EP3210230B1 - Commutateur microelectromecanique robuste - Google Patents
Commutateur microelectromecanique robuste Download PDFInfo
- Publication number
- EP3210230B1 EP3210230B1 EP15805568.1A EP15805568A EP3210230B1 EP 3210230 B1 EP3210230 B1 EP 3210230B1 EP 15805568 A EP15805568 A EP 15805568A EP 3210230 B1 EP3210230 B1 EP 3210230B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conducting membrane
- deformable conducting
- deformable
- supply line
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 claims description 117
- 230000004913 activation Effects 0.000 claims description 52
- 239000000758 substrate Substances 0.000 claims description 20
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 3
- 239000012141 concentrate Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 241001080024 Telles Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 241000287107 Passer Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/22—Polarised relays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
- H01H2059/0072—Electrostatic relays; Electro-adhesion relays making use of micromechanics with stoppers or protrusions for maintaining a gap, reducing the contact area or for preventing stiction between the movable and the fixed electrode in the attracted position
Definitions
- the present invention relates to the field of microelectromechanical systems (MEMS) and relates in particular to a microelectromechanical switch.
- MEMS microelectromechanical systems
- Radio frequency microelectromechanical systems allow switching operations for applications addressing a wide range of frequencies (DC-100 GHz). Their competitive advantage in terms of performance and low power consumption compared to their size make them a very popular component for system manufacturers.
- the present invention relates to a robust microelectromechanical switch, the structure of which guarantees reduced temperature sensitivity and allows stable electrical contact with limited sticking phenomena, while guaranteeing the performance inherent in RF MEMS technology.
- the end of the signal supply line is to the right of the contact pad means that the signal supply line extends slightly under the deformable conductive membrane, beyond the contact pad so that the latter can enter in contact with the signal supply line when the deformable conductive membrane deforms.
- the activation electrode and the deformable conductive membrane have the same or substantially the same shape means that the projection of the shape of the deformable conductive membrane in the plane of the substrate is the same or almost identical to that of the d electrode. 'activation, with adjustments due to the fact that the activation electrode must not come into contact with the anchors or the signal supply line.
- the acute radial opening formed in the deformable conductive membrane makes it possible to have the minimum surface area of the signal supply line opposite the deformable conductive membrane, which makes it possible to reduce the electrical capacitance between the supply line of signal and the deformable conductive membrane, thus ensuring good isolation of the switch.
- the acute angle may for example be between 5 ° and 135 °, preferably 50 °, without these values being limiting.
- the deformable conductive membrane thus has the shape of a circular diagram with an acute sector representing the radial opening and a complementary sector representing the deformable conductive membrane.
- the activation electrode and the deformable conductive membrane have substantially the same shape and are located one above the other makes it possible to generate a maximum of attraction force.
- the contact area "contact pad / signal supply line” is surrounded by the activation electrode through the radial opening, which allows the generation of a high localized contact force and ensures stability of the contact resistance during activation.
- the shape of the deformable conductive membrane and its thickness with regard to the maximum displacement limit the permanent deformations thereof and ensure better thermal stability.
- the surface surrounding the contact pad facing the signal supply line is larger and therefore the surface attracted by the activation electrode is larger. This feature confers a greater activation force and ensures better stability of the electrical contact when the switch is activated.
- an anchor is formed in the median axis of the radial opening.
- two anchors are formed symmetrically with respect to the median axis of the radial opening, on a circle with the same center as the circle circumscribing the deformable conductive membrane, the angle formed on the circle with the same center that the circle circumscribing the deformable conductive membrane between each anchoring and the median axis of the radial opening being at most 30 °.
- the other anchors are formed symmetrically with respect to this median axis.
- This alignment makes it possible to concentrate the mechanically weakest zone in the vicinity of the contact pad.
- At least one opening is formed on the deformable conductive membrane between two diametrically opposed anchors on a circle of the same center as the circle circumscribing the deformable conductive membrane.
- louvers make it possible to accommodate the deformation of the component at high temperature during packaging for example, but also to reduce the activation voltage of the component.
- a louver is formed on the deformable conductive membrane in the vicinity of each anchorage, the louvers being formed on the contour of a circle with the same center as the circle circumscribed on the deformable conductive membrane and, preferably, of lower radius at least the width of the hearing.
- the orifice (s) can pass through the thickness of the deformable conductive membrane.
- the contact pad is slightly eccentric from the weakest mechanical part of the deformable conductive membrane (that is to say located at a distance from the center of the deformable conductive membrane of less than 30% of the radius of the deformable conductive membrane). This slightly eccentric position of the contact pad limits sticking phenomena.
- through holes are formed on a circle with the same center as the circle circumscribed on the deformable conductive membrane.
- the hole or holes pass through the thickness of the deformable conductive membrane and promote the release process during the manufacturing step, without modifying the electrical and mechanical properties of the component.
- one or more stop pads are formed on the lower surface of the deformable conductive membrane, each stop pad facing a metal island electrically isolated from the activation electrode.
- the stop pads make it possible to limit the deformation of the deformable conductive membrane and to ensure electrical insulation between the deformable conductive membrane and the activation electrode, which ensures greater longevity of the component, and also prevents sticking of the deformable conductive membrane on the activation electrode.
- the contact pad and where appropriate the stop pads, are made of a metal from the platinum group or their oxides or both.
- a metal from the platinum group makes it possible to obtain a contact pad, if necessary stop pads, of high hardness, capable of withstanding mechanical shocks due to the closing of the switch. Also, they ensure better temperature resistance of the microelectromechanical switch of the invention during the passage of high currents in the contact pad for example.
- the deformable conductive membrane is made of a multi-layer combining dielectric layers and metal layers.
- the deformable conductive membrane is made of gold, or is a metal alloy or a set of layers comprising at least one conductor.
- the activation electrode is made of gold or any other conductive or semiconductor material.
- MEMS microelectromechanical switch
- the microelectromechanical switch 1 is formed on a substrate S, and mainly comprises a deformable conductive membrane 2, an activation electrode 3, a signal supply line 4 and a signal output line 5.
- the signal supply line 4, the signal output line 5 and the activation electrode are formed on the substrate S.
- the deformable conductive membrane 2 is planar, generally round in shape, with a radial opening 2a in the direction of the signal feed line 4, tapering from the periphery towards the center of the deformable conductive membrane 2.
- the conductive membrane deformable 2 is formed suspended above the activation electrode 3, by means of anchors 6, distributed around its periphery, so as to concentrate the zone of lowest stiffness of the deformable conductive membrane 2 at the level of the pad contact with the signal supply line 4 (described below) located at a distance from the top of the radial opening less than 30% of the radius of the deformable conductive membrane 2.
- One of the anchors 6 is located in the extension of the signal supply line 4, and allows a conductive connection to be made between the deformable conductive membrane 2 and the signal output line 5.
- the other anchors 6 are distributed in pairs, opposite with respect to the center of the circle circumscribing the deformable conductive membrane 2. It should be noted that, although the embodiment shown has five anchors 6, the invention is not limited in this regard within the scope of the present invention.
- the number of anchors is odd, one of the anchors 6 therefore being located on the median axis of the radial opening 2a, in the extension of the signal supply line 4.
- Each anchor 6 is constituted by a tab extending perpendicularly to the surface of the deformable conductive membrane 2, towards the substrate S, said tab extending along two tabs 6a, framing a block 6b integral with the substrate S, the two tabs 6a being suspended in the same plane as the deformable conductive membrane 2, ensuring optimum distribution of stresses during the rise in temperature.
- Louvers 7 are formed on the deformable conductive membrane 2, in front of each anchor 6, the louvers 7 being aligned on a circle with the same center as the circle circumscribing the deformable conductive membrane 2.
- holes 8 are formed on a smaller circle, having the same center as the circle circumscribing the deformable conductive membrane 2. These holes are optional in the context of the invention.
- the lower surface of the deformable conductive membrane 2, facing the activation electrode 3, carries a contact pad 9, near the top of the opening 2a, intended, under deformation of the membrane deformable conductor 2 by the activation electrode 3, to come into contact with the end of the signal supply line 4.
- Stop pads 10, formed on substantially the same circles as the holes 8 and the openings 7, are formed on the lower surface of the conductive membrane deformable 2, their role being described in more detail below.
- the activation electrode 3 has substantially the same shape as the deformable conductive membrane 2, and surrounds the end of the signal supply line 4.
- stop pads 10 and the islands 3a The role of the stop pads 10 and the islands 3a is to allow, during the deformation of the deformable conductive membrane 2 attracted by the activation electrode, to limit the deformation of the deformable conductive membrane 2 by contact with the pads d. 'stop 10 on islets 3a. Although the presence of islands 3a and stop pads 10 is preferred, since it limits the deformation of the deformable conductive membrane 2 and enables them to be electrically isolated, a switch not having these also comes within the scope of the present invention. invention, which is not limited in this regard.
- the substantially identical shapes of the deformable conductive membrane 2 and of the activation electrode 3 make it possible to guarantee a homogeneous and uniform deformation while ensuring the generation of a high electrostatic force.
- the general shape of the microelectromechanical switch 1 according to the invention, round with an opening 2a on the signal supply line 4, makes it possible to guarantee a significant contact force, located in the center of the circle due to the position of the anchors and of the shape of the membrane, which guarantees an electrically stable contact with the end of the signal supply line 4.
- the opening 2a also makes it possible to limit the surface of the deformable conductive membrane 2, facing the current supply line 4, which reduces the electrical couplings between them.
- FIGS 3 and 4 illustrate the two positions, respectively open and closed, of the microelectromechanical switch 1 according to the invention.
- the contact pad 9 is in contact with the end of the signal supply line 4, the stop pads 10 being in contact with the islands 3a.
- the microelectromechanical switch 1 is closed, the signal passes between the signal input line 4 and the signal output line 5.
- the substrate is advantageously silicon.
- the activation electrode is advantageously made of gold, but can also be any other conductive or semiconductor material.
- the deformable conductive membrane 2 is advantageously made of gold, but can also be a metal alloy or a set of layers comprising at least one conductor.
- the contact pads 9 and stop 10 are formed integrally with the deformable conductive membrane 2. They can advantageously be covered with a harder material to increase their resistance.
- a switch according to the invention is inscribed in a circle with a radius of 140 ⁇ m.
- the thickness of the switch is 7 ⁇ m, its pull-down voltage is 55V, its restoring force is 1.8 mN, and its contact force is between 2 and 4 mN at 70 V .
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Micromachines (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1460104A FR3027448B1 (fr) | 2014-10-21 | 2014-10-21 | Commutateur microelectromecanique robuste |
PCT/FR2015/052802 WO2016062956A1 (fr) | 2014-10-21 | 2015-10-19 | Commutateur microelectromecanique robuste |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3210230A1 EP3210230A1 (fr) | 2017-08-30 |
EP3210230B1 true EP3210230B1 (fr) | 2020-12-30 |
Family
ID=52627301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15805568.1A Active EP3210230B1 (fr) | 2014-10-21 | 2015-10-19 | Commutateur microelectromecanique robuste |
Country Status (7)
Country | Link |
---|---|
US (1) | US10121623B2 (es) |
EP (1) | EP3210230B1 (es) |
CN (1) | CN107078000B (es) |
ES (1) | ES2863098T3 (es) |
FR (1) | FR3027448B1 (es) |
IL (1) | IL251793B (es) |
WO (1) | WO2016062956A1 (es) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3051784B1 (fr) | 2016-05-24 | 2018-05-25 | Airmems | Membrane mems a ligne de transmission integree |
FR3074793B1 (fr) * | 2017-12-12 | 2021-07-16 | Commissariat Energie Atomique | Dispositif microelectromecanique et/ou nanoelectromecanique offrant une robustesse augmentee |
FR3098340B1 (fr) | 2019-07-03 | 2022-03-25 | Airmems | Commutateur de puissance, large bande hautes frequences et dispositif integrant des commutateurs de puissance |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5619061A (en) * | 1993-07-27 | 1997-04-08 | Texas Instruments Incorporated | Micromechanical microwave switching |
US6707355B1 (en) * | 2001-06-29 | 2004-03-16 | Teravicta Technologies, Inc. | Gradually-actuating micromechanical device |
WO2003028059A1 (en) * | 2001-09-21 | 2003-04-03 | Hrl Laboratories, Llc | Mems switches and methods of making same |
US6717496B2 (en) * | 2001-11-13 | 2004-04-06 | The Board Of Trustees Of The University Of Illinois | Electromagnetic energy controlled low actuation voltage microelectromechanical switch |
US6876282B2 (en) * | 2002-05-17 | 2005-04-05 | International Business Machines Corporation | Micro-electro-mechanical RF switch |
US6639494B1 (en) * | 2002-12-18 | 2003-10-28 | Northrop Grumman Corporation | Microelectromechanical RF switch |
KR100554468B1 (ko) * | 2003-12-26 | 2006-03-03 | 한국전자통신연구원 | 자기유지 중앙지지대를 갖는 미세 전자기계적 스위치 및그의 제조방법 |
US7373717B2 (en) * | 2004-03-16 | 2008-05-20 | Electronics And Telecommunications Research Institute | Method of manufacturing a self-sustaining center-anchor microelectromechanical switch |
US20050225412A1 (en) * | 2004-03-31 | 2005-10-13 | Limcangco Naomi O | Microelectromechanical switch with an arc reduction environment |
US20050248424A1 (en) * | 2004-05-07 | 2005-11-10 | Tsung-Kuan Chou | Composite beam microelectromechanical system switch |
FR2871950B1 (fr) * | 2004-06-22 | 2006-08-11 | Commissariat Energie Atomique | Filtre frequentiel et son procede de realisation. |
US7310033B2 (en) * | 2004-08-19 | 2007-12-18 | Teravicta Technologies, Inc. | MEMS switch electrode configuration to increase signal isolation |
US7119943B2 (en) | 2004-08-19 | 2006-10-10 | Teravicta Technologies, Inc. | Plate-based microelectromechanical switch having a three-fold relative arrangement of contact structures and support arms |
US20070040637A1 (en) | 2005-08-19 | 2007-02-22 | Yee Ian Y K | Microelectromechanical switches having mechanically active components which are electrically isolated from components of the switch used for the transmission of signals |
US7528691B2 (en) * | 2005-08-26 | 2009-05-05 | Innovative Micro Technology | Dual substrate electrostatic MEMS switch with hermetic seal and method of manufacture |
KR100837741B1 (ko) * | 2006-12-29 | 2008-06-13 | 삼성전자주식회사 | 미세 스위치 소자 및 미세 스위치 소자의 제조방법 |
US8093971B2 (en) * | 2008-12-22 | 2012-01-10 | General Electric Company | Micro-electromechanical system switch |
US8957485B2 (en) * | 2009-01-21 | 2015-02-17 | Cavendish Kinetics, Ltd. | Fabrication of MEMS based cantilever switches by employing a split layer cantilever deposition scheme |
US7928333B2 (en) * | 2009-08-14 | 2011-04-19 | General Electric Company | Switch structures |
US8847087B2 (en) * | 2009-09-17 | 2014-09-30 | Panasonic Corporation | MEMS switch and communication device using the same |
US8354899B2 (en) * | 2009-09-23 | 2013-01-15 | General Electric Company | Switch structure and method |
FR2963784B1 (fr) * | 2010-08-11 | 2012-08-31 | Univ Limoges | Microsystemes electromecaniques a gaps d'air. |
-
2014
- 2014-10-21 FR FR1460104A patent/FR3027448B1/fr active Active
-
2015
- 2015-10-19 EP EP15805568.1A patent/EP3210230B1/fr active Active
- 2015-10-19 ES ES15805568T patent/ES2863098T3/es active Active
- 2015-10-19 WO PCT/FR2015/052802 patent/WO2016062956A1/fr active Application Filing
- 2015-10-19 CN CN201580057186.7A patent/CN107078000B/zh active Active
- 2015-10-19 US US15/520,667 patent/US10121623B2/en active Active
-
2017
- 2017-04-19 IL IL251793A patent/IL251793B/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN107078000A (zh) | 2017-08-18 |
US10121623B2 (en) | 2018-11-06 |
FR3027448A1 (fr) | 2016-04-22 |
US20170316907A1 (en) | 2017-11-02 |
FR3027448B1 (fr) | 2016-10-28 |
IL251793B (en) | 2021-02-28 |
IL251793A0 (en) | 2017-06-29 |
CN107078000B (zh) | 2019-06-18 |
EP3210230A1 (fr) | 2017-08-30 |
ES2863098T3 (es) | 2021-10-08 |
WO2016062956A1 (fr) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3210230B1 (fr) | Commutateur microelectromecanique robuste | |
CA2687161C (fr) | Element rayonnant planaire a polarisation duale et antenne reseau comportant un tel element rayonnant | |
EP1743349B1 (fr) | Microcommutateur a faible tension d"actionnement et faible consommation | |
EP3465724B1 (fr) | Membrane mems à ligne de transmission intégrée | |
WO2013083385A1 (fr) | Dispositif mecanique de commutation electrique integre possedant un etat bloque | |
CA2949344A1 (fr) | Connecteur electrique notamment pour dispositif cutane. | |
EP1570504B1 (fr) | Commutateur micro-mecanique et procede de realisation | |
WO2004051687A1 (fr) | Micro-commutateur electrostatique pour composant a faible tension d’actionnement | |
EP1850361B1 (fr) | Actionneur sensible à une surintensité électrique et à déclenchement rapitde, et application | |
EP2600105B1 (fr) | Elément de cadre d'un gyroscope laser comprenant un substrat comportant des ions mobiles et une électrode. | |
EP1836713B1 (fr) | Microsysteme integrant un circuit magnetique reluctant | |
FR3122944A1 (fr) | Contact mobile configuré pour être intégré dans un disjoncteur | |
EP3007198B1 (fr) | Actuateur | |
EP3852945A1 (fr) | Ensemble pour déformer des pièces métalliques par impulsion magnétique | |
FR3024602A1 (fr) | Cartouche de dispositif de protection d’installation electrique a connecteurs croises | |
EP2833482B1 (fr) | Organe de contact entre un support et un dispositif et connecteur électrique comprenant un tel organe de contact. | |
WO2007115945A1 (fr) | Microsysteme pour commuter un circuit electrique de puissance | |
EP3301761A1 (fr) | Connecteur pour circuit d'électronique de puissance | |
EP1244123A1 (fr) | Dispositif assurant le passage d'un courant éléctrique entre des bras conducteurs articulés |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170519 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: ZAHR, ABEDEL HALIM Inventor name: BLONDY, PIERRE Inventor name: ZHANG, LING YAN Inventor name: STEFANINI, ROMAIN |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STEFANINI, ROMAIN Inventor name: ZAHR, ABEDEL HALIM Inventor name: BLONDY, PIERRE Inventor name: ZHANG, LING YAN |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200721 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1350763 Country of ref document: AT Kind code of ref document: T Effective date: 20210115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015064210 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1350763 Country of ref document: AT Kind code of ref document: T Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015064210 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2863098 Country of ref document: ES Kind code of ref document: T3 Effective date: 20211008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
26N | No opposition filed |
Effective date: 20211001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20151019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231016 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231018 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231107 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20231018 Year of fee payment: 9 Ref country code: IT Payment date: 20231023 Year of fee payment: 9 Ref country code: IE Payment date: 20231027 Year of fee payment: 9 Ref country code: DE Payment date: 20231026 Year of fee payment: 9 Ref country code: CH Payment date: 20231101 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231012 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240930 Year of fee payment: 10 |