den Verdampfer selber verläuft.
  • Wenn der Verdampfer ein Lamellenverdampfer ist, kann eine solche Wärmeträgerleitung - in gleicher Weise wie üblicherweise eine Kältemittelleitung - die Lamellen des Lamellenverdampfers kreuzen.
  • Wenn der Verdampfer ein Plattenverdampfer ist, können auf diesem eine Kältemittelleitung und die Wärmeträgerleitung nebeneinander verlaufen.
  • Ferner kann der Verdampfer ein Mehrkanalrohr umfassen, wobei ein Kanal des Mehrkanalrohrs Kältemittel der Kältemaschine und ein anderer Kanal den Wärmeträger des Thermosiphons führt.
  • Analog zum oben beschriebenen Aufbau des inneren Bereichs des Thermosiphons kann hier der äußere Bereich des Thermosiphons eine Wärmeträgerleitung umfassen, die durch den Verflüssiger verläuft.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:
  • Fig. 1
    ein Blockdiagramm eines erfindungsgemäßen Kältegeräts;
    Fig. 2
    schematisch die Anordnung von inneren und äußeren Bereichen des Thermosiphons an einer Wand des Kältegeräts;
    Fig. 3
    ein Bruchstück eines Plattenwärmetauschers zur Verwendung in dem erfindungsgemäßen Kältegerät;
    Fig. 4
    ein Bruchstück eines Drahtrohrwärmetauschers;
    Fig. 5
    einen Lamellen-Wärmetauscher; und
    Fig. 6
    ein Bruchstück eines Wärmetauschers mit einem Mehrkanalrohr.
  • Fig. 1 ist eine schematische Darstellung des erfindungsgemäßen Kältegeräts. In einem Korpus 1 sind, jeweils von einer Wärmedämmschicht 2 umgeben, zwei Fächer, hier ein Gefrierfach 3 und ein Normalkühlfach 4, ausgespart. Verdampfer 5, 6 der beiden Fächer 3, 4 sind über eine gemeinsame Saugleitung 7 mit einem Verdichter 8 verbunden. An einem Ausgang des Verdichters 8 ist ein Verflüssiger 9 angeschlossen. Eine vom Verflüssiger 9 ausgehende Leitung 10 verzweigt an einem Wegeventil 11 in zwei Kapillaren 12, 13, von denen jede zu einem der Verdampfer 5, 6 zurückführt.
  • Die Temperatur des Gefrierfachverdampfers 5 liegt dauerhaft unter 0°C, so dass sich an diesem eine Eisschicht bilden kann. Ein Thermosiphon 14 zum Abtauen dieser Eisschicht umfasst einen inneren Bereich 15 innerhalb des Gefrierfachs 3 und einen äußeren Bereich 16 außerhalb der Wärmedämmschicht 2. Der innere Bereich 15 ist durch eine Wärmeträgerleitung 17 gebildet, die durch den Verdampfer 5 verläuft; den äußeren Bereich 16 bildet eine Wärmeträgerleitung 18 im Verflüssiger 9.
  • Der äußere Bereich 16 liegt wenigstens teilweise tiefer als der innere Bereich 15, so dass im Verdampfer 5 kondensiertes Kältemittel, das an einem tiefsten Punkt 19 der Wärmeträgerleitung 17 im Verdampfer 5 zusammenläuft, von dort allein durch die Schwerkraft angetrieben über einen ersten Durchgang 20 durch die Wärmedämmschicht 2 zum Verflüssiger 9 abfließen kann, sofern ein in dem ersten Durchgang 20 angeordnetes Ventil 21 offen ist.
  • Ein zweiter Durchgang 22, der vom äußeren Bereich 16 durch die Wärmedämmschicht 2 zurück zum inneren Bereich 15 führt, ist ständig offen, doch da dieser zweite Durchgang 22 an einen höchsten Punkt 23 der Wärmeträgerleitung 17 anschließt, kann über diesen kein flüssiger Wärmeträger aus dem inneren Bereich 15 zum äußeren Bereich 16 gelangen.
  • Der Thermosiphon 14 ermöglicht nur so lange einen Wärmetransport zum Verdampfer 5, solange das Ventil 21 offen ist. Zur Steuerung des Ventils 21 dient eine elektronische Steuereinheit 24, die ausgelegt ist, um anhand diverser an sich bekannter Kriterien wie etwa der Laufzeit des Verdichters 8 seit dem letzten Abtauvorgang, der Häufigkeit von Türöffnungen des Gefrierfachs 3 seit dem letzten Abtauvorgang etc. die Eismenge am Verdampfer 5 abzuschätzen und das Ventil 21 zu öffnen, sobald die geschätzte Eismenge einen Grenzwert überschreitet.
  • Ein Temperatursensor 25 ist benachbart zu dem tiefsten Punkt 19 am Verdampfer 5 angebracht. Sobald im Laufe eines Abtauvorgangs die von diesem Temperatursensor 25 erfasste Temperatur über 0°C steigt, kann davon ausgegangen werden, dass der Verdampfer 5 eisfrei ist; dann schließt die Steuereinheit 24 das Ventil 21 wieder.
  • Fig. 2 zeigt schematisch einen Schnitt durch die Wärmedämmschicht 2 des Kältegeräts mit dem auf Seiten des Gefrierfachs 3 angeordneten Verdampfer 5 und dem an der Außenseite freiliegenden Verflüssiger 9. Der Durchgang 20 ist auf seiner ganzen Länge zum äußeren Bereich 16 des Wärmesiphons 14, am Verflüssiger 9, abschüssig, so dass Wärmeträger, der im inneren Bereich 15 kondensiert, bei offenem Ventil 21 selbsttätig zum äußeren Bereich 16 abfließen kann. Wenn das Ventil 21 geschlossen ist, kann sich kondensierter Wärmeträger im inneren Bereich 15 und in dem Durchgang 20 oberhalb des Ventils 21 stauen, gelangt aber nicht in den äußeren Bereich 16. Im Falle des zweiten Durchgangs 22 genügt es, wenn nur ein Teil von diesem zum inneren Bereich 15 hin abschüssig ist, damit sich in diesem Teil bei geschlossenem Ventil 21 ein Temperaturgradient ausbilden kann, der jeglichen Austausch von Wärmeträger zwischen den Bereichen 15, 16 über den Durchgang 22 verhindert.
  • Die inneren und äußeren Bereiche 15, 16 des Thermosiphons 14 können, wie in Fig. 2 angedeutet, in Form von hohlen Platten ausgebildet sein, die auf einer ihrer Hauptoberflächen in innigem thermischem Kontakt mit dem Verdampfer 5 bzw. dem Verflüssiger 9 stehen. Bevorzugt ist jedoch eine Struktur, bei der die Bereiche 15, 16 des Wärmesiphons jeweils integrale Bestandteile des Verdampfers 5 bzw. des Verflüssigers 9 bilden. Ein erstes Beispiel für einen solchen Aufbau zeigt Fig. 3 am Beispiel eines Rollbond-Wärmetauschers. Auf einer Grundplatte 26 sind nebeneinander Rohre der Wärmeträgerleitung 17 sowie einer Leitung 27 für das vom Verdichter 8 umgewälzte Kältemittel verlegt.
  • Eine entsprechende Anordnung von Wärmeträgerleitung 17 und Kältemittelleitung 27 zeigt Fig. 4, allerdings bilden die Leitungen 17, 27 zusammen mit sie verbindenden Drähten 28 hier einen Drahtrohrwärmetauscher, der sowohl als Verdampfer 5 als auch als Verflüssiger 9 Verwendung finden kann.
  • Fig. 5 zeigt eine Seitenansicht eines Lamellenverdampfers. Die Kältemittelleitung 27 bildet in an sich bekannter Weise eine obere und eine untere Lage 29, 30 aus die Lamellen 31 senkrecht kreuzenden, in Blickrichtung des Betrachters verlaufenden geradlinigen Abschnitten 34, die untereinander über abwechselnd an der dem Betrachter zugewandten Seite des Verdampfers bzw., gestrichelt dargestellt, an der von ihm abgewandten Seite überstehende Bögen 32 verbunden sind. Ein weiterer über die Lamellen 31 überstehender Bogen 33 stellt eine Reihenverbindung zwischen den zwei Lagen 29, 30 her. Die Wärmeträgerleitung 17 bildet ebenfalls eine obere und eine untere Lage 35, 36, allerdings liegen diese, anders als die Lagen 29, 30, exakt in einer Ebene, so dass sie auf ihrer gesamten Länge kontinuierlich abschüssig sind. So kann flüssiger Wärmeträger, egal an welcher Stelle der Lagen 35, 36 er sich bildet, in der Wärmeträgerleitung 17 frei zum tiefsten Punkt 19 des Verdampfers 5 abfließen und von dort zum äußeren Bereich 16 des Wärmesiphons 14 gelangen.
  • Fig. 6 zeigt ein Fragment eines aus Mehrkanalrohr 37 gebildeten Wärmetauschers. Das aus Metall, insbesondere Aluminium, extrudierte Mehrkanalrohr 37 hat einen bandförmig langgestreckten Querschnitt und lässt sich leicht in einer Orientierung biegen, in der seine Hauptoberflächen 38, 39 Außen- und Innenseiten einer Biegung bilden. Die Kanäle 40 des Mehrkanalrohrs 37 gehören jeweils abwechselnd der Wärmeträgerleitung 17 bzw. der Kältemittelleitung 27 an und ermöglichen so eine extrem schnelle Erwärmung des Verdampfers beim Abtauen.
  • BEZUGSZEICHEN
  • 1
    Korpus
    2
    Wärmedämmschicht
    3
    Gefrierfach
    4
    Normalkühlfach
    5
    Verdampfer
    6
    Verdampfer
    7
    Saugleitung
    8
    Verdichter
    9
    Verflüssiger
    10
    Leitung
    11
    Wegeventil
    12
    Kapillare
    13
    Kapillare
    14
    Thermosiphon
    15
    innerer Bereich
    16
    äußerer Bereich
    17
    Wärmeträgerleitung
    18
    Wärmeträgerleitung
    19
    tiefster Punkt
    20
    Durchgang
    21
    Ventil
    22
    Durchgang
    23
    höchster Punkt
    24
    Steuereinheit
    25
    Temperatursensor
    26
    Grundplatte
    27
    Leitung
    28
    Draht
    29
    obere Lage
    30
    untere Lage
    31
    Lamelle
    32
    Bogen
    33
    Bogen
    34
    Abschnitt
    35
    obere Lage
    36
    untere Lage
    37
    Mehrkanalrohr
    38
    Hauptoberfläche
    39
    Hauptoberfläche
    40
    Kanal

Claims (10)

  1. Kältegerät mit einer von einer Wärmedämmschicht (2) umgebenen ersten Lagerkammer (3), einer Kältemaschine, die einen die erste Lagerkammer (3) kühlenden Verdampfer (5) und einen die Zirkulation von Kältemittel durch den Verdampfer (5) antreibenden Verdichter (8) umfasst, und einem Thermosiphon (14), der in thermischem Kontakt mit dem Verdampfer (5) und mit einem Wärmereservoir außerhalb der Wärmedämmschicht (2) steht, wobei ein erster Durchgang (20) zwischen einem in thermischem Kontakt mit dem Verdampfer (5) stehenden inneren Bereich (15) und einem in thermischem Kontakt mit dem Wärmereservoir stehenden äußeren Bereich (16) des Thermosiphons (14) durch ein Ventil (21) absperrbar ist, dadurch gekennzeichnet, dass das Wärmereservoir ein Verflüssiger (9) der Kältemaschine ist, wobei die Kältemaschine einen zweiten Verdampfer (6) zum Kühlen einer zweiten Lagerkammer (4) umfasst, der durch den Verdichter (7) mit Kältemittel beaufschlagbar ist, während das Ventil (21) offen ist, und eine Steuereinheit (24) eingerichtet ist, eine am Verdampfer angesammelte Eismenge abzuschätzen und das Ventil (21) zu öffnen, wenn die geschätzte Eismenge einen Grenzwert übersteigt.
  2. Kältegerät nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit (24) mit einem Temperatursensor (25) am inneren Bereich (15) des Thermosiphons (14) oder am Verdampfer (5) verbunden und eingerichtet ist, das Ventil (21) zu schließen, wenn die von dem Temperatursensor (25) erfasste Temperatur einen Grenzwert übersteigt.
  3. Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Durchgang (20) von einem unteren Ende des inneren Bereichs (15) aus abwärts zum äußeren Bereich (16) verläuft.
  4. Kältegerät nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen zweiten Durchgang (22) zwischen innerem und äußerem Bereich (15, 16).
  5. Kältegerät nach Anspruch 4, dadurch gekennzeichnet, dass der zweite Durchgang (22) vom äußeren Bereich (16) zum inneren Bereich (15) wenigstens abschnittsweise abwärts verläuft.
  6. Kältegerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der innere Bereich (15) des Thermosiphons (14) eine Wärmeträgerleitung (17) umfasst, die durch den Verdampfer (5) verläuft.
  7. Kältegerät nach Anspruch 6, dadurch gekennzeichnet, dass der Verdampfer (5) ein Lamellenverdampfer ist und die Wärmeträgerleitung (17) die Lamellen (31) des Lamellenverdampfers kreuzt.
  8. Kältegerät nach Anspruch 6, dadurch gekennzeichnet, dass der Verdampfer ein Plattenverdampfer ist, bei dem eine Kältemittelleitung (27) und die Wärmeträgerleitung (17) auf einer Grundplatte (26) nebeneinander verlaufen.
  9. Kältegerät nach Anspruch 6, dadurch gekennzeichnet, dass der Verdampfer (5) ein Mehrkanalrohr (37) umfasst, wobei ein Kanal (40, 27) des Mehrkanalrohrs (37) Kältemittel der Kältemaschine und ein anderer Kanal (40, 17) einen Wärmeträger des Thermosiphons (14) führt.
  10. Kältegerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der äußere Bereich (16) des Thermosiphons (14) eine Wärmeträgerleitung (18) umfasst, die durch den Verflüssiger (9) verläuft.
EP15801445.6A 2014-12-08 2015-11-27 No-frost-kältegerät Active EP3230664B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225102.8A DE102014225102A1 (de) 2014-12-08 2014-12-08 No-Frost-Kältegerät
PCT/EP2015/077963 WO2016091621A1 (de) 2014-12-08 2015-11-27 No-frost-kältegerät

Publications (2)

Publication Number Publication Date
EP3230664A1 EP3230664A1 (de) 2017-10-18
EP3230664B1 true EP3230664B1 (de) 2021-07-07

Family

ID=54705634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15801445.6A Active EP3230664B1 (de) 2014-12-08 2015-11-27 No-frost-kältegerät

Country Status (4)

Country Link
EP (1) EP3230664B1 (de)
CN (1) CN107003058A (de)
DE (1) DE102014225102A1 (de)
WO (1) WO2016091621A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109572B1 (de) * 2015-06-22 2019-05-01 Lg Electronics Inc. Kühlschrank
EP3521735A1 (de) * 2018-01-31 2019-08-07 Vestel Elektronik Sanayi ve Ticaret A.S. Kühlvorrichtung und verfahren zum abtauen einer kühlvorrichtung
CN110173945A (zh) * 2019-05-07 2019-08-27 湖北美的电冰箱有限公司 制冷设备
CN110173953A (zh) * 2019-05-07 2019-08-27 湖北美的电冰箱有限公司 制冷设备及其化霜控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA894525A (en) * 1972-03-07 F. H. Bodcher Vilhelm Defrosting device for compression refrigerating machine
KR19990005704A (ko) * 1997-06-30 1999-01-25 배순훈 냉장고의 제상장치
JP2000121236A (ja) * 1998-10-20 2000-04-28 Matsushita Refrig Co Ltd 冷蔵庫
CN2390161Y (zh) * 1999-08-19 2000-08-02 广东科龙电器股份有限公司 热管式除霜电冰箱
KR100431348B1 (ko) * 2002-03-20 2004-05-12 삼성전자주식회사 냉장고
CN203100325U (zh) * 2012-07-11 2013-07-31 广州南洋理工职业学院 冰箱热油除霜系统
US9046287B2 (en) * 2013-03-15 2015-06-02 Whirlpool Corporation Specialty cooling features using extruded evaporator
CN203501611U (zh) * 2013-07-01 2014-03-26 福州富雪岛制冷设备有限公司 能除霜的冷却系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN107003058A (zh) 2017-08-01
EP3230664A1 (de) 2017-10-18
DE102014225102A1 (de) 2016-06-09
WO2016091621A1 (de) 2016-06-16

Similar Documents

Publication Publication Date Title
EP3230664B1 (de) No-frost-kältegerät
WO2007115876A2 (de) Kältegerät mit abtauheizung
DE102013219361A1 (de) Kältegerät und Kältemaschine dafür
WO2015128164A1 (de) Kältegerät
DE212014000178U1 (de) Kühlschrank
EP3359891A1 (de) Kältegerät mit siphon im kondensatablauf
EP2467656B1 (de) Kältegerät mit einem abtauwasserkanal und einem siphon
EP2372277A2 (de) Kältegerät mit Tauwasserverdunster
WO2010063551A2 (de) Kältegerät mit mehreren fächern
WO2009152862A1 (de) Kältegerät mit verdunstungsschale
WO2016074893A1 (de) Nofrost-kältegerät
EP2614324A2 (de) Kältegerät mit skin-verflüssiger
DE102019210190B4 (de) Thermoelektrische kühleinheit
EP3701204B1 (de) Kältegerät mit vertikal luftdurchströmtem verdampfer
DE102011006263A1 (de) Kältegerät mit mehreren Kühlzonen
DE102019200859A1 (de) Kältegerät
WO2012010422A2 (de) Kältegerät mit abtaueinrichtung
DE102018212209A1 (de) Einkreis-Kältegerät
EP1427973B1 (de) Kältegerät mit zwei verdampfern
DE102013215825A1 (de) Kältegerät mit einem Verdampfer
DE19802453A1 (de) Kühl- und/oder Gefriergerät mit einer Verdunstungsschale
DE1751732C3 (de) Kühlmöbel
DE102018202008A1 (de) Kombinationskältegerät
DE102014226065A1 (de) Kombinationskältegerät
DE534218C (de) Mit einem durch Absorber und Verdampfer umlaufenden indifferenten Hilfsgas betriebener Absorptionskaelteapparat

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190607

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1408980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014922

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014922

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26N No opposition filed

Effective date: 20220408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1408980

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707