JP6263874B2 - Carburizing method for high Si carburizing steel - Google Patents

Carburizing method for high Si carburizing steel Download PDF

Info

Publication number
JP6263874B2
JP6263874B2 JP2013136332A JP2013136332A JP6263874B2 JP 6263874 B2 JP6263874 B2 JP 6263874B2 JP 2013136332 A JP2013136332 A JP 2013136332A JP 2013136332 A JP2013136332 A JP 2013136332A JP 6263874 B2 JP6263874 B2 JP 6263874B2
Authority
JP
Japan
Prior art keywords
carburizing
steel
oxide film
atmosphere
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013136332A
Other languages
Japanese (ja)
Other versions
JP2015010258A (en
Inventor
裕司 安達
裕司 安達
孝佳 杉浦
孝佳 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2013136332A priority Critical patent/JP6263874B2/en
Publication of JP2015010258A publication Critical patent/JP2015010258A/en
Application granted granted Critical
Publication of JP6263874B2 publication Critical patent/JP6263874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、肌焼鋼のうち、炭素を侵入させにくい鋼材である高Si浸炭用鋼について、従来より効率良く高い表面炭素濃度を得ることができる浸炭方法に関する。   TECHNICAL FIELD The present invention relates to a carburizing method capable of obtaining a higher surface carbon concentration more efficiently than in the past with respect to steel for high Si carburizing, which is a steel material that hardly penetrates carbon among case-hardened steel.

浸炭処理は、例えば、自動車等でエンジンにより得た回転トルクを車輪に伝達する部品である歯車やCVT部品等のように、表面に優れた耐摩耗性を必要とする部品に広く適用されている。そして、浸炭処理は、通常炭素含有率が0.30%以下の低炭素合金鋼を対象に実施されており、表面層の炭素含有率を高め、焼入により硬い表面層を得ることにより、表面は硬く耐摩耗性が優れる一方で、内部は靭性の高い鋼を容易に得ることができ、前記部品に幅広く適用されている。   The carburizing process is widely applied to parts that require excellent wear resistance on the surface, such as gears and CVT parts, which are parts that transmit rotational torque obtained by an engine in an automobile or the like to wheels. . And carburizing treatment is usually carried out for low carbon alloy steel having a carbon content of 0.30% or less, and by increasing the carbon content of the surface layer and obtaining a hard surface layer by quenching, Is hard and excellent in wear resistance, while the inside can easily obtain steel having high toughness, and is widely applied to the above parts.

ところで、浸炭処理後の表面層の炭素濃度は、同じ条件で処理した場合、対象となる鋼成分によって変化することが知られている。特にSi含有率が高い鋼は、Si含有率が低い鋼に比較して、表面層に炭素を侵入させにくく、狙いとする炭素濃度を安定して得ることが難しいとともに、硬化深さが浅くなるという問題がある。   By the way, it is known that the carbon concentration of the surface layer after the carburizing process varies depending on the steel component to be processed when the same condition is applied. In particular, steel with a high Si content is less likely to penetrate carbon into the surface layer than a steel with a low Si content, making it difficult to stably obtain the target carbon concentration, and the hardening depth is shallow. There is a problem.

その一方で、Si含有率の高い鋼は温度上昇時の軟化抵抗性に優れるという特徴がある。従って、高面圧で接触しつつ用いられる歯車やCVT部品のような、使用時に接触面の温度が上昇する可能性の高い浸炭部品に対してはSi含有率が高い肌焼鋼の適用が特に必要な場合も多く、高Si肌焼鋼に対し、より安定して狙いの表面炭素濃度、硬化深さを確保できる浸炭方法の開発が強く望まれている。   On the other hand, steel with a high Si content is characterized by excellent softening resistance when the temperature rises. Therefore, especially for carburized parts such as gears and CVT parts that are used while being contacted at a high surface pressure, where the temperature of the contact surface is likely to rise during use, the application of case-hardened steel with a high Si content is particularly applicable. In many cases, it is necessary to develop a carburizing method capable of ensuring the target surface carbon concentration and hardening depth more stably for high Si case-hardened steel.

従来、高Si肌焼鋼のように、表面に炭素を侵入させにくい鋼について、表面炭素濃度を高めたり、硬化深さを深くするための浸炭方法としては、浸炭時間を長くしたり、浸炭処理温度を高くするという方法が行われている。また、特許文献1に記載の通り、浸炭時に用いる雰囲気ガス内のカーボンポテンシャルを他の浸炭しやすい鋼に比べて高めに設定するという方法も検討されている。   Conventionally, for high-Si case-hardened steel, it is difficult for carbon to penetrate into the surface. As a carburizing method for increasing the surface carbon concentration or deepening the hardening depth, the carburizing time is increased or the carburizing treatment is performed. A method of increasing the temperature is used. In addition, as described in Patent Document 1, a method of setting a carbon potential in an atmospheric gas used at the time of carburizing higher than that of other steel that is easily carburized has been studied.

特開2012−207247号公報JP 2012-207247 A

しかしながら、従来浸炭しにくい鋼材に行われている方法のうち、浸炭時間を長くするという方法は、生産性が低下し、コストが上昇するという問題がある。また、処理温度を高くするということは、より多くのエネルギーを必要としてコスト増になるだけでなく、結晶粒が粗大化して強度低下の原因になるという問題がある。   However, among the methods conventionally used for steel materials that are difficult to carburize, the method of increasing the carburizing time has a problem that productivity is lowered and cost is increased. In addition, increasing the processing temperature not only increases costs by requiring more energy, but also causes a problem that the crystal grains become coarse and cause a decrease in strength.

また、特許文献1記載のようにカーボンポテンシャルを高めると部品表面に煤が発生しやすくなるだけでなく、表面にセメンタイト等の炭化物が生成する場合がある。セメンタイトなどの炭化物は非常に脆く割れやすいため、前記した高面圧が負荷される環境では亀裂が発生する可能性が高くなるという問題がある。   Further, when the carbon potential is increased as described in Patent Document 1, not only the surface of the part is likely to be wrinkled, but also carbides such as cementite may be generated on the surface. Since carbides such as cementite are very brittle and easily cracked, there is a problem that the possibility of cracking increases in an environment where the above-described high surface pressure is applied.

高Si肌焼鋼の浸炭性が悪い原因としては、浸炭時にSiやCrの酸化膜が表面に形成され、この酸化膜が炭素の侵入を阻害していると考えられる。このような酸化膜の形成を抑制するための方法としては、減圧浸炭が考えられるが、減圧浸炭設備は非常に高価であるため、減圧浸炭設備に頼ることなく高Si肌焼鋼の浸炭性を改善できる浸炭方法の開発が望まれている。   The cause of the poor carburizing property of the high Si case hardening steel is considered to be that an oxide film of Si or Cr is formed on the surface during carburizing, and this oxide film inhibits carbon intrusion. As a method for suppressing the formation of such an oxide film, vacuum carburizing is conceivable. However, since the carburizing equipment is very expensive, the carburizability of the high Si case-hardened steel can be improved without relying on the carburizing equipment. Development of carburizing methods that can be improved is desired.

本発明は、かかる背景に鑑みてなされたものであり、熱に対する軟化抵抗性が良いという大きな利点を有するにもかかわらず、浸炭処理後の硬化深さを安定して高めることが難しいSi含有率の高い肌焼鋼について、安定した硬化深さと高い表面炭素濃度を容易に確保できる新規な浸炭処理方法を提供可能にすることを目的とする。   The present invention has been made in view of such a background, and despite having a great advantage of good softening resistance against heat, it is difficult to stably increase the hardening depth after carburizing treatment. An object of the present invention is to provide a new carburizing treatment method capable of easily ensuring a stable hardening depth and a high surface carbon concentration for high-hardening steel.

本発明の一態様は、質量%で、C:0.10〜0.30%、Si:0.50〜2.00%、Mn:0.30〜1.50%、P:0.035%以下、S:0.035%以下、Cr:0.80〜3.00%、Mo:0.80%以下(0〜不純物範囲含む)、Al:0.020〜0.060%、N:0.0080〜0.0250%を含有すると共に残部がFeおよび不可避不純物からなる鋼を用い、最終部品形状への加工を行った後、浸炭処理前において、酸素分圧が15000Pa以上の酸素含有雰囲気中で加熱し、表面に1.5μm以上の厚みのFe酸化膜を形成させた後、RXガスからなる雰囲気中でガス浸炭処理することを特徴とする高Si浸炭用鋼の浸炭方法である(請求項1)。 One embodiment of the present invention is mass%, C: 0.10 to 0.30%, Si: 0.50 to 2.00%, Mn: 0.30 to 1.50%, P: 0.035% Hereinafter, S: 0.035% or less, Cr: 0.80 to 3.00%, Mo: 0.80% or less (0 to impurity range included), Al: 0.020 to 0.060%, N: 0 In an oxygen-containing atmosphere having an oxygen partial pressure of 15000 Pa or more after carburizing treatment after processing into the final part shape using steel containing 0080-0.0250% and the balance being Fe and inevitable impurities This is a method for carburizing a steel for high Si carburizing, characterized in that after heating to form a Fe oxide film having a thickness of 1.5 μm or more on the surface , gas carburizing treatment is performed in an atmosphere composed of RX gas (claim) Item 1).

本発明者等は、高Si肌焼鋼が、Si含有率が低い他の肌焼鋼と比較して浸炭後の表面炭素濃度が安定せず、目的の値とならない場合が多い原因について詳細に検討を行った。その結果、ガス浸炭は雰囲気ガスとしてRXガスが使われるが、SiやCrはFeに比べ酸化しやすいため、雰囲気ガス中に含まれる少量の酸素がFeよりも優先的にSiやCrと結びつき、酸化膜を形成する。そして、この酸化膜が浸炭処理中における炭素の侵入を阻害し、安定した表面炭素濃度が得られないことがわかった。   The inventors have described in detail the cause of high Si case-hardened steel, which is often not the target value because the surface carbon concentration after carburization is not stable compared to other case-hardened steels with low Si content. Study was carried out. As a result, RX gas is used as an atmospheric gas for gas carburizing, but since Si and Cr are more easily oxidized than Fe, a small amount of oxygen contained in the atmospheric gas is combined with Si and Cr preferentially over Fe, An oxide film is formed. And it was found that this oxide film hinders the intrusion of carbon during the carburizing treatment and a stable surface carbon concentration cannot be obtained.

さらに検討したところ、大気中等の酸素分圧がある程度高い雰囲気中で加熱した場合には、酸素分圧が高く雰囲気中に大量に酸素が存在し、加熱時に酸化物が形成される際において、合金中に数%しか存在しないSi、Crに対し雰囲気ガス中の酸素の方が圧倒的に過剰となるため、この過剰の酸素が合金中の大部分を占めるFeと結合してFe酸化物からなる酸化膜を形成すること、前処理でFe酸化膜をあらかじめ形成させた状態であれば、新たにRXガスからなる雰囲気ガス中で浸炭処理しても、狙いの表面炭素濃度と硬化深さを確保できることを見出した。本発明は、上記知見により成されたものである。   Further examination revealed that when heating was performed in an atmosphere having a relatively high oxygen partial pressure, such as in the atmosphere, a large amount of oxygen was present in the atmosphere with a high oxygen partial pressure, and when an oxide was formed during heating, an alloy Oxygen in the atmosphere gas is overwhelmingly excessive with respect to Si and Cr which are present only in a few percent, so this excess oxygen combines with Fe, which occupies most of the alloy, and consists of Fe oxide. As long as the oxide film is formed and the Fe oxide film is pre-formed in the pretreatment, the target surface carbon concentration and hardening depth can be secured even if carburizing is performed in an atmosphere gas consisting of RX gas. I found out that I can do it. The present invention has been made based on the above findings.

なお、本発明の範囲内であっても、Fe酸化膜は厚いほど表面炭素濃度向上効果は高くなるが、厚いFe酸化膜を形成させようとすると、事前の加熱処理時間が長くなるとともに、厚くなりすぎても効果が飽和するため、浸炭処理を含めたトータルの必要なエネルギーコストがかえって増加する可能性が生じる。従って、Fe酸化膜の厚みは、トータルのエネルギーコストを考慮して、最適な加熱処理条件を定めた結果として、最適値を決めることが好ましい。   Even within the scope of the present invention, the thicker the Fe oxide film, the higher the effect of improving the surface carbon concentration. However, when a thick Fe oxide film is formed, the prior heat treatment time becomes longer and thicker. Since the effect is saturated even if it becomes too much, there is a possibility that the total required energy cost including the carburizing treatment will increase. Therefore, it is preferable to determine the optimum value of the thickness of the Fe oxide film as a result of determining the optimum heat treatment conditions in consideration of the total energy cost.

本発明では、大気中等、RXガスに比較して酸素分圧の高い雰囲気中で浸炭処理前に加熱して、あらかじめ表面に1.5μm以上のFe酸化膜を形成させておき、その後にガス浸炭処理を行う。表面にFe酸化膜が形成された状態とした後にガス浸炭処理することにより、高Si肌焼鋼のように、浸炭性の悪い鋼材を浸炭処理する場合でも、浸炭処理後に安定して狙いとする表面炭素濃度と硬化深さを確保することができる。   In the present invention, heating is performed before carburizing in an atmosphere having a higher oxygen partial pressure compared to RX gas, such as in the air, and an Fe oxide film having a thickness of 1.5 μm or more is previously formed on the surface, followed by gas carburizing. Process. Even when carburizing a steel material with poor carburizing properties, such as high Si case-hardened steel, by carrying out gas carburizing treatment after setting the state of Fe oxide film formed on the surface, it is aimed stably after carburizing treatment. The surface carbon concentration and the curing depth can be ensured.

また、上記製造方法を適用することにより、安定して強度の優れた浸炭部品を容易に製造することができる。   In addition, by applying the above manufacturing method, a carburized component having a stable and excellent strength can be easily manufactured.

本発明において、Fe酸化膜形成処理時の加熱温度としては、550〜650℃の範囲で行うことが好ましい(請求項2)。   In the present invention, the heating temperature during the Fe oxide film formation treatment is preferably within a range of 550 to 650 ° C. (Claim 2).

550℃未満の加熱温度では、十分なFe酸化膜が形成しないため、本発明による効果を得ることができない。また、650℃を超える温度で加熱すると、Fe酸化膜を形成させることはできるが、表面に強固な膜となって形成されず、スケールとなって剥がれおちる可能性が高くなり、前記と同様に本発明の効果を十分に得られなくなるおそれがあるためである。なお、加熱時間は、酸化膜の厚みが1.5μm以上となるように適切に調整すれば良い。生産性を考えると、温度が高い方が酸化膜は速く形成されるため、脆く剥げやすいスケールが形成されない範囲で高めの温度とするのが好ましい。   When the heating temperature is less than 550 ° C., a sufficient Fe oxide film is not formed, and thus the effect of the present invention cannot be obtained. Also, when heated at a temperature exceeding 650 ° C., an Fe oxide film can be formed, but it is not formed as a strong film on the surface, and the possibility of peeling off as a scale increases. This is because the effects of the present invention may not be sufficiently obtained. The heating time may be appropriately adjusted so that the thickness of the oxide film is 1.5 μm or more. Considering productivity, the higher the temperature, the faster the oxide film is formed. Therefore, it is preferable to set the temperature higher in a range where a brittle and easy-to-peel scale is not formed.

また、本発明において、ガス浸炭処理前に行う加熱処理時においては、酸素分圧がある程度高く、対象となる鋼の表面近傍に存在するSi、Cr量に比較して、雰囲気中に大量の酸素が存在している雰囲気中で加熱することが必要である。酸素分圧が低い雰囲気中で加熱すると、SiやCrの酸化膜が形成される可能性が生じるからである。この点、大気中には21%の酸素を含有しており、本発明のFe酸化膜形成時の雰囲気として適しているため、本発明におけるFe酸化膜形成時においては、大気中で加熱するようにすることが好ましい(請求項3)。また、大気中以外の雰囲気中で加熱する場合でも、酸素分圧を15000Pa以上とするのが良い。このように酸素分圧が一定以上の雰囲気中で加熱することにより表面に確実にFe酸化膜を形成させることができ、本発明の効果を得ることができる。   Further, in the present invention, during the heat treatment performed before the gas carburizing treatment, the oxygen partial pressure is somewhat high, and a large amount of oxygen in the atmosphere compared to the amount of Si and Cr existing near the surface of the target steel. It is necessary to heat in the atmosphere where exists. This is because if heating is performed in an atmosphere having a low oxygen partial pressure, an oxide film of Si or Cr may be formed. In this regard, the atmosphere contains 21% oxygen and is suitable as an atmosphere for forming the Fe oxide film of the present invention. Therefore, when forming the Fe oxide film of the present invention, heating is performed in the atmosphere. (Claim 3). Even when heating is performed in an atmosphere other than the air, the oxygen partial pressure is preferably set to 15000 Pa or more. Thus, by heating in an atmosphere having a certain oxygen partial pressure or higher, an Fe oxide film can be reliably formed on the surface, and the effects of the present invention can be obtained.

次に、本発明で対象とする鋼の化学成分組成の限定理由を説明する。
本発明は、浸炭方法に特徴を有する発明であるが、本発明の浸炭方法を適用可能な鋼種の範囲を明確にするため、以下に成分範囲及び限定理由について説明する。
Next, the reason for limiting the chemical composition of the steel targeted in the present invention will be described.
The present invention is an invention characterized by a carburizing method. In order to clarify the range of steel types to which the carburizing method of the present invention can be applied, the component ranges and reasons for limitation will be described below.

C:0.10%〜0.30%、
Cは、製造する浸炭部品の内部硬さを確保し、浸炭処理後において必要な部品強度を確保するために不可欠な元素であり、0.10%以上含有させる必要がある。一方、Cは、過剰に添加すると被削性、冷鍛性が低下する。浸炭部品は目的の製品形状を得るのに冷鍛や機械加工を行うことが多く、これらの特性が低下すると目的とする部品形状への加工が難しくなるため、C含有率の上限は0.30%とする。
C: 0.10% to 0.30%,
C is an indispensable element for securing the internal hardness of the carburized component to be manufactured and for ensuring the required component strength after the carburizing process, and it is necessary to contain 0.10% or more. On the other hand, when C is added excessively, machinability and cold forgeability are lowered. Carburized parts are often subjected to cold forging and machining to obtain the desired product shape, and if these characteristics deteriorate, it becomes difficult to process into the desired part shape, so the upper limit of the C content is 0.30. %.

Si:0.50%〜2.00%、
Siは、焼もどし軟化抵抗の向上により、部品として使用中の温度上昇による硬度低下を抑え、硬度低下によるピッチング強度や耐摩耗性低下を抑える効果のある元素である。従って、前記効果を十分に得る必要がある場合には、少なくとも0.50%以上の含有が必要である。また、0.50%未満の含有であれば、浸炭性の低下は大きな問題とならず、本発明で提案したような前処理を行うことなく浸炭処理することもできる。一方、Siを過剰に添加すると被削性、冷鍛性等の加工性が低下し、目的とする部品形状への加工が難しくなるため、上限は2.00%とする。
Si: 0.50% to 2.00%,
Si is an element having an effect of suppressing a decrease in hardness due to an increase in temperature during use as a part by improving tempering softening resistance and suppressing a decrease in pitching strength and wear resistance due to a decrease in hardness. Therefore, when it is necessary to obtain the above effect sufficiently, it is necessary to contain at least 0.50% or more. In addition, if the content is less than 0.50%, the deterioration of carburizing property is not a big problem, and the carburizing treatment can be performed without performing the pretreatment as proposed in the present invention. On the other hand, if Si is added excessively, machinability such as machinability and cold forgeability deteriorates, and it becomes difficult to machine into the desired part shape, so the upper limit is made 2.00%.

Mn:0.30%〜1.50%、
Mnは、Cと同様に製造する浸炭部品の内部硬さを確保するとともに必要とする焼入性を確保し、浸炭処理後において必要な部品強度を確保するために不可欠な元素であり、0.30%以上含有させる必要がある。しかしながら、Mnを過剰に添加すると被削性が低下するとともに、残留オーステナイトが増加して、内部硬さが低下するおそれがあるため、上限は1.50%とする。
Mn: 0.30% to 1.50%,
Mn is an indispensable element for securing the internal hardness of a carburized part to be produced in the same manner as C, ensuring the necessary hardenability, and ensuring the required part strength after carburizing treatment. It is necessary to contain 30% or more. However, if Mn is added excessively, the machinability is lowered and the retained austenite is increased, so that the internal hardness may be lowered. Therefore, the upper limit is made 1.50%.

P、S:0.035%以下、
P、Sは、製造上含有が避けられない不純物元素であるが、その含有率が高くなるとPは粒界に偏析し靭性が低下するおそれがあり、Sは硫化物系介在物が増加し、疲労破壊の起点となって疲労強度低下の原因となるおそれがある。従って、P、Sともに多くても0.035%以下とする必要がある。
P, S: 0.035% or less,
P and S are impurity elements that are unavoidably contained in production. However, when the content is increased, P may segregate at the grain boundaries to reduce toughness, and S may increase sulfide inclusions. There is a possibility that it becomes a starting point of fatigue fracture and causes a decrease in fatigue strength. Therefore, both P and S need to be 0.035% or less at most.

Cr:0.80〜3.00%、
Crは、肌焼鋼の性能を確保する重要元素であり、内部硬さの確保、トルースタイトの抑制、ピッチング強度、耐摩耗性確保に効果のある元素であるため、0.80%以上の含有が必要である。しかしながら、添加しすぎても冷間加工性が低下するので、上限を3.00%とした。
Cr: 0.80 to 3.00%,
Cr is an important element that ensures the performance of case-hardened steel, and is an element effective for ensuring internal hardness, suppressing troostite, pitching strength, and wear resistance, so 0.80% or more is contained is necessary. However, even if it is added too much, the cold workability deteriorates, so the upper limit was made 3.00%.

Al:0.020〜0.060%、
Alは、Nと結合してAlNとなりピン止め効果により浸炭処理に伴う加熱によって生じる可能性のある結晶粒粗大化を防止する効果のある元素であり、その効果を得るために0.020%以上の含有が必要である。しかしながら、過剰に含有すると前記効果が飽和するとともに、Al含有酸化物系介在物が増加し、それが起点となり疲労特性が低下するので、上限を0.060%とした。
Al: 0.020 to 0.060%,
Al combines with N to become AlN, and is an element that has the effect of preventing crystal grain coarsening that may occur due to heating associated with the carburizing treatment due to the pinning effect. In order to obtain the effect, 0.020% or more It is necessary to contain. However, if the content is excessive, the above effect is saturated, and Al-containing oxide inclusions increase, which becomes a starting point and deteriorates fatigue characteristics. Therefore, the upper limit was made 0.060%.

N:0.0080〜0.0200%、
Nは、製造上含有が避けられない不純物として含有する元素であるが、本発明では、前記した通りAlと結合してAlNとなり、ピン止め効果により浸炭処理後の結晶粒粗大化防止に効果のある元素として働く重要元素である。従って、前記効果を得るために、少なくとも0.0080%以上含有するように調整する必要がある。しかしながら、過剰に含有しても上記効果が飽和するだけでなく、窒化物系介在物が増加し、それが起点となり疲労特性が低下するおそれが高まるため、上限を0.0200%とした。
N: 0.0080 to 0.0200%,
N is an element contained as an inevitable impurity in production, but in the present invention, as described above, it combines with Al to become AlN, which is effective in preventing grain coarsening after carburizing due to the pinning effect. It is an important element that works as an element. Therefore, in order to acquire the said effect, it is necessary to adjust so that it may contain at least 0.0080% or more. However, even if contained excessively, not only the above effects are saturated, but also nitride inclusions increase, which increases the possibility that the fatigue characteristics will decrease, so the upper limit was made 0.0200%.

Mo:0.80%以下(0〜不純物範囲含む)、
Moは、強度、靱性を向上させるのに有効な元素ではあるが、高価であるため、必要に応じ任意に添加できる元素として、上限を0.80%に抑える。
Mo: 0.80% or less (0 to impurity range included),
Mo is an effective element for improving the strength and toughness, but is expensive, so the upper limit is limited to 0.80% as an element that can be optionally added as necessary.

次に本発明の製造方法の成分以外の構成について説明する。
本発明では、上記した成分からなる鋼材を熱間圧延し適当な断面寸法からなる鋼材を得た後、熱間鍛造、冷間鍛造、機械加工等を適宜組合せ、目的とする最終製品形状を得る。ここで、通常であれば、そのまま浸炭処理を行うが、本発明では、浸炭処理前にあらかじめ、酸素含有雰囲気中で加熱し、表面に1.5μm以上のFe酸化膜を形成させる。
Next, configurations other than the components of the production method of the present invention will be described.
In the present invention, a steel material having the above-described components is hot-rolled to obtain a steel material having an appropriate cross-sectional dimension, and then hot forging, cold forging, machining, etc. are appropriately combined to obtain a desired final product shape. . Here, normally, the carburizing process is performed as it is. However, in the present invention, heating is performed in an oxygen-containing atmosphere in advance before the carburizing process to form an Fe oxide film of 1.5 μm or more on the surface.

この加熱処理の際、前記した通り雰囲気中に鋼中に存在するSiやCr等の酸化されやすい元素に比べて、圧倒的に過剰となる酸素を含有する雰囲気中で加熱することが必要である。この処理により、部品表面にFeよりも酸化されやすいSiやCrの酸化膜ではなく、Fe酸化膜を形成させることができる。   During this heat treatment, it is necessary to heat in an atmosphere containing oxygen that is overwhelmingly excessive as compared to elements that are easily oxidized such as Si and Cr present in the steel as described above. . By this treatment, an Fe oxide film can be formed on the component surface instead of the Si or Cr oxide film that is more easily oxidized than Fe.

この加熱処理の際の酸素含有雰囲気としては、酸素分圧が15000Pa以上であることが望ましく、最も容易に準備できる雰囲気である大気中は、この酸素含有雰囲気として適しているので、最も好ましい。 As the oxygen-containing atmosphere in this heat treatment, it is desirable that the oxygen partial pressure is 15000 Pa or more, and the atmosphere that is the most easily prepared atmosphere is most preferable because it is suitable as this oxygen-containing atmosphere.

ここで、Fe酸化膜は、1.5μm以上の厚さで形成させることが必要である。浸炭処理中に、Fe酸化膜がどのように変化していくかについては、明確になっていないが、実験により確認したところ、Fe酸化膜が1.5μm以上確保された浸炭部品を浸炭処理した場合は、Si含有率の高い鋼材を用いた場合でも、狙いの表面炭素濃度を得られることを確認したものである。   Here, the Fe oxide film needs to be formed with a thickness of 1.5 μm or more. Although it is not clear how the Fe oxide film changes during the carburizing process, it was confirmed by experiments that the carburized parts in which the Fe oxide film was secured to 1.5 μm or more were carburized. In this case, it was confirmed that the target surface carbon concentration can be obtained even when a steel material having a high Si content is used.

なお、浸炭処理中のFe酸化膜の変化は明確になっていないものの、浸炭処理中は、酸素分圧の低い雰囲気で処理されることになることから、Fe酸化膜中の酸化鉄は還元されていくと考えられ、Fe酸化膜が薄いと浸炭処理の早期段階でFe酸化膜が消失し、RXガス等の浸炭処理用雰囲気ガス中に少量存在する酸素がFeよりも酸化されやすい元素であるSiやCrと結合し、課題の箇所に記載した通り、Cの侵入を阻害する可能性が生じると考えられる。そして、Fe酸化膜を1.5μm以上とした状態で浸炭処理を開始することにより、前記原因による浸炭反応の阻害原因を適切に排除することができる。   Although the change of the Fe oxide film during the carburizing process is not clear, the iron oxide in the Fe oxide film is reduced during the carburizing process because it is processed in an atmosphere having a low oxygen partial pressure. If the Fe oxide film is thin, the Fe oxide film disappears at an early stage of the carburizing process, and oxygen present in a small amount in the atmosphere gas for carburizing process such as RX gas is an element that is more easily oxidized than Fe. It is considered that there is a possibility of binding to Si or Cr and inhibiting C intrusion as described in the problem section. Then, by starting the carburizing process in a state where the Fe oxide film is 1.5 μm or more, the cause of inhibition of the carburizing reaction due to the cause can be appropriately eliminated.

以上説明した本発明である高Si浸炭用鋼の浸炭方法により得られる効果について、以下に実施例を示すことにより明らかにする。
まず、表1に実施例として用いた供試材の化学成分を示す。表1に示す鋼材のうち、鋼No.1〜10の鋼材が、本発明の浸炭方法で対象となる鋼材であり、Si含有率は0.50〜1.80%と高いのに対し、鋼No.11、12は、浸炭用鋼として最も多く用いられている従来鋼であるSCM420、SCr420で、Si含有率はそれぞれ0.25%、0.24%と前記鋼材に比較して著しく低くなっている。
The effects obtained by the carburizing method for high Si carburizing steel according to the present invention described above will be clarified by showing examples below.
First, Table 1 shows chemical components of the test materials used as examples. Among the steel materials shown in Table 1, steel No. Steel materials Nos. 1 to 10 are steel materials targeted by the carburizing method of the present invention, and the Si content is as high as 0.50 to 1.80%. Nos. 11 and 12 are SCM420 and SCr420, which are conventional steels most frequently used as carburizing steel, and the Si contents are 0.25% and 0.24%, respectively, which are significantly lower than the steel materials. .

Figure 0006263874
Figure 0006263874

そして、表1の成分からなる鋼材を電気炉で溶解後、熱間圧延により製造した棒鋼から直径30mm、長さ40mmの試験片を機械加工により準備した。機械加工により試験片を準備しているので、この時点では表面に酸化膜は存在しない。次に、前記試験片について本発明の特徴となる加熱処理を大気中で温度600℃、加熱時間45分の条件で行った。そして、加熱処理後、表面にFeの酸化膜が形成されていることをEPMAにより確認するとともに、オージェ電子分光分析とSEMを併用して、表面に形成されているFe酸化膜の厚さを確認したところ、1.6〜2.0μmの範囲となっていた。   And the steel material which consists of a component of Table 1 was melt | dissolved with the electric furnace, Then, the test piece of diameter 30mm and length 40mm was prepared by machining from the steel bar manufactured by hot rolling. Since the test piece is prepared by machining, there is no oxide film on the surface at this point. Next, the heat treatment, which is a feature of the present invention, was performed on the test piece in the atmosphere at a temperature of 600 ° C. and a heating time of 45 minutes. Then, after heat treatment, it is confirmed by EPMA that an oxide film of Fe is formed on the surface, and the thickness of the Fe oxide film formed on the surface is confirmed by using Auger electron spectroscopy and SEM in combination. As a result, it was in the range of 1.6 to 2.0 μm.

前記のように加熱処理により表面にFe酸化膜を形成させた試験片について、その後950℃、処理時間320分の条件でガス浸炭処理を施し(狙いとする表面炭素濃度0.65%)、表面炭素濃度をEPMAにより測定した。なお、比較として浸炭処理前の加熱処理を行わずに、同一条件で浸炭処理する実験も同時に行い、加熱処理による効果の評価を行った。結果を表2に示す。   About the test piece in which the Fe oxide film was formed on the surface by the heat treatment as described above, gas carburizing treatment was then performed under the conditions of 950 ° C. and a treatment time of 320 minutes (target surface carbon concentration 0.65%), and the surface The carbon concentration was measured by EPMA. As a comparison, an experiment of carburizing under the same conditions was performed simultaneously without performing the heat treatment before the carburizing treatment, and the effect of the heat treatment was evaluated. The results are shown in Table 2.

Figure 0006263874
Figure 0006263874

表2から明らかなように、従来の肌焼鋼である鋼No.11、12は、事前の加熱処理を行わなくても、0.80%程度の高い表面炭素濃度が得られたのに対し、Si含有率の高い供試材である鋼No.1〜10の供試材について、加熱処理なしに浸炭処理した鋼材は、全ての供試材について、表面炭素濃度は0.65%未満、低いものは0.60%未満となっており、Si含有率が高いことにより大幅に浸炭性が低下することが確認できた。これに対し、さらに事前に加熱処理し、表面に1.5μm以上の厚みのFe酸化膜を形成させた後に浸炭処理した供試材は、全ての供試材について、狙いとする表面炭素濃度0.65%以上を確保できており、一部の供試材は、0.70%程度と大きく改善された表面炭素濃度を得ることができた。   As apparent from Table 2, steel No. which is a conventional case-hardened steel. Nos. 11 and 12 obtained steel No. 11 which is a test material having a high Si content, whereas a high surface carbon concentration of about 0.80% was obtained without prior heat treatment. Steel materials carburized without heat treatment for the test materials 1 to 10 have a surface carbon concentration of less than 0.65% and less than 0.60% for all the test materials. It was confirmed that the carburizability was greatly reduced due to the high content. On the other hand, the specimens that were further heat-treated in advance and formed a Fe oxide film having a thickness of 1.5 μm or more on the surface and then carburized were treated with a target surface carbon concentration of 0 for all specimens. .65% or more was secured, and some of the test materials were able to obtain a greatly improved surface carbon concentration of about 0.70%.

次に加熱処理条件を変更し、実験した場合の別の実施例を示す。
表3は、Si含有率が1.00%である鋼No.3を用い、加熱処理条件を変化させて、前記と同様の実験を行った場合のFe酸化膜の厚さと表面炭素濃度の測定結果を示したものである。
Next, another example when the heat treatment conditions are changed and an experiment is performed will be described.
Table 3 shows steel No. 1 having a Si content of 1.00%. 3 shows the measurement results of the thickness of the Fe oxide film and the surface carbon concentration when the same experiment as described above was performed while changing the heat treatment conditions.

Figure 0006263874
Figure 0006263874

表3の結果より明らかなように、表面炭素濃度の向上効果は、Fe酸化膜の厚みと大きな関係があり、Fe酸化膜が薄い場合には、表面炭素濃度を高める十分な効果を得ることができない。そして、概ね1.5μm以上の厚みのFe酸化膜を形成しておくことにより、狙いとする表面炭素濃度を得ることが可能となることがわかる。   As is clear from the results in Table 3, the effect of improving the surface carbon concentration is greatly related to the thickness of the Fe oxide film. When the Fe oxide film is thin, a sufficient effect of increasing the surface carbon concentration can be obtained. Can not. It can be seen that a target surface carbon concentration can be obtained by forming an Fe oxide film having a thickness of approximately 1.5 μm or more.

Claims (3)

質量%で、C:0.10〜0.30%、Si:0.50〜2.00%、Mn:0.30〜1.50%、P:0.035%以下、S:0.035%以下、Cr:0.80〜3.00%、Mo:0.80%以下(0〜不純物範囲含む)、Al:0.020〜0.060%、N:0.0080〜0.0250%を含有すると共に残部がFeおよび不可避不純物からなる鋼を用い、最終部品形状への加工を行った後、浸炭処理前において、酸素分圧が15000Pa以上の酸素含有雰囲気中で加熱し、表面に1.5μm以上の厚みのFe酸化膜を形成させた後、RXガスからなる雰囲気中でガス浸炭処理することを特徴とする高Si浸炭用鋼の浸炭方法。 In mass%, C: 0.10 to 0.30%, Si: 0.50 to 2.00%, Mn: 0.30 to 1.50%, P: 0.035% or less, S: 0.035 % Or less, Cr: 0.80 to 3.00%, Mo: 0.80% or less (0 to impurity range included), Al: 0.020 to 0.060%, N: 0.0080 to 0.0250% Is used, and the balance is Fe and inevitable impurities, and after processing to the final part shape, before the carburizing treatment, the steel is heated in an oxygen-containing atmosphere with an oxygen partial pressure of 15000 Pa or more, A carburizing method for steel for high Si carburizing, characterized in that after forming an Fe oxide film having a thickness of 5 μm or more , gas carburizing treatment is performed in an atmosphere composed of RX gas . Fe酸化膜形成処理時の加熱温度を550〜650℃とすることを特徴とする請求項1記載の高Si浸炭用鋼の浸炭方法。   2. The method for carburizing steel for high Si carburizing according to claim 1, wherein the heating temperature during the Fe oxide film forming process is 550 to 650 [deg.] C. Fe酸化膜形成のための加熱時の酸素含有雰囲気が大気であることを特徴とする請求項1又は2に記載の高Si浸炭用鋼の浸炭方法。   The method for carburizing high-Si carburizing steel according to claim 1 or 2, wherein the oxygen-containing atmosphere during heating for forming the Fe oxide film is air.
JP2013136332A 2013-06-28 2013-06-28 Carburizing method for high Si carburizing steel Active JP6263874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136332A JP6263874B2 (en) 2013-06-28 2013-06-28 Carburizing method for high Si carburizing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136332A JP6263874B2 (en) 2013-06-28 2013-06-28 Carburizing method for high Si carburizing steel

Publications (2)

Publication Number Publication Date
JP2015010258A JP2015010258A (en) 2015-01-19
JP6263874B2 true JP6263874B2 (en) 2018-01-24

Family

ID=52303689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136332A Active JP6263874B2 (en) 2013-06-28 2013-06-28 Carburizing method for high Si carburizing steel

Country Status (1)

Country Link
JP (1) JP6263874B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102360999B1 (en) 2017-06-21 2022-02-09 현대자동차주식회사 Carburizing method for carbon steel
JP7510045B2 (en) 2020-03-27 2024-07-03 日本製鉄株式会社 Steel for carburizing, carburizing steel parts, and method for manufacturing carburizing steel parts
JP2023067377A (en) * 2021-11-01 2023-05-16 ダイキン工業株式会社 Compressor, refrigeration unit, and method of manufacturing compressor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3885995A (en) * 1973-04-10 1975-05-27 Boeing Co Process for carburizing high alloy steels
DE3718240C1 (en) * 1987-05-30 1988-01-14 Ewald Schwing Process for the heat treatment of metallic workpieces in a gas-flowed fluidized bed
JPH0853711A (en) * 1994-08-11 1996-02-27 Kobe Steel Ltd Surface hardening treating method
JP3486506B2 (en) * 1996-06-03 2004-01-13 光洋精工株式会社 Gas carburizing method
JPH11131142A (en) * 1997-10-27 1999-05-18 Nkk Corp Production of carburized parts excellent in delayed fracture characteristic
JP3975699B2 (en) * 2001-07-10 2007-09-12 愛知製鋼株式会社 High-strength gear excellent in tooth root bending strength and pitting resistance and manufacturing method thereof
JP4327812B2 (en) * 2006-03-06 2009-09-09 Ntn株式会社 Manufacturing method of carburized parts
JP4629064B2 (en) * 2007-03-23 2011-02-09 本田技研工業株式会社 Manufacturing method of carburized parts
JP5018586B2 (en) * 2007-04-09 2012-09-05 大同特殊鋼株式会社 High strength carburizing induction hardening parts
JP5623698B2 (en) * 2008-12-25 2014-11-12 愛知製鋼株式会社 Case-hardened parts with excellent strength in all areas from static strength to high cycle fatigue strength
JP2010248568A (en) * 2009-04-15 2010-11-04 Nsk Ltd Rolling bearing for use in hydrogen atmosphere
JP5503344B2 (en) * 2010-03-10 2014-05-28 株式会社神戸製鋼所 High-strength case-hardened steel parts and manufacturing method thereof
KR101515272B1 (en) * 2010-12-08 2015-04-24 신닛테츠스미킨 카부시키카이샤 Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
JP5683348B2 (en) * 2011-03-29 2015-03-11 愛知製鋼株式会社 Carburized member, steel for carburized member, and method for manufacturing carburized member

Also Published As

Publication number Publication date
JP2015010258A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP6031022B2 (en) Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP5994924B2 (en) Shaped material of induction-hardened parts and method for manufacturing the same
EP2530178B1 (en) Case-hardened steel and carburized material
WO2014192117A1 (en) Soft-nitrided induction-quenched steel component
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP2005090680A (en) Rolling bearing part and method of manufacturing the same
JP2016204697A (en) Stock shape material of high frequency hardening component, high frequency hardening component and manufacturing method therefor
JP6772499B2 (en) Steel parts and their manufacturing methods
TWI548755B (en) Steel plate for nitrogen treatment and method for fabricating the same
JP6263874B2 (en) Carburizing method for high Si carburizing steel
JP4752635B2 (en) Method for manufacturing soft nitrided parts
JP5632454B2 (en) Spring steel and steel surface treatment method
JP4737601B2 (en) High temperature nitriding steel
JP2015105419A (en) Bearing component excellent in wear resistance and method for manufacturing the same
TWI544089B (en) It is possible to suppress the surface hardened steel produced by the abnormal particles during carburization and the mechanical structural parts
JP6225510B2 (en) Vacuum carburizing and nitriding method
JP4487748B2 (en) Manufacturing method of bearing parts
JP6447064B2 (en) Steel parts
JP6344495B1 (en) Vacuum carburizing and nitriding treatment method for steel
JP2016222982A (en) Case hardened steel for machine construction excellent in pitching resistance and component raw material for machine construction
RU2606683C1 (en) Method of combined chemical-thermal processing of structural hot-strength steel
JP6881498B2 (en) Parts and their manufacturing methods
JP6881496B2 (en) Parts and their manufacturing methods
WO2022224849A1 (en) Steel material for carbonitriding and carbonitrided steel material
JP6881497B2 (en) Parts and their manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6263874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250