EP3183432A1 - Unité de commande de turbine à régulateur de sollicitation en température configuré en régulateur pilote - Google Patents

Unité de commande de turbine à régulateur de sollicitation en température configuré en régulateur pilote

Info

Publication number
EP3183432A1
EP3183432A1 EP15774624.9A EP15774624A EP3183432A1 EP 3183432 A1 EP3183432 A1 EP 3183432A1 EP 15774624 A EP15774624 A EP 15774624A EP 3183432 A1 EP3183432 A1 EP 3183432A1
Authority
EP
European Patent Office
Prior art keywords
turbine
temperature
controller
control unit
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15774624.9A
Other languages
German (de)
English (en)
Inventor
Martin Bennauer
Matthias Heue
Martin Ophey
Christoph Schindler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3183432A1 publication Critical patent/EP3183432A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/05Purpose of the control system to affect the output of the engine
    • F05D2270/053Explicitly mentioned power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • F05D2270/3032Temperature excessive temperatures, e.g. caused by overheating

Definitions

  • Turbine control unit with a temperature load ⁇ regulator as a master controller
  • GB 2 074 757 A discloses a method and arrangement for controlling the thermal stress of components of a steam turbine at maximum load and unload speeds during startup, shutdown, and other periods of load change. From monitored and derived quantities, a load rate is calculated for each of several preselected turbine components and the lowest speed selected for control. At the same time the
  • US 2006/233637 AI shows a turbine start regulator with an optimum start control unit for predicting a thermal mix load, which is determined in a turbine rotor during a prediction period on the basis of the current time in the future to ⁇ , wherein a turbine acceleration rate and a load rate of growth can be used as control variables.
  • US 5,044,152 A shows a method for operating a combined power station with a gas turbine system and an evaporator, steam ge ⁇ neriert in which from the heat of the turbine exhaust gas and a steam turbine is fed, which is operated by the thus generated steam.
  • An inlet to the gas turbine system is controlled based on the condition of the evaporator or steam turbine.
  • a turbine control unit for Rege ⁇ development of a turbine in particular for controlling the start-ei ⁇ ner turbine proposed, which is designed as a cascade controller.
  • a regulator is understood to mean a cascade controller, wherein at least two control loops each other ge ⁇ are switched on. In this case an outer loop, a so- ⁇ -called master controller is present. It has the task of defining or at least influencing setpoints for an internal control loop, ie a downstream control loop.
  • the master controller thus has the task of predetermining or influencing the setpoint values for an internal control loop in such a way that an excessive temperature load is avoided. So far, when starting a turbine usually with a controller for the turbine power the Performance, more precisely regulated the performance increase. To avoid an excessive temperature stress, the temperature is measured and stopped at an excessive Temperbe pipeung startup. Thus, the performance increase is interrupted. Thus an excessive tempera ⁇ turbe pipeung of components is indeed avoided, but a loss of time is to be accepted until the turbine can reach the ge ⁇ wished performance.
  • a temperature stress regulator for the temperature temperaturbeanprüuchter components as a master controller can be achieved that the allowable temperature stress is largely used, so about the start of the power increase of the turbine turbine is as high as possible, without the ⁇ casual temperature stress of components to cry ⁇ th. It can so the power can be increased faster and a desired turbine performance can be achieved faster.
  • temperature stress regulator is still an internal controller available. The temperature load controller provides the internal controller with a suitable set point to ensure that the turbine is controlled so that it does not exceed a permissible temperature load.
  • the invention is primarily based on steam turbines in which the temperature stress, in particular the temperature stress during start-up represents a significant problem. However, it should not be ruled out that the invention is also used in gas turbines, for example.
  • the inner regulator is a turbine regulator, in particular a turbine power regulator.
  • turbine regulators are known in the art and are very well suited for the regulation of turbines, especially when starting the turbine.
  • the temperature load regulator will pass in this case the inner regulator a setpoint for the performance of the turbine. As will be discussed in more detail later, this may also be a target value for the increase in performance.
  • the main application is certainly the startup of a turbine. However, it is also conceivable to avoid overheating, for example, in full-load operation by the temperature-load regulator designed as a guide regulator.
  • a temperature-stress calculation unit is provided in order to predefine at least one desired value for the temperature-stress controller.
  • the temperature load calculation unit calculates, mostly from data stored in databases, whether a temperature increase is permissible.
  • the temperature load controller is designed to provide for such a regulation of the turbine such that a desired time-temperature rise, so a certain temperature increase per unit time ⁇ is not exceeded.
  • Decisive, in particular when starting the turbine is usually not an absolute ⁇ lute temperature should not be exceeded. It should not be forgotten that there is of course a temperature that must not be exceeded. During start-up, however, it is crucial to avoid undue material stresses that the temperature does not rise too fast. Therefore, the temperature regulator must normally ensure that the temperature does not rise too fast.
  • the temperature stress calculation unit can deduce a temperature rise from the detected temperature values and their time sequence. Furthermore, this temperature increase can be compared with stored data. This allows to determine if the temperature rise is increased can, must be lowered or remain the same. This information can be passed to the temperature stress controller. From this information, the temperature demand controller can generate a suitable setpoint for the inner controller.
  • the temperature- stress regulator is designed to avoid a temperature stress that is caused by temperature differences. Occasionally, a temperature stress also results from different temperatures within a component or from different temperatures of different components. For example, it can be problematic when blades of the turbine expand by heating and a casing of the turbine expands more slowly due to slower heating. It therefore sometimes applies temperature differences that trigger a temperature stress to recognize and avoid by a regulation.
  • the turbine power controller is configured to generate setpoints for positioners that control the position of control valves. The control valves significantly influence the respective amount of steam flowing through and thus the performance or performance curve of the turbine. In this embodiment, the turbine control unit is thus cascaded twice. First, the Temperaturbean ⁇ spruchungsregler is present as the parent master controller, the setpoints for the controller of the turbine power generated. The turbine power controller in turn generates setpoint values for the positioners
  • the turbine control unit is designed turbine stages, in particular a Hochdrucktur ⁇ bine, to regulate a medium pressure turbine and a low pressure turbine separated.
  • the performance can be increased differently, especially due to different Temperaturbeanspru ⁇ chungen.
  • usually a completely separate regulation can not be realized.
  • different steam paths are available, the boundary condition that steam flows from the high-pressure turbine into the medium-pressure turbine and from there into the low-pressure turbine may result in certain dependencies on the performance of the individual turbine sections. Nevertheless, it is advantageous to be able to regulate individual sub-turbines in principle separately. This allows about the Leis ⁇ tion of a sub-turbine to increase faster, while the performance of another sub-turbine is to increase slower to avoid undesirable temperature stress.
  • temperature sensors are mounted at different locations of the turbine, in particular on a high-pressure turbine and / or on a medium-pressure turbine.
  • a high-pressure turbine and the intermediate pressure turbine han ⁇ delt it is more temperature-stress components, so that temperature sensors are required, above all there. In many cases, it makes sense to install temperature sensors in the low-pressure turbine as well.
  • the invention also relates to a method of controlling a turbine with a cascade controller comprising a mecanicsreg ⁇ ler and an internal regulator, the master controller detects a temperature stress of the turbine and passes such setpoints to the inner controller, that a uner ⁇ desired temperature stress of the turbine is avoided , Further explanations of the method will be omitted here. Reference is made to the explanations of the turbine control unit described above, which may be used to carry out the method.
  • the master controller detects the temperature stress of the turbine by a temporal temperature increase, ie by a temperature increase per unit time, and determines the resulting temperature stress, wherein at too high a temperature stress to the inner controller the setpoint is passed to reduce the turbine power increase, the set point is passed at a temperature load within a desired range, the power increase can be maintained, and at a temperature load below a threshold the setpoint is passed to increase the power increase.
  • too high a temperature load here does not mean that the temperature stress is already unacceptably high. Too high a temperature load only means that a limit value for the control has been exceeded.
  • the regulation should just avoid an inadmissibly high temperature stress. This regulation allows the rapid start-up of a turbine without an inadmissibly high temperature stress.
  • a turbine control unit 1 can be seen.
  • a temperature control controller 2 serves as a master controller and transfers setpoint values to an internal controller 3, which is designed as a controller of the turbine output.
  • the Temperaturbeanspru ⁇ monitoring controller 2 is connected upstream unit 4, a Temperaturbe distributedungsbeticians-. This evaluates signals originating from temperature sensors 5 for a high-pressure turbine 6 and from temperature sensors 7 for a medium-pressure turbine 8.
  • the temperature stress calculation unit 4 transfers to the temperature stress controller 2 whether the temperature stress can be increased, should remain the same or should decrease. Depending on this, the temperature load controller 2 transmits to the controller 3 of the turbine power suitable setpoint values, depending on whether a power increase of the turbine is to be lowered, increased or kept constant. This he ⁇ follows for the high-pressure turbine 6, the medium-pressure turbine 8 and the low-pressure turbine 10 each separately.
  • the positioner 11 regulates on the basis of the given target values, a position of a main steam control valve 12, influences which the steam supply to the high pressure turbine 6, a position of a capture ⁇ control valve 13, influences which the steam supply to the intermediate pressure turbine 8 and a position of a Zudampfklappe 14, which affects steam supply to the low-pressure turbine 10.
  • a position of a main steam control valve 12 influences which the steam supply to the high pressure turbine 6, a position of a capture ⁇ control valve 13, influences which the steam supply to the intermediate pressure turbine 8 and a position of a Zudampfklappe 14, which affects steam supply to the low-pressure turbine 10.
  • At the live steam control valve 12 is a Stellungsmes ⁇ ser 15, the Abfangstellventil 13, a positioner 16, and the Zudampfklappe 14 a positioner 17.
  • the positioner 15, 16 and 17 pass values to the positioner 11.
  • the positioner 11 has the information whether the position of live steam control valve 11, interception ⁇ valve 13 and Zudampfklappe 14 has taken the particular desired value or an opening or closing is required.
  • wet steam coming from the low-pressure turbine 10 is condensed in a condenser 18.
  • the resulting water is fed with a feedwater pump 19 in a steam generator 20.
  • the steam passes through the steam control valve 12 to the high pressure turbine 6.
  • From the high pressure turbine is heated in steam coming ei ⁇ nem reheater 26th From the reheater 26, the steam flows through the Abfangstellventil 13 in the Medium-pressure turbine 8. After expansion in the medium-pressure turbine 8, the steam flows in low-pressure turbine 10.
  • steam coming from the steam generator 20 may be added.
  • the high pressure turbine 6, the intermediate pressure turbine 8 and the Never ⁇ derdruckturbine 10 jointly drive a generator 21st Its power is determined with a power meter 22 and passed to the controller 3 of the turbine power. Further, a tachometer 23 is provided, which supplies the controller 3 of the turbine power with the rotational speed of turbine and generator 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Abstract

L'invention concerne une unité de commande de turbine (1), destinée à réguler une turbine (6, 8, 10), en particulier commander le démarrage d'une turbine (6, 8, 10), qui est configurée en régulateur en cascade pourvu d'un régulateur pilote (2) et d'un régulateur interne (3) ; le régulateur pilote est un régulateur de sollicitation en température (2) destiné à la température de composants sollicités en température. L'invention concerne également un procédé associé.
EP15774624.9A 2014-10-27 2015-10-05 Unité de commande de turbine à régulateur de sollicitation en température configuré en régulateur pilote Withdrawn EP3183432A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14190471.4A EP3015658A1 (fr) 2014-10-27 2014-10-27 Unité de réglage de turbine dotée d'un régulateur de contrainte thermique en tant que régulateur principal
PCT/EP2015/072926 WO2016066376A1 (fr) 2014-10-27 2015-10-05 Unité de commande de turbine à régulateur de sollicitation en température configuré en régulateur pilote

Publications (1)

Publication Number Publication Date
EP3183432A1 true EP3183432A1 (fr) 2017-06-28

Family

ID=51794803

Family Applications (2)

Application Number Title Priority Date Filing Date
EP14190471.4A Withdrawn EP3015658A1 (fr) 2014-10-27 2014-10-27 Unité de réglage de turbine dotée d'un régulateur de contrainte thermique en tant que régulateur principal
EP15774624.9A Withdrawn EP3183432A1 (fr) 2014-10-27 2015-10-05 Unité de commande de turbine à régulateur de sollicitation en température configuré en régulateur pilote

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP14190471.4A Withdrawn EP3015658A1 (fr) 2014-10-27 2014-10-27 Unité de réglage de turbine dotée d'un régulateur de contrainte thermique en tant que régulateur principal

Country Status (7)

Country Link
US (1) US10436058B2 (fr)
EP (2) EP3015658A1 (fr)
JP (1) JP6396599B2 (fr)
KR (1) KR101914889B1 (fr)
CN (1) CN107075974A (fr)
RU (1) RU2669537C1 (fr)
WO (1) WO2016066376A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6614503B2 (ja) * 2016-10-21 2019-12-04 三菱重工業株式会社 蒸気タービン及び蒸気タービンの制御方法
EP3318732A1 (fr) * 2016-11-07 2018-05-09 Siemens Aktiengesellschaft Procédé de fonctionnement d'une centrale à cycle combiné à gazéification intégrée
EP3460202A1 (fr) * 2017-09-22 2019-03-27 Siemens Aktiengesellschaft Réglage de turbine à vapeur
US11162428B2 (en) 2017-12-18 2021-11-02 General Electric Company Method of starting a gas turbine engine
US11525375B2 (en) 2020-04-09 2022-12-13 General Electric Company Modeling and control of gas cycle power plant operation with variant control profile
US11428115B2 (en) * 2020-09-25 2022-08-30 General Electric Company Control of rotor stress within turbomachine during startup operation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673017B2 (ja) * 1996-05-23 2005-07-20 株式会社東芝 蒸気タービン起動制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208060A (en) 1979-01-15 1980-06-17 Bellofram Corporation Sealed shaft
US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
US4280060A (en) * 1980-06-09 1981-07-21 General Electric Company Dedicated microcomputer-based control system for steam turbine-generators
JP2680033B2 (ja) * 1988-05-11 1997-11-19 株式会社日立製作所 コンバインドプラントの運転方法及び装置
JPH043017A (ja) 1990-04-20 1992-01-08 Fujitsu General Ltd Plzt光シャッタアレーの電極形成方法
JP3325413B2 (ja) * 1994-12-09 2002-09-17 株式会社東芝 蒸気タービンの熱応力監視保護装置
JPH08303210A (ja) * 1995-05-11 1996-11-19 Hitachi Ltd 火力発電プラントの自律適応最適化制御システム
JPH08326506A (ja) * 1995-05-30 1996-12-10 Hitachi Ltd 再熱蒸気タービンの加熱蒸気圧力制御方法及び再熱蒸気タービンプラント
JP4208397B2 (ja) 2000-09-29 2009-01-14 株式会社東芝 コンバインドサイクル発電プラントの起動制御装置
JP4723884B2 (ja) * 2005-03-16 2011-07-13 株式会社東芝 タービン起動制御装置およびその起動制御方法
IT1396516B1 (it) 2009-11-27 2012-12-14 Nuovo Pignone Spa Metodo di controllo di modo basato su temperatura di scarico per turbina a gas e turbina a gas
US9523313B2 (en) * 2013-03-12 2016-12-20 General Electric Company System and method for loading a combined cycle power plant
JP6037448B2 (ja) 2013-03-15 2016-12-07 三菱日立パワーシステムズ株式会社 蒸気タービン発電プラント

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673017B2 (ja) * 1996-05-23 2005-07-20 株式会社東芝 蒸気タービン起動制御装置

Also Published As

Publication number Publication date
WO2016066376A1 (fr) 2016-05-06
KR20170074979A (ko) 2017-06-30
US10436058B2 (en) 2019-10-08
CN107075974A (zh) 2017-08-18
US20170241285A1 (en) 2017-08-24
RU2669537C1 (ru) 2018-10-11
JP6396599B2 (ja) 2018-09-26
EP3015658A1 (fr) 2016-05-04
JP2017532503A (ja) 2017-11-02
KR101914889B1 (ko) 2018-11-02

Similar Documents

Publication Publication Date Title
EP3183432A1 (fr) Unité de commande de turbine à régulateur de sollicitation en température configuré en régulateur pilote
EP2359058B1 (fr) Procédé destiné au fonctionnement d'un générateur de vapeur à récupération de chaleur
DE2833277C3 (de) Steueranordnung für eine einen Generator antreibende Dampfturbine eines Dampfkraftwerkes
DE60029510T2 (de) Dampfkühlungssystem für den Ausgleichkolben einer Dampfturbine und dazugehörige Methode
DE112013004755B4 (de) Verfahren zur Steuerung eines Kühlsystems einer Gasturbine, Steuervorrichtung zur Durchführung desselben und Gasturbinenanlage mit der Steuervorrichtung
EP2614303B1 (fr) Procédé pour faire fonctionner un système combiné de turbines à gaz et à vapeur, système de turbines à gaz et à vapeur conçu pour ce procédé et dispositif de régulation correspondant
DE112015001364B4 (de) Kombianlage, Verfahren zur Steuerung derselben und Vorrichtung für die Steuerung derselben
EP1797284B1 (fr) Procede et module de demarrage a prediction de turbines a vapeur
EP2038517A2 (fr) Procédé pour faire fonctionner une turbine à gaz et turbine à gaz permettant la mise en oeuvre du procédé
DE69930557T2 (de) Auslassstromüberwachungssystem in einer dampfgekühlten Gasturbine
EP3161378A1 (fr) Procédé de régulation du fonctionnement d'un générateur de vapeur à récupération de chaleur
EP2616643A2 (fr) Procédé de régulation d'une augmentation de puissance à court terme d'une turbine à vapeur
WO2016206974A1 (fr) Procédé de refroidissement d'une turbomachine
DE2923288C2 (fr)
EP3910182A1 (fr) Procédé de régulation et de limitation de la vitesse de rotation d'un turbocompresseur
DE19621824A1 (de) Verfahren zum Regeln von Gasdrücken bei Einsatz von Gasentspannungsturbinen
DE2550059C2 (de) Sicherheitssystem für eine Dampfturbinenanlage
EP2037086B1 (fr) Mise en route d'une turbine à vapeur
DE102014206043A1 (de) Verfahren zum Betreiben eines Systems für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, Steuereinrichtung für ein System, System für einen thermodynamischen Kreisprozess mit einem mehrflutigen Verdampfer, und Anordnung einer Brennkraftmaschine und eines Systems
EP3074610B1 (fr) Procédé pour faire fonctionner une turbine à gaz pendant réglage actif de l'écartement hydraulique
DE112017000478T5 (de) Gasturbinenkühlsystem, gasturbinenanlage umfassend dasselbe und steuerverfahren eines gasturbinenkühlsystems
WO2015188976A1 (fr) Procédé de refroidissement d'une unité de centrale
WO2016083131A1 (fr) Procédé pour faire fonctionner une unité de turbine, centrale à vapeur ou centrale combiné à gaz et à vapeur et utilisation d'un dispositif d'étranglement
DE19819973A1 (de) Regler-Schaltung für einen Dampfkraftwerksblock
DE1912862A1 (de) Kernkraftwerk und Betriebsverfahren hierfuer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20170321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20190909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 19/02 20060101AFI20191212BHEP

Ipc: F01K 13/02 20060101ALI20191212BHEP

Ipc: F02C 9/16 20060101ALI20191212BHEP

INTG Intention to grant announced

Effective date: 20200113

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603