EP3218530B1 - Method and facility for carbonitriding one or more steel parts under low pressure and at a high temperature - Google Patents
Method and facility for carbonitriding one or more steel parts under low pressure and at a high temperature Download PDFInfo
- Publication number
- EP3218530B1 EP3218530B1 EP15805560.8A EP15805560A EP3218530B1 EP 3218530 B1 EP3218530 B1 EP 3218530B1 EP 15805560 A EP15805560 A EP 15805560A EP 3218530 B1 EP3218530 B1 EP 3218530B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- nitrogen
- approximately
- enrichment
- carbonitriding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 21
- 238000000034 method Methods 0.000 title claims description 21
- 239000010959 steel Substances 0.000 title claims description 21
- 238000005256 carbonitriding Methods 0.000 title claims description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 92
- 229910052757 nitrogen Inorganic materials 0.000 claims description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 238000010791 quenching Methods 0.000 claims description 24
- 238000005121 nitriding Methods 0.000 claims description 23
- 230000000171 quenching effect Effects 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 22
- 238000005255 carburizing Methods 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 230000007935 neutral effect Effects 0.000 claims description 12
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 4
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 description 14
- 238000009434 installation Methods 0.000 description 12
- 238000011282 treatment Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000004320 controlled atmosphere Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229940095054 ammoniac Drugs 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/34—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/28—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
- C23C8/30—Carbo-nitriding
- C23C8/32—Carbo-nitriding of ferrous surfaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0062—Heat-treating apparatus with a cooling or quenching zone
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B19/00—Combinations of different kinds of furnaces that are not all covered by any single one of main groups F27B1/00 - F27B17/00
- F27B19/02—Combinations of different kinds of furnaces that are not all covered by any single one of main groups F27B1/00 - F27B17/00 combined in one structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B5/00—Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
- F27B5/04—Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated adapted for treating the charge in vacuum or special atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/04—Ram or pusher apparatus
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
Definitions
- the invention relates to certain thermochemical treatments which are intended to reinforce steel parts, and more precisely the carbonitriding of such steel parts.
- carbonitriding is a thermochemical diffusion treatment which consists in enriching the surface of a steel with carbon and nitrogen, before a quenching step, so as to obtain a martensitic structure and a reinforcement.
- the nitrogen enrichment here carried out in the austenitic phase, is called nitriding in the a phase, and the carbon enrichment is called carburization.
- the nitriding in the ⁇ phase (or austenitic phase) is intended to improve the fatigue life and the stability of the metallurgical structure of the steel by nitrogen penetration.
- Case hardening consists in bringing carbon into a steel part in order to increase its ability to be hardened and therefore allow an increase in its surface hardness, and its resistance to fatigue and wear.
- Quenching is a rapid cooling in a liquid or gaseous medium which causes the appearance of a martensitic structure having a very high hardness.
- the known carbonitriding treatments are long and give non-optimal metallurgical results because they result from compromise.
- they use relatively low treatment temperatures (typically around 850 ° C.) in order to optimize nitrogen enrichment (and more precisely to avoid that the major part of the ammonia (NH 3 ) nitriding in ⁇ phase is cracked before even touching the part), but to the detriment of carbon enrichment (which requires higher temperatures) and processing time (which must be increased due to the relatively low processing temperature).
- the documents WO 2014/1770566 and FR 2 884 523 describe carbonitriding processes.
- the document DE 10 2013 006589 describes a carbonitriding installation.
- the invention therefore aims in particular to improve the situation.
- the temperature of the part is warmer than that at which the nitriding is carried out in the ⁇ phase, this prevents the nitriding gas from cracking instantly on contact and therefore it is made much more available for nitrogen enrichment. In addition, this allows better diffusion of nitrogen in the room and therefore an increase in its concentration.
- the carburizing is carried out at a temperature higher than that of nitriding in phase a, the carbon enrichment of the part is thus more efficient and faster.
- the carbon enrichment step being carried out in a different chamber from that in which the nitrogen enrichment step is carried out, this makes it possible to vary the temperature very quickly between the nitrogen enrichment steps and in carbon.
- the object of the invention is in particular to propose a method, and an associated IC installation, intended to allow carbonitriding of part (s) made of PA steel at high temperature and at low pressure.
- the PA steel parts are intended to equip a vehicle, possibly of automobile type.
- it could be gearbox parts, transmission parts, or various gears.
- the invention is not limited to this application. It concerns in fact any steel part intended to equip a device, an apparatus, a system (and in particular a vehicle, whatever its type), or an installation (possibly of industrial type).
- it also relates in particular to certain transmission elements in the aeronautical field, and in general the parts which are mechanically stressed in wear and in fatigue.
- a process for carbonitriding PA steel part (s) comprises at least first, second, third and fourth steps.
- Such a process can be implemented by a carbonitriding installation IC of the type which is illustrated without limitation on the figure 1 .
- a carbonitriding installation IC comprises at least one CC heating chamber, at least one first enrichment chamber CE1, at least one second enrichment chamber CE2, at least one quenching chamber CT, one ST transfer lock, and MT transfer means.
- the transfer airlock ST comprises an input ES with controlled access and through which each PA (steel) part to be treated is introduced, and an output SS with controlled access and by which the PA part treated is extracted.
- the input ES and the output SS each comprise a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface.
- This transfer lock ST communicates in a controlled manner with each of the chambers CC, CE1, CE2 and CT, and is suitable for temporarily accommodating the room PA, during each of its transfers from one room to another, in an environment where there is a controlled atmosphere intended to prevent its oxidation.
- This controlled atmosphere can be a selected vacuum, preferably between about 2 millibars and about 50 millibars, and it can be neutral (for example defined by a neutral gas such as dinitrogen (or N 2 )).
- each PA part is preferably placed on a tray which can accommodate one or more parts to be treated. It is considered in what follows, by way of illustrative example, that only one PA part is processed at a time.
- the (each) heating chamber CC is arranged so as to heat a room PA to a first chosen temperature T1, in an environment which contains a neutral gas and under a selected pressure P1. It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
- the neutral gas can be dinitrogen (or N 2 ).
- the pressure P1 can be substantially equal to atmospheric pressure.
- this pressure P1 can, for example, be between approximately 1 bar and approximately 1.5 bar.
- this pressure P1 can be similar (or identical) to the low pressure which is used in the enrichment chambers CE1 and CE2 (typically a few millibars).
- the first temperature T1 is between approximately 800 ° C and approximately 1100 ° C.
- it can be chosen equal to 1050 ° C.
- the (each) first enrichment chamber CE1 is arranged so as to enrich with nitrogen, under a low pressure, the part PA which has been heated in the (one) heating chamber CC, by nitriding in ⁇ phase at a second temperature.
- T2 chosen lower or equal to the first temperature T2 (i.e. T2 ⁇ T1).
- this second temperature T2 is strictly lower than the first temperature T2 (ie T2 ⁇ T1).
- the second temperature T2 is between about 700 ° C and about 880 ° C.
- it can be chosen equal to 830 ° C.
- gaseous ammonia or NH 3
- This gas constitutes the atmosphere inside the first enrichment chamber CE1.
- the (each) second enrichment chamber CE2 is arranged so as to enrich in carbon, under a low pressure, the part PA which has been enriched in nitrogen in the (a) first enrichment chamber CE1, by carburizing under a third temperature T3 chosen strictly higher than the second temperature T2 (ie T3> T2). It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
- the third temperature T3 is between approximately 900 ° C and approximately 1100 ° C.
- it can be chosen equal to 1050 ° C.
- acetylene (or C 2 H 2 ) gas can be used. This gas constitutes the atmosphere inside the second CE2 enrichment chamber.
- carburizing gases can be used, and in particular propane.
- the (each) quenching chamber CT is arranged so as to harden under pressure the part PA which has been enriched with nitrogen and carbon in the first (s) CE1 and second (s) enrichment chambers.
- This quenching is preferably carried out under a fourth temperature T4 chosen close to ambient temperature and under a pressure P2 which is greater than or equal to atmospheric pressure.
- It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
- the quenching pressure P2 can be between approximately 1 bar and approximately 20 bars. Thus, it can, for example, be chosen equal to around 15 bars for steels containing little alloy.
- the quenching can be carried out by immersion in an environment which contains a chosen gas, such as for example nitrogen or helium.
- a chosen gas such as for example nitrogen or helium.
- the quenching gas then constitutes the atmosphere inside the quenching chamber CT.
- the quenching can be carried out by immersion in an environment which contains a chosen liquid, such as for example oil or a polymer.
- the transfer means MT are arranged so as to transfer the part PA from one room to another room via the transfer lock ST. They include for example a motorized trolley (preferably electrically), comprising a plate capable of supporting at least one PA part, and mounted in translation on rails which are fixedly installed in the transfer lock ST and which communicate with the outside ( via the ES input and SS output of the transfer airlock ST) and with the different CC, CE1, CE2 and CT chambers in order to allow the transfer of the PA part.
- a motorized trolley preferably electrically
- a plate capable of supporting at least one PA part
- a first step, of the method according to the invention is carried out once at least one part PA has been installed in the (one) heating chamber CC by means of the transfer means MT (arrows F1 and F2 of the figure 1 ).
- This installation corresponds to sub-step 10 of the example algorithm of the figure 2 .
- the part PA is heated to the first temperature T1 chosen, in an environment containing a neutral gas (such as dinitrogen, as mentioned above), and under a pressure P1 chosen (possibly substantially equal to atmospheric pressure ).
- a neutral gas such as dinitrogen, as mentioned above
- Such heating in a neutral atmosphere and under a low pressure makes it possible to have a rate of heating of the part PA substantially faster than in the case of heating under vacuum. For example, to bring the temperature of a PA room to around 1050 ° C in a neutral atmosphere and under about 1 bar, it takes about an hour, while it takes about an hour and a quarter under vacuum. This frees up the DC heating chamber more quickly.
- the first step corresponds to sub-step 20 of the example algorithm of the figure 2 .
- a second step, of the method according to the invention is carried out once the part PA has been heated to the first temperature T1 in the heating chamber CC, then installed in the (one) first enrichment chamber CE1 by means of the MV transfer means (arrows F2, F3 and F4 of the figure 1 ).
- the heated PA part is enriched in nitrogen, under low pressure (typically a few millibars), by nitriding in the ⁇ phase under the second chosen temperature T2 (less than or equal to the first temperature T1, and preferably strictly lower at T1).
- the temperature T1 of the part PA being preferably initially warmer than the temperature T2 at which the nitriding is carried out in phase a, it is avoided that the nitriding gas is instantly cracked at its contact and therefore we make this gas much more available for nitrogen enrichment. In addition, this allows better diffusion of nitrogen in the PA room and therefore an increase in its concentration, in accordance with Fick's law.
- a maximum enrichment of the PA part with nitrogen is expected between about 800 ° C and about 850 ° C when using ammonia as nitriding gas. Indeed from about 900 ° C, the ammonia cracks 99% instantly in the atmosphere and is no longer available to enrich the PA part with nitrogen.
- the duration of the nitriding in the ⁇ phase can be equal to approximately ten minutes. This duration is a function of the quantity of nitrogen which it is desired to introduce into the part PA.
- the temperature of the part PA has become slightly lower than T1 because the nitriding temperature in the ⁇ phase T2 is strictly lower than T1.
- T1 is equal to 1050 ° C and the nitriding temperature in the ⁇ phase is equal to 830 ° C
- the temperature of the PA room enriched in nitrogen is equal to approximately 1010 ° C after ten minutes of ⁇ phase nitriding.
- the second step corresponds to sub-step 30 of the example algorithm of the figure 2 .
- a third step, of the method according to the invention is carried out once the part PA has been enriched with nitrogen in the first enrichment chamber CE1, then installed in the (one) second enrichment chamber CE2 by means MT transfer (arrows F4, F5 and F6 of the figure 1 ).
- the PA part already enriched in nitrogen is enriched in carbon, under low pressure (typically a few millibars), by carburizing under the third temperature T3 chosen (strictly higher than the second temperature T2).
- the duration of the third stage can be equal to approximately fifteen minutes (ten minutes for the effective carburizing under acetylene, then five minutes for the complete diffusion of carbon in the PA part under nitrogen). This duration depends on the desired treatment depth in the PA part.
- the temperature of the part PA has become equal to T3 because the carburizing temperature T3 is strictly higher than that which it presents at the outlet of the first enrichment chamber CE1.
- the third step corresponds to sub-step 40 of the example algorithm of the figure 2 .
- a fourth step, of the method according to the invention is carried out once the part PA has been enriched with nitrogen and carbon in the first CE1 and second CE2 enrichment chambers, then installed in the (one) quenching chamber CT by means of the transfer means MT (arrows F6, F7 and F8 of the figure 1 ).
- the PA part enriched with nitrogen and carbon is quenched (or rapidly cooled) under pressure P2.
- the fourth quenching temperature T4 is for example the ambient temperature, typically equal to around 20 ° C.
- the quenching pressure P2 used is preferably between about 1 bar and about 20 bars. These much larger values than that of the low pressure used in the second and third stages make it possible to increase the cooling rate. A very fast speed makes it possible to transform the austenite enriched in nitrogen and carbon in order to form martensite and to appreciably increase the hardness of the PA part.
- the duration of the quenching can be between approximately 2 minutes and approximately 5 minutes. This duration is mainly a function of the dimensions of the PA parts to be treated and the initial chemical composition of the steel.
- the fourth step corresponds to sub-step 50 of the example algorithm of the figure 2 .
- the part PA left the heating chamber CC then the transfer airlock ST (via its output SS) by the transfer means MT (arrows F8 and F9 of the figure 1 ).
- the carbonitriding installation IC may possibly comprise at least one other CC heating chamber to allow almost continuous supply of the first enrichment chamber CE1 in which the treatment time is significantly shorter. as the heating time, and / or at least one other first enrichment chamber CE1 for treating several PA pieces in parallel and / or for carrying out an enrichment in additional nitrogen, and / or at least one other second enrichment chamber CE2 for treating several PA parts in parallel and / or for carrying out an additional carbon enrichment, and / or at least one other quenching chamber CT for treating several PA parts in parallel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
L'invention concerne certains traitements thermochimiques qui sont destinés à renforcer des pièces en acier, et plus précisément la carbonitruration de telles pièces en acier.The invention relates to certain thermochemical treatments which are intended to reinforce steel parts, and more precisely the carbonitriding of such steel parts.
Dans certains domaines, comme par exemple celui des véhicules, éventuellement automobiles, il est indispensable de renforcer la résistance de certaines pièces en acier, et plus précisément au moins leur tenue en fatigue, afin qu'elles puissent supporter des contraintes importantes et/ou afin d'augmenter leur durée de vie. Un tel renforcement peut être obtenu par carbonitruration.In certain fields, such as that of vehicles, possibly motor vehicles, it is essential to reinforce the resistance of certain steel parts, and more precisely at least their resistance to fatigue, so that they can withstand significant stresses and / or in order to increase their lifespan. Such reinforcement can be obtained by carbonitriding.
Il est rappelé que la carbonitruration est un traitement thermochimique de diffusion qui consiste à enrichir en carbone et en azote la surface d'un acier, avant une étape de trempe, de manière à obtenir une structure martensitique et un renforcement. L'enrichissement en azote, ici réalisé en phase austénitique, est appelé nitruration en phase a, et l'enrichissement en carbone est appelé cémentation. La nitruration en phase α (ou phase austénitique) est destinée à améliorer la tenue en fatigue et la stabilité de la structure métallurgique de l'acier par pénétration d'azote. La cémentation consiste à faire pénétrer du carbone dans une pièce en acier afin d'augmenter son aptitude à être trempé et donc permettre une augmentation de sa dureté en surface, et sa tenue en fatigue et à l'usure.It is recalled that carbonitriding is a thermochemical diffusion treatment which consists in enriching the surface of a steel with carbon and nitrogen, before a quenching step, so as to obtain a martensitic structure and a reinforcement. The nitrogen enrichment, here carried out in the austenitic phase, is called nitriding in the a phase, and the carbon enrichment is called carburization. The nitriding in the α phase (or austenitic phase) is intended to improve the fatigue life and the stability of the metallurgical structure of the steel by nitrogen penetration. Case hardening consists in bringing carbon into a steel part in order to increase its ability to be hardened and therefore allow an increase in its surface hardness, and its resistance to fatigue and wear.
La trempe est un refroidissement rapide dans un milieu liquide ou gazeux qui provoque l'apparition d'une structure martensitique ayant une dureté très élevée.Quenching is a rapid cooling in a liquid or gaseous medium which causes the appearance of a martensitic structure having a very high hardness.
Comme le sait l'homme de l'art, les traitements de carbonitruration connus sont longs et donnent des résultats métallurgiques non optimaux du fait qu'ils résultent de compromis. En effet, ils utilisent des températures de traitement relativement basses (typiquement d'environ 850°C) afin d'optimiser l'enrichissement en azote (et plus précisément d'éviter que la majeur partie de l'ammoniac (NH3) de nitruration en phase α ne se craque avant même de toucher la pièce), mais au détriment de l'enrichissement en carbone (qui nécessite de plus hautes températures) et du temps de traitement (qui doit être augmenté du fait de la température de traitement relativement basse).As those skilled in the art know, the known carbonitriding treatments are long and give non-optimal metallurgical results because they result from compromise. In fact, they use relatively low treatment temperatures (typically around 850 ° C.) in order to optimize nitrogen enrichment (and more precisely to avoid that the major part of the ammonia (NH 3 ) nitriding in α phase is cracked before even touching the part), but to the detriment of carbon enrichment ( which requires higher temperatures) and processing time (which must be increased due to the relatively low processing temperature).
Les documents
L'invention a donc notamment pour but d'améliorer la situation.The invention therefore aims in particular to improve the situation.
Elle propose notamment à cet effet un procédé, destiné à permettre la carbonitruration d'au moins une pièce en acier, et comprenant :
- une première étape dans laquelle on chauffe chaque pièce à une première température choisie, dans un environnement contenant un gaz neutre et sous une pression choisie,
- une deuxième étape dans laquelle on enrichit en azote dans une première chambre la pièce chauffée, par nitruration en phase α sous une deuxième température choisie inférieure à la première température,
- une troisième étape dans laquelle on enrichit en carbone dans une seconde chambre la pièce enrichie en azote, par cémentation sous une troisième température choisie strictement supérieure à la deuxième température, et
- une quatrième étape dans laquelle on trempe sous pression la pièce enrichie en azote et en carbone.
- a first step in which each part is heated to a first chosen temperature, in an environment containing a neutral gas and under a selected pressure,
- a second step in which the heated part is enriched with nitrogen in a first chamber, by nitriding in the α phase at a second chosen temperature lower than the first temperature,
- a third step in which the part enriched in nitrogen is enriched in carbon in a second chamber, by carburizing under a third temperature chosen strictly higher than the second temperature, and
- a fourth step in which the part enriched in nitrogen and carbon is hardened under pressure.
La température de la pièce étant plus chaude que celle à laquelle on réalise la nitruration en phase α, on évite ainsi que le gaz de nitruration se craque instantanément à son contact et donc on le rend beaucoup plus disponible pour l'enrichissement en azote. En outre, cela permet une meilleure diffusion de l'azote dans la pièce et donc une augmentation de sa concentration. De plus, la cémentation étant réalisée à une température supérieure à celle de la nitruration en phase a, l'enrichissement en carbone de la pièce est ainsi plus efficace et plus rapide. Enfin, l'étape d'enrichissement en carbone étant effectuée dans une chambre différente de celle dans laquelle on réalise l'étape d'enrichissement en azote, cela permet de faire varier très rapidement la température entre les étapes d'enrichissements en azote et en carbone.As the temperature of the part is warmer than that at which the nitriding is carried out in the α phase, this prevents the nitriding gas from cracking instantly on contact and therefore it is made much more available for nitrogen enrichment. In addition, this allows better diffusion of nitrogen in the room and therefore an increase in its concentration. In addition, since the carburizing is carried out at a temperature higher than that of nitriding in phase a, the carbon enrichment of the part is thus more efficient and faster. Finally, the carbon enrichment step being carried out in a different chamber from that in which the nitrogen enrichment step is carried out, this makes it possible to vary the temperature very quickly between the nitrogen enrichment steps and in carbon.
Le procédé selon l'invention peut comporter d'autres caractéristiques qui peuvent être prises séparément ou en combinaison, et notamment :
- dans la première étape le gaz neutre peut être du diazote (ou N2) ;
- dans la première étape la pression peut être comprise entre environ 1 bar et environ 1,5 bar. Mais elle pourrait être notablement plus basse, et par exemple similaire à la basse pression utilisée dans les deuxième et troisième étapes ;
- dans la première étape la première température peut être comprise entre environ 800°C et environ 1100 ° C ;
- dans la deuxième étape la deuxième température peut être comprise entre environ 700°C et environ 880°C;
- dans la deuxième étape on peut enrichir la pièce en azote par nitruration en phase α avec de l'ammoniac ;
- dans la troisième étape la troisième température peut être comprise entre environ 900°C et environ 1100 ° C ;
- dans la troisième étape on peut enrichir la pièce en carbone par cémentation avec de l'acétylène ;
- dans la quatrième étape la pression de trempe peut être comprise entre environ 1 bar et environ 20 bars ;
- dans la quatrième étape la trempe peut être réalisée dans un environnement contenant un gaz choisi.
- in the first step the neutral gas can be dinitrogen (or N 2 );
- in the first stage, the pressure can be between approximately 1 bar and approximately 1.5 bar. But it could be notably lower, and for example similar to the low pressure used in the second and third stages;
- in the first step the first temperature can be between about 800 ° C and about 1100 ° C;
- in the second step the second temperature can be between about 700 ° C and about 880 ° C;
- in the second step, the part can be enriched in nitrogen by nitriding in the α phase with ammonia;
- in the third step the third temperature can be between approximately 900 ° C and approximately 1100 ° C;
- in the third step, the part can be enriched in carbon by carburizing with acetylene;
- in the fourth step the quenching pressure can be between approximately 1 bar and approximately 20 bars;
- in the fourth step the quenching can be carried out in an environment containing a chosen gas.
L'invention propose également une installation, dédiée à la carbonitruration de pièces en acier, et comprenant :
- au moins une chambre de chauffage propre à chauffer au moins une pièce en acier à une première température choisie, dans un environnement contenant un gaz neutre et sous une pression choisie,
- au moins une première chambre d'enrichissement propre à enrichir en azote la pièce chauffée, par nitruration en phase α sous une deuxième température choisie inférieure ou égale à la première température,
- au moins une seconde chambre d'enrichissement propre à enrichir en carbone la pièce enrichie en azote, par cémentation sous une troisième température choisie strictement supérieure à la deuxième température,
- au moins une chambre de trempe propre à tremper sous pression la pièce enrichie en azote et en carbone,
- un sas de transfert communiquant de façon contrôlée avec chacune des chambres et propre à accueillir temporairement la pièce dans un environnement où règne une atmosphère contrôlée, et
- des moyens de transfert propres à transférer la pièce d'une chambre à une autre chambre via le sas de transfert.
- at least one heating chamber suitable for heating at least one steel part to a first chosen temperature, in an environment containing a neutral gas and at a selected pressure,
- at least a first enrichment chamber capable of enriching the heated part with nitrogen, by nitriding in the α phase at a second selected temperature lower than or equal to the first temperature,
- at least one second enrichment chamber capable of enriching the nitrogen-enriched part with carbon, by carburizing under a third temperature chosen strictly higher than the second temperature,
- at least one quenching chamber suitable for quenching under pressure the part enriched in nitrogen and carbon,
- a transfer airlock communicating in a controlled manner with each of the bedrooms and suitable for temporarily accommodating the room in an environment where a controlled atmosphere prevails, and
- transfer means suitable for transferring the room from one room to another room via the transfer airlock.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'examen de la description détaillée ci-après, et des dessins annexés, sur lesquels :
- la
figure 1 illustre schématiquement et fonctionnellement un exemple de réalisation d'une installation de carbonitruration selon l'invention, et - la
figure 2 illustre schématiquement un exemple d'algorithme mettant en œuvre un procédé de carbonitruration selon l'invention.
- the
figure 1 illustrates schematically and functionally an embodiment of a carbonitriding installation according to the invention, and - the
figure 2 schematically illustrates an example of an algorithm implementing a carbonitriding method according to the invention.
L'invention a notamment pour but de proposer un procédé, et une installation IC associée, destinés à permettre la carbonitruration de pièce(s) en acier PA à haute température et à basse pression.The object of the invention is in particular to propose a method, and an associated IC installation, intended to allow carbonitriding of part (s) made of PA steel at high temperature and at low pressure.
Dans ce qui suit, on considère, à titre d'exemple non limitatif, que les pièces en acier PA sont destinées à équiper un véhicule, éventuellement de type automobile. Par exemple, il pourra s'agir de pièces de boîte de vitesses, de pièces de transmission, ou d'engrenages divers. Mais l'invention n'est pas limitée à cette application. Elle concerne en effet toute pièce en acier destinée à équiper un dispositif, un appareil, un système (et notamment un véhicule, quel qu'en soit le type), ou une installation (éventuellement de type industriel). Ainsi, elle concerne également et notamment certains éléments de transmission dans le domaine aéronautique, et d'une manière générale les pièces qui sont sollicitées mécaniquement en usure et en fatigue.In what follows, it is considered, by way of nonlimiting example, that the PA steel parts are intended to equip a vehicle, possibly of automobile type. For example, it could be gearbox parts, transmission parts, or various gears. However, the invention is not limited to this application. It concerns in fact any steel part intended to equip a device, an apparatus, a system (and in particular a vehicle, whatever its type), or an installation (possibly of industrial type). Thus, it also relates in particular to certain transmission elements in the aeronautical field, and in general the parts which are mechanically stressed in wear and in fatigue.
Un procédé de carbonitruration de pièce(s) en acier PA comprend au moins des première, deuxième, troisième et quatrième étapes.A process for carbonitriding PA steel part (s) comprises at least first, second, third and fourth steps.
Un tel procédé peut être mis en œuvre par une installation de carbonitruration IC du type de celle qui est illustrée non limitativement sur la
Comme illustré sur la
Le sas de transfert ST comprend une entrée ES à accès contrôlé et par laquelle on introduit chaque pièce (en acier) PA à traiter, et une sortie SS à accès contrôlé et par laquelle on extrait la pièce PA traitée. Par exemple, l'entrée ES et la sortie SS comprennent chacune une simple ou double porte coulissante, étanche, commandée électriquement ou pneumatiquement, et assurant l'interface étanche. Ce sas de transfert ST communique de façon contrôlée avec chacune des chambres CC, CE1, CE2 et CT, et est propre à accueillir temporairement la pièce PA, lors de chacun de ses transferts d'une chambre à l'autre, dans un environnement où règne une atmosphère contrôlée destinée à éviter son oxydation.The transfer airlock ST comprises an input ES with controlled access and through which each PA (steel) part to be treated is introduced, and an output SS with controlled access and by which the PA part treated is extracted. For example, the input ES and the output SS each comprise a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface. This transfer lock ST communicates in a controlled manner with each of the chambers CC, CE1, CE2 and CT, and is suitable for temporarily accommodating the room PA, during each of its transfers from one room to another, in an environment where there is a controlled atmosphere intended to prevent its oxidation.
Cette atmosphère contrôlée peut être un vide choisi, de préférence compris entre environ 2 millibars et environ 50 millibars, et elle peut être neutre (par exemple définie par un gaz neutre tel que le diazote (ou N2)).This controlled atmosphere can be a selected vacuum, preferably between about 2 millibars and about 50 millibars, and it can be neutral (for example defined by a neutral gas such as dinitrogen (or N 2 )).
On notera que chaque pièce PA est de préférence placée sur un plateau qui peut accueillir une ou plusieurs pièces à traiter. On considère dans ce qui suit, à titre d'exemple illustratif, que l'on ne traite qu'une seule pièce PA à la fois.It will be noted that each PA part is preferably placed on a tray which can accommodate one or more parts to be treated. It is considered in what follows, by way of illustrative example, that only one PA part is processed at a time.
La (chaque) chambre de chauffage CC est agencée de manière à chauffer une pièce PA à une première température T1 choisie, dans un environnement qui contient un gaz neutre et sous une pression P1 choisie. Elle comprend des moyens de contrôle d'accès, comme par exemple une simple ou double porte coulissante, étanche, commandée électriquement ou pneumatiquement, et assurant l'interface étanche avec le sas de transfert ST.The (each) heating chamber CC is arranged so as to heat a room PA to a first chosen temperature T1, in an environment which contains a neutral gas and under a selected pressure P1. It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
Par exemple, le gaz neutre peut être du diazote (ou N2).For example, the neutral gas can be dinitrogen (or N 2 ).
Egalement par exemple, la pression P1 peut être sensiblement égale à la pression atmosphérique. Ainsi, elle peut, par exemple, être comprise entre environ 1 bar et environ 1,5 bar. Mais dans une variante plus économique, cette pression P1 peut être similaire (ou identique) à la basse pression qui est utilisée dans les chambres d'enrichissement CE1 et CE2 (typiquement quelques millibars).Also for example, the pressure P1 can be substantially equal to atmospheric pressure. Thus, it can, for example, be between approximately 1 bar and approximately 1.5 bar. But in a more economical variant, this pressure P1 can be similar (or identical) to the low pressure which is used in the enrichment chambers CE1 and CE2 (typically a few millibars).
De préférence, la première température T1 est comprise entre environ 800°C et environ 1100°C. Par exemple, ellepeut être choisie égale à 1050°C.Preferably, the first temperature T1 is between approximately 800 ° C and approximately 1100 ° C. For example, it can be chosen equal to 1050 ° C.
La (chaque) première chambre d'enrichissement CE1 est agencée de manière à enrichir en azote, sous une basse pression, la pièce PA qui a été chauffée dans la (une) chambre de chauffage CC, par nitruration en phase α sous une deuxième température T2 choisie inférieure ou égale à la première température T2 (soit T2 ≤ T1). De préférence, cette deuxième température T2 est strictement inférieure à la première température T2 (soit T2 < T1). Elle comprend des moyens de contrôle d'accès, comme par exemple une simple ou double porte coulissante, étanche, commandée électriquement ou pneumatiquement, et assurant l'interface étanche avec le sas de transfert ST.The (each) first enrichment chamber CE1 is arranged so as to enrich with nitrogen, under a low pressure, the part PA which has been heated in the (one) heating chamber CC, by nitriding in α phase at a second temperature. T2 chosen lower or equal to the first temperature T2 (i.e. T2 ≤ T1). Preferably, this second temperature T2 is strictly lower than the first temperature T2 (ie T2 <T1). It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
De préférence, la deuxième température T2 est comprise entre environ 700°C et environ 880°C. Par exemple, elle peut être choisie égale à 830°C.Preferably, the second temperature T2 is between about 700 ° C and about 880 ° C. For example, it can be chosen equal to 830 ° C.
Par exemple, pour réaliser l'enrichissement en azote par nitruration en phase α on peut utiliser de l'ammoniac (ou NH3) gazeux. Ce gaz constitue l'atmosphère à l'intérieur de la première chambre d'enrichissement CE1.For example, to carry out nitrogen enrichment by nitriding in the α phase, it is possible to use gaseous ammonia (or NH 3 ). This gas constitutes the atmosphere inside the first enrichment chamber CE1.
La (chaque) seconde chambre d'enrichissement CE2 est agencée de manière à enrichir en carbone, sous une basse pression, la pièce PA qui a été enrichie en azote dans la (une) première chambre d'enrichissement CE1, par cémentation sous une troisième température T3 choisie strictement supérieure à la deuxième température T2 (soit T3 > T2). Elle comprend des moyens de contrôle d'accès, comme par exemple une simple ou double porte coulissante, étanche, commandée électriquement ou pneumatiquement, et assurant l'interface étanche avec le sas de transfert ST.The (each) second enrichment chamber CE2 is arranged so as to enrich in carbon, under a low pressure, the part PA which has been enriched in nitrogen in the (a) first enrichment chamber CE1, by carburizing under a third temperature T3 chosen strictly higher than the second temperature T2 (ie T3> T2). It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
De préférence, la troisième température T3 est comprise entre environ 900°C et environ 1100°C. Par exemple, ellepeut être choisie égale à 1050°C.Preferably, the third temperature T3 is between approximately 900 ° C and approximately 1100 ° C. For example, it can be chosen equal to 1050 ° C.
Par exemple, pour réaliser l'enrichissement en carbone par cémentation on peut utiliser de l'acétylène (ou C2H2) gazeux. Ce gaz constitue l'atmosphère à l'intérieur de la seconde chambre d'enrichissement CE2. Mais d'autres gaz de cémentation peuvent être utilisés, et notamment le propane.For example, to carry out carbon enrichment by carburizing, acetylene (or C 2 H 2 ) gas can be used. This gas constitutes the atmosphere inside the second CE2 enrichment chamber. However, other carburizing gases can be used, and in particular propane.
La (chaque) chambre de trempe CT est agencée de manière à tremper sous pression la pièce PA qui a été enrichie en azote et en carbone dans les première(s) CE1 et seconde(s) chambres d'enrichissement. Cette trempe se fait de préférence sous une quatrième température T4 choisie proche de la température ambiante et sous une pression P2 qui est supérieure ou égale à la pression atmosphérique. Elle comprend des moyens de contrôle d'accès, comme par exemple une simple ou double porte coulissante, étanche, commandée électriquement ou pneumatiquement, et assurant l'interface étanche avec le sas de transfert ST.The (each) quenching chamber CT is arranged so as to harden under pressure the part PA which has been enriched with nitrogen and carbon in the first (s) CE1 and second (s) enrichment chambers. This quenching is preferably carried out under a fourth temperature T4 chosen close to ambient temperature and under a pressure P2 which is greater than or equal to atmospheric pressure. It includes access control means, such as for example a single or double sliding door, sealed, electrically or pneumatically controlled, and ensuring the sealed interface with the transfer lock ST.
Par exemple, la pression de trempe P2 peut être comprise entre environ 1 bar et environ 20 bars. Ainsi, elle peut, par exemple, être choisie égale à environ 15 bars pour des aciers contenant peu d'alliage.For example, the quenching pressure P2 can be between approximately 1 bar and approximately 20 bars. Thus, it can, for example, be chosen equal to around 15 bars for steels containing little alloy.
On notera que l'augmentation de la pression de trempe permet de tremper plus fortement les pièces PA mais engendre plus de déformations. Le choix de la pression est donc un compromis entre la trempabilité de l'acier, les déformations et la dureté que l'on vise à obtenir.It will be noted that the increase in the quenching pressure makes it possible to quench the PA parts more strongly but generates more deformations. The choice of pressure is therefore a compromise between the hardenability of the steel, the deformations and the hardness that we aim to obtain.
La trempe peut être réalisée par immersion dans un environnement qui contient un gaz choisi, comme par exemple de l'azote ou de l'hélium. Le gaz de trempe constitue alors l'atmosphère à l'intérieur de la chambre de trempe CT.The quenching can be carried out by immersion in an environment which contains a chosen gas, such as for example nitrogen or helium. The quenching gas then constitutes the atmosphere inside the quenching chamber CT.
En variante, la trempe peut être réalisée par immersion dans un environnement qui contient un liquide choisi, comme par exemple de l'huile ou un polymère.Alternatively, the quenching can be carried out by immersion in an environment which contains a chosen liquid, such as for example oil or a polymer.
Les moyens de transfert MT sont agencés de manière à transférer la pièce PA d'une chambre à une autre chambre via le sas de transfert ST. Ils comprennent par exemple un chariot motorisé (de préférence électriquement), comprenant un plateau propre à supporter au moins une pièce PA, et monté en translation sur des rails qui sont implantés fixement dans le sas de transfert ST et qui communiquent avec l'extérieur (via les entrée ES et sortie SS du sas de transfert ST) et avec les différentes chambres CC, CE1, CE2 et CT afin de permettre le transfert de la pièce PA.The transfer means MT are arranged so as to transfer the part PA from one room to another room via the transfer lock ST. They include for example a motorized trolley (preferably electrically), comprising a plate capable of supporting at least one PA part, and mounted in translation on rails which are fixedly installed in the transfer lock ST and which communicate with the outside ( via the ES input and SS output of the transfer airlock ST) and with the different CC, CE1, CE2 and CT chambers in order to allow the transfer of the PA part.
Une première étape, du procédé selon l'invention, est réalisée une fois qu'au moins une pièce PA a été installée dans la (une) chambre de chauffage CC au moyen des moyens de transfert MT (flèches F1 et F2 de la
Dans cette première étape, on chauffe la pièce PA à la première température T1 choisie, dans un environnement contenant un gaz neutre (comme par exemple du diazote, comme mentionné précédemment), et sous une pression P1 choisie (éventuellement sensiblement égale à la pression atmosphérique).In this first step, the part PA is heated to the first temperature T1 chosen, in an environment containing a neutral gas (such as dinitrogen, as mentioned above), and under a pressure P1 chosen (possibly substantially equal to atmospheric pressure ).
Un tel chauffage dans une atmosphère neutre et sous une basse pression permet d'avoir une vitesse de chauffe de la pièce PA sensiblement plus rapide que dans le cas d'un chauffage sous vide. Par exemple, pour porter la température d'une pièce PA à environ 1050°C dans une atmosphère neutre et sous environ 1 bar, il faut environ une heure, alors qu'il faut environ une heure et quart sous vide. Cela permet de libérer plus rapidement la chambre de chauffage CC.Such heating in a neutral atmosphere and under a low pressure makes it possible to have a rate of heating of the part PA substantially faster than in the case of heating under vacuum. For example, to bring the temperature of a PA room to around 1050 ° C in a neutral atmosphere and under about 1 bar, it takes about an hour, while it takes about an hour and a quarter under vacuum. This frees up the DC heating chamber more quickly.
La première étape correspond à la sous-étape 20 de l'exemple d'algorithme de la
Une deuxième étape, du procédé selon l'invention, est réalisée une fois que la pièce PA a été chauffée à la première température T1 dans la chambre de chauffage CC, puis installée dans la (une) première chambre d'enrichissement CE1 au moyen des moyens de transfert MT (flèches F2, F3 et F4 de la
Dans cette deuxième étape, on enrichit en azote, sous basse pression (typiquement quelques millibars), la pièce PA chauffée, par nitruration en phase α sous la deuxième température T2 choisie (inférieure ou égale à la première température T1, et de préférence strictement inférieure à T1).In this second step, the heated PA part is enriched in nitrogen, under low pressure (typically a few millibars), by nitriding in the α phase under the second chosen temperature T2 (less than or equal to the first temperature T1, and preferably strictly lower at T1).
La température T1 de la pièce PA étant de préférence initialement plus chaude que la température T2 à laquelle on réalise la nitruration en phase a, on évite que le gaz de nitruration se craque instantanément à son contact et donc on rend ce gaz beaucoup plus disponible pour l'enrichissement en azote. En outre, cela permet une meilleure diffusion de l'azote dans la pièce PA et donc une augmentation de sa concentration, conformément à la loi de Fick.The temperature T1 of the part PA being preferably initially warmer than the temperature T2 at which the nitriding is carried out in phase a, it is avoided that the nitriding gas is instantly cracked at its contact and therefore we make this gas much more available for nitrogen enrichment. In addition, this allows better diffusion of nitrogen in the PA room and therefore an increase in its concentration, in accordance with Fick's law.
On notera qu'un enrichissement maximum de la pièce PA en azote est attendu entre environ 800°C et environ 850°C lorsque l'on utilise l'ammoniac comme gaz de nitruration. En effet à partir d'environ 900°C, l'ammoniac craque à 99% instantanément dans l'atmosphère et n'est plus disponible pour enrichir la pièce PA en azote.Note that a maximum enrichment of the PA part with nitrogen is expected between about 800 ° C and about 850 ° C when using ammonia as nitriding gas. Indeed from about 900 ° C, the ammonia cracks 99% instantly in the atmosphere and is no longer available to enrich the PA part with nitrogen.
On notera également que la durée de la nitruration en phase α peut être égale à environ dix minutes. Cette durée est fonction de la quantité d'azote que l'on souhaite introduire dans la pièce PA.It will also be noted that the duration of the nitriding in the α phase can be equal to approximately ten minutes. This duration is a function of the quantity of nitrogen which it is desired to introduce into the part PA.
A la fin de la nitruration en phase α, la température de la pièce PA est devenue légèrement inférieure à T1 du fait que la température de nitruration en phase α T2 est strictement inférieure à T1. Par exemple, si T1 est égale à 1050°C et que la température de nitruration en phase α est égale à 830°C, la température de la pièce PA enrichie en azote est égale à environ à 1010°C au bout de dix minutes de nitruration en phase α.At the end of the nitriding in the α phase, the temperature of the part PA has become slightly lower than T1 because the nitriding temperature in the α phase T2 is strictly lower than T1. For example, if T1 is equal to 1050 ° C and the nitriding temperature in the α phase is equal to 830 ° C, the temperature of the PA room enriched in nitrogen is equal to approximately 1010 ° C after ten minutes of α phase nitriding.
La deuxième étape correspond à la sous-étape 30 de l'exemple d'algorithme de la
Une troisième étape, du procédé selon l'invention, est réalisée une fois que la pièce PA a été enrichie en azote dans la première chambre d'enrichissement CE1, puis installée dans la (une) seconde chambre d'enrichissement CE2 au moyen des moyens de transfert MT (flèches F4, F5 et F6 de la
Dans cette troisième étape on enrichit en carbone, sous basse pression (typiquement quelques millibars), la pièce PA déjà enrichie en azote, par cémentation sous la troisième température T3 choisie (strictement supérieure à la deuxième température T2).In this third step, the PA part already enriched in nitrogen is enriched in carbon, under low pressure (typically a few millibars), by carburizing under the third temperature T3 chosen (strictly higher than the second temperature T2).
Plus la troisième température de cémentation T3 est élevée, plus l'enrichissement de la pièce PA en carbone est efficace et rapide. Par exemple, pour obtenir par cémentation une profondeur conventionnelle dite E650 de 0,4 mm, il faut environ 210 minutes de traitement lorsque la troisième température de cémentation T3 est égale à 900°C, alors qu'il ne faut que 15 minutes lorsque la troisième température de cémentation T3 est égale à 1050°C.The higher the third carburizing temperature T3, the more efficient and rapid the enrichment of the PA part with carbon. For example, to obtain by cementation a conventional depth called 0.4 mm E650, it takes approximately 210 minutes of treatment when the third carburizing temperature T3 is equal to 900 ° C, while it takes only 15 minutes when the third carburizing temperature T3 is equal to 1050 ° C .
On notera cependant qu'il n'est pas recommandé d'utiliser une troisième température de cémentation T3 supérieure à 1100°C, car cela induit une forte dégradation de la métallurgie des aciers par grossissement du grain. Par ailleurs, pour les troisièmes températures de cémentation T3 supérieures à 950°C, il est préférable d'adjoindre initialement à l'acier de la pièce PA des éléments d'alliage (comme par exemple du niobium) afin d'empêcher le grossissement des grains.It should be noted, however, that it is not recommended to use a third carburizing temperature T3 greater than 1100 ° C., as this induces a strong deterioration in the metallurgy of steels by grain enlargement. Furthermore, for the third carburizing temperatures T3 greater than 950 ° C., it is preferable to initially add alloying elements (such as, for example, niobium) to the steel of the PA part in order to prevent the magnification of the grains.
On notera également que la durée de la troisième étape peut être égale à environ quinze minutes (dix minutes pour la cémentation effective sous acétylène, puis cinq minutes pour la diffusion complète de carbone dans la pièce PA sous diazote). Cette durée est fonction de la profondeur de traitement souhaitée dans la pièce PA.It will also be noted that the duration of the third stage can be equal to approximately fifteen minutes (ten minutes for the effective carburizing under acetylene, then five minutes for the complete diffusion of carbon in the PA part under nitrogen). This duration depends on the desired treatment depth in the PA part.
A la fin de la cémentation, la température de la pièce PA est devenue égale à T3 du fait que la température de cémentation T3 est strictement supérieure à celle qu'elle présente en sortie de la première chambre d'enrichissement CE1.At the end of the carburizing, the temperature of the part PA has become equal to T3 because the carburizing temperature T3 is strictly higher than that which it presents at the outlet of the first enrichment chamber CE1.
La troisième étape correspond à la sous-étape 40 de l'exemple d'algorithme de la
Une quatrième étape, du procédé selon l'invention, est réalisée une fois que la pièce PA a été enrichie en azote et en carbone dans les première CE1 et seconde CE2 chambres d'enrichissement, puis installée dans la (une) chambre de trempe CT au moyen des moyens de transfert MT (flèches F6, F7 et F8 de la
Dans cette quatrième étape on trempe (ou refroidit rapidement) sous pression P2 la pièce PA enrichie en azote et en carbone.In this fourth step, the PA part enriched with nitrogen and carbon is quenched (or rapidly cooled) under pressure P2.
La quatrième température de trempe T4 est par exemple la température ambiante, typiquement égale à environ 20°C.The fourth quenching temperature T4 is for example the ambient temperature, typically equal to around 20 ° C.
La pression de trempe P2 utilisée est de préférence comprise entre environ 1 bar et environ 20 bars. Ces valeurs beaucoup plus importantes que celle de la basse pression utilisée dans les deuxième et troisième étapes permettent d'augmenter la vitesse de refroidissement. Une vitesse très rapide permet de transformer l'austénite enrichie en azote et carbone afin de former de la martensite et d'augmenter sensiblement la dureté de la pièce PA.The quenching pressure P2 used is preferably between about 1 bar and about 20 bars. These much larger values than that of the low pressure used in the second and third stages make it possible to increase the cooling rate. A very fast speed makes it possible to transform the austenite enriched in nitrogen and carbon in order to form martensite and to appreciably increase the hardness of the PA part.
On notera que la durée de la trempe peut être comprise entre environ 2 minutes et environ 5 minutes. Cette durée est principalement fonction des dimensions des pièces PA à traiter et de la composition chimique initiale de l'acier.It will be noted that the duration of the quenching can be between approximately 2 minutes and approximately 5 minutes. This duration is mainly a function of the dimensions of the PA parts to be treated and the initial chemical composition of the steel.
La quatrième étape correspond à la sous-étape 50 de l'exemple d'algorithme de la
A la fin de la trempe, la pièce PA est sortie de la chambre de chauffe CC puis du sas de transfert ST (via sa sortie SS) par les moyens de transfert MT (flèches F8 et F9 de la
On notera également que l'installation de carbonitruration IC selon l'invention pourra éventuellement comporter au moins une autre chambre de chauffage CC pour permettre une alimentation quasiment en continu de la première chambre d'enrichissement CE1 dans laquelle la durée de traitement est notablement plus courte que la durée de chauffe, et/ou au moins une autre première chambre d'enrichissement CE1 pour traiter en parallèle plusieurs pièces PA et/ou pour effectuer un enrichissement en azote additionnel, et/ou au moins une autre seconde chambre d'enrichissement CE2 pour traiter en parallèle plusieurs pièces PA et/ou pour effectuer un enrichissement en carbone additionnel, et/ou au moins une autre chambre de trempe CT pour traiter en parallèle plusieurs pièces PA. Notamment, on peut envisager de réaliser une seconde nitruration en phase α après la cémentation pour obtenir une concentration en azote importante en surface de la pièce PA.It will also be noted that the carbonitriding installation IC according to the invention may possibly comprise at least one other CC heating chamber to allow almost continuous supply of the first enrichment chamber CE1 in which the treatment time is significantly shorter. as the heating time, and / or at least one other first enrichment chamber CE1 for treating several PA pieces in parallel and / or for carrying out an enrichment in additional nitrogen, and / or at least one other second enrichment chamber CE2 for treating several PA parts in parallel and / or for carrying out an additional carbon enrichment, and / or at least one other quenching chamber CT for treating several PA parts in parallel. In particular, it is possible to envisage carrying out a second nitriding in the α phase after the carburizing to obtain a high nitrogen concentration at the surface of the part PA.
L'invention présente plusieurs avantages, parmi lesquels :
- une importante réduction du temps de traitement par rapport à une carbonitruration classique,
- une réduction notable de la consommation de gaz,
- une réduction du nombre de techniciens nécessaires au contrôle de l'installation de carbonitruration,
- une possibilité de fonctionnement en flux tendu,
- une augmentation notable de la teneur en azote dans la pièce, et donc une amélioration de ses caractéristiques fonctionnelles (et principalement de sa tenue en fatigue),
- l'obtention de pièces présentant des propriétés quasi identiques,
- une réduction du cout de traitement.
- a significant reduction in treatment time compared to conventional carbonitriding,
- a significant reduction in gas consumption,
- a reduction in the number of technicians required to control the carbonitriding installation,
- possibility of just-in-time operation,
- a significant increase in the nitrogen content in the part, and therefore an improvement in its functional characteristics (and mainly in its resistance to fatigue),
- obtaining parts having almost identical properties,
- a reduction in the cost of treatment.
Claims (9)
- A method of carbonitriding at least one steel part (PA) comprising a first step during which said part (PA) is heated up to a first selected temperature, in an environment containing a neutral gas and under a selected pressure, a second step of nitrogen enrichment in a first enrichment chamber (CE1) of said heated part (PA), by α-phase nitriding at a second temperature, a third step of carbon enrichment in a second enrichment chamber (CE2) of said nitrogen-enriched part (PA) by carburizing at a third temperature selected to be greater than said second temperature, and a fourth step during which said nitrogen- and carbon-enriched part (PA) is quenched under pressure, characterized in that the second temperature is selected to be lower than said first temperature.
- The method according to claim 1, characterized in that in said first step, said neutral gas is nitrogen.
- The method according to claim 1 or 2, characterized in that in said first step, said first temperature is in the range from approximately 800°C to approximately 1100°C.
- The method according to any of claims 1 to 3, characterized in that said second step, said second temperature is in the range from approximately 700°C to approximately 880°C.
- The method according to any of claims 1 to 4, characterized in that in said second step, said part (PA) is nitrogen-enriched by α-phase nitriding with ammonia.
- The method according to any of claims 1 to 5, characterized in that in said third step, said third temperature is in the range from approximately 900°C to approximately 1100°C.
- The method according to any of claims 1 to 6, characterized in that in said third step, said part (PA) is carbon-enriched by cementation with acetylene.
- The method according to any of claims 1 to 7, characterized in that in said fourth step, said quenching pressure is in the range from approximately 1 bar to approximately 20 bars.
- The method according to any of claims 1 to 8, characterized in that in said fourth step, said quenching is carried out in an environment containing a selected gas.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1460975A FR3028530B1 (en) | 2014-11-14 | 2014-11-14 | PROCESS AND PLANT FOR CARBONITRURING STEEL PART (S) UNDER LOW PRESSURE AND HIGH TEMPERATURE |
PCT/FR2015/052742 WO2016075377A1 (en) | 2014-11-14 | 2015-10-12 | Method and facility for carbonitriding one or more steel parts under low pressure and at a high temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3218530A1 EP3218530A1 (en) | 2017-09-20 |
EP3218530B1 true EP3218530B1 (en) | 2020-05-13 |
Family
ID=52684355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15805560.8A Active EP3218530B1 (en) | 2014-11-14 | 2015-10-12 | Method and facility for carbonitriding one or more steel parts under low pressure and at a high temperature |
Country Status (6)
Country | Link |
---|---|
US (1) | US11512381B2 (en) |
EP (1) | EP3218530B1 (en) |
JP (1) | JP7092500B2 (en) |
CN (1) | CN107109616B (en) |
FR (1) | FR3028530B1 (en) |
WO (1) | WO2016075377A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111118267B (en) * | 2020-01-19 | 2022-01-28 | 王宁 | Isothermal quenching multipurpose furnace production line using oil or oil-atmosphere as quenching medium |
JP7557708B2 (en) | 2020-07-08 | 2024-09-30 | 大同特殊鋼株式会社 | Heat treatment equipment and heat treatment method |
US11365688B2 (en) | 2020-08-04 | 2022-06-21 | G.E. Avio S.r.l. | Gearbox efficiency rating for turbomachine engines |
US11401829B2 (en) | 2020-08-04 | 2022-08-02 | Ge Avio S.R.L. | Gearbox efficiency rating for turbomachine engines |
US11486312B2 (en) | 2020-08-04 | 2022-11-01 | Ge Avio S.R.L. | Gearbox efficiency rating for turbomachine engines |
US11473507B2 (en) | 2020-08-04 | 2022-10-18 | Ge Avio S.R.L. | Gearbox efficiency rating for turbomachine engines |
CN114776395B (en) | 2021-01-22 | 2023-10-31 | 通用电气阿维奥有限责任公司 | Efficient epicyclic gear assembly for a turbomachine and method of manufacturing the same |
CN112941455B (en) * | 2021-01-29 | 2022-11-11 | 成都赛飞斯金属科技有限公司 | QPQ intelligent processing control system |
IT202200001613A1 (en) | 2022-01-31 | 2023-07-31 | Gen Electric | OVERALL ENGINE EFFICIENCY ASSESSMENT FOR TURBOMACHINE ENGINES |
FR3132720B1 (en) * | 2022-02-11 | 2024-08-23 | Skf Aerospace France | Process for strengthening a steel part by carbonitriding |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT983006B (en) * | 1972-04-29 | 1974-10-31 | Zahnradfabrik Friedrichshafen | PROCEDURE FOR GAS NITRURING OF NON-ALLOY STEEL AND GATI IN TWO STAGES |
JPS5541908A (en) * | 1978-09-14 | 1980-03-25 | Hinode Kinzoku Netsuren Kk | Surface hardening method of steel |
JPH0324258A (en) * | 1989-06-20 | 1991-02-01 | Koyo Seiko Co Ltd | Surface hardening treatment of carburized steel parts |
JP3017303B2 (en) * | 1990-03-27 | 2000-03-06 | 光洋サーモシステム株式会社 | Heat treatment equipment |
JP3926431B2 (en) * | 1997-07-07 | 2007-06-06 | Ntn株式会社 | Hardening method for thin plate parts |
FR2801059B1 (en) * | 1999-11-17 | 2002-01-25 | Etudes Const Mecaniques | LOW PRESSURE CEMENTING QUENCHING PROCESS |
JP4655528B2 (en) * | 2004-07-12 | 2011-03-23 | 日産自動車株式会社 | Manufacturing method of high-strength machine structure parts and high-strength machine structure parts |
FR2884523B1 (en) * | 2005-04-19 | 2008-01-11 | Const Mecaniques Sa Et | LOW PRESSURE CARBONITRUTING PROCESS AND FURNACE |
JP2007046088A (en) * | 2005-08-09 | 2007-02-22 | Yuki Koshuha:Kk | Nitrided quenched part, and method for producing the same |
DE102009002985A1 (en) * | 2009-05-11 | 2010-11-18 | Robert Bosch Gmbh | Process for carbonitriding |
EP2278038A1 (en) | 2009-07-20 | 2011-01-26 | Danmarks Tekniske Universitet (DTU) | A method of activating an article of passive ferrous or non-ferrous metal prior to carburizing, nitriding and/or nitrocarburizing |
CN101994118A (en) * | 2009-08-11 | 2011-03-30 | 顾安民 | Heat treatment method for steel pieces |
CN101994121A (en) * | 2009-08-13 | 2011-03-30 | 闫欧 | Composite heat treatment method |
FR2981949B1 (en) * | 2011-10-31 | 2013-11-08 | Peugeot Citroen Automobiles Sa | PROCESS FOR CARBONITURING AT FINAL NITRIDATION STEP DURING TEMPERATURE DESCENT |
FR2981947B1 (en) * | 2011-10-31 | 2014-01-03 | Peugeot Citroen Automobiles Sa | LOW PRESSURE CARBONITRURATION METHOD AT EXTENDED TEMPERATURE RANGE IN AN INITIAL NITRIDATION PHASE |
DE102013006589A1 (en) * | 2013-04-17 | 2014-10-23 | Ald Vacuum Technologies Gmbh | Method and device for the thermochemical hardening of workpieces |
FR3004731B1 (en) * | 2013-04-18 | 2016-05-13 | Peugeot Citroen Automobiles Sa | THERMO-CHEMICAL PROCESSING METHOD COMPRISING A SINGLE NITRIDING PHASE BEFORE CEMENTATION |
-
2014
- 2014-11-14 FR FR1460975A patent/FR3028530B1/en active Active
-
2015
- 2015-10-12 WO PCT/FR2015/052742 patent/WO2016075377A1/en active Application Filing
- 2015-10-12 US US15/526,272 patent/US11512381B2/en active Active
- 2015-10-12 CN CN201580061659.0A patent/CN107109616B/en active Active
- 2015-10-12 EP EP15805560.8A patent/EP3218530B1/en active Active
- 2015-10-12 JP JP2017525942A patent/JP7092500B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
EP3218530A1 (en) | 2017-09-20 |
FR3028530A1 (en) | 2016-05-20 |
US11512381B2 (en) | 2022-11-29 |
CN107109616A (en) | 2017-08-29 |
CN107109616B (en) | 2020-04-14 |
US20180363123A1 (en) | 2018-12-20 |
JP7092500B2 (en) | 2022-06-28 |
JP2017535671A (en) | 2017-11-30 |
WO2016075377A1 (en) | 2016-05-19 |
FR3028530B1 (en) | 2020-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3218530B1 (en) | Method and facility for carbonitriding one or more steel parts under low pressure and at a high temperature | |
EP1885904B2 (en) | Low pressure carbonitriding method | |
EP0465333B1 (en) | Method and installation for the cementation of metallic alloy articles at low pressure | |
CN102741572B (en) | Rolling bearing | |
FR2681332A1 (en) | METHOD AND DEVICE FOR CUTTING STEEL IN A LOW PRESSURE ATMOSPHERE. | |
EP2986750A1 (en) | Thermochemical treatment method comprising a single nitriding phase before carburising | |
CA2970247C (en) | Low pressure carbonitriding method and furnace | |
CA2766788C (en) | Cryogenic treatment of martensitic steel with mixed hardening | |
FR2777911A1 (en) | Low pressure carbo-nitriding of chromium steel and stainless steel parts | |
WO2016124849A1 (en) | Facility for the carbonitriding, in series, of a steel part or parts at low pressure and high temperature | |
JP6263874B2 (en) | Carburizing method for high Si carburizing steel | |
FR2991341A1 (en) | Thermo chemically treating component part of gear box by performing thermo chemical enrichment on set of parts of steel, and performing induction hardening on each of pieces, where enrichment includes cementation enrichment of carbon steel | |
JP5548920B2 (en) | Method for carburizing a workpiece having an edge | |
CN105814230B (en) | The method for manufacturing ferrous metal part | |
EP4069879A1 (en) | Method for hardening by nitriding | |
EP1737989B1 (en) | Gas quenching method | |
FR3023850A1 (en) | PROCESS FOR NITRIDING A STAINLESS STEEL WORKPIECE | |
WO2019243197A1 (en) | Method for hardening by nitriding | |
FR2999607A1 (en) | Processing steel parts, comprises refining grain of steel, carrying out thermochemical treatment, heating steel at first temperature higher than transformation finish temperature of austenitic steel, and cooling steel to second temperature | |
FR2994195A1 (en) | Thermochemical treatment of steel mechanical parts such as gear box of an automobile, comprises carrying out thermochemical enrichment of carbon steel in a nitrogen line and then structural refining and quenching | |
FR2999609A1 (en) | Thermochemically treating steel part i.e. gear train that is used in gear box, comprises performing first thermochemical enrichment process in steel with carbon and a second thermochemical enrichment process in steel with nitrogen | |
JP6290592B2 (en) | Carbonitriding method | |
FR3132720A1 (en) | Method of strengthening a steel part by carbonitriding | |
KR20210059546A (en) | Low-Temperature Nitriding Method by 2-Staged Process | |
FR2999610A1 (en) | Thermochemically treating steel part e.g. gear train that is used in gear box, comprises performing first thermochemical enrichment process in steel part with carbon in beginning of austenitic transformation of steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170505 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ECM TECHNOLOGIES SAS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190226 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 8/34 20060101ALI20191121BHEP Ipc: C21D 1/74 20060101ALI20191121BHEP Ipc: F27B 19/02 20060101ALI20191121BHEP Ipc: F27D 3/04 20060101ALI20191121BHEP Ipc: F27B 9/02 20060101ALI20191121BHEP Ipc: C21D 9/00 20060101ALI20191121BHEP Ipc: C23C 8/80 20060101ALI20191121BHEP Ipc: C23C 8/02 20060101AFI20191121BHEP Ipc: C21D 1/06 20060101ALI20191121BHEP Ipc: F27B 5/04 20060101ALI20191121BHEP |
|
INTG | Intention to grant announced |
Effective date: 20191217 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015052821 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1270381 Country of ref document: AT Kind code of ref document: T Effective date: 20200615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200814 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200913 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200813 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1270381 Country of ref document: AT Kind code of ref document: T Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015052821 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201012 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201012 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200513 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230522 |
|
P02 | Opt-out of the competence of the unified patent court (upc) changed |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240925 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241010 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241030 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241010 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241023 Year of fee payment: 10 |