EP3204168B1 - Zerstäuberdüse - Google Patents

Zerstäuberdüse Download PDF

Info

Publication number
EP3204168B1
EP3204168B1 EP14784032.6A EP14784032A EP3204168B1 EP 3204168 B1 EP3204168 B1 EP 3204168B1 EP 14784032 A EP14784032 A EP 14784032A EP 3204168 B1 EP3204168 B1 EP 3204168B1
Authority
EP
European Patent Office
Prior art keywords
channel
liquid
mixing chamber
swirl
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14784032.6A
Other languages
English (en)
French (fr)
Other versions
EP3204168A1 (de
Inventor
Jochen PAAL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spraying Systems Manufacturing Europe GmbH
Original Assignee
Spraying Systems Manufacturing Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spraying Systems Manufacturing Europe GmbH filed Critical Spraying Systems Manufacturing Europe GmbH
Publication of EP3204168A1 publication Critical patent/EP3204168A1/de
Application granted granted Critical
Publication of EP3204168B1 publication Critical patent/EP3204168B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0491Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid the liquid and the gas being mixed at least twice along the flow path of the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0441Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber
    • B05B7/0466Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with one inner conduit of liquid surrounded by an external conduit of gas upstream the mixing chamber with means for deflecting the central liquid flow towards the peripheral gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • B05B7/0416Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid
    • B05B7/0483Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge with arrangements for mixing one gas and one liquid with gas and liquid jets intersecting in the mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/08Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point
    • B05B7/0892Spray pistols; Apparatus for discharge with separate outlet orifices, e.g. to form parallel jets, i.e. the axis of the jets being parallel, to form intersecting jets, i.e. the axis of the jets converging but not necessarily intersecting at a point the outlet orifices for jets constituted by a liquid or a mixture containing a liquid being disposed on a circle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/10Spray pistols; Apparatus for discharge producing a swirling discharge

Definitions

  • the invention relates to an atomizer nozzle that can be used on spray devices for spraying liquids.
  • the atomizer nozzle can be arranged on mobile or stationary spray devices.
  • Atomizer nozzles are used for fine atomization of a liquid supplied to the atomizer nozzle, for example water, or a liquid mixture, which can also have additives, such as cleaning agents or the like.
  • a liquid is referred to below, wherein such liquid mixtures are also intended to be included.
  • Compressed gas is used to atomize the liquid into fine liquid particles, which is mixed with the liquid in a mixing chamber and supports atomization.
  • the liquid atomized with the aid of the compressed gas is dispensed as an atomized spray jet at at least one outlet opening of the atomizer nozzle.
  • the atomizing nozzle can be used in various fields of application, for example for spraying fertilizers, pesticides or fungicides in agriculture or for moistening or cooling objects in industrial production, for spraying water and / or cleaning agents or in the chemical industry for evaporation to facilitate the liquid by atomizing.
  • the atomizer nozzle can be used wherever very fine atomization of a liquid is required.
  • an atomizer nozzle is off EP 0 714 706 B1 known.
  • the atomizer nozzle has a liquid connection and a gas connection.
  • the liquid connection is fluidly connected to a liquid channel which extends coaxially along a nozzle axis and opens into a mixing chamber.
  • the liquid stream flows as a jet along the nozzle axis into the mixing chamber.
  • Radially to the nozzle axis several injection channels open into the mixing chamber and are fluidly connected to the gas connection.
  • the axial liquid flow is atomized via the gas flowing transversely thereto and is discharged to the outside along the nozzle axis through an outlet opening.
  • WO 2008/032088 A1 and EP 0 458 685 A1 each describe atomizer nozzles with features that correspond to the features of the preamble of independent claim 1.
  • the atomizer nozzle has a liquid connection for supplying a liquid.
  • the liquid can be a single liquid or a liquid mixture.
  • the liquid connection is connected to a liquid channel through which the supplied liquid flows and which opens downstream into an annular mixing chamber.
  • the annular mixing chamber surrounds a nozzle axis of the atomizing nozzle in an annular manner and is arranged coaxially with the nozzle axis.
  • An end section opening directly into the ring mixing chamber widens towards the ring mixing chamber.
  • the outer diameter of the end section becomes larger towards the ring mixing chamber.
  • a central part can preferably be arranged in this end section.
  • the nozzle axis can preferably pass through the central part in the middle.
  • a flow layer is formed from the liquid flowing through the end section, which diverges away from the nozzle axis and is preferably completely closed in a ring shape in the circumferential direction around the nozzle axis.
  • the flow layer is directed obliquely away from the nozzle axis.
  • a flow cone-shaped or frustoconical flow layer is formed, which can also be referred to as a liquid film.
  • the means for generating the flow layer has a swirl generating means which gives a swirl to the liquid flowing in the liquid channel.
  • the annular mixing chamber connects to the end section of the liquid channel.
  • the liquid of the flow layer flows into the annular mixing chamber from the end section.
  • Compressed gas is supplied to a gas line system of the atomizer nozzle via a gas connection.
  • any pressurized gas or gas mixture at any temperature and / or pressure can be used as the pressurized gas, regardless of the saturation vapor pressure and / or the critical temperature of the gas or gas mixture.
  • compressed air and / or nitrogen and / or hydrogen can be used as the compressed gas.
  • Steam can also be used as the pressurized gas in some applications, for example Steam.
  • the gas line system includes at least one outer injection channel and at least one inner injection channel. Compressed gas is introduced into the ring mixing chamber via the injection channels.
  • the outer injection channel opens into an outer injection point and the inner injection channel opens into the ring mixing chamber at an inner injection point.
  • the inner injection point is enclosed by the annular mixing chamber which extends coaxially around the nozzle axis. Viewed radially to the nozzle axis, the outer injection site is on the radially outer side of the ring mixing chamber and the inner injection site is on the radially inner side of the ring mixing chamber.
  • the gas flows into the ring mixing chamber from outside and inside and hits the flow layer there.
  • the pressurized gas is directed from the radially outside and radially inside against the frustoconical flow layer.
  • the outer injection site and the inner injection site are preferably arranged offset to one another in the direction of extension of the annular mixing chamber.
  • the direction of extension of the annular mixing chamber is to be understood as the course of the median plane through the annular mixing chamber starting at the end section of the liquid channel up to the outer end of the annular mixing chamber in front of the at least one outlet opening.
  • the direction of extension of the annular mixing chamber therefore does not relate to its course in the circumferential direction around the nozzle axis, but at right angles thereto along the central plane.
  • the outer and the inner injection site can also be arranged opposite one another in the direction of extension of the ring mixing chamber.
  • the inner injection site is arranged upstream of the outer injection site in the direction of extension of the ring mixing chamber.
  • the pressurized gas supplied via the inner injection point gives the liquid flow a radial component or a flow component towards the outer injection point.
  • Compressed gas is also fed in there, with the excitation or the radially outward flow component producing a further improved atomization into small liquid particles.
  • the gas streams entering from the different directions at the two injection points can also have a shear effect on the flow layer, which is particularly the case when the outer and inner injection points are offset in the direction of extension of the annular mixing chamber, but are arranged close to one another.
  • a spatially close arrangement of the two injection points is understood to mean that the compressed gas flowing in from one of the two injection points at least partially directly onto the other Injection site or a wall section immediately adjacent to the other injection site.
  • the inner injection site specifies a main outflow direction that intersects the median plane of the ring mixing chamber at a first angle.
  • the outer injection site can specify a main outflow direction that intersects the median plane of the annular mixing chamber at a second angle.
  • the amount of the second angle is preferably smaller than the amount of the first angle.
  • the first angle can be, for example, in a range from 45 ° to 90 °, preferably between 60 ° and 90 °.
  • the second angle is, for example, less than 70 ° and preferably less than 45 °.
  • the gas line system fluidly connects the inner injection channel and the outer injection channel to the gas connection.
  • the compressed gas provided at the gas connection thus flows into both injection channels.
  • the gas line system is designed such that the gas volume flow that flows into the ring mixing chamber via the outer injection channel is greater than the gas volume flow that flows into the ring mixing chamber via the inner injection channel.
  • the gas volume flow flowing into the ring mixing chamber via the outer injection channel can be more than 50% and preferably up to 80% of the total gas volume flow which flows into the ring mixing chamber via the two injection channels. This division allows good atomization with a further reduced compressed gas consumption.
  • gas volume flow components can also be used less than 50% or more than 80%.
  • At least one outlet opening is present downstream of the annular mixing chamber.
  • the spray jet which contains the liquid atomized by gas, emerges from the at least one outlet opening.
  • the outlet openings preferably each have a rotationally symmetrical shape and can for example be cylindrical and / or widening and / or designed as a Laval nozzle.
  • a further improvement in the atomization of the liquid is achieved in one exemplary embodiment in that the annular mixing chamber between the injection points and the at least one outlet opening has a curve that is curved one or more times in the direction of the nozzle axis.
  • the annular mixing chamber viewed along the nozzle axis, can curve towards the nozzle axis and / or curve away from the nozzle axis.
  • the annular mixing chamber is designed to be rotationally symmetrical to the nozzle axis.
  • the atomizing nozzle has the swirl generating means, which is set up to impart a swirl to the liquid flowing into the liquid channel and in particular into the end section of the liquid channel.
  • the swirl generating means can be formed, for example, in that an inflow orifice for supplying the liquid into the liquid channel opposite the nozzle axis is radially offset and aligned obliquely. As a result, the liquid flowing into the liquid channel will already flow helically along the liquid channel with a swirl.
  • the swirl generating means can have a swirl generator which is arranged in the liquid channel and in particular upstream of the end section of the liquid channel.
  • the swirl generator is flowed through by the liquid and gives a swirl to the liquid flow. This can be done by inclined and / or helical guide surfaces and / or guide channels and / or by a rotor of the swirl generator, e.g. an impeller.
  • all known swirl generating agents can be used alone or in combination.
  • the swirl generator is arranged in a swirl generation section of the liquid channel which adjoins the end section of the liquid channel.
  • the swirl generating section can be arranged, for example, upstream of and in the immediate vicinity of a transition section of the liquid channel which leads to the end section and whose cross section or diameter tapers towards the end section.
  • the flow cross section available for the liquid in the swirl generation section can be essentially constant in the flow direction.
  • the gas line system has a central channel which extends along the nozzle axis in the central part.
  • the central channel opens into the liquid channel in the central part. From the central channel can pressurized gas flow substantially counter to the axial flow direction component of the liquid immediately upstream of the end section of the liquid channel and there contribute to an improved formation of the hollow cone-shaped flow layer.
  • the atomizer nozzle has a nozzle body in which the liquid channel and the annular mixing chamber are formed.
  • the nozzle body is preferably made integrally from a material without a seam and joint. It can preferably be produced by so-called additive manufacturing processes, such as 3D printing processes. It is also preferred if all lines and channels carrying a fluid are formed in this nozzle body.
  • the central part is preferably an integral part of this nozzle body.
  • FIG. 1 An atomizing nozzle 10 is illustrated in the drawing.
  • the Figures 1 and 2nd show a preferred embodiment while Figure 3 illustrates the principle of operation.
  • the atomizer nozzle 10 is used on a mobile or stationary spray device and is used to atomize a supplied liquid F using compressed gas L and to deliver the finely atomized liquid particles as a spray jet S or spray mist.
  • the flowing liquid F is schematically illustrated by block arrows and the compressed gas L by simple arrows.
  • the point density schematically shows the fine atomization of the liquid F in Figure 3 illustrated, with a lower point density representing a finer atomization.
  • the atomizing nozzle 10 has a nozzle housing 11.
  • a liquid connection 12 for supplying the liquid F and a gas connection 13 for supplying the compressed gas L are provided on the nozzle housing.
  • the liquid connection 12 is arranged on a hollow cylindrical connection piece 14 of the nozzle housing 11.
  • the connecting piece 14 is arranged coaxially to a nozzle axis A.
  • the gas connection 13 is arranged, for example, in a ring around the connection piece 14 coaxially to the nozzle axis A.
  • the number and the arrangement of the gas connection 13 and the liquid connection 12 can also be provided in a different arrangement and orientation on the nozzle housing 11, depending on the spray device on which the atomizing nozzle 10 is used.
  • the nozzle housing 11 has an approximately cylindrical contoured housing part 11a, from which the connecting piece 14 of the nozzle housing 11 protrudes.
  • the housing part 11a is arranged coaxially to the nozzle axis A.
  • the gas connection 13 is arranged coaxially around the connection piece 14 in an end wall of the housing part 11a.
  • a tool engagement section 11b with one or more engagement surfaces for a tool can be provided on the housing part 11a, for example in order to rotate the atomizer nozzle 10 in the circumferential direction U when it is attached to a spray device and to connect it mechanically and fluidically to the spray device.
  • the nozzle housing 11 is designed, for example, as a one-piece, integral nozzle body 15 and can be produced, for example, as 3D printing or by another additive manufacturing process.
  • the nozzle body 15 is free of seams and joints and is made of a uniform material.
  • the liquid connection 12 is fluidly connected to a liquid channel 19.
  • a first section 19a of the liquid channel 19 adjoining the liquid connection 12 has a cylindrical shape and extends coaxially to the nozzle axis A.
  • a swirl generating section 19b of the liquid channel 19 Immediately adjacent to the first section 19a is a swirl generator 20 is arranged in this swirl generating section 19b, which swirls the liquid F which flows from the first section 19a into the swirl generating section 19b.
  • the liquid F no longer flows in or after the swirl generator section 19b only axially along the liquid channel 19, but instead a hollow-cone-shaped jet course or, if appropriate, arises a spiral or helical flow pattern.
  • the swirl generator 20 is formed by a swirl body 21 which is arranged coaxially to the nozzle axis A in the swirl generator section 19b.
  • the swirl body 21 can have guide surfaces or guide channels in order to impart a swirl to the liquid F. It is also possible to use a swirl generator 20 with a paddle wheel.
  • one or more suitable swirl generating means can be used to impart a swirl to the liquid when it flows into the liquid channel 19 or while it is flowing in the liquid channel 19.
  • Flow effects such as the Coanda effect, can also be used to impart swirl. It is also possible to carry out the inflow of the liquid F into the liquid channel 19 radially offset to the nozzle axis A, tangential to a channel wall 22 of the liquid channel 19 and inclined at an angle to the nozzle axis A, so that a swirling liquid flow is already achieved thereby.
  • a baffle body could also be arranged in the liquid channel 19 (not illustrated), which is suitable, for example, is essentially plate-shaped, so that when a liquid F impacts the baffle body, a thin, essentially plate-shaped liquid layer is generated, which is also referred to as an impact jet.
  • the embodiment described here supports the swirl generation in the swirl generation section 19b in that the channel cross section of the swirl generation section 19b or a transition section immediately following downstream of the swirl generation section 19b and not specified here in the flow direction is reduced. This is achieved in that the diameter of the swirl generating section 19b or transition section decreases starting from the first section 19a.
  • the swirl generation is preferably completed immediately before the transition section.
  • the diameter of the liquid channel 19 in the swirl generation section 19b can be constant and the tapered transition section can be omitted, which is shown schematically in the basic illustration according to example Figure 3 is illustrated.
  • An end section 19c of the liquid channel 19 is optionally connected to the swirl generating section 19b via the transition section.
  • the diameter of the channel wall 22 increases away from the swirl generating section 19b.
  • the liquid flowing along the channel wall 22 has a tendency to flow further along the channel wall 22, starting from the smallest channel wall diameter at the transition point between the swirl generating section 19b and the end section 19c.
  • a flow layer FH of liquid F is formed in the end section, which has the shape of a truncated cone.
  • the flow layer FH is formed coaxially to the nozzle axis A in the atomizing nozzle 10.
  • the flow layer FH is highly schematized in Figure 3 illustrated by the block arrows and dots in the end portion 19c.
  • a central part 25 is arranged in the end section 19c of the liquid channel, the diameter of which extends to an annular mixing chamber 26 into which the liquid channel 19 opens.
  • the ring mixing chamber 26 directly adjoins the end section 19c of the liquid channel 19.
  • the central part 25 is penetrated centrally by the nozzle axis A. Due to the arrangement of the central part 25 and the widening channel cross section of the end section 19c, the end section 19c is embodied as a hollow, frustoconical truncated cone, which is closed coaxially with the nozzle axis A, in the circumferential direction U around the nozzle axis A.
  • the channel wall 22 of the liquid channel 19 is curved in the swirl generating section 19b and the end section 19c along the nozzle axis A.
  • the channel cross section is thereby reduced in the swirl generating section 19b and enlarged again in the end section 19c.
  • the outer surface 27 of the central part 25 is also curved along the nozzle axis A and, for example, is concavely curved.
  • the outer surface 27 of the central part 25 lies opposite the channel wall 22 and is preferably adapted to the course of the channel wall such that the radial wall distance perpendicular to the nozzle axis A between the outer surface 27 of the central part 25 and the outer inner wall of the end section 19c remains essentially constant, wherein the annular flow cross-sectional area increases in the downstream direction with increasing distance from the nozzle axis A.
  • a frustoconical flow layer FH is thus generated in front of the annular mixing chamber 26 and flows into the annular mixing chamber 26.
  • a swirl generating means and / or the widening end section 19c with the central part 25 arranged therein can be used. For example, both measures are implemented together.
  • Compressed gas L is supplied in the annular mixing chamber 26 adjoining the end section 19c in order to atomize the liquid F into small liquid particles.
  • the gas connection 13 is connected to a gas line system 28 of the atomizer nozzle 10.
  • the gas line system 28 may include gas hoses that are arranged outside the nozzle housing 11, wherein — as in the preferred exemplary embodiment illustrated here — preferably only gas channels are used that are arranged or formed in the nozzle housing 11 and, for example, in the housing part 11a. In the exemplary embodiment, all gas channels of the gas line system 28 are formed during the manufacture of the nozzle body 15.
  • the gas line system 28 includes an outer injection channel 29 which extends in the circumferential direction U around the nozzle axis A in an annular manner around at least a section of the liquid channel 19 and opens into the ring mixing chamber 26 at an outer injection point 30.
  • the outer injection point 30 is designed as an annular gap and is arranged coaxially to the nozzle axis A.
  • annular connecting channel 31 Radially outside opposite the ring mixing chamber 26 and, for example, coaxially with the ring mixing chamber 26, there is an annular connecting channel 31 in the exemplary embodiment Gas line system 28 arranged in the nozzle housing 11, which is fluidly connected via one or more through openings 32 to a central gas channel 33 of the gas line system 28.
  • the central gas channel 33 extends along the nozzle axis A and is enclosed by the annular mixing chamber 26 in the circumferential direction U.
  • a portion of the compressed gas L which is fed to the central gas channel 33, opens into an inner injection channel 34 on the radially inner side of the ring mixing chamber 26.
  • the inner injection channel 34 can be formed by a section of the central gas channel 33 or by partition walls separated from the central gas channel 33 branch off.
  • the inner injection channel 34 opens into the annular mixing chamber 26 at an inner injection point 35.
  • the inner injection point 35 is designed as an annular gap that is preferably closed in the circumferential direction U about the nozzle axis A and is as uninterrupted as possible
  • a central channel 36 is fluidly connected to the central gas channel 33, which can branch off from the central gas channel 33 or can be formed by a section of the central gas channel 33.
  • the central channel 36 opens into the liquid channel 19a upstream of the end section 19c.
  • the mouth 37 of the central channel 36 is arranged coaxially to the nozzle axis A and oriented in the direction of the nozzle axis A away from the end section 19c or the annular mixing chamber 26.
  • the pressure gas L flowing out there thus flows approximately counter to the liquid F and supports the formation of the flow layer FH in the end section 19 c of the liquid channel 19.
  • the atomizer nozzle 10 has a plurality, for example 8, of outlet openings 40 arranged distributed in the circumferential direction U around the nozzle axis A.
  • the at least one outlet opening 40 can be designed as a cylindrical bore, as a slot or preferably in the form of a Laval nozzle.
  • the at least one outlet opening 40 has a cross section which widens conically in the flow direction.
  • the longitudinal axis of each outlet opening 40 is inclined with respect to the nozzle axis A.
  • the angle of inclination of the bore axis of the outlet opening 40 to the nozzle axis A is preferably in the range between 10 ° and 30 °.
  • a spray jet S is generated through the plurality of outlet openings 40 and is directed away from the nozzle axis A ( Figures 1 and 3rd ).
  • the outlet openings 40 are arranged in pipe sections 41 which are fluidly connected to the annular mixing chamber 26.
  • the through openings 32 are formed between the pipe pieces 41 in that pipe pieces 41 which are directly adjacent in the circumferential direction U are arranged at a distance from one another. A fluidic connection between the connecting channel 31 and the central gas channel 33 is thereby formed between the pipe pieces 41.
  • a partition wall 45 which guides the gas flow in the outer injection channel 29 to the outer injection point 30.
  • the volume flows in the connecting channel 31 to the central gas channel 33 and the inner injection point 35 on the one hand and through the outer injection channel 29 and the outer injection point 30 on the other hand are determined depending on requirements.
  • the ratio of the cross-sectional area of the communication opening 46 to that of the outer injection site 30 is, for example, in the range from approximately 20% to 40%, preferably approximately 30%.
  • the cross sections in the gas line system 28 can be selected such that a larger gas volume flow flows into the annular mixing chamber 26 via the outer injection channel 29 and the outer injection point 30 than via the inner injection channel 34 or the inner injection point 35.
  • the area ratio is exemplary predefined between the outer injection site 30 and the inner injection site 35 in a ratio of 1.5: 1 to 2.5: 1. In the preferred embodiment, the area ratio is approximately 2: 1. Then, for example, at least about two thirds of the gas flowing into the annular mixing chamber 26 can flow in via the outer injection point 30.
  • the area ratio between the inner injection site 35 and the mouth 37 of the central channel 36 is approximately 1:10 to 1:15 in the exemplary embodiment.
  • the Liquid F in the ring mixing chamber 26 at the two injection points 30, 35 pressurized gas L.
  • Figure 2 schematically illustrates a center plane E of the ring mixing chamber 26, which essentially also corresponds to the center of the liquid jet in the ring mixing chamber 26.
  • the central liquid jet entering the annular mixing chamber 26 from the end section 19c is indicated by a dotted line.
  • the two injection points 30, 35 are arranged offset to one another.
  • the compressed gas L which flows out of the inner injection point 35, first strikes the flowing liquid F or the flow layer FH, while the compressed gas L flows out of the outer injection point 30 further downstream into the ring mixing chamber 26.
  • the first main outflow direction P1 from the outer injection channel 29 into the annular mixing chamber 26 is schematically illustrated by the first arrow.
  • This first main outflow direction P1 which here runs approximately parallel to the nozzle axis A, for example, intersects the central liquid jet at a first angle ⁇ .
  • a second main outflow direction P2 for the compressed gas L from the inner injection channel 34 is drawn in by a second arrow, which is arranged at an acute angle to the nozzle axis A and forms a second angle ⁇ with the central liquid jet.
  • the amount of the second angle ⁇ is larger than the first angle ⁇ .
  • the first angle ⁇ is in particular less than 45 °, while the second angle ⁇ is between 70 ° and 90 °.
  • the atomizing nozzle 10 works as follows: A liquid F flows through the liquid channel 19. A swirl is imparted to the liquid flow in the swirl generating section 19b via a swirl generating means and, for example, the swirl generator 20. As a result of this and / or due to the pressure gas flowing in from the central channel 26 via the mouth 27 through the central part 25 and / or due to the diameter of the end section 19c of the liquid channel 19 widening towards the ring mixing chamber 26, a frustoconical flow layer FH is generated there, which flows into the ring mixing chamber 26 flows.
  • compressed gas L first strikes the flow layer FH at the inner injection point 35 and influences its flow direction by giving the liquid flow in the flow layer FH an additional transverse component away from the nozzle axis A to the radially outer side of the ring mixing chamber 26.
  • Compressed gas L is supplied somewhat downstream at the outer injection point 30. Because the liquid flow has already been stimulated upstream at the inner injection point 35, very fine atomization of the liquid can be achieved by the inflow of the compressed gas L from the outer side of the annular mixing chamber.
  • the pressurized gas L flowing into the ring mixing chamber from different sides creates a shearing effect, so to speak.
  • one or more curvatures extend the annular mixing chamber 26 towards the nozzle axis A and / or away from the nozzle axis A. a further atomization and uniform distribution of the liquid particles in the liquid-gas mixture can be achieved, which is then released through the outlet openings 40 in the form of spray jets S.
  • the annular mixing chamber 26 curves downstream of the two injection points first towards the nozzle axis A and then again away from the nozzle axis A.
  • annular mixing chamber 26 instead of a curved course of the annular mixing chamber 26 between the injection points 30, 35 and the outlet openings 40, a hollow-cylindrical design of the annular mixing chamber can also be provided in this section in a modification of the exemplary embodiment illustrated here.
  • the invention relates to an atomizing nozzle 10 with a liquid channel 19, to which an annular mixing chamber 26 is fluidly connected downstream.
  • a liquid F is fed to the liquid channel 19 via a liquid connection 12.
  • the atomizer nozzle 10 also has a gas connection 13 which is connected to a gas line system 28.
  • Compressed gas L is conducted via this to an outer injection channel 29 and an inner injection channel 34.
  • the two injection channels 29, 34 each open into the annular mixing chamber 26 at one injection point 30, 35.
  • the outer injection point 30 is present on the radially outer mixing chamber wall with respect to a nozzle axis A, about which the ring mixing chamber 26 extends coaxially, and the inner injection point 35 on the radially inner mixing chamber wall.
  • the inflowing liquid can be finely atomized with a low pressure gas consumption in the ring mixing chamber 26 and downstream of the ring mixing chamber 26 via at least one outlet opening 40 each as a spray jet S are delivered.

Landscapes

  • Nozzles (AREA)

Description

  • Die Erfindung betrifft eine Zerstäuberdüse, die an Sprüheinrichtungen zum Versprühen von Flüssigkeiten verwendet werden kann. Die Zerstäuberdüse kann an mobilen oder stationären Sprüheinrichtungen angeordnet sein.
  • Zerstäuberdüsen dienen zum feinen Zerstäuben einer der Zerstäuberdüse zugeführten Flüssigkeit, beispielsweise Wasser, bzw. einem Flüssigkeitsgemisch, das auch Zusatzstoffe, wie Reinigungsmittel oder dergleichen aufweisen kann. Der Einfachheit halber wird nachfolgend von einer Flüssigkeit gesprochen, wobei auch solche Flüssigkeitsgemische umfasst sein sollen. Zur Zerstäubung der Flüssigkeit in feine Flüssigkeitspartikel wird Druckgas verwendet, die der Flüssigkeit in einer Mischkammer beigemischt wird und die Zerstäubung unterstützt. Die mit Hilfe des Druckgases zerstäubte Flüssigkeit wird als zerstäubter Sprühstrahl an wenigstens einer Austrittsöffnung der Zerstäuberdüse abgegeben.
  • Die Zerstäuberdüse kann in verschiedenen Anwendungsbereichen eingesetzt werden, beispielsweise für das Versprühen von Düngemitteln, Pestiziden oder Fungiziden in der Landwirtschaft oder zum Befeuchten oder Kühlen von Objekten bei der industriellen Produktion, zum Versprühen von Wasser und/oder Reinigungsmitteln oder in der chemischen Industrie um die Verdunstung der Flüssigkeit durch das Zerstäuben zu erleichtern. Im Prinzip kann die Zerstäuberdüse überall dort eingesetzt werden, wo ein sehr feines Zerstäuben einer Flüssigkeit benötigt wird.
  • Eine Zerstäuberdüse ist beispielsweise aus EP 0 714 706 B1 bekannt. Die Zerstäuberdüse weist einen Flüssigkeitsanschluss sowie einen Gasanschluss auf. Der Flüssigkeitsanschluss ist mit einem Flüssigkeitskanal fluidisch verbunden, der sich entlang einer Düsenachse koaxial erstreckt und in eine Mischkammer einmündet. Der Flüssigkeitsstrom strömt als Strahl entlang der Düsenachse in die Mischkammer ein. Radial zu der Düsenachse münden in die Mischkammer mehrere Injektionskanäle, die fluidisch mit dem Gasanschluss verbunden sind. In der Mischkammer wird die axiale Flüssigkeitsströmung über die quer dazu strömendes Gas zerstäubt und stromabwärts entlang der Düsenachse durch eine Austrittsöffnung nach außen abgegeben.
  • WO 2008/032088 A1 und EP 0 458 685 A1 beschreiben jeweils Zerstäuberdüsen mit Merkmalen, die den Merkmalen des Oberbegriffs des unabhängigen Anspruchs 1 entsprechen.
  • Ausgehend von diesen bekannten Zerstäuberdüsen kann es als Aufgabe der Erfindung angesehen werden, eine verbesserte Zerstäubung der Flüssigkeit mit Hilfe von Gas zu erreichen.
  • Diese Aufgabe wird durch eine Zerstäuberdüse mit den Merkmalen des Patentanspruches 1 gelöst.
  • Die Zerstäuberdüse weist einen Flüssigkeitsanschluss zum Zuführen einer Flüssigkeit auf. Die Flüssigkeit kann eine einzige Flüssigkeit oder ein flüssiges Gemisch sein. Der Flüssigkeitsanschluss ist mit einem Flüssigkeitskanal verbunden, durch den die zugeführte Flüssigkeit strömt und der stromabwärts in eine Ringmischkammer mündet. Die Ringmischkammer umschließt eine Düsenachse der Zerstäuberdüse ringförmig und ist koaxial zu der Düsenachse angeordnet.
  • Ein unmittelbar in die Ringmischkammer einmündender Endabschnitt erweitert sich zur Ringmischkammer hin. Der Außendurchmesser des Endabschnitts wird zur Ringmischkammer hin größer. In diesem Endabschnitt kann vorzugsweise ein Zentralteil angeordnet sein. Die Düsenachse kann das Zentralteil vorzugsweise mittig durchsetzen. Mithilfe eines Mittels der Zerstäuberdüse, zu dem beispielsweise das Zentralteil gehört, wird aus der durch den Endabschnitt strömenden Flüssigkeit eine Strömungsschicht gebildet, die von der Düsenachse weg divergiert und vorzugsweise in Umfangsrichtung um die Düsenachse vollständig ringförmig geschlossen ist. Die Strömungsschicht ist schräg von der Düsenachse weg gerichtet. Vorzugsweise bildet sich eine hohlkegelförmige, bzw. hohlkegelstumpfförmige Strömungsschicht, die auch als Flüssigkeitsfilm bezeichnet werden kann. Das Mittel zur Erzeugung der Strömungsschicht weist ein Drallerzeugungsmittel auf, das der der in dem Flüssigkeitskanal strömenden Flüssigkeit einen Drall erteilt.
  • An den Endabschnitt des Flüssigkeitskanals schließt sich die Ringmischkammer an. Die Flüssigkeit der Strömungsschicht strömt aus dem Endabschnitt in die Ringmischkammer ein.
  • Über einen Gasanschluss wird einem Gasleitungssystem der Zerstäuberdüse Druckgas zugeführt. Prinzipiell lässt sich als Druckgas jedes unter Druck stehende Gas oder Gas-gemisch bei jeder Temperatur und/oder jedem Druck verwenden, unabhängig von dem Sättigungsdampfdruck und/oder der kritischen Temperatur des Gases oder Gasgemischs. Als Druckgas kann beispielsweise Druckluft und/oder Stickstoff und/oder Wasserstoff verwendet werden. Als Druckgas kann in einigen Anwendungen auch Dampf verwendet werden, beispielsweise Wasserdampf.
  • Zu dem Gasleitungssystem gehören wenigstens ein äußerer Injektionskanal und wenigstens ein innerer Injektionskanal. Über die Injektionskanäle wird Druckgas in die Ringmischkammer eingeleitet. Der äußere Injektionskanal mündet an einer äußeren Injektionsstelle und der innere Injektionskanal mündet an einer inneren Injektionsstelle in die Ringmischkammer ein. Die innere Injektionsstelle ist von der sich koaxial um die Düsenachse erstreckenden Ringmischkammer umschlossen. Radial zu der Düsenachse betrachtet, befindet sich die äußere Injektionsstelle an der radial äußeren Seite der Ringmischkammer und die innere Injektionsstelle an der radial inneren Seite der Ringmischkammer.
  • Somit strömt das Gas von außen und innen in die Ringmischkammer ein und trifft dort auf die Strömungsschicht auf. Das Druckgas ist von radial außen und radial innen gegen die hohlkegelstumpfförmige Strömungsschicht gerichtet. Durch das Erzeugen einer filmartigen Flüssigkeitsschicht und das Injizieren von Druckgas über die beiden Injektionsstellen in die Ringmischkammer von gegenüberliegenden Seiten ist eine deutlich verbesserte Zerstäubung der Flüssigkeit erreicht. Es lassen sich sehr kleine Flüssigkeitspartikel erzeugen, die stromabwärts durch die Zerstäuberdüse abgegeben werden. Außerdem kann durch das Injizieren des Druckgases in die vergleichsweise dünne, hohlkegelstumpfförmige Strömungsschicht der für die Zerstäubung notwendige Druckgasverbrauch gering gehalten werden. Der Druckgasverbrauch sinkt also durch die Verwendung der Zerstäuberdüse, was die Betriebskosten einer mit der Zerstäuberdüse ausgerüsteten Sprüheinrichtung verringert.
  • Vorzugsweise sind die äußere Injektionsstelle und die innere Injektionsstelle in Erstreckungsrichtung der Ringmischkammer versetzt zueinander angeordnet. Unter der Erstreckungsrichtung der Ringmischkammer ist der Verlauf der Mittelebene durch die Ringmischkammer beginnend am Endabschnitt des Flüssigkeitskanals bis zu dem äußeren Ende der Ringmischkammer vor der wenigstens einen Austrittsöffnung zu verstehen. Die Erstreckungsrichtung der Ringmischkammer bezieht sich demnach nicht auf deren Verlauf in Umfangsrichtung um die Düsenachse, sondern rechtwinkelig hierzu entlang der Mittelebene. Die äußere und die innere Injektionsstelle können auch in Erstreckungsrichtung der Ringmischkammer einander gegenüberliegend angeordnet sein.
  • Bei einem Ausführungsbeispiel ist die innere Injektionsstelle in Erstreckungsrichtung der Ringmischkammer stromaufwärts zur äußeren Injektionsstelle angeordnet. Die über die innere Injektionsstelle zugeführte Druckgas erteilt der Flüssigkeitsströmung eine Radialkomponente bzw. eine Strömungskomponente zur äußeren Injektionsstelle hin. Dort wird ebenfalls Druckgas zugeführt, wobei durch die Anregung bzw. die radial nach außen gerichtete Strömungskomponente eine weiter verbesserte Zerstäubung in kleine Flüssigkeitspartikel erzeugt wird. Durch die aus den unterschiedlichen Richtungen an den beiden Injektionsstellen eintretenden Gasströme kann zudem eine Scherwirkung auf die Strömungsschicht einwirken, was insbesondere dann der Fall ist, wenn die äußere und die innere Injektionsstelle in Erstreckungsrichtung der Ringmischkammer versetzt, aber nahe beieinander angeordnet sind. Unter einer räumlich nahen Anordnung der beiden Injektionsstellen ist zu verstehen, dass die aus einer der beiden Injektionsstellen einströmende Druckgas zumindest teilweise direkt auf die jeweils andere Injektionsstelle oder einen an die jeweils andere Injektionsstelle unmittelbar angrenzenden Wandabschnitt auftrifft.
  • Bei einem bevorzugten Ausführungsbeispiel gibt die innere Injektionsstelle eine Hauptausströmrichtung vor, die die Mittelebene der Ringmischkammer, unter einem ersten Winkel schneidet. Entsprechend kann die äußere Injektionsstelle eine Hauptausströmrichtung vorgeben, die die Mittelebene der Ringmischkammer unter einem zweiten Winkel schneidet. Vorzugsweise ist der Betrag des zweiten Winkels kleiner als der Betrag des ersten Winkels. Der erste Winkel kann beispielsweise in einem Bereich von 45° bis 90°, vorzugsweise zwischen 60° und 90°, liegen. Der zweite Winkel ist beispielsweise kleiner als 70° und vorzugsweise kleiner als 45°.
  • Bei einem bevorzugten Ausführungsbeispiel verbindet das Gasleitungssystem den inneren Injektionskanal und den äußeren Injektionskanal jeweils fluidisch mit dem Gasanschluss. Die am Gasanschluss bereitgestellte Druckgas strömt somit in beide Injektionskanäle. Dabei ist das Gasleitungssystem derart ausgeführt, dass der Gas-Volumenstrom, der über den äußeren Injektionskanal in die Ringmischkammer einströmt größer ist als der Gas-Volumenstrom, der über den inneren Injektionskanal in die Ringmischkammer einströmt. Der über den äußeren Injektionskanal in die Ringmischkammer einströmende Gas-Volumenstrom kann mehr als 50% und vorzugsweise bis zu 80% des gesamten Gas-Volumenstroms betragen, der über die beiden Injektionskanäle in die Ringmischkammer einströmt. Durch diese Aufteilung lässt sich eine gute Zerstäubung bei weiter verringertem Druckgasverbrauch erreichen. Je nach Gegebenheiten und Anforderungen können gegebenenfalls auch Gas-Volumenstromanteile von weniger als 50% oder mehr als 80% gewählt werden.
  • Stromabwärts der Ringmischkammer ist wenigstens eine Austrittsöffnung vorhanden. Aus der wenigstens einen Austrittsöffnung tritt der Sprühstrahl aus, der die durch Gas zerstäubte Flüssigkeit enthält. Vorzugsweise sind in Umfangsrichtung um die Düsenachse verteilt und beispielsgemäß mit gleichem Umfangsabschnitt verteilt mehrere Austrittsöffnungen vorhanden. Die Austrittsöffnungen haben vorzugsweise jeweils eine rotationssymmetrische Gestalt und können beispielsweise zylindrisch und/oder sich erweiternd und/ oder als Lavaldüse ausgeführt sein.
  • Eine weitere Verbesserung der Zerstäubung der Flüssigkeit ist bei einem Ausführungsbeispiel dadurch erreicht, dass die Ringmischkammer zwischen den Injektionsstellen und der wenigstens einen Austrittsöffnung einen in Richtung der Düsenachse einmal oder mehrmals gekrümmten Verlauf aufweist. In diesem Bereich kann sich die Ringmischkammer entlang der Düsenachse betrachtet zur Düsenachse hin und/oder von der Düsenachse weg krümmen.
  • Die Ringmischkammer ist bei einem bevorzugten Ausführungsbeispiel rotationssymmetrisch zur Düsenachse ausgeführt.
  • Die Zerstäuberdüse weist das Drallerzeugungsmittel auf, das dazu eingerichtet ist, der in dem Flüssigkeitskanal und insbesondere in den Endabschnitt des Flüssigkeitskanals einströmenden Flüssigkeit einen Drall zu erteilen. Das Drallerzeugungsmittel kann beispielsweise dadurch gebildet sein, dass eine Einströmmündung zum Zuführen der Flüssigkeit in den Flüssigkeitskanal gegenüber der Düsenachse radial versetzt und schräg ausgerichtet ist. Dadurch wird bereits die in den Flüssigkeitskanal einströmende Flüssigkeit schraubenförmig mit einem Drall entlang des Flüssigkeitskanals strömen.
  • Alternativ oder zusätzlich dazu kann das Drallerzeugungsmittel einen Drallerzeuger aufweisen, der in dem Flüssigkeitskanal und insbesondere stromaufwärts des Endabschnitts des Flüssigkeitskanals angeordnet ist. Der Drallerzeuger wird durch die Flüssigkeit angeströmt und erteilt dem Flüssigkeitsstrom einen Drall. Dies kann durch geneigt und/oder schraubenförmig verlaufende Leitflächen und/oder Leitkanäle und/oder durch einen Rotor des Drallerzeugers, z.B. ein Flügelrad, bewirkt werden. Grundsätzlich können alle bekannten Drallerzeugungsmittel allein oder in Kombination verwendet werden.
  • Es ist vorteilhaft, wenn der Drallerzeuger in einem sich stromaufwärts an den Endabschnitt des Flüssigkeitskanals anschließenden Drallerzeugungsabschnitt des Flüssigkeitskanals angeordnet ist. Der Drallerzeugungsabschnitt kann bspw. stromaufwärts von und in unmittelbarer Nähe zu einem Übergangsabschnitt des Flüssigkeitskanals angeordnet sein, der zu dem Endabschnitt führt und dessen Querschnitt bzw. Durchmesser sich zum Endabschnitt hin verjüngt. Der für die Flüssigkeit zur Verfügung stehende Strömungsquerabschnitt im Drallerzeugungsabschnitt kann dabei in Strömungsrichtung im Wesentlichen konstant sein.
  • Es ist außerdem vorteilhaft, wenn das Gasleitungssystem einen Zentralkanal aufweist, der sich entlang der Düsenachse im Zentralteil erstreckt. Der Zentralkanal mündet im Zentralteil in den Flüssigkeitskanal ein. Aus dem Zentralkanal kann Druckgas im Wesentlichen entgegen der axialen Strömungsrichtungskomponente der Flüssigkeit unmittelbar stromaufwärts des Endabschnitts des Flüssigkeitskanals einströmen und dort zu einer verbesserten Ausbildung der hohlkegelstupfförmigen Strömungsschicht beitragen.
  • Die Zerstäuberdüse weist bei einem Ausführungsbeispiel einen Düsenkörper auf, in dem der Flüssigkeitskanal und die Ringmischkammer ausgebildet sind. Der Düsenkörper ist vorzugsweise integral aus einem Material ohne Naht- und Fügestelle hergestellt. Vorzugsweise lässt er sich durch sogenannte additive Herstellungsverfahren herstellen, wie etwa 3D-Druckverfahren. Es ist außerdem bevorzugt, wenn in diesem Düsenkörper sämtliche ein Fluid führenden Leitungen und Kanäle ausgebildet sind. Vorzugsweise ist das Zentralteil integraler Bestandteil dieses Düsenkörpers.
  • Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Patentansprüchen, der Beschreibung und der Zeichnung. Nachfolgend werden bevorzugte Ausführungsbeispiele der Erfindung anhand der beigefügten Zeichnung im Einzelnen erläutert. Es zeigen:
    • Figur 1 eine perspektivische Ansicht eines Ausführungsbeispiels einer Zerstäuberdüse,
    • Figur 2 einen Längsschnitt entlang der Düsenachse durch das Ausführungsbeispiel der Zerstäuberdüse aus Figur 1 und
    • Figur 3 eine schematische, blockschaltbildähnliche Prinzipdarstellung der erfindungsgemäßen Zerstäuberdüse.
  • In der Zeichnung ist eine Zerstäuberdüse 10 veranschaulicht. Die Figuren 1 und 2 zeigen ein bevorzugtes Ausführungsbeispiel, während Figur 3 das Funktionsprinzip veranschaulicht.
  • Die Zerstäuberdüse 10 wird an einer mobilen oder stationären Sprüheinrichtung verwendet und dient dazu, eine zugeführte Flüssigkeit F unter Verwendung von Druckgas L zu zerstäuben und die fein zerstäubten Flüssigkeitspartikel als Sprühstrahl S bzw. Sprühnebel abzugeben. In dem Blockschaltbild gemäß Figur 3 ist die strömende Flüssigkeit F durch Blockpfeile und das Druckgas L durch einfache Pfeile schematisch veranschaulicht. Durch die Punktdichte ist schematisch das feine Zerstäuben der Flüssigkeit F in Figur 3 illustriert, wobei eine geringere Punktdichte ein feineres Zerstäuben darstellt.
  • Die Zerstäuberdüse 10 hat ein Düsengehäuse 11. An dem Düsengehäuse ist ein Flüssigkeitsanschluss 12 zum Zuführen der Flüssigkeit F und ein Gasanschluss 13 zum Zuführen des Druckgases L vorhanden. Der Flüssigkeitsanschluss 12 ist an einem hohlzylindrischen Anschlussstutzen 14 des Düsengehäuses 11 angeordnet. Der Anschlussstutzen 14 ist koaxial zu einer Düsenachse A angeordnet. Der Gasanschluss 13 ist beispielsgemäß ringförmig um den Anschlussstutzen 14 koaxial zur Düsenachse A angeordnet. Die Anzahl und die Anordnung des Gasanschlusses 13 bzw. des Flüssigkeitsanschlusses 12 können abhängig von der Sprüheinrichtung, an der die Zerstäuberdüse 10 verwendet wird, auch in anderer Anordnung und Ausrichtung am Düsengehäuse 11 vorgesehen sein.
  • Bei dem hier dargestellten Ausführungsbeispiel hat das Düsengehäuse 11 einen in etwa zylindrisch konturierten Gehäuseteil 11a, von dem der Anschlussstutzen 14 des Düsengehäuses 11 wegragt. Der Gehäuseteil 11a ist koaxial zur Düsenachse A angeordnet. Der Gasanschluss 13 ist koaxial um den Anschlussstutzen 14 in einer Stirnwand des Gehäuseteils 11a angeordnet. Am Gehäuseteil 11a kann ein Werkzeugangriffsabschnitt 11b mit einer oder mehreren Angriffsflächen für ein Werkzeug vorgesehen sein, beispielsweise um die Zerstäuberdüse 10 bei deren Befestigung an einer Sprüheinrichtung in Umfangsrichtung U um die Düsenachse A zu drehen und mechanisch und fluidisch mit der Sprüheinrichtung zu verbinden.
  • Das Düsengehäuse 11 ist beispielsgemäß als einstückiger, integraler Düsenkörper 15 ausgeführt und kann beispielsweise als 3D-Druck oder durch ein anderes additives Herstellungsverfahren hergestellt werden. Der Düsenkörper 15 ist frei von Naht- und Fügestellen und ist aus einem einheitlichen Material hergestellt.
  • Der Flüssigkeitsanschluss 12 ist fluidisch mit einem Flüssigkeitskanal 19 verbunden. Ein sich an den Flüssigkeitsanschluss 12 anschließender erster Abschnitt 19a des Flüssigkeitskanals 19 hat eine zylindrische Form und erstreckt sich koaxial zur Düsenachse A. Unmittelbar an den ersten Abschnitt 19a schließt sich ein Drallerzeugungsabschnitt 19b des Flüssigkeitskanals 19 an. In diesem Drallerzeugungsabschnitt 19b ist ein Drallerzeuger 20 angeordnet, der der Flüssigkeit F, die vom ersten Abschnitt 19a in den Drallerzeugungsabschnitt 19b strömt, einen Drall erteilt. Durch die Erteilung des Dralls strömt die Flüssigkeit F in bzw. nach dem Drallerzeugerabschnitt 19b nicht mehr nur axial entlang des Flüssigkeitskanals 19, sondern es entsteht ein hohlkegelförmiger Strahlverlauf oder gegebenenfalls ein spiralförmiger bzw. schraubenförmiger Strömungsverlauf.
  • Der Drallerzeuger 20 ist beim Ausführungsbeispiel durch einen Drallkörper 21 gebildet, der koaxial zur Düsenachse A im Drallerzeugerabschnitt 19b angeordnet ist. Der Drallkörper 21 kann Leitflächen oder Leitkanäle aufweisen, um der Flüssigkeit F einen Drall zu erteilen. Es ist auch möglich, einen Drallerzeuger 20 mit einem Schaufelrad zu verwenden.
  • Grundsätzlich können ein oder mehrere geeignete Drallerzeugungsmittel eingesetzt werden, um der Flüssigkeit beim Einströmen in den Flüssigkeitskanal 19 oder während des Strömens im Flüssigkeitskanal 19 einen Drall zu erteilen. Es können auch Strömungseffekte, wie beispielsweise der Coanda-Effekt zur Drallerteilung genutzt werden. Es ist außerdem möglich, die Einströmung der Flüssigkeit F in den Flüssigkeitskanal 19 radial versetzt zur Düsenachse A, tangential zu einer Kanalwand 22 des Flüssigkeitskanals 19 und schräg geneigt zur Düsenachse A auszuführen, so dass bereits dadurch eine drallbehaftete Flüssigkeitsströmung erreicht wird.
  • Als weitere Möglichkeit könnte auch ein Prallkörper in dem Flüssigkeitskanal 19 angeordnet werden (nicht veranschaulicht), der geeignet, bspw. im Wesentlicher plattenförmig gestaltet ist, so dass beim Aufprall einer Flüssigkeit F auf den Prallkörper eine dünne, im Wesentlichen tellerförmige Flüssigkeitsschicht erzeugt wird, die auch als Prallstrahl bezeichnet wird.
  • Bei dem hier beschriebenen Ausführungsbeispiel wird die Drallerzeugung im Drallerzeugungsabschnitt 19b dadurch unterstützt, dass sich der Kanalquerschnitt des Drallerzeugungsabschnitts 19b oder eines dem Drallerzeugungsabschnitt 19b stromabwärts unmittelbar nachfolgenden, hier nicht näher bezeichneten Übergangsabschnitts in Strömungsrichtung verringert. Dies ist dadurch erreicht, dass der Durchmesser des Drallerzeugungsabschnitts 19b bzw. Übergangsabschnitts ausgehend vom ersten Abschnitt 19a abnimmt. Bevorzugterweise ist die Drallerzeugung unmittelbar vor dem Übergangsabschnitt abgeschlossen.
  • Bei einem abgewandelten Ausführungsbeispiel kann der Durchmesser des Flüssigkeitskanals 19 im Drallerzeugungsabschnitt 19b konstant und der verjüngte Übergangsabschnitt weggelassen sein, was beispielhaft schematisch in der Prinzipdarstellung gemäß Figur 3 veranschaulicht ist.
  • An den Drallerzeugungsabschnitt 19b schließt sich gegebenenfalls über den Übergangsabschnitt ein Endabschnitt 19c des Flüssigkeitskanals 19 an. In dem Endabschnitt 19c des Flüssigkeitskanals 19 nimmt der Durchmesser der Kanalwand 22 vom Drallerzeugungsabschnitt 19b weg zu. Die an der Kanalwand 22 entlang strömende Flüssigkeit hat ausgehend von dem kleinsten Kanalwanddurchmesser an der Übergangsstelle zwischen dem Drallerzeugungsabschnitt 19b und dem Endabschnitt 19c die Tendenz, weiter entlang der Kanalwand 22 zu strömen. Dadurch bildet sich im Endabschnitt eine Strömungsschicht FH der Flüssigkeit F aus, die die Gestalt eines Hohlkegelstumpfes hat. Die Strömungsschicht FH ist koaxial zur Düsenachse A in der Zerstäuberdüse 10 gebildet. Die Strömungsschicht FH ist stark schematisiert in Figur 3 durch die Blockpfeile und Punkte im Endabschnitt 19c veranschaulicht.
  • Zur weiteren Unterstützung der Ausbildung der hohlkegelförmigen Strömungsschicht FH ist im Endabschnitt 19c des Flüssigkeitskanals ein Zentralteil 25 angeordnet, dessen Durchmesser sich zu einer Ringmischkammer 26 hin erweitert, in die der Flüssigkeitskanal 19 einmündet. Beispielsgemäß schließt sich die Ringmischkammer 26 unmittelbar an den Endabschnitt 19c des Flüssigkeitskanals 19 an.
  • Das Zentralteil 25 wird mittig von der Düsenachse A durchsetzt. Durch die Anordnung des Zentralteils 25 und den sich erweiternden Kanalquerschnitt des Endabschnitts 19c ist der Endabschnitt 19c als koaxial zur Düsenachse A, in Umfangsrichtung U um die Düsenachse A ringförmig geschlossener, hohlkegelstumpfähnlicher Kanal ausgeführt.
  • Die Kanalwand 22 des Flüssigkeitskanals 19 verläuft in dem Drallerzeugungsabschnitt 19b und dem Endabschnitt 19c entlang der Düsenachse A gekrümmt. Im Drallerzeugungsabschnitt 19b wird dadurch der Kanalquerschnitt verringert und im Endabschnitt 19c wieder vergrößert. Angepasst hierzu ist die Außenfläche 27 des Zentralteils 25 entlang der Düsenachse A ebenfalls gekrümmt und beispielsgemäß konkav gekrümmt. Die Außenfläche 27 des Zentralteils 25 liegt der Kanalwand 22 gegenüber und ist vorzugsweise derart an den Verlauf der Kanalwand angepasst, dass der zur Düsenachse A senkrechte, radiale Wandabstand zwischen der Außenfläche 27 des Zentralteils 25 zu der außenliegenden Innenwand des Endabschnitts 19c im Wesentlichen konstant bleibt, wobei sich die ringförmige Strömungsquerschnittsfläche in stromabwärtiger Richtung mit zunehmender Entfernung zu der Düsenachse A vergrößert.
  • In der Zerstäuberdüse 10 wird somit vor der Ringmischkammer 26 eine hohlkegelstumpfförmige Strömungsschicht FH erzeugt, die in die Ringmischkammer 26 einströmt. Dazu kann ein Drallerzeugungsmittel und/oder der sich erweiternde Endabschnitt 19c mit dem darin angeordneten Zentralteil 25 verwendet werden. Beispielsgemäß sind beide Maßnahmen gemeinsam verwirklicht.
  • In der sich an den Endabschnitt 19c anschließenden Ringmischkammer 26 wird Druckgas L zugeführt, um die Flüssigkeit F in kleine Flüssigkeitspartikel zu zerstäuben. Hierzu ist der Gasanschluss 13 an ein Gasleitungssystem 28 der Zerstäuberdüse 10 angeschlossen. Zu dem Gasleitungssystem 28 können Gasschläuche gehören, die außerhalb des Düsengehäuses 11 angeordnet sind, wobei - wie bei dem hier veranschaulichten bevorzugten Ausführungsbeispiel - vorzugsweise ausschließlich Gaskanäle verwendet werden, die im Düsengehäuse 11 und beispielsgemäß im Gehäuseteil 11a angeordnet bzw. ausgebildet sind. Beim Ausführungsbeispiel werden alle Gaskanäle des Gasleitungssystems 28 bei der Herstellung des Düsenkörpers 15 gebildet.
  • Zu dem Gasleitungssystem 28 gehört ein äußerer Injektionskanal 29, der sich in Umfangsrichtung U um die Düsenachse A ringförmig um zumindest einen Abschnitt des Flüssigkeitskanals 19 herum erstreckt und an einer äußeren Injektionsstelle 30 in die Ringmischkammer 26 einmündet. Die äußere Injektionsstelle 30 ist als kreisringförmiger Spalt ausgeführt und koaxial zur Düsenachse A angeordnet.
  • Radial außen gegenüber der Ringmischkammer 26 und beispielsgemäß koaxial zur Ringmischkammer 26 ist ein beim Ausführungsbeispiel ringförmiger Verbindungskanal 31 des Gasleitungssystems 28 im Düsengehäuse 11 angeordnet, der fluidisch über eine oder mehrere Durchgangsöffnungen 32 mit einem zentralen Gaskanal 33 des Gasleitungssystem 28 verbunden ist. Der zentrale Gaskanal 33 erstreckt sich entlang der Düsenachse A und ist von der Ringmischkammer 26 in Umfangsrichtung U umschlossen. Ein Teil des Druckgases L, die dem zentralen Gaskanal 33 zugeführt wird, mündet in einen inneren Injektionskanal 34 an der radial inneren Seite der Ringmischkammer 26. Der innere Injektionskanal 34 kann durch einen Abschnitt des zentralen Gaskanals 33 gebildet sein oder durch Trennwände getrennt vom zentralen Gaskanal 33 abzweigen. Der innere Injektionskanal 34 mündet an einer inneren Injektionsstelle 35 in die Ringmischkammer 26 ein. Die innere Injektionsstelle 35 ist als ein in Umfangsrichtung U um die Düsenachse A vorzugsweise geschlossener, möglichst ununterbrochener Kreisringspalt ausgeführt.
  • Neben dem inneren Injektionskanal 34 ist mit dem zentralen Gaskanal 33 ein Zentralkanal 36 fluidisch verbunden, der vom zentralen Gaskanal 33 abzweigen oder durch einen Abschnitt des zentralen Gaskanals 33 gebildet sein kann. Der Zentralkanal 36 mündet stromaufwärts des Endabschnitts 19c in den Flüssigkeitskanal 19a ein. Die Mündung 37 des Zentralkanals 36 ist koaxial zur Düsenachse A angeordnet und in Richtung der Düsenachse A vom Endabschnitt 19c bzw. der Ringmischkammer 26 weg orientiert. Die dort ausströmende Druckgas L strömt somit in etwa entgegen der Flüssigkeit F und unterstützt die Ausbildung der Strömungsschicht FH in dem Endabschnitt 19c des Flüssigkeitskanals 19.
  • An dem Ende der Zerstäuberdüse 10, an dem wenigstens ein Sprühstrahl S abgegeben wird, ist wenigstens eine Austrittsöffnung 40 vorhanden. Bei dem hier in den Figuren 1 und 2 veranschaulichten bevorzugten Ausführungsbeispiel weist die Zerstäuberdüse 10 mehrere, beispielsweise 8 in Umfangsrichtung U um die Düsenachse A verteilt angeordnete Austrittsöffnungen 40 auf. Die wenigstens eine Austrittsöffnung 40 kann als zylindrische Bohrung, als Schlitz oder vorzugsweise in Form einer Lavaldüse ausgeführt sein. Beispielsgemäß hat die wenigstens eine Austrittsöffnung 40 einen sich in Strömungsrichtung konisch erweiternden Querschnitt. Die Längsachse jeder Austrittsöffnung 40 ist gegenüber der Düsenachse A geneigt. Der Neigungswinkel der Bohrungsachse der Austrittsöffnung 40 zu der Düsenachse A liegt vorzugsweise im Bereich zwischen 10° und 30°. Durch die mehreren Austrittsöffnungen 40, wird jeweils ein Sprühstrahl S erzeugt, der von der Düsenachse A weg gerichtet ist (Figuren 1 und 3).
  • Die Austrittsöffnungen 40 sind in Rohrstücken 41 angeordnet, die fluidisch mit der Ringmischkammer 26 verbunden sind. Zwischen den Rohrstücken 41 sind die Durchgangsöffnungen 32 dadurch gebildet, dass in Umfangsrichtung U unmittelbar benachbarte Rohrstücke 41 mit Abstand zueinander angeordnet sind. Dadurch wird zwischen den Rohrstücken 41 eine fluidische Verbindung zwischen dem Verbindungskanal 31 und dem zentralen Gaskanal 33 gebildet.
  • Zwischen dem Verbindungskanal 31 und dem äußeren Injektionskanal 29 ist eine Trennwand 45 vorhanden, die die Gasströmung im äußeren Injektionskanal 29 zur äußeren Injektionsstelle 30 hin leitet. In Richtung der Strömung des Druckgases L ist mit Abstand zu der äußeren Injektionsstelle 30 wenigstens eine Kommunikationsöffnung 46 in der Trennwand 45 vorhanden, durch das Druckgas L ausgehend vom Gasanschluss 13 in den Verbindungskanal 31 strömen kann. Somit wird sowohl der äußere Injektionskanal 29 als auch der innere Injektionskanal 34 über den Gasanschluss 13 mit Druckgas L versorgt.
  • Über die Kommunikationsöffnung 46 werden die Volumenströme in dem Verbindungskanal 31 bis zu dem zentralen Gaskanal 33 und der inneren Injektionsstelle 35 einerseits und durch den äußeren Injektionskanal 29 und die äußere Injektionsstelle 30 andererseits je nach Anforderungen bestimmt. In bevorzugten Ausführungsformen liegt das Verhältnis der Querschnittsfläche der Kommunikationsöffnung 46 zu derjenigen der äußeren Injektionsstelle 30 beispielsweise im Bereich von etwa 20% bis 40%, vorzugsweise bei etwa 30%.
  • Dabei können die Querschnitte im Gasleitungssystem 28 bedarfsweise derart gewählt sein, dass über den äußeren Injektionskanal 29 und die äußere Injektionsstelle 30 ein größerer Gas-Volumenstrom in die Ringmischkammer 26 einströmt als über den inneren Injektionskanal 34 bzw. die innere Injektionsstelle 35. Beispielsgemäß ist das Flächenverhältnis zwischen der äußeren Injektionsstelle 30 gegenüber der inneren Injektionsstelle 35 in einem Verhältnis von 1,5:1 bis 2,5:1 vorgegeben. Im bevorzugten Ausführungsbeispiel beträgt das Flächenverhältnis in etwa 2:1. Dann können beispielsgemäß zumindest etwa zwei Drittel der in die Ringmischkammer 26 einströmenden Gas über die äußere Injektionsstelle 30 einströmen.
  • Das Flächenverhältnis zwischen der inneren Injektionsstelle 35 und der Mündung 37 des Zentralkanals 36 beträgt beim Ausführungsbeispiel etwa 1:10 bis 1:15.
  • Wie in den Figuren 2 und 3 veranschaulicht, wird der Flüssigkeit F in der Ringmischkammer 26 an den beiden Injektionsstellen 30, 35 Druckgas L zugeführt. In Figur 2 ist schematisch eine Mittelebene E der Ringmischkammer 26 veranschaulicht, die im Wesentlichen auch dem Zentrum des Flüssigkeitsstrahls in der Ringmischkammer 26 entspricht. Der aus der dem Endabschnitt 19c in die Ringmischkammer 26 eintretende zentrale Flüssigkeitsstrahl ist durch eine punktierte Linie angedeutet. In Erstreckungsrichtung der Ringmischkammer 26 entlang der Mittelebene E durch die Ringmischkammer 26 sind die beiden Injektionsstellen 30, 35 versetzt zueinander angeordnet. Beispielsgemäß trifft zunächst das Druckgas L, die aus der inneren Injektionsstelle 35 ausströmt auf die vorbeiströmende Flüssigkeit F bzw. die Strömungsschicht FH auf, während das Druckgas L aus der äußeren Injektionsstelle 30 weiter stromabwärts in die Ringmischkammer 26 einströmt. In Figur 2 ist durch den ersten Pfeil schematisch die erste Hauptausströmrichtung P1 aus dem äußeren Injektionskanal 29 in die Ringmischkammer 26 veranschaulicht. Diese erste Hauptausströmrichtung P1, die hier beispielsweise in etwa parallel zu der Düsenachse A verläuft, schneidet den zentralen Flüssigkeitsstrahl unter einem ersten Winkel α. Entsprechend ist durch einen zweiten Pfeil eine zweite Hauptausströmrichtung P2 für das Druckgas L aus dem inneren Injektionskanal 34 eingezeichnet, die zu der Düsenachse A unter einem spitzen Winkel angeordnet ist und mit dem zentralen Flüssigkeitsstrahl einen zweiten Winkel β einschließt. Beispielsgemäß ist der zweite Winkel β betragsmäßig größer als der erste Winkel α. Der erste Winkel α ist insbesondere kleiner als 45°, während der zweite Winkel β zwischen 70° und 90° liegt.
  • Die Zerstäuberdüse 10 gemäß der vorliegenden Erfindung arbeitet wie folgt:
    Durch den Flüssigkeitskanal 19 strömt eine Flüssigkeit F. Über ein Drallerzeugungsmittel und beispielsgemäß den Drallerzeuger 20 wird der Flüssigkeitsströmung im Drallerzeugungsabschnitt 19b ein Drall erteilt. Dadurch und/oder durch die aus dem Zentralkanal 26 über die Mündung 27 durch das Zentralteil 25 einströmende Druckgas und/oder durch den sich zur Ringmischkammer 26 hin erweiternden Durchmesser des Endabschnitts 19c des Flüssigkeitskanals 19 wird dort eine hohlkegelstumpfförmige Strömungsschicht FH erzeugt, die in die Ringmischkammer 26 einströmt.
  • In der Ringmischkammer 26 trifft zunächst Druckgas L an der inneren Injektionsstelle 35 auf die Strömungsschicht FH auf und beeinflusst deren Strömungsrichtung, in dem sie der Flüssigkeitsströmung in der Strömungsschicht FH eine zusätzliche Querkomponente von der Düsenachse A weg zur radial äußeren Seite der Ringmischkammer 26 hin erteilt. Etwas stromabwärts wird Druckgas L an der äußeren Injektionsstelle 30 zugeführt. Dadurch dass der Flüssigkeitsströmung bereits stromaufwärts an der inneren Injektionsstelle 35 eine Anregung erteilt wurde, kann durch das Einströmen des Druckgases L von der äußeren Seite der Ringmischkammer her eine sehr feine Zerstäubung der Flüssigkeit erreicht werden. Die von unterschiedlichen Seiten in die Ringmischkammer einströmende Druckgas L erzeugt dabei sozusagen eine Scherwirkung.
  • Im weiteren Verlauf der Ringmischkammer 26 stromabwärts der beiden Injektionsstellen 30, 35, kann durch eine oder mehrere Krümmungen in Erstreckung der Ringmischkammer 26 zur Düsenachse A hin und/oder von der Düsenachse A weg eine weitere Zerstäubung und gleichmäßige Verteilung der Flüssigkeitspartikel in dem Flüssigkeits-Gas-Gemisch erzielt werden, das anschließend durch die Austrittsöffnungen 40 in Form von Sprühstrahlen S abgegeben wird. Beispielsgemäß krümmt sich die Ringmischkammer 26 stromabwärts der beiden Injektionsstellen zunächst zur Düsenachse A hin und anschließend wieder von der Düsenachse A weg.
  • Anstelle eines gekrümmten Verlaufs der Ringmischkammer 26 zwischen den Injektionsstellen 30, 35 und den Austrittsöffnungen 40 kann in Abwandlung zu dem hier veranschaulichten Ausführungsbeispiel auch eine hohlzylindrische Ausführung der Ringmischkammer in diesem Abschnitt vorgesehen sein.
  • Die Erfindung betrifft eine Zerstäuberdüse 10 mit einem Flüssigkeitskanal 19, an den stromabwärts eine Ringmischkammer 26 fluidisch angeschlossen ist. Über einen Flüssigkeitsanschluss 12 wird dem Flüssigkeitskanal 19 eine Flüssigkeit F zugeführt. Die Zerstäuberdüse 10 weist außerdem einen Gasanschluss 13 auf, der an ein Gasleitungssystem 28 angeschlossen ist. Darüber wird Druckgas L zu einem äußeren Injektionskanal 29 und einem inneren Injektionskanal 34 geleitet. Die beiden Injektionskanäle 29, 34 münden an jeweils einer Injektionsstelle 30, 35 in die Ringmischkammer 26 ein. Die äußere Injektionsstelle 30 ist bezüglich einer Düsenachse A, um die sich die Ringmischkammer 26 koaxial erstreckt, an der radial äußeren Mischkammerwand und die innere Injektionsstelle 35 an der radial inneren Mischkammerwand vorhanden. Die einströmende Flüssigkeit kann mit einem geringen Druckgasverbrauch in der Ringmischkammer 26 fein zerstäubt und stromabwärts der Ringmischkammer 26 über wenigstens eine Austrittsöffnung 40 jeweils als Sprühstrahl S abgegeben werden.
  • Bezugszeichenliste:
  • 10
    Zerstäuberdüse
    11
    Düsengehäuse
    11a
    Gehäuseteil
    11b
    Werkzeugangriffsabschnitt
    12
    Flüssigkeitsanschluss
    13
    Gasanschluss
    14
    Anschlussstutzen
    15
    Düsenkörper
    19
    Flüssigkeitskanal
    19a
    erster Abschnitt des Flüssigkeitskanals
    19b
    Drallerzeugungsabschnitt
    19c
    Endabschnitt
    20
    Drallerzeuger
    21
    Drallkörper
    22
    Kanalwand des Flüssigkeitskanals
    25
    Zentralteil
    26
    Ringmischkammer
    27
    Außenfläche des Zentralteils
    28
    Gasleitungssystem
    29
    äußerer Injektionskanal
    30
    äußere Injektionsstelle
    31
    Verbindungskanal
    32
    Durchgangsöffnung
    33
    zentraler Gaskanal
    34
    innerer Injektionskanal
    35
    inneren Injektionsstelle
    36
    Zentralkanal
    37
    Mündung des Zentralkanals
    40
    Austrittsöffnung
    41
    Rohrstück
    45
    Trennwand
    46
    Kommunikationsöffnung
    α
    erster Winkel
    β
    zweiter Winkel
    A
    Düsenachse
    E
    Mittelebene
    F
    Flüssigkeit
    FH
    Strömungsschicht
    L
    Druckgas
    P1
    erste Ausströmrichtung
    P2
    zweite Ausströmrichtung
    S
    Sprühstrahl
    U
    Umfangsrichtung

Claims (14)

  1. Zerstäuberdüse (10)
    mit einem Flüssigkeitsanschluss (12) zum Zuführen einer Flüssigkeit (F) zu einem Flüssigkeitskanal (19), der stromabwärts mit einer Ringmischkammer (26) verbunden ist, die eine Düsenachse (A) koaxial umschließt,
    mit einem Mittel (20, 25), das in einem sich zur Ringmischkammer (26) erweiternden Endabschnitt (19c) des Flüssigkeitskanals (19) eine sich aufweitende, schräg von der Düsenachse (A) weg gerichtete Strömungsschicht (FH) bildet, die in die sich an den Endabschnitt (19c) des Flüssigkeitskanals (19) anschließende Ringmischkammer (26) strömt,
    mit wenigstens einem Gasanschluss (13) zum Zuführen von Druckgas (L) zu einem Gasleitungssystem (28), das wenigstens einen äußeren Injektionskanal (29) und wenigstens einen inneren Injektionskanal (34) aufweist,
    wobei der äußere Injektionskanal (29) an einer äußeren Injektionsstelle (30) bezogen auf die Düsenachse (A) radial außen in die Ringmischkammer (26) einmündet,
    und wobei der innere Injektionskanal (34) an einer inneren Injektionsstelle (35) bezogen auf die Düsenachse (A) radial innen in die Ringmischkammer (26) einmündet,
    dadurch gekennzeichnet, dass
    das Mittel (20, 25) zur Erzeugung der Strömungsschicht (FH) ein Drallerzeugungsmittel (20, 21) aufweist, das der in dem Flüssigkeitskanal (19) strömenden Flüssigkeit (F) einen Drall erteilt.
  2. Zerstäuberdüse nach Anspruch 1, dadurch gekennzeichnet, dass die äußere Injektionsstelle (30) und die innere Injektionsstelle (35) in Erstreckungsrichtung der Ringmischkammer (26) versetzt zueinander angeordnet sind.
  3. Zerstäuberdüse nach Anspruch 2, dadurch gekennzeichnet, dass die äußere Injektionsstelle (30) in Erstreckungsrichtung der Ringmischkammer (26) stromabwärts zur inneren Injektionsstelle (35) angeordnet ist.
  4. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gasleitungssystem (28) den inneren Injektionskanal (34) und den äußeren Injektionskanal (30) fluidisch mit dem Gasanschluss (13) verbindet und derart ausgebildet ist, das der Gas-Volumenstrom, der über den äußeren Injektionskanal (29) in die Ringmischkammer (26) einströmt, größer ist als der Gas-Volumenstrom, der über den inneren Injektionskanal (34) in die Ringmischkammer (26) einströmt und/oder dass die Querschnittsfläche der äußeren Injektionsstelle (30) größer ist als diejenige der inneren Injektionsstelle (35).
  5. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ringmischkammer (26) stromabwärts mit wenigstens einer Austrittsöffnung (40) verbunden ist, aus der der zerstäubte Sprühstrahl (S) austritt.
  6. Zerstäuberdüse nach Anspruch 5, dadurch gekennzeichnet, dass die Ringmischkammer (26) zwischen den Injektionsstellen (30, 35) und der wenigstens einen Austrittsöffnung (40) einen in Richtung der Düsenachse (A) einfach oder mehrfach gekrümmten Verlauf aufweist.
  7. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel (20, 25) zur Erzeugung der Strömungsschicht (FH) dazu eingerichtet ist, eine in Umfangsrichtung (U) um die Düsenachse (A) geschlossene Strömungsschicht (FH) zu erzeugen.
  8. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mittel (20, 25) zur Erzeugung der Strömungsschicht (FH) ein in oder vor dem Endabschnitt (19c) des Flüssigkeitskanals (19) angeordnetes Zentralteil (25) aufweist, das von der Strömungsschicht (FH) umströmt wird, wobei die Düsenachse (A) durch das Zentralteil (25) hindurch verläuft.
  9. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zu dem Drallerzeugungsmittel ein Drallerzeuger (20) gehört, der in dem Flüssigkeitskanal (19) angeordnet ist und von der einströmenden Flüssigkeit (F) angeströmt wird und diesem Flüssigkeitsstrom einen Drall erteilt.
  10. Zerstäuberdüse nach Anspruch 9, dadurch gekennzeichnet, dass der Drallerzeuger (20) in einem sich stromaufwärts an den Endabschnitt (19c) des Flüssigkeitskanals (19) anschließenden Drallerzeugungsabschnitt (19b) des Flüssigkeitskanals (19) angeordnet ist.
  11. Zerstäuberdüse nach einem der Ansprüche 9 bis 10,
    dadurch gekennzeichnet, dass das Drallerzeugungsmittel einen sich stromaufwärts an den Endabschnitt (19c) des Flüssigkeitskanals (19) anschließenden Drallerzeugungsabschnitt (19b) des Flüssigkeitskanals (19) aufweist, der einen Abschnitt bildet oder unmittelbar stromaufwärts von einem Abschnitt angeordnet ist, der einen sich zum Endabschnitt (19c) hin abnehmenden Querschnitt oder Durchmesser aufweist.
  12. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gasleitungssystem (28) einen Zentralkanal (33) aufweist, der sich entlang der Düsenachse (A) im Zentralteil (25) erstreckt und in den Flüssigkeitskanal (19) einmündet.
  13. Zerstäuberdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zerstäuberdüse (10) einen Düsenkörper (15) aufweist, in dem der Flüssigkeitskanal (19) und die Ringmischkammer (26) vorhanden ist, der integral hergestellt ist.
  14. Zerstäuberdüse nach Anspruch 13, dadurch gekennzeichnet, dass das Zentralteil (25) integraler Bestandteil des Düsenkörpers (15) ist.
EP14784032.6A 2014-10-09 2014-10-09 Zerstäuberdüse Active EP3204168B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2014/071689 WO2016055115A1 (de) 2014-10-09 2014-10-09 Zerstäuberdüse

Publications (2)

Publication Number Publication Date
EP3204168A1 EP3204168A1 (de) 2017-08-16
EP3204168B1 true EP3204168B1 (de) 2020-04-08

Family

ID=51703148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14784032.6A Active EP3204168B1 (de) 2014-10-09 2014-10-09 Zerstäuberdüse

Country Status (8)

Country Link
US (1) US10245602B2 (de)
EP (1) EP3204168B1 (de)
JP (1) JP6487041B2 (de)
CN (1) CN107107080B (de)
AU (1) AU2014408516B2 (de)
CA (1) CA2963894C (de)
ES (1) ES2788743T3 (de)
WO (1) WO2016055115A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11117007B2 (en) * 2017-11-10 2021-09-14 Carrier Corporation Noise reducing fire suppression nozzles
JP6817583B2 (ja) * 2018-02-21 2021-01-20 パナソニックIpマネジメント株式会社 噴霧装置
CN108404693A (zh) * 2018-04-16 2018-08-17 凡吾科技(上海)有限公司 一种气液混合装置
CN108580153B (zh) * 2018-07-09 2024-04-09 中国船舶重工集团公司第七0三研究所 一种大流量超声精细雾化喷嘴
BE1026905B1 (nl) * 2018-12-20 2020-07-22 Soudal Verbeterde vulling van vloeistoffen in polyurethaan spuitbussen
CN109396454A (zh) * 2018-12-24 2019-03-01 南通金源智能技术有限公司 一种3d打印双级气雾化喷嘴
CN110326803A (zh) * 2019-07-18 2019-10-15 浙江省海洋水产研究所 一种水产饲料油剂喷涂装置
USD1016556S1 (en) * 2019-09-19 2024-03-05 TML Innovative Products, LLC Steam nozzle
US11925288B1 (en) 2019-09-19 2024-03-12 TML Innovative Products, LLC Nozzle structure for steaming milk
EP4055122A4 (de) * 2019-11-04 2023-12-13 Lummus Technology LLC Einspritzventil für katalytisches wirbelschichtkracken
DE102020213695A1 (de) * 2019-12-04 2021-06-10 Lechler Gmbh Bündeldüse zum Versprühen eines Fluids, Anordnung mit einer Bündeldüse und Verfahren zum Herstellen einer Bündeldüse
CN111097611A (zh) * 2020-02-27 2020-05-05 广东贺尔环境技术有限公司 一种水气混合雾化喷头及雾化装置
WO2021175752A1 (en) * 2020-03-04 2021-09-10 Smixin Sa Mixing and spray generating unit and pumping unit
GB202103194D0 (en) 2020-06-23 2021-04-21 Micromass Ltd Nebuliser outlet
CN112516365B (zh) * 2020-12-10 2023-06-09 深圳市普渡科技有限公司 雾化器风道结构、雾化器及消毒机器人
CN112973331B (zh) * 2021-02-09 2022-10-21 北京航化节能环保技术有限公司 一种立式文丘里洗涤器
GB202105676D0 (en) * 2021-04-21 2021-06-02 Micromass Ltd Nebuliser outlet
CN114129834B (zh) * 2021-05-26 2024-05-28 杭州堃博生物科技有限公司 改善雾化效果的雾化导管
CN114152105B (zh) * 2021-10-28 2023-07-21 中国船舶重工集团公司第七一九研究所 冷凝装置
EP4292716A1 (de) * 2022-06-15 2023-12-20 SMS Concast AG Verfahren zum herstellen einer sprühdüseneinrichtung, die insbesondere zum besprühen eines giessstrangs beim abgiessen von metallischen produkten dient, sowie eine sprühdüseneinrichtung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141693B1 (de) * 1971-05-24 1976-11-11
US4645129A (en) 1985-12-05 1987-02-24 Phillips Petroleum Company Atomizing nozzle and use
FR2662377B1 (fr) * 1990-05-23 1994-06-03 Total France Procede et dispositif de pulverisation de liquide, ainsi que leurs applications.
FR2717106B1 (fr) * 1994-03-11 1996-05-31 Total Raffinage Distribution Procédé et dispositif de pulvérisation d'un liquide, notamment d'un liquide à haute viscosité, à l'aide d'au moins un gaz auxiliaire.
FR2743012B1 (fr) * 1995-12-27 1998-01-30 Air Liquide Dispositif de pulverisation d'un combustible liquide par un gaz de pulverisation
EP1668290A1 (de) 2003-09-01 2006-06-14 Danfoss A/S Düse zur luftunterstützten zerstäubung eines flüssigbrennstoffes
US7704420B2 (en) * 2003-12-23 2010-04-27 Yara International Asa Spraying device and method for fluidised bed granulation
DE102005039412A1 (de) 2005-08-20 2007-02-22 Forschungszentrum Karlsruhe Gmbh Zweistoffzerstäubervorrichtung
GB0618196D0 (en) * 2006-09-15 2006-10-25 Pursuit Dynamics Plc An improved mist generating apparatus and method
EP2177273A1 (de) 2008-10-16 2010-04-21 Urea Casale S.A. Sprühverfahren und Düse zur Zerstäubung einer Flüssigkeit
DE102009037828A1 (de) * 2008-11-11 2010-05-20 Wurz, Dieter, Prof. Dr. Zweistoffdüse, Bündeldüse und Verfahren zum Zerstäuben von Fluiden
DE102010015497A1 (de) 2010-04-16 2011-10-20 Dieter Wurz Außen mischende Mehrstoffdüse für minimalen inneren Wärmeübergang
RU2560099C2 (ru) 2011-01-31 2015-08-20 Дженерал Электрик Компани Топливное сопло (варианты)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20170304851A1 (en) 2017-10-26
US10245602B2 (en) 2019-04-02
CN107107080A (zh) 2017-08-29
JP2017534443A (ja) 2017-11-24
WO2016055115A1 (de) 2016-04-14
AU2014408516A1 (en) 2017-05-25
JP6487041B2 (ja) 2019-03-20
EP3204168A1 (de) 2017-08-16
ES2788743T3 (es) 2020-10-22
CA2963894A1 (en) 2016-04-14
CA2963894C (en) 2021-07-27
CN107107080B (zh) 2019-11-12
AU2014408516B2 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
EP3204168B1 (de) Zerstäuberdüse
EP2969234B1 (de) Zerstäuberdüse für einen sanitären wasserauslauf sowie sanitäre auslaufarmatur mit einem wasserauslauf
DE10304386B4 (de) Doppelfluid-Verwirbelungsdüse mit selbstreinigendem Zapfen
DE3116660C2 (de) Mehrstoff-Zerstäuberdüse
DE112012005017B4 (de) Vorrichtung zum Steuern einer Fluid-Strömung in einem Notfall-Waschsystem, Vorrichtung zum Steuern einer Fluid-Strömung und Waschsystem zum Liefern einer Fluid-Strömung
EP3067529A1 (de) Vorrichtung zur nachbehandlung von abgas eines kraftfahrzeugs
DE112006002295T5 (de) Sprühdüsenanordnung zur Atomisierung mittels externer Luftmischung
DE10103221A1 (de) Luftunterstützte Düse
EP1931478A1 (de) Zweistoffzerstäubungsdüse
DE3131070A1 (de) "spruehduese mit hohem wirkungsgrad"
DE102015006484A1 (de) Düsenanordnung für eine Spritzpistole, insbesondere Farbspritzpistole und Spritzpistole, insbesondere Farbspritzpistole
DE202010012449U1 (de) Düsenanordnung für eine Spritzpistole, insbesondere für eine Farbspritzpistole
EP3042724B1 (de) Verfahren zum erzeugen eines sprühstrahls und zweistoffdüse
EP2100659B1 (de) Vorrichtung zum Erzeugen und Versprühen eines Aerosols
WO2011023302A1 (de) Verfahren und vorrichtung zur herstellung eines sprühauftrags aus reaktivkunststoff
EP2956639A1 (de) Abgasleitungsabschnitt zur zufuhr von flüssigem additiv
EP3204167B1 (de) Zweistoffdüse
DE68907595T2 (de) Zerstäubungsdüsen.
DE102012013815B4 (de) Kaltgasspritzpistole mit Pulverinjektor
EP1765551B1 (de) Vorrichtung zur erzeugung eines strahls von trockeneispartikeln
EP1470864B1 (de) Zweistoffsprühdüse
EP0497255A2 (de) Austragdüse für Medien
DE102011102693B4 (de) Löschdüsenkopf mit Strömungskanal
DE102013210732A1 (de) Zerstäubungsvorrichtung zur Abgabe eines Reduktionsmittels in einen Abgaskanal einer Brennkraftmaschine
WO2011116893A1 (de) Zweistoff-innenmischdüsenanordnung und verfahren zur zerstäubung einer flüssigkeit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170407

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1253635

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014013953

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2788743

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014013953

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201009

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201009

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230913

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231106

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20231011

Year of fee payment: 10

Ref country code: DE

Payment date: 20230822

Year of fee payment: 10

Ref country code: AT

Payment date: 20230925

Year of fee payment: 10