EP3230206A1 - Procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé - Google Patents

Procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé

Info

Publication number
EP3230206A1
EP3230206A1 EP15825916.8A EP15825916A EP3230206A1 EP 3230206 A1 EP3230206 A1 EP 3230206A1 EP 15825916 A EP15825916 A EP 15825916A EP 3230206 A1 EP3230206 A1 EP 3230206A1
Authority
EP
European Patent Office
Prior art keywords
ring size
general formula
hexachlorodisilane
mixture
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15825916.8A
Other languages
German (de)
English (en)
Inventor
Michael Schley
Martin Katz
Friedrich Schaaff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silicon Products Bitterfeld & Co KG GmbH
Original Assignee
Silicon Products Bitterfeld & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silicon Products Bitterfeld & Co KG GmbH filed Critical Silicon Products Bitterfeld & Co KG GmbH
Publication of EP3230206A1 publication Critical patent/EP3230206A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10773Halogenated silanes obtained by disproportionation and molecular rearrangement of halogenated silanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10778Purification

Definitions

  • Siemens process as well as other CVD processes of microelectronics using chlorosilanes, the hydrogenation of silicon tetrachloride to produce trichlorosilane or the trichlorosilane synthesis of metallurgical silicon, for example, produce such process gases.
  • the low-boiling components are used in one or more distillation steps
  • Chlorosilane mixture with components having a boiling point> 57 ° C (b ei 1013.25 mbar).
  • This chlorosilane mixture contains Si 2 Cl 6 (hexachlorodisilane) and further partially hydrogenated chlorodisilanes having the general formula
  • Hexachlorodisilane is an important starting material in microelectronics.
  • the compound is, inter alia, precursor in CVD deposition for high-purity silicon nitride, silicon oxide or silicon carbide layers.
  • Hexachlorodisilane plays an important role in transistor fabrication in memory chips. Low-temperature epitaxy becomes epitaxial silicon layers
  • Another method describes the reaction with chlorine gas, which leads, according to EP 2036859 B1, to cleavage of the silicon-silicon bond and thus the high-quality disilanes having the general formula Si x HyCl 2 x + 2 y, where x is 2 and y equal to 1-5 is to be destroyed.
  • the aim of this reaction is to convert the disilane to silicon tetrachloride and return it back to the material cycle in order to increase the material yield.
  • Pentachlorodisilane mixtures of organotitrogen or phosphorus compounds described The objective of the applicants is complete decomposition of the listed disilanes to trichlorosilane, silicon tetrachloride and solid polychlorosilane.
  • the present invention is therefore based on the object to provide a method which is a separation of Hexachlordisilans with high yields from the described chlorosilane mixtures, which in the thermal reaction of hydrogen with monosilanes of the general formula Si x HyCl 2 x + 2-y, where x equals 1 and y equals 0 - 2, is available.
  • the object is achieved by a method for obtaining
  • the reaction is carried out in a batch or in a continuous process.
  • a further advantageous embodiment of the method is that the catalyst to inorganic, such as Al 2 0 3 , Si0 2 or organic, such as co-polymer of styrene and divinylbenzene, solids immobilized, dispersed or in a mixture of
  • Chlorosilanes dissolved is used.
  • Quaternary amines / ammonium salts of general formula II :
  • the organic radicals may be linear or branched
  • the chlorosilane mixture is mixed with silicon tetrachloride, which advantageously leads to an increase in yield.
  • a further embodiment is characterized in that after the catalytic conversion of the chlorosilane mixture, the distillative separation of the
  • Reaction mixture takes place or the catalytic reaction takes place during a reactive distillation.
  • the advantages here are in particular the lower equipment costs and the better energy balance. Increase the temperature, then catalytically
  • alkylated or arylated tertiary amines such as trimethylamine
  • alkylated or arylated tertiary amines which have groupings such as dimethylamino groups, heterocyclic nitrogen compounds (azines), pyridine groups or nitriles or quaternary amines, with trimethylammonium chloride groups on one
  • organic carrier material such as e.g. a copolymer of styrene and divinylbenzene or on an inorganic support material, e.g. Silica, are immobilized.
  • the heterogeneous catalyst is used in the form of pellets containing a
  • the catalyst still has sufficient stability at at least 100 ° C., is insoluble and substantially does not tend to split off the amine.
  • the catalytically active functional groups are easily accessible.
  • tertiary alkylamines such as:
  • Trimethylamine which are soluble in the system one and have a significantly lower boiling point than that of hexachlorodisilane, so that a good separation is guaranteed.
  • chlorosilane mixtures having proportions of chlorosilanes of the general formula Si x HyCl 2X + 2 .y, where x is 2 and y is 0-5, of
  • the catalytic conversion of the chlorosilane mixture leads mainly to the formation of hexachlorodisilane and higher boiling silicon compounds, which a particularly clean separation of Hexachlordisilan allows.
  • hexachlorodisilane can be separated from the exhaust gases of the processes described with low equipment costs and low costs, without additional safety risks, in high purity. This is achieved by means of the selective catalytic reaction of partially hydrogenated chlorodisilane moieties in the chlorosilane mixture, having the general formula Si x HyCl 2 x + 2 -y- where x is 2 and y is 0-5.
  • Hexachlorodisilane from mixtures of chlorosilanes in a process exhaust gas 1 process exhaust gases, after conversion into the liquid phase by
  • a fraction 7.2 contains the target product hexachlorodisilane Si 2 Cl 6 and the distillation bottom 7.3 contains a mixture of higher-boiling silicon compounds having> 2 silicon atoms in the
  • the chlorosilane mixture from the separation region 4 is catalytically reacted during the distillation by means of a reactive distillation 6.
  • fraction 6.1 which contains mainly trichlorosilane
  • the catalyst must be separated from the liquid phase prior to further distillation in order then to obtain silicon tetrachloride as a separate fraction 6.2 and hexachlorodisilane as fraction 6.3.
  • a distillation bottoms 6.4 remains from higher-boiling silicon compounds having> 2 silicon atoms in the molecule.
  • Embodiment 1 (Comparative Example)
  • Exemplary embodiment 2 (according to FIG. 1, implementation 5)
  • Embodiment 3 (according to FIG. 1, implementation 5)
  • HCDS hexachlorodisilane
  • HSS higher boiling silicon compounds
  • Exemplary embodiment 5 (according to FIG. 1, implementation 5)
  • HCDS hexachlorodisilane
  • HSS higher boiling silicon compounds
  • Exemplary embodiment 6 (according to FIG. 1, implementation 5)
  • Hexachlorodisilane further higher-boiling silicon compounds.
  • Exemplary embodiment 7 (according to FIG. 1, implementation 5)
  • Diphenylphosphine-functionalized silica (catalyst) at 20 ° C After one week at room temperature, the composition was redetermined (Table 7). The catalyst was filtered off and the mixture was separated by distillation. Three fractions were taken. The third fraction or the bottom contained, in addition to hexachlorodisilane, further higher-boiling silicon compounds. Table 7.
  • TCS trichlorosilane
  • STC silicon tetrachloride
  • TCDS tetrachlorodisilane
  • PCDS pentachlorodisilane
  • HCDS hexachlorodisilane
  • HSS higher-boiling silicon compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention concerne un procédé pour la production hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé, présentant la formule générale SixHyCl2x+2-y, dans laquelle x = 1 et y = 0-3 et x = 2 et y = 0-5. Le problème à la base de la présente invention concerne un procédé qui permet une séparation de l'hexachlorodisilane avec des rendements élevés des mélanges décrits de chlorosilanes, qui est produit lors de la transformation thermique d'hydrogène avec des monosilanes de formule générale SixHyCl2x+2-y, dans laquelle x vaut 1 et y vaut 0-2. La solution du problème porte sur un procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé, présentant la formule générale SixHyCl2x+2-y, dans laquelle x = 1 et y = 0-3 et x = 2 et y = 0-5, qui est caractérisé en ce que les flux d'effluents gazeux ou des parties de ceux-ci sont transférés en phase liquide et les chlorodisilanes partiellement hydrolysés contenus dans le mélange de chlorosilanes, de formule générale SixHyCl2x-2y-1 (x = 2, y = 1-5), sont ensuite en outre transformés catalytiquement en hexachlorodisilane et l'hexachlorosilane est ensuite séparé par distillation du mélange formé.
EP15825916.8A 2014-12-10 2015-11-20 Procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé Withdrawn EP3230206A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014018435.8A DE102014018435A1 (de) 2014-12-10 2014-12-10 Verfahren zur Gewinnung von Hexachlordisilan aus in Prozessabgasströmen enthaltenen Gemischen von Chlorsilanen
PCT/DE2015/000562 WO2016091240A1 (fr) 2014-12-10 2015-11-20 Procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé

Publications (1)

Publication Number Publication Date
EP3230206A1 true EP3230206A1 (fr) 2017-10-18

Family

ID=55174478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15825916.8A Withdrawn EP3230206A1 (fr) 2014-12-10 2015-11-20 Procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé

Country Status (5)

Country Link
EP (1) EP3230206A1 (fr)
KR (1) KR20170091623A (fr)
CN (1) CN107207267A (fr)
DE (1) DE102014018435A1 (fr)
WO (1) WO2016091240A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791547B (zh) 2017-07-31 2023-02-11 中國大陸商南大光電半導體材料有限公司 製備五氯二矽烷之方法及包含五氯二矽烷之經純化的反應產物
WO2021164876A1 (fr) * 2020-02-20 2021-08-26 Wacker Chemie Ag Procédé d'obtention d'hexachlorodisilane par réaction d'au moins un chlorodisilane partiellement hydrogéné sur un adsorbeur solide non fonctionnalisé
CN112479212B (zh) * 2020-12-16 2022-06-28 亚洲硅业(青海)股份有限公司 一种六氯乙硅烷提纯装置及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1142848B (de) 1958-06-25 1963-01-31 Wacker Chemie Gmbh Verfahren zur Herstellung von hochreinem Siliciumhexachlorid
DE3503262A1 (de) 1985-01-31 1986-08-07 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zum aufarbeiten von bei der siliciumherstellung anfallenden halogensilangemischen
KR100731558B1 (ko) 2000-08-02 2007-06-22 미쯔비시 마테리알 폴리실리콘 가부시끼가이샤 육염화이규소의 제조 방법
JP2006176357A (ja) * 2004-12-22 2006-07-06 Sumitomo Titanium Corp ヘキサクロロジシランの製造方法
US7976807B2 (en) 2006-03-07 2011-07-12 Kanken Techno Co., Ltd. Method for detoxifying HCD gas and apparatus therefor
KR101506136B1 (ko) * 2006-10-24 2015-03-26 다우 코닝 코포레이션 네오펜타실란을 포함하는 조성물 및 이의 제조 방법
JP4659797B2 (ja) 2007-09-05 2011-03-30 信越化学工業株式会社 多結晶シリコンの製造方法
DE102007000841A1 (de) * 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur Herstellung von hochreinem Hexachlordisilan
EP2067745B1 (fr) * 2007-11-30 2017-07-12 Mitsubishi Materials Corporation Procédé pour séparer et récupérer des gaz de réaction de conversion
DE102009053804B3 (de) * 2009-11-18 2011-03-17 Evonik Degussa Gmbh Verfahren zur Herstellung von Hydridosilanen
DE102010002812A1 (de) 2010-03-12 2011-09-15 Wacker Chemie Ag Verfahren zur Entsorgung Hexachlordisilan-haltiger Dämpfe
DE102010043649A1 (de) * 2010-11-09 2012-05-10 Evonik Degussa Gmbh Verfahren zur Spaltung höherer Silane
DE102010043648A1 (de) * 2010-11-09 2012-05-10 Evonik Degussa Gmbh Verfahren zur selektiven Spaltung höherer Silane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016091240A1 *

Also Published As

Publication number Publication date
KR20170091623A (ko) 2017-08-09
CN107207267A (zh) 2017-09-26
DE102014018435A1 (de) 2016-06-16
WO2016091240A1 (fr) 2016-06-16

Similar Documents

Publication Publication Date Title
EP2121522B1 (fr) Procédé de fabrication de germanes supérieurs
EP2294006B1 (fr) Procédé pour éliminer des impuretés contenant du bore d'halogénosilanes et installation pour mettre en oeuvre le procédé
EP2634142B1 (fr) Procédé pour la purification de chlorosilanes
EP2078695B1 (fr) Procédé et appareil pour séparer un produit gazeux d'un flux d'alimentation comprenant des contaminants
EP2655254B1 (fr) Procédé de production d'hydrurosilanes
DE102015210762A1 (de) Verfahren zur Aufarbeitung von mit Kohlenstoffverbindungen verunreinigten Chlorsilanen oder Chlorsilangemischen
EP2989051B1 (fr) Procédé et dispositif de production d'octachlorotrisilane
EP3116637B1 (fr) Procédé de fabrication de trisylamine pure
WO2009089951A2 (fr) Installation et procédé pour réduire la teneur en éléments, tels que du bore, d'halosilanes
EP2451549B1 (fr) Procédé et installation pour la fabrication de monosilane
WO2016091240A1 (fr) Procédé pour la production d'hexachlorodisilane à partir de mélanges de chlorosilanes contenus dans des flux d'effluents gazeux de procédé
DE102013207444A1 (de) Verfahren und Vorrichtung zur Herstellung von Polychlorsilanen
EP2637969A1 (fr) Procédé de préparation de trichlorosilane
US10207932B2 (en) Trichlorosilane purification system and method for producing polycrystalline silicon
EP0806427B1 (fr) Procédé pour la préparation de composés organosiliciques à fonction vinylique
DE102011078749A1 (de) Verfahren zur Herstellung von Trisilylamin aus Monochlorsilan und Ammoniak
DE112008002299T5 (de) Verfahren zur Herstellung von Trichlorsilan
US20180141819A1 (en) Primary distillation boron reduction
US20130121908A1 (en) Method for producing trichlorosilane with reduced boron compound impurities
US20120082609A1 (en) Method for producing trichlorosilane with reduced boron compound impurities
DE102019202613A1 (de) Verfahren zur Herstellung von Monochlorsilan oder Dichlorsilan
EP2493900A1 (fr) Procédé de production d'organosilanes
DE102012210308A1 (de) Verfahren zur Herstellung von (3-Chlorpropyl)-Trichlorsilan
WO2020114609A1 (fr) Procédé pour diminuer la teneur en composés de bore dans une composition contenant de l'halogénosilane
WO2013037639A1 (fr) Valorisation de composés à bas point d'ébullition dans des processus pour chlorosilane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHLEY, MICHAEL

Inventor name: KATZ, MARTIN

Inventor name: SCHAAFF, FRIEDRICH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20181108

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190319