WO2019243197A1 - Method for hardening by nitriding - Google Patents

Method for hardening by nitriding Download PDF

Info

Publication number
WO2019243197A1
WO2019243197A1 PCT/EP2019/065732 EP2019065732W WO2019243197A1 WO 2019243197 A1 WO2019243197 A1 WO 2019243197A1 EP 2019065732 W EP2019065732 W EP 2019065732W WO 2019243197 A1 WO2019243197 A1 WO 2019243197A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
temperature
tempering
treatment
hardness
Prior art date
Application number
PCT/EP2019/065732
Other languages
French (fr)
Inventor
Denis FLECHE
Simon Thibault
Grégory MICHEL
Original Assignee
Institut De Recherche Technologique Materiaux, Metallurgie, Procedes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut De Recherche Technologique Materiaux, Metallurgie, Procedes filed Critical Institut De Recherche Technologique Materiaux, Metallurgie, Procedes
Publication of WO2019243197A1 publication Critical patent/WO2019243197A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated

Definitions

  • the present invention generally relates to the field of hardening of steel parts and more particularly that of nitriding.
  • Nitriding treatments are thermochemical treatments allowing the introduction by diffusion of nitrogen at the surface of the parts to achieve surface mechanical reinforcement, typically improving hardness and fatigue resistance.
  • nitriding treatments are conventionally carried out on alloy steels previously treated by austenitization, quenching, and tempering at temperatures above 600 ° C. This then makes it possible to carry out nitriding at a lower temperature (conventionally at least 30 ° C. lower) without affecting the underlying structural state.
  • the steel is nitrided at a temperature of the order of 500 ° C. to 550 ° C. in an atmosphere containing ammonia, which yields nitrogen to the surface of the steel.
  • the nitrogen thus adsorbed causes the formation of a surface layer consisting of iron nitrides, called the combination layer, from which the nitrogen atoms diffuse towards the core of the part to form the diffusion layer.
  • the hardness resulting from the introduction of nitrogen to the surface is added to the basic hardness level of the steel. 11 shows a more or less high level of hardness, largely dependent on the chemical composition of the substrate.
  • the present invention provides a method of hardening by nitriding, in which a piece of nitriding steel, or a part thereof, is subjected to an initial hardening by austenitization and quenching, followed by an intermediate tempering. , then a nitriding treatment.
  • the intermediate income is a so-called "low temperature” income, which is produced at a temperature below that of the nitriding treatment, and precisely below 350 ° C.
  • the nitriding treatment is carried out at a nitriding temperature above the intermediate tempering temperature and below the austenitization start temperature (Acl).
  • the method according to the invention is based on a structural nitriding treatment applied to a substrate whose tempering has been carried out at low temperature, in particular between 150 and 350 ° C.
  • the process according to the invention therefore takes a position opposite to conventional methods, by carrying out nitriding at temperatures at which the structure will evolve.
  • the part, after the initial hardening (hardening austenitization) does not undergo any high temperature tempering, and is therefore not brought to temperatures above 590 - 600 ° C.
  • the three phases of initial hardening, low temperature tempering and nitriding treatment are linked without any other treatment whatever its temperature.
  • the low temperature tempering is considered here as a relaxation, and less alters the hardness at the heart of the tempered part.
  • the hardness will therefore be greater than that of the conventional tempered state.
  • the approach proposed by the present process will make it possible, depending on the variant embodiments, to reduce the duration of treatment or to increase the hardness. Processing depths greater than 0.5 mm are possible, in particular 0.6 to 1.2 mm. In general, a person skilled in the art will be able to adapt the time-temperature couple as a function of the target hardness and depth of treatment.
  • the nitriding temperature is between 550 and 590 ° C, preferably between 570 and 590 ° C, especially 580 ° C. It has been observed, surprisingly, that the process makes it possible to reduce the duration of the nitriding step by up to 50% on conventional parts made of nitriding steel, in order to obtain comparable hardness over the same depth. The method according to the invention therefore saves substantial time. In addition, thermodynamic calculations carried out using the Thermocalc software make it possible to rule out the possibility of partial or local austenitization at the surface taking into account the temperature and the maximum surface nitrogen content.
  • the nitriding temperature is between 500 and 550 ° C., in particular between 500 and 520 ° C.
  • the low temperature relaxation income makes it possible to maintain a high core hardness, and the low temperature nitriding carried out over periods of the order of 120 to 200 hours will make it possible to achieve hardnesses of the order of 800 at 950 HV on the surface.
  • the process makes it possible, with conventional nitriding temperatures and durations, to obtain hardnesses greater than those obtained with conventional treatments.
  • the initial hardening, the first phase of the process can be carried out in a conventional manner.
  • the parts to be treated generally in the form of a laminated bar, forged or stamped blank, of pre-machined parts, are heated to an austenitization temperature which is conventionally situated in the temperature range between 850 and 950 ° C.
  • the pieces are then quenched and returned.
  • the quenching is carried out from a temperature in the range from 920 to 940 ° C, for example for a steel of type 32CrMoV13.
  • the fluid and the quenching method are adjusted, in a conventional manner, according to the section of the products.
  • the second phase of the process is the low temperature intermediate tempering, which forms a relaxation treatment.
  • the temperature of the intermediate tempering is between 150 and 350 ° C, preferably between 180 and 250 ° C. It is adjusted according to the desired level of relaxation to ensure the shaping operations to be followed.
  • the duration of the intermediate income is adapted according to the thickness of the part; preferably 1 hour per 20 mm section (thickness).
  • the tempering is always carried out at a temperature below the nitriding. Such a light income is suitable for machining, and therefore eliminates the risks of brittleness / deformation during machining.
  • the nitriding treatment is then carried out on a finished or almost finished machining part (the part is typically machined after intermediate tempering and before the nitriding treatment).
  • the time and temperature parameters are to be set according to the desired compromise in surface hardness, depth and microstructure for the layer, as explained above. It is possible to carry out gaseous nitriding with ammonia, or plasma-assisted nitriding with nitrogen.
  • the process used has little influence on the hardness gradient of the nitrided layer, which essentially depends on the chemical composition of the steel and its structural state. After nitriding, the part is not hardened, but a controlled cooling under neutral gas so as not to cause damaging thermal shocks.
  • induction hardening over an area limited to the depths desired for nitriding, which allows different hardness levels.
  • the process then includes the initial hardening phases (quenching austenitization), followed by tempering carried out at a temperature above 600 ° C, then by induction quenching austenitization, followed by intermediate tempering, and finally by nitriding treatment.
  • the method according to the invention is suitable for the treatment of parts made of nitriding steel.
  • nitriding steel are typically low-alloy steels containing elements allowing the formation of nitrides, such as chromium, molybdenum, vanadium and aluminum.
  • the carbon content is preferably from 0.15 to 0.9% m.
  • the part is made of nitriding steel comprising from 0.15 to 0.9% m of carbon and one or more alloying elements chosen from the list comprising: chromium, nickel, molybdenum, vanadium, aluminum, silicon and manganese.
  • the alloying elements are present in the following proportions: Chromium 1 to 4% m; Nickel 0.5 to 4% m; 0.2 to 4% m molybdenum; Vanadium 0.10 to 2% m; Aluminum 0.5 to 3% m; 0.4 to 1.5% m silicon; and / or Manganese 1 to 2% m.
  • the present process has been particularly developed for CrMoV steel grades (also denoted CDV), in particular 32CrMoV13.
  • the invention finds particular application for the treatment of parts in aeronautics and automobile, of the type of teeth and pinion, grooves, ring tracks and rolling rolling elements, among others, to allow them to resist the mechanical stresses to which they are subjected, which the particularity of being mainly concentrated on the surface (bending fatigue, contact fatigue, fretting, wear, ).
  • Fig.l a time-temperature graph representing the range of heat treatment of a conventional nitriding process
  • Fig.2 a time-temperature graph representing the range of heat treatment according to an embodiment of the present method
  • Fig.3 a graph representing the hardness profile (hardness-depth) for three samples A, B and C;
  • Fig. 4 a graph representing the residual stress profile (stresses - depth) for samples A and B.
  • Figure 1 represents a principle time-temperature diagram which corresponds to the range of heat treatment of a conventional nitriding process in three phases noted (1), (2) and (3).
  • the part to be treated first undergoes a preliminary treatment, here called initial hardening (1), by austenitization and quenching.
  • the part is therefore brought to an austenitization temperature Ti for a predetermined period, then undergoes quenching (controlled rapid cooling) to induce a martensitic type microstructure.
  • annealing phase (2) in which the part is heated to a predetermined tempering temperature T 2 , typically of the order of 550 to 640 ° C.
  • T 2 a predetermined tempering temperature typically of the order of 550 to 640 ° C.
  • the hardness resulting from the introduction of nitrogen to the surface is added to the basic hardness level of the steel.
  • 11 shows a more or less high level of hardness, largely dependent on the chemical composition of the substrate.
  • conventional treatments must be carried out over periods of up to 120 or even 200 hours between 520 and 550 ° C. This is represented by the long phase 111 in Fig.l.
  • Fig. 1 the evolution of the hardness at the core (curve De) and at the surface (curve Ds) is also shown, as well as the evolution of the treatment depth (curve P n ).
  • Curve De the evolution of the hardness at the core
  • curve Ds the surface
  • curve P n the evolution of the treatment depth
  • Fig.2 shows schematically the treatment range of the present process, called high temperature structural nitriding (NSHT).
  • NSHT structural nitriding
  • the first phase is a preliminary treatment phase, called initial hardening, similar to that (phase 1) of conventional treatments. 11 this is to give an initial hardness to the part by heating to a temperature Ti in the austenitization zone, followed by quenching.
  • the part is then subjected to an intermediate tempering (phase 11) called low temperature.
  • the intermediate tempering temperature Tu is here lower than the nitriding temperature Tm.
  • the intermediate tempering temperature Tu is between 150 and 350 ° C.
  • a nitriding treatment, phase 111, said to be high temperature, follows. It will be noted that the nitriding temperature Tm is much higher than the intermediate tempering temperature Tu. In high temperature nitriding, the treatment treatment temperature Tm is between 550 and 590 ° C, more particularly between 570 and 590 ° C.
  • the principle of the technical solution therefore here consists in applying a nitriding treatment at a temperature higher than conventional nitriding temperatures, on a substrate whose tempering has been carried out at a lower temperature (between 150 and 350 ° C.).
  • the material in the low temperature returned state exhibits, at the start of nitriding, a higher hardness than the conventional pretreated state.
  • This higher core hardness allows nitriding at higher temperature while retaining a surface hardness and core equivalent to that of conventional processes at the end of treatment (hardness additivity).
  • the high nitriding temperature allows the nitriding depth to be obtained in a shorter time than usual, allowing up to 50% time savings for a depth of 0.7 mm.
  • the prolonged maintenance at the nitriding temperature allows the final adjustment of the properties at heart.
  • Example 1 A decrease in the amount of angel hair on the surface due to a lower content of carbides in the substrate.
  • test pieces Two same test pieces, referenced A and B, were respectively treated according to the conventional nitriding process, and according to a nitriding process in accordance with the process presented above for high temperature nitriding.
  • Test specimens A and B first underwent an initial austenitic hardening at 920 ° C for 1 hour, followed by oil quenching.
  • Test specimen A was then subjected to tempering at 620 ° C for about 2 hours, followed by nitriding at 550 ° C for 120 h, or 5 days.
  • test piece B in accordance with the present process, an annealing was carried out at 180 ° C. for approximately 2 h (hardness at the end of phase 11: 550 HV), followed by a nitriding treatment at 580 ° C. for 60 h.
  • the nitriding treatments were carried out in a horizontal gas nitriding oven with forced convection.
  • the nitriding atmosphere (ammonia + dissociated ammonia) is controlled by regulating the nitriding potential, called KN, thanks to the measurement coming from a di-hydrogen probe. Cooling is ensured at the end of the cycle by a convection of nitrogen circulating in the oven and cooled on an internal exchanger.
  • the procedure for the low temperature variant of the process is the same as in the high temperature variant (section B1, Fig. 2), but differs over the range of nitriding temperatures which is carried out at a lower temperature, but always higher than the tempering temperature.
  • the processing range of the low temperature version process can be represented in the same way as in Figure 2 with:
  • Phase 1 preliminary treatment phase (initial hardening) to give an initial hardness to the part by heating to a temperature Ti in the austenitization zone, followed by quenching.
  • Phase 11 intermediate income (phase 11) called "low temperature”.
  • the intermediate tempering temperature Tu is between 150 and 350 ° C, and is lower than the nitriding temperature Tm.
  • Phase 111 nitriding treatment at a temperature Tm between 500 and 550 ° C, more particularly between 500 and 520 ° C. Compared to variant B.l, nitriding is said to be low temperature, but remains much higher than the intermediate tempering temperature Tu.
  • NBT low temperature structural nitriding
  • the material in the low temperature returned state exhibits, at the start of nitriding, a higher hardness than the conventional pretreated state
  • the nitriding treatment carried out at a lower temperature, induces softening lower than that generated by conventional tempering.
  • the hardness at the heart at the end of treatment is therefore higher.
  • the surface hardness at the end of the low temperature treatment is higher due to a more substantial hardening at low temperature added to a harder substrate (additivity of hardness) -
  • the effective depth (by reasoning in absolute hardness and not relative to the core) obtained is greater or even infinite despite treatment at a lower temperature due to the higher core hardness.
  • test piece C identical to test pieces A and B, was treated according to the low temperature variant of the present process. After initial hardening in the austenitic phase at 920 ° C for 1 hour, tempering was carried out at 180 ° C for about 1 hour. The test piece C was then nitrided at a temperature of 520 ° C for 120 h; this in the same oven as the test tube B.
  • the surface and core hardnesses obtained after nitriding for the test piece C, as well as the depth of nitriding are given in Table 1.
  • HV core + 100 the hardness is greater than the core hardness obtained with the conventional process.
  • the hardness profile of sample C is shown in Fig. 3.
  • the stress profiles, also measured, remain unchanged compared to the reference nitriding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

A method for hardening parts made from nitridable steel is disclosed, in which a part made from nitridable steel, or a portion thereof, is subjected to initial hardening (I) by austenitisation and quenching; next, to low-temperature intermediate tempering (II), carried out at a temperature (TII) of less than 350°C; and to a nitriding treatment (III) carried out at a nitriding temperature (TIII) higher than the intermediate tempering temperature (TII) and lower than the austenitisation start temperature.

Description

Procédé de durcissement par nitruration  Nitriding hardening process
DESCRIPTION  DESCRIPTION
La présente invention concerne généralement le domaine du durcissement de pièces en acier et plus particulièrement celui de la nitruration. The present invention generally relates to the field of hardening of steel parts and more particularly that of nitriding.
Etat de la technique  State of the art
Les traitements de nitruration sont des traitements thermochimiques permettant l’introduction par diffusion d’azote au niveau de la surface des pièces pour réaliser un renforcement mécanique superficiel, en améliorant typiquement la dureté et la tenue en fatigue.  Nitriding treatments are thermochemical treatments allowing the introduction by diffusion of nitrogen at the surface of the parts to achieve surface mechanical reinforcement, typically improving hardness and fatigue resistance.
Les traitements de nitruration sont conventionnellement réalisés sur des aciers alliés préalablement traités par austénitisation, trempe, et revenu à des températures supérieures à 600°C. Cela permet de réaliser ensuite une nitruration à une température inférieure (conventionnellement inférieure d’au moins 30°C) sans affecter l’état structural sous-jacent. The nitriding treatments are conventionally carried out on alloy steels previously treated by austenitization, quenching, and tempering at temperatures above 600 ° C. This then makes it possible to carry out nitriding at a lower temperature (conventionally at least 30 ° C. lower) without affecting the underlying structural state.
Concrètement, dans les traitements de nitruration usuels, l’acier est nitruré à une température de l’ordre de 500°C à 550°C dans une atmosphère contenant de l’ammoniac, lequel cède de l’azote à la surface de l’acier. L’azote ainsi adsorbé provoque la formation d’une couche superficielle constituée de nitrures de fer, appelée couche de combinaison, à partir de laquelle les atomes d’azote diffusent en direction du cœur de la pièce pour former la couche de diffusion. Concretely, in the usual nitriding treatments, the steel is nitrided at a temperature of the order of 500 ° C. to 550 ° C. in an atmosphere containing ammonia, which yields nitrogen to the surface of the steel. The nitrogen thus adsorbed causes the formation of a surface layer consisting of iron nitrides, called the combination layer, from which the nitrogen atoms diffuse towards the core of the part to form the diffusion layer.
La dureté issue de l’introduction d’azote en surface vient s’ajouter au niveau de dureté de base de l’acier. 11 en ressort un niveau de dureté plus ou moins élevé, en grande partie dépendant de la composition chimique du substrat. The hardness resulting from the introduction of nitrogen to the surface is added to the basic hardness level of the steel. 11 shows a more or less high level of hardness, largely dependent on the chemical composition of the substrate.
Dans le cas de pièces nécessitant des profondeurs de traitement élevées (typiquement de 0,6 à 1 mm), les traitements doivent être réalisés sur des durées allant jusqu’à 120 voire 200 heures entre 520 et 550 °C (on parlera de nitruration profonde) In the case of parts requiring high treatment depths (typically 0.6 to 1 mm), the treatments must be carried out over periods of up to 120 or even 200 hours between 520 and 550 ° C (we will speak of deep nitriding )
Dans la configuration actuelle des gammes de fabrication (nitruration sur état métallurgique trempé - revenu) ces traitements ne peuvent être raccourcis par une augmentation de la température. Cela conduirait à un adoucissement trop important à cœur par effet de revenu, ainsi qu’à des duretés superficielles insuffisantes. Le temps de traitement pouvant ainsi dépasser 5 jours ouvrés est une problématique importante pour la fabrication des pièces concernées. In the current configuration of the production ranges (nitriding on quenched metallurgical state - tempering) these treatments cannot be shortened by temperature increase. This would lead to too much softening at heart through the income effect, as well as insufficient surface hardness. The processing time which can thus exceed 5 working days is an important problem for the manufacture of the parts concerned.
11 serait donc souhaitable de disposer d’un procédé de nitruration avec une cinétique améliorée, permettant donc une nitruration profonde pour une durée de traitement réduite. It would therefore be desirable to have a nitriding process with improved kinetics, thus allowing deep nitriding for a reduced treatment time.
Les durées de traitement nécessaires aux nitrurations profondes ont également pour conséquence, d’obtenir une dureté superficielle qui dépasse difficilement les 750 HV. Des nitrurations à basse température (typiquement 480 °C) permettraient de dépasser ce niveau de dureté mais engendreraient des temps de traitements rédhibitoires.  The treatment times necessary for deep nitriding also have the consequence of obtaining a surface hardness which hardly exceeds 750 HV. Nitriding at low temperature (typically 480 ° C) would allow this level of hardness to be exceeded but would cause unacceptable treatment times.
11 serait donc également souhaitable de disposer d’un procédé de nitruration profonde pourvue d’une dureté superficielle plus élevée, typiquement jusqu’à 900 HV, et ce sans augmenter significativement les temps de traitement.  It would therefore also be desirable to have a deep nitriding process provided with a higher surface hardness, typically up to 900 HV, without significantly increasing the treatment times.
Description générale de l'invention General description of the invention
Avec ces objectifs en tête, la présente invention propose un procédé de durcissement par nitruration, dans lequel une pièce en acier nitrurable, ou une partie de celle-ci, est soumise à un durcissement initial par austénitisation et trempe, suivi d’un revenu intermédiaire, puis d’un traitement de nitruration.  With these objectives in mind, the present invention provides a method of hardening by nitriding, in which a piece of nitriding steel, or a part thereof, is subjected to an initial hardening by austenitization and quenching, followed by an intermediate tempering. , then a nitriding treatment.
Selon l’invention, le revenu intermédiaire est un revenu dit « basse température », qui est réalisé à une température inférieure à celle du traitement de nitruration, et précisément inférieure à 350°C. Le traitement de nitruration est quant à lui réalisé à une température de nitruration supérieure à la température de revenu intermédiaire et inférieure à la température de début d’austénitisation (Acl).  According to the invention, the intermediate income is a so-called "low temperature" income, which is produced at a temperature below that of the nitriding treatment, and precisely below 350 ° C. The nitriding treatment is carried out at a nitriding temperature above the intermediate tempering temperature and below the austenitization start temperature (Acl).
Comparativement aux procédés connus, le procédé selon l’invention s’appuie sur un traitement de nitruration structurale appliqué sur un substrat dont le revenu a été réalisé à basse température, en particulier entre 150 et 350°C. Le procédé selon l’invention prend donc une position opposée aux méthodes conventionnelles, en réalisant une nitruration à des températures auxquelles la structure va évoluer. Dans le principe de l’invention, la pièce, après le durcissement initial (austénitisation trempe), ne subit aucun revenu haute température, et n’est donc pas portée à des températures supérieures à 590 - 600°C. D’une façon générale, les trois phases de durcissement initial, revenu basse température et traitement de nitruration sont enchaînées sans aucun autre traitement qu’elle qu’en soit sa température. Compared to known methods, the method according to the invention is based on a structural nitriding treatment applied to a substrate whose tempering has been carried out at low temperature, in particular between 150 and 350 ° C. The process according to the invention therefore takes a position opposite to conventional methods, by carrying out nitriding at temperatures at which the structure will evolve. In the principle of the invention, the part, after the initial hardening (hardening austenitization), does not undergo any high temperature tempering, and is therefore not brought to temperatures above 590 - 600 ° C. Generally, the three phases of initial hardening, low temperature tempering and nitriding treatment are linked without any other treatment whatever its temperature.
Ainsi, le revenu basse température est ici considéré comme une relaxation, et altère moins la dureté à cœur de la pièce revenue. En début de nitruration, la dureté sera donc supérieure à celle de l’état revenu classique. L’approche proposée par le présent procédé va permettre, selon les variantes de réalisations, de réduire la durée de traitement ou d’augmenter la dureté. Des profondeurs de traitement supérieures à 0,5 mm sont possibles, en particulier de 0,6 à 1,2 mm. De manière générale, l’homme du métier pourra adapter le couple temps - température en fonction de la dureté et de la profondeur de traitement visées. Thus, the low temperature tempering is considered here as a relaxation, and less alters the hardness at the heart of the tempered part. At the start of nitriding, the hardness will therefore be greater than that of the conventional tempered state. The approach proposed by the present process will make it possible, depending on the variant embodiments, to reduce the duration of treatment or to increase the hardness. Processing depths greater than 0.5 mm are possible, in particular 0.6 to 1.2 mm. In general, a person skilled in the art will be able to adapt the time-temperature couple as a function of the target hardness and depth of treatment.
Selon un premier mode de réalisation dit « nitruration haute température », la température de nitruration se situe entre 550 et 590°C, préférablement entre 570 et 590°C, notamment 580°C. 11 a été observé, de manière surprenante, que le procédé permet de réduire jusqu’à 50% la durée de l’étape de nitruration sur des pièces conventionnelles en acier nitrurable, pour l’obtention d’une dureté comparable sur une même profondeur. Le procédé selon l’invention permet donc un gain de temps substantiel. En outre, des calculs thermodynamiques réalisés à l’aide du logiciel Thermocalc permettent d’écarter l’éventualité d’une austénitisation partielle ou locale en surface compte tenu de la température et de la teneur maximale superficielle en azote. According to a first embodiment called "high temperature nitriding", the nitriding temperature is between 550 and 590 ° C, preferably between 570 and 590 ° C, especially 580 ° C. It has been observed, surprisingly, that the process makes it possible to reduce the duration of the nitriding step by up to 50% on conventional parts made of nitriding steel, in order to obtain comparable hardness over the same depth. The method according to the invention therefore saves substantial time. In addition, thermodynamic calculations carried out using the Thermocalc software make it possible to rule out the possibility of partial or local austenitization at the surface taking into account the temperature and the maximum surface nitrogen content.
Selon un deuxième mode de réalisation dit nitruration « basse température », la température de nitruration est entre 500 et 550°C, en particulier entre 500 et 520°C. Le revenu de relaxation basse température permet de conserver une dureté à cœur élevée, et la nitruration basse température conduite sur des durées de l’ordre de 120 à 200 heures va permettre d’atteindre des duretés de l’ordre de 800 à 950 HV en surface. Ainsi, le procédé permet, avec des températures et durées de nitruration conventionnelles, d’obtenir des duretés supérieures à celles obtenues avec les traitements classiques. According to a second embodiment called "low temperature" nitriding, the nitriding temperature is between 500 and 550 ° C., in particular between 500 and 520 ° C. The low temperature relaxation income makes it possible to maintain a high core hardness, and the low temperature nitriding carried out over periods of the order of 120 to 200 hours will make it possible to achieve hardnesses of the order of 800 at 950 HV on the surface. Thus, the process makes it possible, with conventional nitriding temperatures and durations, to obtain hardnesses greater than those obtained with conventional treatments.
Le durcissement initial, première phase du procédé, peut être conduit de manière classique. Les pièces à traiter, généralement sous forme de barre laminée, d'ébauche forgée ou estampée, de pièces pré-usinées, sont chauffées à une température d’austénitisation qui est classiquement située dans la gamme de températures comprise entre 850 et 950°C. Les pièces sont ensuite trempées et revenues. La trempe s'effectue à partir d'une température dans la gamme allant de 920 à 940°C, par exemple pour un acier de type 32CrMoV13. Le fluide et la méthode de trempe sont ajustés, de façon classique, en fonction de la section des produits.  The initial hardening, the first phase of the process, can be carried out in a conventional manner. The parts to be treated, generally in the form of a laminated bar, forged or stamped blank, of pre-machined parts, are heated to an austenitization temperature which is conventionally situated in the temperature range between 850 and 950 ° C. The pieces are then quenched and returned. The quenching is carried out from a temperature in the range from 920 to 940 ° C, for example for a steel of type 32CrMoV13. The fluid and the quenching method are adjusted, in a conventional manner, according to the section of the products.
La deuxième phase du procédé est le revenu intermédiaire basse température, qui forme un traitement de relaxation. La température du revenu intermédiaire se situe entre 150 et 350°C, de préférence entre 180 et 250 °C. Elle est ajustée en fonction du niveau de détente souhaitable pour assurer les opérations de façonnage à suivre. La durée du revenu intermédiaire est adaptée selon l’épaisseur de la pièce ; on compte préférablement lh par 20 mm de section (épaisseur). Dans le présent procédé, le revenu est toujours réalisé à une température inférieure à la nitruration. Un tel revenu léger est adapté aux usinages, et élimine donc les risques de fragilité/déformation en cours d’usinage.  The second phase of the process is the low temperature intermediate tempering, which forms a relaxation treatment. The temperature of the intermediate tempering is between 150 and 350 ° C, preferably between 180 and 250 ° C. It is adjusted according to the desired level of relaxation to ensure the shaping operations to be followed. The duration of the intermediate income is adapted according to the thickness of the part; preferably 1 hour per 20 mm section (thickness). In the present process, the tempering is always carried out at a temperature below the nitriding. Such a light income is suitable for machining, and therefore eliminates the risks of brittleness / deformation during machining.
Le traitement de nitruration, troisième phase du procédé selon l'invention, est ensuite effectué sur pièce finie ou quasiment finie d'usinage (la pièce est typiquement usinée après le revenu intermédiaire et avant le traitement de nitruration). Les paramètres temps et température sont à fixer en fonction du compromis recherché en dureté superficielle, profondeur et microstructure pour la couche, comme exposé ci-avant. 11 est possible de mettre en œuvre une nitruration gazeuse à l'ammoniac, ou une nitruration assistée par plasma à l'azote. Le procédé utilisé a peu d'influence sur le gradient de dureté de la couche nitrurée, qui dépend essentiellement de la composition chimique de l'acier et de son état structural. A l’issue de la nitruration, la pièce n’est pas trempée, mais on réalise un refroidissement contrôlé sous gaz neutre pour ne pas provoquer de chocs thermiques dommageables. The nitriding treatment, the third phase of the process according to the invention, is then carried out on a finished or almost finished machining part (the part is typically machined after intermediate tempering and before the nitriding treatment). The time and temperature parameters are to be set according to the desired compromise in surface hardness, depth and microstructure for the layer, as explained above. It is possible to carry out gaseous nitriding with ammonia, or plasma-assisted nitriding with nitrogen. The process used has little influence on the hardness gradient of the nitrided layer, which essentially depends on the chemical composition of the steel and its structural state. After nitriding, the part is not hardened, but a controlled cooling under neutral gas so as not to cause damaging thermal shocks.
Selon les variantes, on peut réaliser une trempe par induction sur une zone limitée aux profondeurs désirées pour la nitruration, ce qui permet des niveaux de dureté différents. Le procédé comprend alors les phases de durcissement initial (austénitisation trempe), suivie d’un revenu réalisé à température supérieure à 600°C, puis d’une austénitisation trempe par induction, suivi du revenu intermédiaire, et enfin du traitement de nitruration. According to the variants, it is possible to carry out induction hardening over an area limited to the depths desired for nitriding, which allows different hardness levels. The process then includes the initial hardening phases (quenching austenitization), followed by tempering carried out at a temperature above 600 ° C, then by induction quenching austenitization, followed by intermediate tempering, and finally by nitriding treatment.
Le procédé selon l’invention est adapté pour le traitement des pièces en acier nitrurable. 11 s’agit typiquement d’aciers faiblement alliés contenant des éléments permettant la formation de nitrure, comme le chrome, le molybdène, le vanadium et l’aluminium. La teneur en Carbone est préférablement de 0.15 à 0.9 %m. The method according to the invention is suitable for the treatment of parts made of nitriding steel. These are typically low-alloy steels containing elements allowing the formation of nitrides, such as chromium, molybdenum, vanadium and aluminum. The carbon content is preferably from 0.15 to 0.9% m.
En particulier, la pièce est en acier nitrurable comprenant de 0,15 à 0,9 %m de carbone et un ou plusieurs éléments d’alliage choisis parmi la liste comprenant : chrome, nickel, molybdène, vanadium, aluminium, silicium et manganèse. Par exemple, les éléments d’alliage sont présents dans les proportions suivantes : Chrome 1 à 4%m ; Nickel 0,5 à 4%m ; Molybdène à 0,2 à 4%m ; Vanadium 0,10 à 2 %m ; Aluminium 0,5 à 3%m ; Silicium 0,4 à l,5%m ; et/ou Manganèse 1 à 2%m. In particular, the part is made of nitriding steel comprising from 0.15 to 0.9% m of carbon and one or more alloying elements chosen from the list comprising: chromium, nickel, molybdenum, vanadium, aluminum, silicon and manganese. For example, the alloying elements are present in the following proportions: Chromium 1 to 4% m; Nickel 0.5 to 4% m; 0.2 to 4% m molybdenum; Vanadium 0.10 to 2% m; Aluminum 0.5 to 3% m; 0.4 to 1.5% m silicon; and / or Manganese 1 to 2% m.
Le présent procédé a été particulièrement développé pour les nuances d’acier CrMoV (aussi noté CDV), en particulier 32CrMoV13. The present process has been particularly developed for CrMoV steel grades (also denoted CDV), in particular 32CrMoV13.
L’invention trouve particulièrement application pour le traitement de pièces en aéronautique et automobile, du type dentures et pignonnerie, cannelures, pistes bagues et éléments roulant de roulement, entre autres, pour leur permettre de résister aux sollicitations mécaniques auxquelles elles sont soumises, qui ont la particularité d’être concentrées essentiellement en surface (fatigue flexion, fatigue de contact, fretting, usure, ...). Description détaillée à l'aide des figures The invention finds particular application for the treatment of parts in aeronautics and automobile, of the type of teeth and pinion, grooves, ring tracks and rolling rolling elements, among others, to allow them to resist the mechanical stresses to which they are subjected, which the particularity of being mainly concentrated on the surface (bending fatigue, contact fatigue, fretting, wear, ...). Detailed description using the figures
D’autres particularités et caractéristiques de l’invention ressortiront de la description détaillée d’au moins un mode de réalisation avantageux présenté ci- dessous, à titre d’illustration, en se référant aux dessins annexés. Ceux-ci montrent :  Other features and characteristics of the invention will emerge from the detailed description of at least one advantageous embodiment presented below, by way of illustration, with reference to the accompanying drawings. These show:
Fig.l : un graphe temps-température représentant la gamme de traitement thermique d’un procédé de nitruration conventionnel ; et  Fig.l: a time-temperature graph representing the range of heat treatment of a conventional nitriding process; and
Fig.2 : un graphe temps-température représentant la gamme de traitement thermique selon un mode de réalisation du présent procédé ;  Fig.2: a time-temperature graph representing the range of heat treatment according to an embodiment of the present method;
Fig.3 : un graphe représentant le profil de dureté (dureté -profondeur) pour trois échantillons A, B et C ; et Fig.3: a graph representing the hardness profile (hardness-depth) for three samples A, B and C; and
Fig.4 : un graphe représentant le profil de contraintes résiduelles (contraintes - profondeur) pour les échantillons A et B.  Fig. 4: a graph representing the residual stress profile (stresses - depth) for samples A and B.
A. Procédé de nitruration conventionnel A. Conventional nitriding process
La Figure 1 représente un diagramme temps-température de principe qui correspond à la gamme de traitement thermique d’un procédé de nitruration conventionnel en trois phases notées (1), (2) et (3). La pièce à traiter subit d’abord un traitement préalable, appelé ici durcissement initial (1), par austénitisation et trempe. La pièce est donc portée à une température d’austénitisation Ti pendant une durée prédéterminée, puis subit une trempe (refroidissement rapide contrôlé) pour induire une microstructure de type martensitique.  Figure 1 represents a principle time-temperature diagram which corresponds to the range of heat treatment of a conventional nitriding process in three phases noted (1), (2) and (3). The part to be treated first undergoes a preliminary treatment, here called initial hardening (1), by austenitization and quenching. The part is therefore brought to an austenitization temperature Ti for a predetermined period, then undergoes quenching (controlled rapid cooling) to induce a martensitic type microstructure.
S’ensuit une phase de revenu (2), dans laquelle la pièce est chauffée à une température de revenu prédéterminée T2, typiquement de l’ordre de 550 à 640°C. Cette phase permet un adoucissement de la pièce (abaissement de dureté) et un ajustement des caractéristiques de traction et de résilience, caractéristiques contrôlées en fonction des applications visées et compatibles avec les usinages.There follows an annealing phase (2), in which the part is heated to a predetermined tempering temperature T 2 , typically of the order of 550 to 640 ° C. This phase allows a softening of the part (lowering of hardness) and an adjustment of the traction and resilience characteristics, characteristics controlled according to the targeted applications and compatible with the machining operations.
Cette approche conventionnelle permet de réaliser ensuite une nitruration gazeuse ou ionique, phase (3), entre 450 et 550°C sans affecter l’état structural sous-jacent. On notera que dans les procédés conventionnels la température de revenu T2 est supérieure à la température de nitruration T3, et ceci d’au moins 50°C. This conventional approach then makes it possible to carry out gas or ionic nitriding, phase (3), between 450 and 550 ° C. without affecting the underlying structural state. It will be noted that in the conventional methods the tempering temperature T 2 is higher than the nitriding temperature T 3 , and this by at least 50 ° C.
La dureté issue de l’introduction d’azote en surface vient s’ajouter au niveau de dureté de base de l’acier. 11 en ressort un niveau de dureté plus ou moins élevé, en grande partie dépendant de la composition chimique du substrat. Dans le cas de pièces nécessitant des profondeurs de traitement élevées (typiquement de 0,6 à 1 mm), les traitements conventionnels doivent être réalisés sur des durées allant jusqu’à 120 voire 200 heures entre 520 et 550°C. C’est ce que représente la longue phase 111 sur la Fig.l.  The hardness resulting from the introduction of nitrogen to the surface is added to the basic hardness level of the steel. 11 shows a more or less high level of hardness, largely dependent on the chemical composition of the substrate. In the case of parts requiring high treatment depths (typically 0.6 to 1 mm), conventional treatments must be carried out over periods of up to 120 or even 200 hours between 520 and 550 ° C. This is represented by the long phase 111 in Fig.l.
Sur la Fig.l on a également représenté l’évolution de la dureté à cœur (courbe De) et en surface (courbe Ds), ainsi que l’évolution de la profondeur de traitement (courbe Pn). Comme on le voit, la dureté à cœur chute pendant la phase de revenu mais reste constante pendant la nitruration. La dureté de surface, due à la nitruration vient s’additionner à la dureté à cœur, et l’épaisseur de la couche dure nitrurée augmente avec le temps. In Fig. 1, the evolution of the hardness at the core (curve De) and at the surface (curve Ds) is also shown, as well as the evolution of the treatment depth (curve P n ). As can be seen, the hardness at heart drops during the tempering phase but remains constant during nitriding. The surface hardness due to nitriding is added to the core hardness, and the thickness of the hard nitrided layer increases over time.
Ainsi, contrairement au procédé classique, on réalise ici une nitruration structurale, puisque la microstructure va évoluer pendant la phase 111, et va donc modifier la dureté à cœur.  Thus, unlike the conventional process, a structural nitriding is carried out here, since the microstructure will evolve during phase 111, and will therefore modify the hardness at heart.
B. Le présent procédé de nitruration B. The present nitriding process
On décrira ci-dessous deux variantes du présent procédé, qui reposent toutes deux sur un procédé en trois phases dont la phase 11 de revenu consiste en un revenu basse température, et la phase 111 de nitruration est conduite à une température supérieure à la phase 11.  Two variants of the present process will be described below, which are both based on a three-phase process in which the tempering phase 11 consists of a low temperature tempering, and the nitriding phase 111 is carried out at a temperature higher than phase 11 .
B.l Nitruration haute température.  B.l High temperature nitriding.
La Fig.2 représente schématiquement la gamme de traitement du présent procédé, dit nitruration structurale haute température (NSHT).  Fig.2 shows schematically the treatment range of the present process, called high temperature structural nitriding (NSHT).
La première phase, notée 1, est une phase de traitement préalable, appelée durcissement initial, similaire à celle (phase 1) des traitements conventionnels. 11 s’agit de conférer une dureté initiale à la pièce par chauffage à une température Ti dans la zone d’austénitisation, suivi d’une trempe. The first phase, denoted 1, is a preliminary treatment phase, called initial hardening, similar to that (phase 1) of conventional treatments. 11 this is to give an initial hardness to the part by heating to a temperature Ti in the austenitization zone, followed by quenching.
On remarquera que la pièce est ensuite soumise à un revenu intermédiaire (phase 11) dit basse température. La température de revenu intermédiaire Tu est ici inférieure à la température de nitruration Tm. Typiquement la température de revenu intermédiaire Tu se situe entre 150 et 350°C.  Note that the part is then subjected to an intermediate tempering (phase 11) called low temperature. The intermediate tempering temperature Tu is here lower than the nitriding temperature Tm. Typically the intermediate tempering temperature Tu is between 150 and 350 ° C.
S’ensuit un traitement de nitruration, phase 111, dit haute température. On remarquera que la température de nitruration Tm est très supérieure à la température de revenu intermédiaire Tu. Dans la nitruration haute température, la température de traitement de traitement Tm est comprise entre 550 et 590°C, plus particulièrement entre 570 et 590°C.  A nitriding treatment, phase 111, said to be high temperature, follows. It will be noted that the nitriding temperature Tm is much higher than the intermediate tempering temperature Tu. In high temperature nitriding, the treatment treatment temperature Tm is between 550 and 590 ° C, more particularly between 570 and 590 ° C.
Le principe de la solution technique consiste donc ici à appliquer un traitement de nitruration à une température supérieure aux températures de nitruration conventionnelles, sur un substrat dont le revenu a été réalisé à plus basse température (entre 150 et 350°C).  The principle of the technical solution therefore here consists in applying a nitriding treatment at a temperature higher than conventional nitriding temperatures, on a substrate whose tempering has been carried out at a lower temperature (between 150 and 350 ° C.).
Une telle modification de gamme induit les effets suivants :  Such a range modification has the following effects:
Le matériau à l’état revenu à basse température présente, en début de nitruration, une dureté plus élevée que l’état prétraité classique.  The material in the low temperature returned state exhibits, at the start of nitriding, a higher hardness than the conventional pretreated state.
Cette dureté plus élevée à cœur permet une nitruration à plus haute température tout en conservant une dureté superficielle et à cœur équivalente à celle des procédés conventionnels en fin de traitement (additivité des duretés).  This higher core hardness allows nitriding at higher temperature while retaining a surface hardness and core equivalent to that of conventional processes at the end of treatment (hardness additivity).
La température de nitruration élevée permet l’obtention de la profondeur de nitruration en un temps plus court qu’à l’accoutumée, permettant jusqu’à 50 % de gain de temps pour une profondeur de 0,7 mm.  The high nitriding temperature allows the nitriding depth to be obtained in a shorter time than usual, allowing up to 50% time savings for a depth of 0.7 mm.
Le maintien prolongé à la température de nitruration permet l’ajustement final des propriétés à cœur.  The prolonged maintenance at the nitriding temperature allows the final adjustment of the properties at heart.
Une diminution de la quantité de cheveux d’anges en surface due à une moindre teneur en carbures de revenu du substrat. Exemple 1 : A decrease in the amount of angel hair on the surface due to a lower content of carbides in the substrate. Example 1:
Deux mêmes éprouvettes, référencées A et B, ont été respectivement traitées selon le procédé de nitruration conventionnel, et selon un procédé de nitruration conforme au procédé présenté ci-avant de nitruration haute température.  Two same test pieces, referenced A and B, were respectively treated according to the conventional nitriding process, and according to a nitriding process in accordance with the process presented above for high temperature nitriding.
Les éprouvettes A et B ont d’abord subi un durcissement initial en phase austénitique à 920°C pendant 1 heure, suivi d’une trempe à l’huile. Test specimens A and B first underwent an initial austenitic hardening at 920 ° C for 1 hour, followed by oil quenching.
L’éprouvette A a ensuite été soumise à un revenu à 620°C pendant environ 2 heures, suivi d’une nitruration à 550°C pendant 120 h, soit 5 jours.  Test specimen A was then subjected to tempering at 620 ° C for about 2 hours, followed by nitriding at 550 ° C for 120 h, or 5 days.
Pour l’éprouvette B on a, conformément au présent procédé, réalisé un revenu à 180°C pendant environ 2 h (dureté à l’issue de la phase 11 : 550 HV), suivi d’un traitement de nitruration à 580°C pendant 60 h.  For test piece B, in accordance with the present process, an annealing was carried out at 180 ° C. for approximately 2 h (hardness at the end of phase 11: 550 HV), followed by a nitriding treatment at 580 ° C. for 60 h.
Les traitements de nitruration ont été réalisés dans un four horizontal de nitruration gazeuse avec convection forcée. Le contrôle de l’atmosphère nitrurante (ammoniac + ammoniac dissocié) est assurée via la régulation du potentiel de nitruration, appelé KN, grâce à la mesure provenant d’une sonde à di-hydrogène. Le refroidissement est assuré en fin de cycle par une convection d’azote circulant dans le four et refroidi sur un échangeur interne.  The nitriding treatments were carried out in a horizontal gas nitriding oven with forced convection. The nitriding atmosphere (ammonia + dissociated ammonia) is controlled by regulating the nitriding potential, called KN, thanks to the measurement coming from a di-hydrogen probe. Cooling is ensured at the end of the cycle by a convection of nitrogen circulating in the oven and cooled on an internal exchanger.
Les duretés de surface et à cœur obtenues à l’issue de la nitruration pour les deux éprouvettes A et B, ainsi que la profondeur conventionnelle de nitruration (définie comme la dureté à cœur augmentée de 100 Vickers) et la dureté à 0.75 mm sont reportées au Tableau 1. Comme on peut le voir sur les figures 3 et 4, les profils de dureté et de contraintes résiduelles sont semblables. Le procédé selon l’invention permet donc d’atteindre les mêmes duretés de surface et à cœur que le procédé conventionnel, pour une durée de nitruration réduite de moitié.  The surface and core hardnesses obtained after nitriding for the two test pieces A and B, as well as the conventional nitriding depth (defined as the hardness increased by 100 Vickers) and the hardness to 0.75 mm are reported in Table 1. As can be seen in Figures 3 and 4, the profiles of hardness and residual stresses are similar. The process according to the invention therefore makes it possible to achieve the same surface hardness and depth as the conventional process, for a nitriding duration reduced by half.
B.2 Nitruration basse température. B.2 Low temperature nitriding.
Le déroulé de la variante basse température du procédé est le même que dans la variante haute température (section B.l, Fig.2), mais se distingue sur la gamme de températures de la nitruration qui est réalisée à une température inférieure, mais toujours supérieure à la température de revenu. The procedure for the low temperature variant of the process is the same as in the high temperature variant (section B1, Fig. 2), but differs over the range of nitriding temperatures which is carried out at a lower temperature, but always higher than the tempering temperature.
La gamme de traitement du procédé version basse température peut se représenter de la même manière qu’à la figure 2 avec :  The processing range of the low temperature version process can be represented in the same way as in Figure 2 with:
Phase 1 : phase de traitement préalable (durcissement initial) pour conférer une dureté initiale à la pièce par chauffage à une température Ti dans la zone d’austénitisation, suivi d’une trempe.  Phase 1: preliminary treatment phase (initial hardening) to give an initial hardness to the part by heating to a temperature Ti in the austenitization zone, followed by quenching.
Phase 11 : revenu intermédiaire (phase 11) dit « basse température ». La température de revenu intermédiaire Tu se situe entre 150 et 350°C, et est inférieure à la température de nitruration Tm.  Phase 11: intermediate income (phase 11) called "low temperature". The intermediate tempering temperature Tu is between 150 and 350 ° C, and is lower than the nitriding temperature Tm.
Phase 111 : traitement de nitruration à une température Tm entre 500 et 550°C, plus particulièrement entre 500 et 520°C. Comparativement à la variante B.l, la nitruration est dite basse température, mais reste très supérieure à la température de revenu intermédiaire Tu.  Phase 111: nitriding treatment at a temperature Tm between 500 and 550 ° C, more particularly between 500 and 520 ° C. Compared to variant B.l, nitriding is said to be low temperature, but remains much higher than the intermediate tempering temperature Tu.
Le principe de la nitruration structurale basse température (NSBT) consiste à appliquer un traitement de nitruration à une température inférieure aux températures de nitruration profonde conventionnelles, sur un substrat dont le revenu a été réalisé à plus basse température entre 150 et 350°C. Une telle modification de gamme induit les effets suivants, à iso temps de nitruration par rapport à la nitruration conventionnelle :  The principle of low temperature structural nitriding (NSBT) consists in applying a nitriding treatment at a temperature lower than conventional deep nitriding temperatures, on a substrate whose tempering has been carried out at a lower temperature between 150 and 350 ° C. Such a range modification induces the following effects, at iso nitriding time compared to conventional nitriding:
- Le matériau à l’état revenu à basse température présente, en début de nitruration, une dureté plus élevée que l’état prétraité classique  - The material in the low temperature returned state exhibits, at the start of nitriding, a higher hardness than the conventional pretreated state
- Le traitement de nitruration, réalisé à plus basse température, induit un adoucissement inférieur à celui généré par le revenu conventionnel. La dureté à cœur en fin de traitement est donc plus élevée.  - The nitriding treatment, carried out at a lower temperature, induces softening lower than that generated by conventional tempering. The hardness at the heart at the end of treatment is therefore higher.
- La dureté superficielle à l’issue du traitement basse température est supérieure en raison d’un durcissement plus conséquent à basse température s’additionnant à un substrat plus dur (additivité des duretés) - La profondeur efficace (en raisonnant en dureté absolue et non relative vis-à-vis du cœur) obtenue est supérieure voire infinie malgré un traitement à plus basse température en raison de la dureté à cœur plus élevée. - The surface hardness at the end of the low temperature treatment is higher due to a more substantial hardening at low temperature added to a harder substrate (additivity of hardness) - The effective depth (by reasoning in absolute hardness and not relative to the core) obtained is greater or even infinite despite treatment at a lower temperature due to the higher core hardness.
Figure imgf000013_0001
Figure imgf000013_0001
Tableau 1  Table 1
Exemple 2 :  Example 2:
Une éprouvette C, identique aux éprouvettes A et B, a été traitée selon la variante basse température du présent procédé. Après un durcissement initial en phase austénitique à 920°C pendant 1 heure, on a effectué un revenu à la température de 180°C pendant environ 1 heure. L’éprouvette C a ensuite été nitrurée à une température de 520°C pendant 120 h ; ceci dans le même four que l’éprouvette B. A test piece C, identical to test pieces A and B, was treated according to the low temperature variant of the present process. After initial hardening in the austenitic phase at 920 ° C for 1 hour, tempering was carried out at 180 ° C for about 1 hour. The test piece C was then nitrided at a temperature of 520 ° C for 120 h; this in the same oven as the test tube B.
Les duretés de surface et à cœur obtenues à l’issue de la nitruration pour l’éprouvette C, ainsi que la profondeur de nitruration sont reportées au Tableau 1. Un traitement de 120 heures à 520 °C sur l’éprouvette C à l’état trempé-détendu, a ainsi permis l’obtention d’une dureté superficielle supérieure de plus de 150 HV par rapport à la nitruration conventionnelle (référence A) et à l’obtention d’une dureté supérieure à 470 HV dans tout le volume de la pièce (HV cœur + 100 HV = 470 HV sur la nitruration de référence A). Ainsi, malgré une profondeur conventionnelle (HV cœur+ 100) légèrement plus faible, la dureté est supérieure à la dureté cœur obtenue avec le procédé classique. The surface and core hardnesses obtained after nitriding for the test piece C, as well as the depth of nitriding are given in Table 1. A treatment of 120 hours at 520 ° C. on the test piece C at quenched-relaxed state, thus made it possible to obtain a surface hardness greater than more than 150 HV compared to conventional nitriding (reference A) and to obtain a hardness greater than 470 HV throughout the volume of the part (HV core + 100 HV = 470 HV on the reference nitriding A). Thus, despite a slightly lower conventional depth (HV core + 100), the hardness is greater than the core hardness obtained with the conventional process.
Le profil de dureté de l’échantillon C est illustré à la Fig.3. Les profils de contraintes, également mesurés, restent inchangés par rapport à la nitruration de référence. The hardness profile of sample C is shown in Fig. 3. The stress profiles, also measured, remain unchanged compared to the reference nitriding.

Claims

Revendications claims
1. Procédé de durcissement de pièces en acier nitrurable, dans lequel une pièce en acier nitrurable, ou une partie de celle-ci, est soumise à un durcissement initial par austénitisation et trempe, suivi d’un revenu intermédiaire, puis d’un traitement de nitruration, caractérisé en ce que : 1. Method for hardening nitriding steel parts, in which a nitriding steel part, or a part thereof, is subjected to an initial hardening by austenitization and quenching, followed by an intermediate tempering, then by a treatment nitriding, characterized in that:
- le revenu intermédiaire est un revenu dit basse température, réalisé à une température (Tu) inférieure à 350°C;  - the intermediate income is a so-called low temperature income, produced at a temperature (Tu) below 350 ° C;
- le traitement de nitruration est réalisé à une température de nitruration (Tm) supérieure à la température de revenu intermédiaire (Tu) et inférieure à la température de début d’austénitisation.  - the nitriding treatment is carried out at a nitriding temperature (Tm) above the intermediate tempering temperature (Tu) and below the austenitization start temperature.
2. Procédé selon la revendication 1, dans lequel le revenu intermédiaire est réalisé à une température entre 150 et 350°C, de préférence entre 180 et 250°C.  2. Method according to claim 1, wherein the intermediate tempering is carried out at a temperature between 150 and 350 ° C, preferably between 180 and 250 ° C.
3. Procédé selon la revendication 1 ou 2, dans lequel la température de nitruration est comprise entre 570 et 590°C.  3. Method according to claim 1 or 2, wherein the nitriding temperature is between 570 and 590 ° C.
4. Procédé selon la revendication 1 ou 2, dans lequel la température de nitruration est comprise entre 500 et 520°C.  4. Method according to claim 1 or 2, wherein the nitriding temperature is between 500 and 520 ° C.
5. Procédé selon l’une des revendications précédentes, dans lequel la pièce, après ledit durcissement initial, est soumise à un revenu à une température supérieure à 600°C puis à une trempe par induction sur une zone limitée aux profondeurs désirées pour la nitruration, avant ledit revenu intermédiaire. 5. Method according to one of the preceding claims, in which the part, after said initial hardening, is subjected to tempering at a temperature above 600 ° C and then to induction hardening in an area limited to the depths desired for nitriding. , before said middle income.
6. Procédé selon l’une quelconque des revendications précédentes, dans lequel la pièce est en acier nitrurable comprenant de 0,15 à 0,9 %m de carbone et un ou plusieurs éléments d’alliage choisis parmi la liste comprenant : chrome, nickel, molybdène, vanadium, aluminium, silicium et manganèse. 6. Method according to any one of the preceding claims, in which the part is made of nitriding steel comprising from 0.15 to 0.9% m of carbon and one or more alloying elements chosen from the list comprising: chromium, nickel , molybdenum, vanadium, aluminum, silicon and manganese.
7. Procédé selon la revendication 6, dans lequel la pièce est en acier type CrMoV, en particulier 32CrMoV13.  7. The method of claim 6, wherein the part is of CrMoV type steel, in particular 32CrMoV13.
8. Procédé selon la revendication 6, dans lequel un ou plusieurs desdits éléments d’alliage sont présents dans les proportions suivantes : Chrome 1 à 4%m ; Nickel 0,5 à 4%m ; Molybdène à 0,2 à 4%m ; Vanadium 0,10 à 2 %m ; Aluminium 0,5 à 3%m ; Silicium 0,4 à l,5%m ; et/ou Manganèse 1 à 2%m. 8. The method of claim 6, wherein one or more of said alloying elements are present in the following proportions: Chromium 1 to 4% m; Nickel 0.5 to 4% m; 0.2 to 4% m molybdenum; Vanadium 0.10 to 2% m; Aluminum 0.5 to 3% m; 0.4 to 1.5% m silicon; and / or Manganese 1 to 2% m.
9. Procédé selon l’une quelconque des revendications précédentes, dans lequel la pièce est usinée après le revenu intermédiaire et avant le traitement de nitruration.  9. Method according to any one of the preceding claims, in which the part is machined after the intermediate tempering and before the nitriding treatment.
10. Procédé selon l’une quelconque des revendications précédentes, dans lequel le revenu intermédiaire est conduit pendant une durée correspondant à 1 heure par 20 mm de section.  10. Method according to any one of the preceding claims, in which the intermediate income is conducted for a period corresponding to 1 hour per 20 mm of section.
PCT/EP2019/065732 2018-06-18 2019-06-14 Method for hardening by nitriding WO2019243197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855344A FR3082529B1 (en) 2018-06-18 2018-06-18 NITRURATION CURING PROCESS
FR1855344 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019243197A1 true WO2019243197A1 (en) 2019-12-26

Family

ID=63491697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/065732 WO2019243197A1 (en) 2018-06-18 2019-06-14 Method for hardening by nitriding

Country Status (2)

Country Link
FR (1) FR3082529B1 (en)
WO (1) WO2019243197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121524A1 (en) * 2022-12-09 2024-06-13 Safran Method for producing a nitrided part for an aircraft turbomachine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006960A1 (en) * 1998-07-28 2000-02-10 Nu-Bit, Inc. Process for nitriding of metal containing materials
EP2256307A1 (en) * 2008-02-19 2010-12-01 NTN Corporation Roller follower, valve gear, apparatus for high-frequency hardening, method of heat-treating shaft member, process for producing shaft, and shaft
WO2014153491A1 (en) * 2013-03-22 2014-09-25 Caterpillar Inc. Bainitic microalloy steel with enhanced nitriding characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006960A1 (en) * 1998-07-28 2000-02-10 Nu-Bit, Inc. Process for nitriding of metal containing materials
EP2256307A1 (en) * 2008-02-19 2010-12-01 NTN Corporation Roller follower, valve gear, apparatus for high-frequency hardening, method of heat-treating shaft member, process for producing shaft, and shaft
WO2014153491A1 (en) * 2013-03-22 2014-09-25 Caterpillar Inc. Bainitic microalloy steel with enhanced nitriding characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121524A1 (en) * 2022-12-09 2024-06-13 Safran Method for producing a nitrided part for an aircraft turbomachine
FR3143042A1 (en) * 2022-12-09 2024-06-14 Safran Manufacturing process, in particular of an aircraft turbomachine part, reinforced by nitriding

Also Published As

Publication number Publication date
FR3082529B1 (en) 2020-09-11
FR3082529A1 (en) 2019-12-20

Similar Documents

Publication Publication Date Title
JP5026625B2 (en) Steel for machine structural use for surface hardening, steel parts for machine structural use and manufacturing method thereof
EP2310546B1 (en) Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained
RU2366746C2 (en) Method of heat treatment of structural component out of hardened heat resistant steel and structural component out of hardened heat resistant steel
EP2164998B1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
EP3056583B1 (en) Method for manufacturing a part made of nitrided low-alloy steel
FR2525638A1 (en) PROCESS FOR FORMING A SURFACE CEMENTED ON A STEEL WORKPIECE
CA2984131A1 (en) Steel, product made of said steel, and manufacturing method thereof
FR2765890A1 (en) PROCESS FOR MANUFACTURING A MECHANICAL PIECE OF CEMENTED OR CARBONITURATED STEEL AND STEEL FOR MANUFACTURING THE SAME
JP2018141218A (en) Component and manufacturing method thereof
WO2019243197A1 (en) Method for hardening by nitriding
JP6314648B2 (en) Surface hardened component and method for manufacturing surface hardened component
EP2689042B1 (en) Method for treating a component such as a gearwheel
EP3963120B1 (en) Case-hardened steel part for use in aeronautics
JP2009102733A (en) Method for producing rolling member
EP4069879A1 (en) Method for hardening by nitriding
JPH01212748A (en) Rapid carburizing treatment for steel
RU2728479C1 (en) Method for resource-saving step cementation of steel
US20240084413A1 (en) Method of heat treating a steel component
JP7262376B2 (en) steel material
JP7178832B2 (en) Method for manufacturing surface hardening material
JP2018141217A (en) Component and method for producing the same
FR3143042A1 (en) Manufacturing process, in particular of an aircraft turbomachine part, reinforced by nitriding
FR3132720A1 (en) Method of strengthening a steel part by carbonitriding
GB2521220A (en) Process for treating steel components
JP2022038773A (en) Sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19732306

Country of ref document: EP

Kind code of ref document: A1