EP3208453B1 - Piston pour un moteur à combustion interne alternatif - Google Patents

Piston pour un moteur à combustion interne alternatif Download PDF

Info

Publication number
EP3208453B1
EP3208453B1 EP17153761.6A EP17153761A EP3208453B1 EP 3208453 B1 EP3208453 B1 EP 3208453B1 EP 17153761 A EP17153761 A EP 17153761A EP 3208453 B1 EP3208453 B1 EP 3208453B1
Authority
EP
European Patent Office
Prior art keywords
piston
wall
cooling duct
oil
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17153761.6A
Other languages
German (de)
English (en)
Other versions
EP3208453A1 (fr
Inventor
Thomas Malischewski
Jürgen RITTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Truck and Bus SE
Original Assignee
MAN Truck and Bus SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Truck and Bus SE filed Critical MAN Truck and Bus SE
Publication of EP3208453A1 publication Critical patent/EP3208453A1/fr
Application granted granted Critical
Publication of EP3208453B1 publication Critical patent/EP3208453B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/06Arrangements for cooling pistons
    • F01P3/10Cooling by flow of coolant through pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0076Pistons  the inside of the pistons being provided with ribs or fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M2250/00Measuring
    • F01M2250/62Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/0015Multi-part pistons
    • F02F3/003Multi-part pistons the parts being connected by casting, brazing, welding or clamping
    • F02F2003/0061Multi-part pistons the parts being connected by casting, brazing, welding or clamping by welding

Definitions

  • the invention relates to a piston for a reciprocating internal combustion engine according to the preamble of claim 1.
  • Pistons for a reciprocating internal combustion engine are known.
  • Such a piston is usually arranged in a cylinder of a reciprocating internal combustion engine.
  • the piston has a piston skirt, which is usually also referred to as a “skirt” or “piston skirt”. In English, the piston skirt is called the “piston skirt”.
  • the piston has a ring belt adjoining the piston skirt in the axial direction of the piston, with at least one ring groove for a piston ring.
  • the ring belt is part of the piston head.
  • the friction of an internal combustion engine consists of the friction of the basic engine (bearing, piston group) and the drive power of the ancillary units.
  • the piston group accounts for about 30% of the total friction, with the piston skirt causing about 2/3 of the friction of the piston group.
  • the piston skirt friction is influenced by various influencing factors.
  • the piston skirt friction depends on the engine speed, the engine load, the gap between the liner and the piston skirt and the shape of the piston skirt.
  • the invention is based in particular on the knowledge that the piston skirt friction also depends on the viscosity of the oil film between the piston skirt and the cylinder liner.
  • the viscosity depends on the type of oil and the oil temperature.
  • the object of the invention is, in particular, to provide a piston for a reciprocating internal combustion engine with which piston skirt friction can be reduced.
  • a piston for a reciprocating piston internal combustion engine which is slidably guided in a liner of a cylinder of the internal combustion engine and comprises, in a manner known per se, a piston head and a piston skirt.
  • the piston skirt is used to guide the piston in the cylinder barrel.
  • the piston skirt adjoins the ring belt in the axial direction of the piston.
  • the axial direction corresponds to the direction of movement of the piston in the cylinder. It has already been stated above that the piston skirt is also referred to as the piston skirt.
  • the piston head is also known as the piston crown.
  • the piston head has a circumferential ring belt with at least one annular groove for a piston ring and a circumferential fluid channel in the area of the annular groove.
  • the fluid channel is usually and also in this document referred to as a cooling channel.
  • the cooling channel is designed so that a lubricant, in particular oil, can flow through it, and is used to cool the combustion chamber bowl, which is also referred to as the piston bowl.
  • the combustion bowl heated by the combustion process heats the lubricant. All statements in this document in which oil is used as a highlighted lubricant example also apply to other lubricants.
  • An access bore through which the lubricant can flow into the cooling channel can be provided on the piston head. Furthermore, a drain hole can be provided, for example offset by 180 ° in the circumferential direction to the access hole, via which lubricant can exit from the cooling channel.
  • the cooling channel extends from the ring belt to a wall of the piston skirt.
  • the cooling channel is thus not only arranged in the area of the ring belt or the piston head, but also extends downward into the area of the piston skirt. "Down” here means away from the piston head in the direction of the crankshaft connecting rod or in the direction of the piston pin.
  • a cooling channel extending up to a wall of the piston skirt offers the advantage that the lubricant heated in the cooling channel in the area of the ring belt is guided through the cooling channel to the wall of the piston skirt, which enables energy transfer to heat the piston skirt.
  • the additional warming achieved in this way the piston skirt increases the oil film temperature between the piston skirt and the cylinder liner, which reduces the piston skirt friction.
  • the piston skirt temperature can be reduced by the lower region of the cooling channel and thermal damage to the oil film between the cylinder liner and piston skirt can be avoided as a result.
  • the section of this fluid channel extending according to the invention to the wall of the piston skirt is also referred to as part of the cooling channel, although this section serves to supply the lubricant heated in the upper area of the cooling channel to the piston skirt and to heat it and thus actually serves as a "heat channel”.
  • the cooling channel extends as far as a wall of the piston skirt which is arranged below the ring belt.
  • the cooling channel preferably extends below the ring belt.
  • the piston skirt can have a pin eye for receiving a piston pin.
  • the cooling channel can be designed circumferentially in the area of the ring part, d. That is, the cooling channel extends in the circumferential direction of the piston, preferably around 360 °, so that the cooling channel runs in an annular manner in the ring belt.
  • the lower part of the cooling channel i. H. that part which, starting from the cooling channel in the area of the ring belt, extends to a wall of the piston skirt, is not designed to run around 360 °.
  • the cooling channel extends as far as a lower end region of the wall of the piston skirt facing away from the ring belt in order to be able to heat the piston skirt over its entire axial length in this way.
  • the cooling channel extends along at least 2/3 of the axial length or further preferably along at least 4/5 of the axial length of the piston skirt.
  • the piston skirt has at least one pin eye for receiving a piston pin.
  • the cooling channel can extend in the axial direction of the piston up to the level of the at least one bolt eye. It is particularly advantageous if the cooling channel extends in the axial direction of the piston as far as a lower end of the bolt eye.
  • the lower end of the bolt eye is the one that faces a connecting rod engaging the piston.
  • the cooling channel is fluidically connected in the region of the wall of the piston skirt through at least one first through opening with a liner for the piston.
  • the piston skirt or the wall of the piston skirt has a through opening, e.g. B. in the form of a through hole, via which lubricant can get from the cooling channel to the liner of the piston.
  • a through opening e.g. B. in the form of a through hole
  • Heated lubricant can thus pass through the at least one first through opening onto the running surface of the piston.
  • the at least one first through opening can be arranged in the axial direction in a central region of the piston skirt, preferably at the mid-height of the piston skirt.
  • a rib is arranged in the cooling channel in such a way that the oil flow to the cylinder liner is increased.
  • the rib is referred to below as an oil catch rib.
  • the term "lubricant retaining rib” is to be regarded as synonymous with this. This can be achieved in particular by arranging the oil catcher rib in the cooling channel in such a way that part of the oil thrown back and forth by the piston movement in the cooling channel hits the oil catcher rib or remains hanging on the oil catcher rib and through the oil catcher rib to the at least one first Through opening is guided.
  • the hurling of the lubricant back and forth in the cooling channel due to the up and down movement of the piston is also known as "shaking".
  • the oil catcher rib is thus arranged in the area of the at least one first through opening that part of the lubricant remains hanging from the oil catcher rib during shaking and can then flow along the rib to the at least one first through opening.
  • the rib can protrude from the wall of the piston skirt toward the interior of the piston.
  • the rib can also be designed as a web or projection which, starting from the wall of the piston skirt, protrudes from the wall of the piston skirt towards the interior of the piston.
  • the oil catch rib can in this case preferably be arranged at the level of or directly adjacent to the at least one first through opening. In this way, oil hitting the oil catcher rib can be efficiently guided to at least one first through opening.
  • the oil collecting rib is arranged in such a way that a lower edge of the first through opening is arranged offset downward in the axial direction to a horizontal oil or lubricant collecting surface of the oil collecting rib.
  • the first through-opening is preferably designed as a through-hole in such a way that the through-hole on the inside of the piston skirt extends into an area of the oil collecting rib and there forms a channel-shaped recess in the form of an open channel for receiving the collected oil or lubricant.
  • At least one second through opening can be provided in the cooling channel in the region of the wall of the piston skirt, via which the cooling channel is fluidically connected to the liner.
  • the at least one first through opening and the at least second through opening are each arranged on opposite sides of the oil catching rib in the axial direction of the piston.
  • lubricant that gets stuck on the upper side of the oil catcher rib can pass through the passage opening or openings to the running surface that are located adjacent to the top of the oil catcher rib, while lubricant that remains hanging on the underside of the oil catcher rib when the piston moves downwards through which or those passage openings to the running surface can pass, which are arranged in the axial direction below the oil trap rib adjacent.
  • the oil catch rib is thus arranged between the at least one first through opening and the at least one second through opening, preferably in each case directly adjacent and / or adjacent to the at least one first through opening and the at least one second through opening.
  • a plurality of such first and / or second through openings are preferably arranged distributed in the circumferential direction, preferably along a circular line, in order to increase the heat transfer from the cooling channel to the liner.
  • the oil catch rib can be designed to run around the wall of the piston skirt adjoining the cooling channel in the circumferential direction of the piston.
  • the circumferential direction lies in a plane perpendicular to the axial direction of the piston.
  • the oil catch rib can have a first section running around the wall of the piston skirt and extending in the radial direction of the piston and a second section extending in the axial direction of the piston, the second section being arranged on the end region of the first section facing away from the wall of the piston skirt is.
  • a further advantageous possibility of realizing an oil catcher rib according to the invention provides that the second section of the oil catcher rib extends in the axial direction both in the direction of the piston head and in the opposite direction, i. H. in the direction of the crankshaft.
  • This embodiment variant is particularly advantageous if lubricant is to be partly collected both during the upward movement and also during the downward movement of the piston and fed to a through opening.
  • the wall of the piston skirt can have a profile on a side facing the cooling channel, the profile preferably being formed by a groove structure.
  • the profiling increases the surface area of the wall of the cooling channel on the side of the piston skirt, whereby the heat transfer to the piston skirt is increased by the lubricant that adheres to the profiling.
  • the piston skirt can have a recess on its outer surface which surrounds an end region, ie the end region adjoining the cylinder liner of the piston, which surrounds at least one first through hole.
  • the outer surface of the piston skirt is understood to mean the surface of the piston skirt facing the cylinder liner.
  • the recess can be designed in the form of a groove or groove.
  • the recess can in particular be designed as a wide, flat groove. This also reduces the fluid shear areas.
  • a corresponding depression can also be provided for the at least one second through opening.
  • the depression improves the distribution of lubricant emerging from the end region of the at least one first through opening and / or the at least one second through opening between the cylinder liner and the piston skirt.
  • a further through opening in particular a through hole, can be provided, which is provided on a wall of the cooling channel which is arranged opposite the piston skirt.
  • This through opening is referred to below as a lubricant return hole.
  • the lubricant can flow back to the inside of the piston through this lubricant return hole.
  • This is preferably positioned so that an oil level that is advantageous for temperature transport is established in the cooling channel, which can be achieved, for example, by adapting the distance between the lubricant return hole and the lower end of the cooling channel.
  • this passage opening is arranged at a distance in the axial direction of the piston from the lower end of the cooling channel and below the at least one first passage opening.
  • the lower end of the cooling channel is the one furthest from the piston head.
  • the lubricant return bore is thus arranged on the side of the cooling channel facing the inside of the piston.
  • a wall section of the cooling channel which connects an upper area of the cooling channel, which is designed circumferentially in the area of the ring belt, with a lower area of the cooling channel, which adjoins the wall of the piston skirt, is designed so that the lubricant is thrown against the wall of the piston skirt.
  • This part of the wall of the cooling channel is referred to below as the transition wall section.
  • the transition wall section is preferably designed such that it forms a jump.
  • the transition wall section of the cooling channel is designed in such a way that it has a section which runs obliquely downwards towards the piston skirt, on which, in the lower region of the cooling channel, there is a wall of the cooling channel which, in comparison, is steeper downwards and which is arranged opposite the piston skirt adjoins, the transition area an edge is formed between the wall section of the cooling channel and the wall, which is steeper downward for this purpose.
  • the section of the transition wall section running obliquely downward can, for example, have the shape of a lateral surface of a truncated cone.
  • the lubricant is thrown particularly efficiently against the wall of the piston skirt when shaking, so that the heat transfer is improved.
  • the arrangement further comprises a volume flow-regulated lubricant pump, which is provided for supplying the piston with a lubricant, and a control device of the lubricant pump, the control device being designed, depending on an operating parameter of an internal combustion engine, from which the current engine load can be derived, a lubricant volume flow for To control or regulate the supply of the piston with lubricant, such that at a first value of the operating parameter, which corresponds to a first engine load, a first volume flow is set, and at a second value of the operating parameter, which corresponds to a second engine load, which is greater than the the first engine load, a second volume flow is set which is greater than the first volume flow.
  • the oil volume flow can be regulated via the oil spray nozzle in such a way that an advantageous oil temperature is set at the cooling channel.
  • Another aspect of the invention relates to a motor vehicle, in particular a utility vehicle, with a piston, as disclosed in this document.
  • Figure 1 illustrates the piston skirt friction as a function of the oil film temperature between the piston skirt and the cylinder liner.
  • the oil film temperature is plotted on the abscissa axis.
  • the corresponding mean friction pressure is plotted on the ordinate axis.
  • the curve profile 11 corresponds to an engine speed of 1200 rpm and the curve profile 12 corresponds to an engine speed of 1800 rpm.
  • the friction mean effective pressure decreases with increasing temperature of the oil film.
  • the heated return oil is directed from the piston cooling duct to the piston skirt. This increases the oil film temperature between the piston and the liner, which leads to lower friction.
  • FIG. 2 shows a partial section of a first embodiment of the invention.
  • the piston 20 comprises a piston head 5 which has a circumferential ring belt 6.
  • the ring belt 6 comprises at least one ring groove 6a for a piston ring. In the exemplary embodiment shown, three annular grooves 6a are provided. A compensation groove is also arranged below the three ring grooves.
  • the ring belt 6 is followed by the piston skirt 1, which, in contrast to the ring belt 6, is not completely circumferential.
  • the piston 20 is therefore not designed as a full skirt piston.
  • the piston skirt 1 is slide-mounted in the cylinder liner, with a wall 10 of the piston skirt sliding back and forth along the liner when the piston moves.
  • the piston 20 is in one Corresponding cylinder (not shown) of a cylinder piston housing (not shown) a reciprocating internal combustion engine stored.
  • the piston skirt 1 has at least one pin eye 8 for receiving a piston pin.
  • a connecting rod (not shown) mounted on the crankshaft is articulated to the piston 20 via such a piston pin in order to convert the translatory movements of the piston 20 in the cylinder into rotational movements of the crankshaft about its axis of rotation as a result of this articulated coupling.
  • the piston 20 has a piston bowl 7, also referred to as a combustion chamber bowl.
  • the piston bowl 7 is designed as a so-called omega bowl.
  • the piston recess 7 has a cross section which is at least essentially the shape of a " ".
  • the piston 20 has a cooling channel section 3 in the ring belt, through which a lubricant, in particular oil, for example, can flow.
  • the piston head 5 can be cooled via the lubricant in the cooling channel section 3.
  • the piston comprises a cooling channel 2 which extends from the ring belt 6 or from the piston head as far as a wall 10 of the piston skirt.
  • the cooling channel 2 therefore comprises an upper section 3, which is located in the area of the ring belt 6, and a lower section 4, which is located in the area of the piston skirt 1 and adjoins a wall 10 of the piston skirt.
  • the lower section 4 of the cooling channel 2 is not designed to be completely circumferential, due to the running surface of the piston 20 which is not completely circumferential.
  • the lower region of section 4 of cooling channel 2 extends in axial direction A of the piston to lower end 8 of the bolt eye or essentially almost along the entire axial length of piston skirt 1.
  • Both upper section 3 and the lower one Section 4 of the cooling channel 2 extend circumferentially along the outer wall of the piston 20.
  • the embodiment of FIG Figure 2 offers the advantage that lubricant flowing into the cooling channel 2 in the upper region 3 cools the piston head 5 and is heated in the process.
  • the back and forth movement of the piston between a bottom dead center and an upper dead center causes the lubricant in the cooling channel 2 to be flung back and forth ("shaken") so that the lubricant heated in the upper cooling channel area 3 also reaches the wall 10 of the piston skirt 1 and this thus heated.
  • the oil film which is located between the outside 13 of the piston skirt and the cylinder liner, is also heated, whereby its friction effect is reduced. An effective reduction in piston skirt friction can thereby be achieved.
  • transition between the upper area 3 of the cooling channel 2 and the lower area 4 of the cooling channel 2 is designed such that the lubricant is guided along a transition wall section 9 of the cooling channel 2.
  • the transition wall section 9 is arranged on the side of the cooling channel 2 facing the inside of the piston and connects the upper area 3 of the cooling channel to the lower area 4 of the cooling channel.
  • the transition wall section 9 runs obliquely downwards, an edge 15 being formed at the end of the transition wall section 9 at the transition to the lower wall section 4 of the cooling channel.
  • the oil flowing along the transition wall section 9 is thrown at this edge 15 against the wall 10 of the piston skirt 1 in the form of a jump, so that an effective wetting of the wall 10 of the piston skirt with lubricant is made possible.
  • the peculiarity of the embodiment of the Figure 3 lies in the fact that several through-openings 31 are made in the wall 10 of the piston skirt.
  • the through openings 31 in the form of through bores are made in the wall 10 of the piston skirt 1 at regular intervals along a circular line at half the piston skirt height. Via these through openings 31, lubricant that is thrown into the lower region 4 of the cooling channel 2 can pass to the cylinder liner and there heat the oil film even faster.
  • the piston 40 has an oil-catching rib 41 immediately below and adjacent to the through openings 31, which extends partly in the form of a ring along the inside of the wall 10 of the piston skirt 1.
  • the oil catch rib 41 here has a first section 42 which is fastened to the inside of the wall 10 of the piston skirt is and extends there circumferentially at a certain axial height.
  • the first section protrudes in the radial direction from the wall 10 and forms a horizontal oil collecting surface 42a.
  • a web 43 pointing upwards in the axial direction A is formed, the length of which essentially corresponds to the radius of the through openings 31.
  • the upper edge of the web 43 is denoted by the reference numeral 43a.
  • Such an oil catch rib 41 offers the advantage that oil, which is thrown back and forth during the piston movement, partly remains hanging on the oil catch rib 41 and is fed to the through openings 31 in this way.
  • the provision of the oil collecting ribs thus increases the amount of lubricant which is passed through the passage openings 31 towards the cylinder liner during the piston movement. This can increase the heating effect on the liner and thus further reduce the piston skirt friction.
  • Figure 4B shows an enlarged radial view of view A of FIG Figure 4A .
  • the first section 42 of the oil catching rib 41 adjoins the through opening 31 and the second section 43 extending in the axial direction adjoins the distal end of the first section 42.
  • the oil catch rib 41 is arranged such that a lower edge 31a, ie the lowest point, of the through opening 31 is arranged offset downward in the axial direction relative to one of the radial oil or lubricant catching surface 42a of the oil catch rib. This offers the advantage that even when the oil level is low on the oil trap rib, a large transition cross-section to the through opening 31 is already released.
  • the through hole is designed as a through hole in such a way that the through hole on the inside of the piston skirt extends into an area of the oil catcher rib and there forms a channel-shaped recess in the form of an open channel for receiving the collected oil or lubricant.
  • Figure 5 shows a fourth embodiment of the invention.
  • the peculiarity of the piston 50 of this embodiment is that in addition to the through openings 31 described above, further through openings 51 (second through openings) are provided, which - viewed in the axial direction A - are arranged below the first through openings 31 and preferably slightly offset in the radial direction to the Through openings 31 are arranged.
  • the oil catch rib 52 in turn has a first section 54 which extends in the radial direction away from the inside of the wall 10 of the piston skirt. At the distal end of the first section 54, however, a second section 53 is now arranged which extends in the axial direction and which extends in the axial direction both upwards and downwards from the first section 54.
  • the oil catcher rib 52 of the Figure 5 is therefore T-shaped. This offers the advantage that, in this embodiment, lubricant is caught by the oil catching rib both during the upward movement and also during the downward movement of the piston and is fed either to the upper through-openings 31 or the lower through-openings 51. As a result, the supply of lubricant heated in the cooling channel 2 to the cylinder liner can be increased even further, and the friction-reducing effect can thus be improved even further.
  • the Figure 6 illustrates a fifth exemplary embodiment of a piston 60.
  • the special feature of this exemplary embodiment is that the inside of the wall 10 of the piston skirt has a profile 61.
  • the profiling is designed as a rib structure.
  • the surface on the inside of the wall 10 of the piston skirt 1 is enlarged, whereby the heat transfer from oil to the wall 10 of the piston skirt 1 is increased.
  • FIG Figure 7 A sixth embodiment of a piston 70 is shown in FIG Figure 7 shown.
  • the special feature of this embodiment lies in the fact that a recess 71 in the form of a circumferential groove or notch which surrounds the through openings 31 is provided on the outside 13 of the wall 10 of the piston skirt 1.
  • This depression 71 has the effect that oil emerging through the through openings 31 on the cylinder liner is better distributed. This in turn accelerates the heating of the oil film of the cylinder liner and thus leads to a faster and more effective reduction in piston skirt friction.
  • FIG 8 illustrates a seventh embodiment of a piston 80.
  • the special feature of this embodiment is that a through opening 82 (lubricant return hole) is arranged on the inside of the cooling channel 2.
  • the lubricant return bore 82 is in particular arranged at a distance from the lower end 4a of the lower region 4 of the cooling channel and at the same time below the through openings 31, via which the cooling channel is fluidically connected to the liner.
  • the oil level of the lubricant reservoir 81 can be set by defining the axial height of the lubricant return bore 82 will.
  • the lubricant flung back and forth in the cooling channel 2 can flow back into the piston interior via the lubricant return bore 82 and in this way be fed back into the lubricant circuit.
  • the lubricant return bore 82 is designed to be inclined, which offers advantages in terms of manufacturing technology, since in this way the introduction of the lubricant return bore 82 does not require an angle drill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Claims (15)

  1. Piston (40 ; 50 ; 90) pour un moteur à combustion interne alternatif, comportant une tête de piston (5) et une jupe de piston (1),
    dans lequel la tête de piston (5) comprend une partie annulaire périphérique (6) dotée d'au moins une rainure annulaire pour un segment de piston ainsi que, dans la région de la partie annulaire (6), une partie supérieure périphérique (3) d'un canal de refroidissement (2),
    dans lequel le canal de refroidissement (2) comprend une partie inférieure (4) qui s'étend à partir de la partie annulaire (6) jusqu'à une paroi (10) de la jupe de piston (1) le long d'au moins 2/3 de la longueur axiale de la jupe de piston (1) le long d'une surface intérieure de la paroi (10) de la jupe de piston (1), de telle sorte qu'en cas de mouvement de va-et-vient du piston (40 ; 50 ; 90), du lubrifiant chauffé dans la partie supérieure (3) du canal de refroidissement (2) atteint également la surface intérieure de la paroi (10) de la jupe de piston (1) le long d'au moins 2/3 de la longueur axiale de la jupe de piston (1), afin de permettre un transfert d'énergie pour chauffer la jupe de piston (1),
    caractérisé en ce que la partie inférieure (4) du canal de refroidissement (2) est, dans la région de la paroi (10) de la jupe de piston (1), reliée fluidiquement à une chemise de cylindre pour le piston (40 ; 50 ; 90) au moyen d'au moins une première ouverture traversante (31) ; et
    en ce que le piston (40 ; 50 ; 90) comporte une nervure collectrice d'huile (41 ; 52) qui est disposée dans le canal de refroidissement (2), de telle sorte qu'une partie de l'huile projetée suivant un mouvement de va-et-vient par le mouvement du piston dans le canal de refroidissement (2) frappe la nervure collectrice d'huile (41 ; 52) et soit guidée par la nervure collectrice d'huile (41) jusqu'à l'au moins une première ouverture traversante (31).
  2. Piston selon la revendication 1, caractérisé en ce que le canal de refroidissement (2) s'étend jusqu'à une région d'extrémité (4) inférieure de la paroi (10) de la jupe de piston (1), laquelle région d'extrémité est opposée à la partie annulaire (6).
  3. Piston selon la revendication 1, caractérisé
    a) en ce que la jupe de piston (1) comprend au moins un bossage d'axe (8) servant au logement d'un axe de piston ; et
    b1) en ce que le canal de refroidissement (2) s'étend dans la direction axiale du piston au moins jusqu'à la hauteur de l'au moins un bossage d'axe (8) ; et/ou
    b2) en ce que le canal de refroidissement (2) s'étend dans la direction axiale du piston jusqu'à une extrémité inférieure du bossage d'axe (8).
  4. Piston selon l'une des revendications précédentes, caractérisé en ce que l'au moins une première ouverture traversante (31) est disposée à mi-hauteur de la jupe de piston (1) dans la direction axiale.
  5. Piston selon l'une des revendications précédentes, caractérisé
    a) en ce que la nervure collectrice d'huile (41 ; 52) est disposée à hauteur de l'au moins une première ouverture traversante (31) ou de manière immédiatement adjacente à celle-ci ; et/ou
    b) en ce qu'une arête inférieure (31a) de la première ouverture traversante (31) est décalée vers le bas par rapport à une surface collectrice d'huile horizontale (42a) de la nervure collectrice d'huile (41 ; 52) ; et/ou
    c) en ce que l'ouverture traversante (31) est un alésage traversant qui s'étend jusque dans une région de la nervure collectrice d'huile (41 ; 52) et y forme un évidement en forme de canal.
  6. Piston selon l'une des revendications précédentes, caractérisé en ce que le canal de refroidissement (2) est, dans la région de la paroi (10) de la jupe de piston (1), relié fluidiquement à la chemise de cylindre par au moins une deuxième ouverture traversante (51), l'au moins une première ouverture traversante (31) et l'au moins une deuxième ouverture traversante (51) étant disposées respectivement sur des côtés opposés de la nervure collectrice d'huile (41 ; 52) dans la direction axiale (A) du piston.
  7. Piston selon l'une des revendications précédentes, caractérisé en ce que la nervure collectrice d'huile (41 ; 52) comprend une première partie (42 ; 54) périphérique sur la paroi (10) de la jupe de piston (1) et s'étendant dans la direction radiale du piston et une deuxième partie (43 ; 53) s'étendant dans la direction axiale du piston, laquelle est disposée au niveau de la région d'extrémité de la première partie (42 ; 54) qui est opposée à la paroi (10) de la jupe de piston (1).
  8. Piston selon la revendication 7, caractérisé en ce que la deuxième partie (53) de la nervure collectrice d'huile (52) s'étend dans la direction axiale à la fois en direction de la tête de piston (5) et en sens inverse.
  9. Piston selon l'une des revendications précédentes, caractérisé en ce que la paroi (10) de la jupe de piston (1) comprend un profilage (61) sur un côté tourné vers le canal de refroidissement (2), le profilage (61) étant formé de préférence par une structure rainurée.
  10. Piston selon l'une des revendications précédentes, caractérisé en ce que la jupe de piston (1) comprend, sur sa surface extérieure (13), un renfoncement (71) entourant une région d'extrémité de l'au moins un premier alésage traversant (31), lequel renfoncement se présente par exemple sous la forme d'une gorge ou d'une rainure, pour la distribution d'un lubrifiant sortant de la région d'extrémité de la première ouverture traversante (31) entre la chemise de cylindre et la jupe de piston (1).
  11. Piston selon l'une des revendications précédentes, caractérisé par un alésage de retour de lubrifiant (82), qui est prévu sur une paroi (14) du canal de refroidissement (2) qui est disposée en regard de la jupe de piston (1), l'alésage de retour de lubrifiant (82) étant disposé, dans la direction axiale du piston, de manière espacée par rapport à l'extrémité inférieure (4a) du canal de refroidissement (2) et en dessous de l'au moins une première ouverture traversante (31).
  12. Piston selon la revendication 11, caractérisé en ce que l'alésage de retour de lubrifiant (82) s'étend à partir de la paroi (14) du canal de refroidissement (2) de manière inclinée vers le bas jusqu'à un espace intérieur de piston.
  13. Piston selon l'une des revendications précédentes, caractérisé en ce que
    a) une partie de paroi de transition du canal de refroidissement (2),
    a1) qui est disposée sur le côté du canal de refroidissement (2) tourné vers le côté intérieur du piston et
    a2) relie une région supérieure (3) du canal de refroidissement (2), qui est réalisée de manière périphérique dans la région de la partie annulaire (6), à une région inférieure (4) du canal de refroidissement (2) qui est adjacente à la paroi (10) de la jupe de piston (1)
    a3) comprend une partie (9) s'étendant de manière inclinée vers le bas en direction de la jupe de piston (1), partie à laquelle se raccorde, dans la région inférieure (4) du canal de refroidissement (2), une paroi (14), s'étendant vers le bas de manière plus inclinée par comparaison à celle-ci, du canal de refroidissement (2), laquelle paroi est disposée en regard de la jupe de piston (1),
    b) la région de transition entre la partie de paroi (9) du canal de refroidissement (2) et la paroi (14) s'étendant vers le bas de manière plus inclinée par rapport à celle-ci formant une arête (15).
  14. Ensemble comportant
    a) un piston selon l'une des revendications précédentes ;
    b) une pompe à lubrifiant à régulation de débit volumique, laquelle est destinée à l'alimentation du piston en lubrifiant ; et
    c) un dispositif de commande de la pompe à lubrifiant, dans lequel le dispositif de commande est conçu pour, en fonction d'un paramètre de fonctionnement d'un moteur à combustion interne à partir duquel la charge effective du moteur peut être déduite, commander ou réguler un débit volumique de lubrifiant pour l'alimentation du piston en lubrifiant, de telle sorte que, dans le cas d'une première valeur du paramètre de fonctionnement qui correspond à une première charge de moteur, un premier débit volumique est réglé et, dans le cas d'une deuxième valeur du paramètre de fonctionnement qui correspond à une deuxième charge de moteur qui est supérieure à la première charge de moteur, un deuxième débit volumique est réglé, lequel est supérieur au premier débit volumique.
  15. Véhicule automobile, en particulier véhicule utilitaire, comprenant un piston selon l'une des revendications 1 à 13.
EP17153761.6A 2016-02-18 2017-01-30 Piston pour un moteur à combustion interne alternatif Active EP3208453B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016001926.3A DE102016001926A1 (de) 2016-02-18 2016-02-18 Kolben für eine Hubkolben-Verbrennungskraftmaschine

Publications (2)

Publication Number Publication Date
EP3208453A1 EP3208453A1 (fr) 2017-08-23
EP3208453B1 true EP3208453B1 (fr) 2020-11-18

Family

ID=57944315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17153761.6A Active EP3208453B1 (fr) 2016-02-18 2017-01-30 Piston pour un moteur à combustion interne alternatif

Country Status (7)

Country Link
US (1) US10502158B2 (fr)
EP (1) EP3208453B1 (fr)
KR (1) KR20170097565A (fr)
CN (1) CN107091166B (fr)
BR (1) BR102017003087A2 (fr)
DE (1) DE102016001926A1 (fr)
RU (1) RU2734889C2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789316C1 (ru) * 2022-04-27 2023-02-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Устройство для охлаждения и смазки поршня двигателя внутреннего сгорания

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017130691A1 (de) 2017-12-20 2019-06-27 Man Truck & Bus Ag Vorrichtung zum Schmieren eines Pleuellagers
DE102017130961A1 (de) 2017-12-21 2019-06-27 Man Truck & Bus Ag Kolben für eine Hubkolben-Verbrennungskraftmaschine
DE102021134521A1 (de) * 2021-12-23 2023-06-29 Newgreen Ag Dieselmotor mit Hochdruck-Einspritzung und Aufladung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB493126A (en) * 1936-07-23 1938-09-30 Louis Birkigt Improvements in and relating to liquid circulating means
DE733038C (de) * 1941-09-17 1943-03-18 Mahle Kg Brennkraftmaschinenkolben mit einem Hohlraum zur Aufnahme eines Kuehlmittels

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116516A (en) * 1978-03-01 1979-09-10 Toyota Motor Corp Internal combustion engine
US4493292A (en) * 1983-06-09 1985-01-15 Automotive Engine Associates Heat piped piston
DE3502644A1 (de) * 1985-01-26 1986-07-31 M.A.N.-B & W Diesel GmbH, 8900 Augsburg Oelgekuehlter, mehrteiliger tauchkolben fuer hubkolbenbrennkraftmaschinen
DE3506399A1 (de) * 1985-02-23 1986-08-28 Mahle Gmbh, 7000 Stuttgart Tauchkolben fuer verbrennungsmotoren mit schmiernut
SU1560759A1 (ru) * 1987-07-06 1990-04-30 Научно-исследовательский конструкторско-технологический институт тракторных и комбайновых двигателей Поршень двигател внутреннего сгорани
BR8803970A (pt) * 1988-07-15 1990-03-20 Metal Leve Sa Embolo articulado refrigerado
DE4018252A1 (de) * 1990-06-07 1991-12-12 Man B & W Diesel Ag Oelgekuehlter kolben
DE4243571C2 (de) * 1992-12-22 1997-05-28 Opel Adam Ag Ölversorgung für den Kolben einer Hubkolbenbrennkraftmaschine
US6477941B1 (en) 1999-10-08 2002-11-12 Federal-Mogul World Wide, Inc. Dual gallery piston
WO2002033291A1 (fr) * 2000-10-18 2002-04-25 Federal-Mogul Corporation Piston forge de maniere multiaxiale
JP4486270B2 (ja) * 2001-02-22 2010-06-23 三菱重工業株式会社 スカート注油構造
US6532913B1 (en) * 2001-11-27 2003-03-18 Caterpillar Inc Piston cooling fin
DE102004017909A1 (de) * 2004-04-13 2005-11-10 Bayerische Motoren Werke Ag Vorrichtung zur Kühlung von zumindest einem Kolben einer Brennkraftmaschine
JP2006226152A (ja) * 2005-02-15 2006-08-31 Toyota Motor Corp 内燃機関
DE102005042003A1 (de) * 2005-09-05 2007-03-08 Mahle International Gmbh Gebauter, flüssigkeitsgekühlter Kolben
US7918155B2 (en) * 2007-12-12 2011-04-05 Mahle International Gmbh Piston with a cooling gallery
US9970384B2 (en) * 2009-11-06 2018-05-15 Federal-Mogul Llc Steel piston with cooling gallery and method of construction thereof
JP2011256812A (ja) * 2010-06-10 2011-12-22 Nippon Soken Inc 内燃機関のピストン
CN201916070U (zh) * 2010-12-20 2011-08-03 浙江吉利汽车研究院有限公司 往复式发动机的活塞
DE102011012685A1 (de) * 2011-03-01 2012-09-06 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE102011012686A1 (de) * 2011-03-01 2012-09-06 Mahle International Gmbh Kolben für einen Verbrennungsmotor
US20130186365A1 (en) * 2011-09-06 2013-07-25 Mahle Koenig Kommanditgesellschaft Gmbh & Co Kg Piston, cylinder and engine with crown precision cooling
DE102012200279A1 (de) * 2012-01-11 2013-07-11 Ford Global Technologies, Llc Verfahren und Vorrichtung zum Betreiben eines Schmiersystems einesVerbrennungsmotors
US8739746B2 (en) * 2012-01-31 2014-06-03 Ford Global Technologies, Llc Variable oil pump diagnostic
JP2013209903A (ja) * 2012-03-30 2013-10-10 Daihatsu Motor Co Ltd ピストン構造
DE102012008945A1 (de) * 2012-05-05 2013-11-07 Mahle International Gmbh Kolben für einen Verbrennungsmotor
WO2014015311A1 (fr) * 2012-07-20 2014-01-23 Federal-Mogul Corporation Piston avec passage de refroidissement à l'huile et méthode de construction de celui-ci
DE102012017217A1 (de) * 2012-08-31 2014-05-15 Mahle International Gmbh Kolben für einen Verbrennungsmotor
DE102013009164A1 (de) * 2013-05-31 2014-12-04 Mahle International Gmbh Kolben für einen Verbrennungsmotor
JP6171644B2 (ja) 2013-07-12 2017-08-02 マツダ株式会社 車両の制御装置
US9303583B2 (en) * 2014-01-14 2016-04-05 Ford Global Technologies, Llc Robust direct injection fuel pump system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB493126A (en) * 1936-07-23 1938-09-30 Louis Birkigt Improvements in and relating to liquid circulating means
DE733038C (de) * 1941-09-17 1943-03-18 Mahle Kg Brennkraftmaschinenkolben mit einem Hohlraum zur Aufnahme eines Kuehlmittels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789316C1 (ru) * 2022-04-27 2023-02-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Устройство для охлаждения и смазки поршня двигателя внутреннего сгорания

Also Published As

Publication number Publication date
CN107091166B (zh) 2021-01-29
RU2734889C2 (ru) 2020-10-23
KR20170097565A (ko) 2017-08-28
US20170241373A1 (en) 2017-08-24
RU2017104922A (ru) 2018-08-16
US10502158B2 (en) 2019-12-10
CN107091166A (zh) 2017-08-25
BR102017003087A2 (pt) 2017-12-12
DE102016001926A1 (de) 2017-08-24
EP3208453A1 (fr) 2017-08-23
RU2017104922A3 (fr) 2020-05-22

Similar Documents

Publication Publication Date Title
EP3208453B1 (fr) Piston pour un moteur à combustion interne alternatif
DE102011012686A1 (de) Kolben für einen Verbrennungsmotor
EP2050946A1 (fr) Cylindre doté de moyens de réception de lubrifiants
DE19962325A1 (de) Hubkolbenmaschine
EP3502453B1 (fr) Piston pour un moteur à combustion interne alternatif
EP2486263B2 (fr) Piston pour moteur à combustion interne, et moteur à combustion interne comportant un piston
EP2183475B1 (fr) Piston équipé d'une conduite d'alimentation en huile pour des alésages de moyeu
DE102015009568B4 (de) Brennkraftmaschine mit einer Steuereinrichtung zur gezielten Ansteuerung einer Kolbenkühldüse oder eines Kolbenkühlkanals sowie Verfahren zum Betreiben einer Brennkraftmaschine
DE2512425A1 (de) Fluessigkeitskuehlung fuer den kolben einer rotationskolbenmaschine
DE102017213896A1 (de) Verbrennungsmotor
DE102018208898A1 (de) Hubkolben für eine Hubkolbenbrennkraftmaschine und Verwendung eines Hubkolbens in einer Hubkolbenbrennkraftmaschine
EP3502452A1 (fr) Piston pour un moteur à combustion interne à piston alternatif
DE102004029926B4 (de) Kolben für einen Verbrennungsmotor
DE10127172B4 (de) Kolben für einen Verbrennungsmotor
AT522701B1 (de) Kolben
DE102017201741A1 (de) Kolben-Pleuel-Vorrichtung zur direkten Kolbenschmierung und -kühlung
DE10251943B3 (de) Kolben für Hubkolbenbrennkraftmaschinen
DE102018122249A1 (de) Brennkraftmaschine
EP3880992B1 (fr) Piston et cylindre d'un moteur à combustion interne
DE102004029927B4 (de) Kolben für einen Verbrennungsmotor
DE102014010156A1 (de) Anordnung eines Kolbens in einem Zylinder einer Hubkolben-Verbrennungskraftmaschine sowie Kolben für eine Hubkolben-Verbrennungskraftmaschine
DE10230746B4 (de) Kolben
WO2015124749A1 (fr) Piston comportant un espace de refroidissement pourvu de faces de guidage d'huile appropriées à l'écoulement comportant et procédé de refroidissement de ce piston
DE102005039268B4 (de) Kolben eines Kolbenverdichters, insbesondere eines Kältemittelverdichters
DE19953384C1 (de) Kolben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171221

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TRUCK & BUS SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F02F 3/22 20060101AFI20200617BHEP

Ipc: F01M 1/16 20060101ALN20200617BHEP

Ipc: F01P 3/06 20060101ALI20200617BHEP

Ipc: F02F 3/00 20060101ALN20200617BHEP

INTG Intention to grant announced

Effective date: 20200707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017008220

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1336040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210218

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017008220

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

26N No opposition filed

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1336040

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240125

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 8

Ref country code: GB

Payment date: 20240123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240125

Year of fee payment: 8

Ref country code: IT

Payment date: 20240123

Year of fee payment: 8

Ref country code: FR

Payment date: 20240125

Year of fee payment: 8