EP1797284B1 - Procede et module de demarrage a prediction de turbines a vapeur - Google Patents

Procede et module de demarrage a prediction de turbines a vapeur Download PDF

Info

Publication number
EP1797284B1
EP1797284B1 EP05785118A EP05785118A EP1797284B1 EP 1797284 B1 EP1797284 B1 EP 1797284B1 EP 05785118 A EP05785118 A EP 05785118A EP 05785118 A EP05785118 A EP 05785118A EP 1797284 B1 EP1797284 B1 EP 1797284B1
Authority
EP
European Patent Office
Prior art keywords
turbine
steam
model
metal
permissible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05785118A
Other languages
German (de)
English (en)
Other versions
EP1797284A1 (fr
Inventor
Rudolf Sindelar
Lothar Vogelbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35453570&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1797284(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to PL05785118T priority Critical patent/PL1797284T3/pl
Publication of EP1797284A1 publication Critical patent/EP1797284A1/fr
Application granted granted Critical
Publication of EP1797284B1 publication Critical patent/EP1797284B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/165Controlling means specially adapted therefor

Definitions

  • the invention relates to a method for predictive, also referred to as predictive, startup of steam turbines and a module for carrying out the method according to claims 1 and 23 and is particularly suitable for the initial optimization of steam turbines with and without steam reheatening.
  • the plant operator incurs increased own costs, since the power generation takes place after the synchronization of the generator with the electrical supply network with a greatly reduced thermal efficiency compared to the operation of the turbine with the rated steam parameters.
  • the power plant blocks are operated according to the power requirements of the electrical supply network. If the power requirement of the supply network is low, selected power plant blocks must even be shut down completely. On the other hand, if the power consumption increases again, the power plant blocks are started again and switched to the electrical supply network. For the power plant operator this start-up process is costly and in particular depending on the downtime of a power plant block, the start-up costs increase steadily.
  • US 4,558,277 discloses a method for starting up steam turbines of a turbine plant via a shelving system by estimating and comparing steam parameters taking into account the stress of the turbine metal and controlling the boiler and turbine parameters via respective boiler feed water and turbine temperature control valves at the end of the first turbine stage.
  • start-up of the boiler involves only a relatively small portion of the entire start-up process of a power plant unit.
  • the start-up period in which the costs are influenced by the boiler, is limited to the rapid provision of steam for the turbine start.
  • the starting parameters such as the live steam temperature and the inlet temperature of the superheated steam into the turbine, are usually selected according to the instantaneous metal temperature of the respective turbine parts.
  • the amount of steam supplied by the boiler via the diverting stations and the starting steam pressure of the boiler are decisively influenced by the structural design of the boiler.
  • startup with the shortest startup duration can only be performed with the underlying startup steam parameters, such as the start steam temperature, the startup steam pressure, and the starting metal temperature of the critical turbine components.
  • the first necessary condition for the cost-effective startup of the turbine and thereby also the power plant block is that the allowances of the allowable stress of the turbine metals are fully utilized to achieve the shortest turbine start-up.
  • the second necessary condition for the cost-effective startup of the turbine and thereby also of the power plant block is achieved by optimizing the increase of the inlet vapor pressure into the turbine.
  • the stress of the turbine metal in particular in the turbine rotors and the housing wall of the turbine, has hitherto been regulated by means of a so-called limit control, which is active only in the region above the allowable stress of the turbine.
  • This limit control only temporarily corrects the gradient of the inlet steam temperature of the turbine if the stress on the turbine metal exceeds the permissible load limit.
  • the border control With the application of the border control, the shortest start-up time of the turbine aimed at by the power plant operator and thus also of the entire power plant block is not achievable.
  • the increases in the steam parameters such as the steam temperatures and the steam pressures at the turbine inlet, as well as the speed-up of the turbine are exclusively pre-programmed. Assuming that the shortest startup duration is ensured after a startup diagram, only the start steam temperatures predefined in the startup diagram and the vapor pressure increase defined in the startup diagram apply.
  • the invention has the object, a method and a module for carrying out the method for predictive Determination of optimal steam parameters at the turbine inlet, but also at the boiler outlet, for a cost-effective start of steam turbines indicate, which is used in particular for the initial optimization of steam turbines with and without reheating, and thus an improved start-up strategy of the power plant block can be achieved with minimal cost.
  • the optimal temporal and thus cost-effective curves of the inlet steam parameters HP and MD sub-turbine such as the steam temperature and the steam pressure at the turbine inlet, but also determined at the boiler outlet and connected to implement the boiler control and turbine control as setpoint curves for the control of steam temperatures and steam pressures.
  • thermodynamic behavior of the real turbine system is simulated stationary and dynamically by means of a preview model integrated in the module for predictive start optimization and accelerated by a multiple in comparison with the behavior of the real system the operating staff of the power plant block advantageously present the preview of the required steam parameters for the startup process of the turbine within a very short time.
  • the acceleration factor can be set as large as desired by means of an adjuster placed on the predictive start-up optimization module.
  • the inlet steam parameters relate to the live steam temperature and the live steam pressure in turbines without reheating and to the live steam temperature, the live steam pressure and also the inlet steam temperature and the inlet steam pressure in turbines with reheat.
  • the desired start steam temperature and the desired steam pressure are determined and made available to the boiler control for implementation.
  • thermodynamic parameters determined with the module according to the invention are compared with the current parameters of the real turbine.
  • the device for determining the reference voltage requires no measuring probe, which advantageously eliminates a costly design of the probe for detecting the stress of the critical turbine components, in particular in the double-housing design of a high-pressure turbine part due to the different housing expansions.
  • a device for the operational detection of the stress in the critical metal components of the turbine, ie the turbine metal, which is located for example on a specially introduced from the outside into the turbine, preferably at a critical metal location, for determining the steam temperature ,
  • the invention is further provided, alternatively for detecting the three-dimensional stresses of the critical turbine components and the resulting Comparative stresses to determine only the tangential thermal stresses of the outer and inner fibers of the critical point of the turbine component, due to the simulated temperature difference between the respective metal fiber and the so-called integral mean temperature of the radial temperature distribution in the respective turbine component.
  • the tangential thermal stresses of the outer and inner fibers of the critical point of the turbine component are displayed to operating personnel in addition to the actual reference stresses of the outer and inner fibers.
  • the determined temperature difference as a control variable Position of the determined reference voltage used and thus advantageously achieved a better control quality over the use of the determined reference voltage as a controlled variable.
  • the controlled variable with respect to the temperature difference is thus favorably influenced in terms of control technology when there is a change in the steam temperature as a result of the control variables changed by the controller, such as the opening speed of the control valves in turbines without reheating, the opening speed of the interception valves in turbines with reheat and the rate of change of the inlet steam temperature at the turbine inlet.
  • the stress at the critical points of the turbine preferably the turbine rotors, at the beginning of the starting process, but also the housing wall of the turbine, to an optimally increasing stress setpoint in the closed loop until it reaches its allowable stress limit and further regulated to the same with the allowable stress setpoint, which is also referred to as stress control.
  • stress control As a manipulated variable, the opening speed of the control valves and after reaching the maximum position of the control valves is used as a manipulated variable, the rate of increase of the inlet temperature at the turbine inlet.
  • the inventive module for predictive start optimization comprises a dynamic model of the steam pipelines between the boiler and the turbine, whereby the corresponding steam temperatures at the boiler outlet can be determined on the basis of the determined optimum course of the respective inlet steam temperature in the turbine ,
  • the second necessary condition for achieving the most cost effective turbine start-up is by ensuring a monotone increase in live steam enthalpy, taking into account the maintenance of uniform steam generation met by a proposed limit control of the live steam enthalpy.
  • the limit control of the monotone enthalpy increase uses the rate of change of the live steam pressure as the manipulated variable.
  • the resulting temporal course of the live steam pressure is determined here as the optimum course for the start-up process with a simultaneously fulfilled secondary condition with respect to the monotonous increase of the live steam enthalpy.
  • the enthalpy gain based on the fresh-temperature increase is optimized as a percentage of the ratio of the live steam enthalpies and the live steam temperatures between their start and nominal values.
  • the module according to the invention comprises a model for simulating the steady state and dynamic behavior of the real Turbine plant including the connection piping with the boiler, which simulates a much accelerated working model by applying the acceleration factor model for the relevant physical variables, such as steam and metal temperatures, steam pressures, turbine speed.
  • the module for carrying out the method according to the invention for the predictive startup of steam turbines of a turbine system comprises a preview model for determining the optimum steam parameters, such as the live steam pressure and the live steam temperature upstream of the HP turbine for turbines without reheating and, in addition, the steam pressure and the steam temperature of the reheated steam in turbines with reheat, at the turbine inlet and at the boiler outlet before each start of the turbine taking into account the complete Utilization of the allowable stress of the turbine metal, wherein the preview model of the allowable stress of the turbine metal to an optimally increasing stress setpoint until the allowable magnitude of the stress of the turbine metal and continue until the end of the turbine start-up on the allowable size of the stress limit of the turbine metal in a closed Control loop regulates.
  • the preview model of the allowable stress of the turbine metal to an optimally increasing stress setpoint until the allowable magnitude of the stress of the turbine metal and continue until the end of the turbine start-up on the allowable size of the stress limit of the turbine metal in a closed Control loop regulates
  • a model for simulating the steady state and dynamic behavior of the real turbine system in particular the steam turbine, the pipelines, the Recirculating transfer stations and the turbine rotor load acquisition devices are integrated into the predictive start-up optimization module.
  • the model for simulating the real turbine system is set up to simulate the turbine metal temperatures of the critical turbine parts, in particular for determining the tangential heat stresses of the critical turbine metal, and to feed the preview model for further processing.
  • the model for the simulation of the real turbine system includes a partial model of the turbine, a submodel of the bypass stations, a submodel of the connecting steam pipelines between the boiler and the turbine to determine the heat and pressure loss in the steam piping between boiler and turbine and a module for the determination the thermal stress on the critical components of the turbine.
  • an adjuster an arbitrary acceleration factor for the Vorschaumodell and the model for simulating the real turbine system to implement a short determination period of the steam parameters for starting the turbine system.
  • the desired optimum increase in the fresh steam temperature at the turbine inlet is realized up to the rated steam parameters and to the target power within a short determination time which can be set by means of the acceleration factor.
  • the turbine when the preview model is switched off, the turbine can be started according to predetermined startup diagrams taking into account the time profiles of the entry steam parameters determined using the model for simulating the real turbine system.
  • the Vorschaumodell to determine the most cost-effective temporal course of the steam parameters at the turbine inlet and the boiler outlet processed before the start of the turbine, the predetermined measurement signals of the real turbine; taking into account the starting steam temperature that is usually minimally realizable by the boiler and the starting inlet temperature of the superheated steam, as well as the start steam inlet pressure.
  • the described predictive determination of optimized steam parameters for a cost-effective startup of the turbine with the preview model can be activated not only before the turbine start, but also during the startup process of the real turbine in order to obtain the most favorable time profiles of the entry steam parameters for the remaining part of the startup process determine and present to the operating staff as default increases for the optimal start-up continuation.
  • Vorschaumodell and / or the model for simulating the behavior of the real turbine system default parameters, such as from heat maps removable parameters for the real steam temperatures and vapor pressures, material values of the turbine rotors and / or the turbine housing and allowable reference voltages process critical turbine metal parts.
  • the most cost-effective time profiles of the live steam parameters - in the case of steam turbines with reheating also the course of the parameters of the temporarily superheated inlet steam - Not only at the turbine inlet, but also at the boiler outlet before each start of the turbine system, taking into account the allowable stress of the turbine components, many times faster - compared with the duration of the real turbine startup - determined.
  • the start-up process is thus characterized by a minimal start-up cost and also by a higher economic efficiency.
  • the method and system according to the invention can also be used with the features described above for the predictive drive optimization of steam turbines of a turbine plant.
  • Fig. 1 shows an exemplary representation of the module 1 according to the invention for carrying out the method for determining a predictive low-cost startup of a steam turbine, wherein by means of the module 1 optimal temporal courses of the steam parameters at the turbine inlet and the boiler outlet, especially before each start of the turbine taking into account the full utilization of allowable stress of the turbine metal, hereinafter also called metal stress, are determined.
  • the steam parameters refer to the live steam pressure before the HD turbine (p FD, vHD ) and the boiler outlet (p aK ) and the live steam temperature before the HD turbine (T FD, vHDT ) and at the boiler outlet (T aK ) for turbines without reheating or to the live steam pressure before the HD turbine (p FD, vHD ) and at the boiler outlet (p aK ), the live steam temperature (T FD, vHDT ) before the HP turbine and at the boiler outlet (T aK ) the steam pressure upstream of the MD turbine (p ZÜ, vMD ) and at the boiler outlet (p aZÜ ) and the steam temperature upstream of the MD turbine (T ZÜ, vMDT ) and at the boiler outlet (T aZÜ ) for turbines with reheating .
  • the metal stress is controlled in a closed loop with the change in the opening speed of the control valves as manipulated variable Y HD until the maximum control valve position. After reaching the maximum position of the control valves, the metal load is controlled in the closed loop with the change in the rate of increase of the live steam temperature as manipulated variable T FD .
  • the change in the stress at the critical point of the turbine metal which comes about only due to a change in the heat transfer coefficient is detected by the module 1 according to the invention and the proportion of the activity of reduced above according to the remaining requirements of the regulated load.
  • the metal stress is controlled in turbines with reheating of the turbine part for the reheated steam in the closed loop with the change of the opening speed of the interceptor valves as manipulated variable Y MD until reaching the maximum intercept valve position.
  • the metal stress of the turbine part for the reheated steam with the change in the rate of increase of the inlet temperature of the superheated steam is controlled as a manipulated variable T ZÜD .
  • T ZÜD the reduction of the activity of the above-mentioned control is initiated when the load is due only to the change in the heat coefficient.
  • the optimum time profiles of the steam parameters at the turbine inlet and at the boiler outlet determined by module 1 for predictive start optimization are, in particular, the steam temperature profile TvT (t) before the HP (high pressure) partial turbine and MD (medium pressure) partial turbine, the temporal vapor pressure curve pvT (t) before the HP sub-turbine and MD sub-turbine, the turbine thermal power and / or generator power P (t), the turbine system critical metal stress reference voltages ⁇ v (t), which are the external fiber stress ⁇ v, a (t) the critical metal locations of the turbine and the internal fiber stress ⁇ v, i (t) of the critical metal locations of the turbine are determined, the allowable reference stresses ⁇ v, zul (t) of the critical metal locations of the turbine, which consists of the permissible outside fiber tension and the permissible internal fiber tension ⁇ v , zul (t) of the critical metal locations of the turbine are determined, the characterizing metal temperature differences ⁇ T (t) of the comparison stresses ⁇ v (t) for the outer fiber
  • the module 1 for predictive start-up optimization is provided to provide further time profiles Va1, Va2, such as the live steam enthalpy at the turbine inlet, for an optimized and cost-effective approach of the turbine.
  • the module 1 for the predictive start optimization processes the starting boiler pressure K1 and limiting signals K2 from the boiler 2 in addition to the operationally detected temperature field in the turbine rotor and / or in the turbine housing G1.
  • the acceleration factor for connection to the module 1 by means of an adjuster 5, is arbitrarily large adjustable, whereby the operating staff of the power plant block advantageously present the preview of the required time course of the steam parameters for the startup process of the turbine within a very short time.
  • Further parameters influencing the determination of the time profiles of the steam parameters are measurement signals R1 from the real turbine 3, in particular the minimum start-up temperature T start, HD and start HD pressure p start, HD, which can be implemented by the boiler , or the start MD Temperature T start, MD and start MD pressure p start, MD, the turbine speed n, the steam pressure in the turbine before the HP blading p vHDB and before the MD blading p vMDB at a turbine with reheat , the Determination of the temporal course of the live steam parameters - in steam turbines with reheating and the increases in the parameters of the superheated steam - are processed not only at the turbine inlet, but also at the boiler outlet before each start of the turbine system.
  • Fig . 2 shows a detailed representation of the module 1 according to the invention for carrying out the method for determining the predictive cost-efficient start-up of the steam turbine, wherein the module 1 for predictive start optimization includes a preview model 10, for example, the allowable stress of the turbine metal in a closed loop on an optimally, until Regulates the value of the admissible load guided nominal value and then keeps the permissible load regulated until reaching the nominal steam parameters.
  • the manipulated variables used are first the opening speed of the control valves and, after reaching the maximum position of the control valves, the rate of increase of the inlet temperature at the turbine inlet.
  • the allowable stress X1 of the turbine from a database 11 of the module 1, the operationally detected turbine metal temperatures G1 from the device 4 for operational detection of the temperature field in the turbine rotor and / or in the turbine housing and the steam parameters R1 from the real turbine 3 the Preview model 10 for determining the optimized time profiles of the steam parameters (TvT (t), pvT (t), P (t), ⁇ v (t), ⁇ v, zul (t), ⁇ T (t), ⁇ v, zul (t), Tstart, wu, the ekofactor and entrainment enthalpy) at the turbine inlet and at the boiler outlet and these parameters (TvT (t), pvT (t), P (t), ⁇ v (t), ⁇ v, zul (t), ⁇ T (t ), ⁇ v, zul (t), Tstart, wu, the ekofactor and the entrainment enthalpy) at the outputs O1 to 09.
  • the preview model 10 receives at a first input In1 measurement signals R1 from the real turbine 3 and at a further input In2 from the device 4 the operationally determined temperature field in the turbine rotor and / or in the turbine housing G1.
  • the switches A1 and A2 are in the upper position Ao.
  • the starting boiler pressure K1 which corresponds to the minimum starting fresh steam pressure to be realized by the boiler 2 or the superheated pressure - in the case of a turbine with reheat - and the limit signals K2 from the critical metal points in the boiler 2 are transmitted via a third input In3 and a fourth input In4 the preview model 10 to account for the increases in the inlet steam parameters of the turbine supplied.
  • the measurement signals simulated by means of the model 12 for simulating the turbine installation are fed to the preview model 10 for further processing at the exit M2.
  • the turbine is not operating (see also Fig . 4 ), the measurement signals from the real turbine 3 are simulated by means of the model 12 for simulating the turbine system and the preview model 10 as replicated measurement signals M1 at the first input In1 transmitted.
  • the switches A1 and A2 are in the lower position Au, the switch B in the upper position Bo, the switch A2 in the lower position Au and the switch C in the upper position Co.
  • the verification of the functions of the module 1 for predictive Initial optimization is thus carried out by means of the model 12 for simulating the real turbine system.
  • the signals R1 and G1 which are otherwise measured on the real turbine 3 are simulated and transmitted to the preview model 10 at the output M2 for further processing at the second input In2.
  • Model 12 of the real turbine engine replicates the steam turbine, the bypass stations, the connecting steam piping between the boiler and the turbine, and / or the stress on the critical components of the turbine.
  • the turbine model turbocharger model 10 and / or turbine model 12 further process default parameters X1, such as design temperatures provided by a thermal map, material values of the turbine rotors and / or turbine housing, and the allowable limit of the reference stresses on the critical metal parts, which are preferably a database 11 of the module 1 are stored and are supplied to the preview model 10 at a fifth input In5 and to the model 12 for simulating the real turbine installation at a sixth input In6.
  • default parameters X1 such as design temperatures provided by a thermal map, material values of the turbine rotors and / or turbine housing, and the allowable limit of the reference stresses on the critical metal parts, which are preferably a database 11 of the module 1 are stored and are supplied to the preview model 10 at a fifth input In5 and to the model 12 for simulating the real turbine installation at a sixth input In6.
  • the startup of the turbine according to a built-in module 1 start-up diagram and with the help of the frequently accelerated preview model 10 and / or the model 12 for simulating the turbine system, with respect to the utilization of the allowable limits of the stress of the critical turbine metal (see Fig . 5 ), and a comparison with the startup according to the preview model allows.
  • the switches B and A2 are in the lower positions Bu and Au and the switch C in the upper position Co and the generated time profiles of the inlet steam parameters according to startup diagram, at the outputs D1 and D2 of a Starting diagram generator 13 are present, are transmitted by means of the input signals, at the first input In1 the preview model 10 and the seventh input In7 the model 12 for performing the verification.
  • the switch C is in the lower position Cu, taking into account the currently measured metal temperatures at critical points of the turbine metal, the "desired start steam temperature" for the HP or MD turbine inlet of the boiler control is presented as specification for the realization and for the "Desired start steam temperature” for the HD or MD turbine entrance the startup preview using the preview model 10 determined.
  • Fig. 3 1 shows an exemplary embodiment of the module 1 according to the invention for determining the anticipatory cost-effective startup of the steam turbine, wherein the measured process data from the real sub-turbine, such as temperatures and vapor pressures of the real turbine 3, the preview model 10 to perform the functions of the module 1 for predictive start optimization be supplied and thus present these measuring signals of the turbine to the module 1.
  • the measured process data from the real sub-turbine such as temperatures and vapor pressures of the real turbine 3
  • the preview model 10 to perform the functions of the module 1 for predictive start optimization be supplied and thus present these measuring signals of the turbine to the module 1.
  • the allowable stress of the turbine is determined by means of the temperature field in the turbine metal operatively detected by the device 4 and fed to the preview model 10 at the second input In2 from the output G1 of the device 4 for operational detection of the temperature field in the turbine engine and / or in the turbine housing for further processing.
  • connection of the measured values of the real turbine 3 to the module 1 for predictive startup optimization furthermore has the effect that at the first input In1 of the preview model 10 measurement signals R1 from the real turbine 3 are applied to the preview model for further processing.
  • the preview model 10 further processes the default parameters X1 from the database 11, which are fed to the preview model at the fifth input ln5.
  • the preview model 10 processes, in addition to the detected metal temperatures G1, such as outside temperature, mean temperature and inside temperature of the turbine metal, the start boiler pressure K1 and limit signals K2 from the boiler 2, which are supplied to the preview model at the third input In3 and the fourth input In4.
  • the preview model 10 provides the optimized time profiles of the steam parameters for the optimized approach to the outputs 01-09 of the turbine and the further courses of the preselected physical quantities from the startup process at the output Va1.
  • the stress of the critical turbine metal for the rise of the inlet steam temperature is fully used up to its permissible limit and the rise of the live steam pressure and / or superheated pressure - for turbines with reheat - runs up to the nominal values pressure is optimally controlled by controlling the stress in the turbine rotors in the closed loop, and correcting the rise gradient of the inlet temperature already in the range below the allowable stress limits according to the above-described control method in the closed loop on a setpoint.
  • the live steam pressure and the steam pressure upstream of the sub-turbine for the reheated steam increase optimally.
  • the optimum increase of the respective Eneries steam temperature is realized at the lowest start-up costs of the turbine in an advantageous manner.
  • Fig. 4 shows a further embodiment of the module 1 according to the invention for determining a predictive low-cost startup of the steam turbine, wherein the real turbine 3 is modeled by the model 12 for simulating the stationary and dynamic behavior of the turbine system and for the execution of the functions of the module 1 for predictive start optimization at switched off real turbine 3, the steady state and dynamic behavior of the real turbine 3 is simulated.
  • the verification of the functions of the preview model is thus carried out by means of the model 12 contained in the module 1 for simulating the real turbine system, so that no signals from the real turbine 3 are required.
  • the permissible stress of the turbine is simulated by means of the model 12 and used to determine the optimized time profiles of the steam parameters (TvT (t), pvT (t), P (t), ⁇ T (t), ⁇ Tzul (t), Tstart, wu, of the ekofactor as well as the live steam enthalpy) at the turbine inlet and at the boiler outlet are fed to the preview model 10 as simulated physical quantities M2 at the second inlet In2 for the further processing described above.
  • the steam parameters TvT (t), pvT (t), P (t), ⁇ T (t), ⁇ Tzul (t), Tstart, wu, of the ekofactor as well as the live steam enthalpy
  • the real turbine model replica model 12 also processes default parameters X1, such as thermal map temperatures, turbine rotor and / or turbine housing material values, and the allowable limit of the reference stresses on the critical metal parts at the sixth input In6 of the model 12 be supplied to the replica of the real turbine system.
  • the required measurement signals from the real turbine 3 are simulated by the model 12 and transmitted to the preview model 10 as simulated measurement signals M1 at the first input ln1.
  • Fig. 5 shows a representation for the verification of the startup of the turbine according to one of the startup diagrams by means of the startup diagram generator 13, wherein at a shutdown of the preview model 10, a startup of the turbine according to predetermined startup diagrams taking into account the determined by means of the model 12 for simulating the real turbine system temporal profiles the entry steam parameter D2 is executed.
  • the time profiles of the entry steam parameters D2 according to the approach diagram generated with the startup diagram generator 13 are transmitted to the model 12 for simulating the real turbine system at the seventh input In7 in order to simulate with the model 12 the turbine startup according to the particular startup diagram.
  • time profiles of the entry steam parameters D1 generated in accordance with the startup diagrams by means of the startup diagram generator 13 are supplied to the preview model 10 to the preview model 10 at the first input In1 for determining the permissible reference voltages in the respective turbine metal.
  • Fig. 6a shows by way of example the optimal time profiles of the steam parameters and Fig. 6b the corresponding curves of the stress of the turbine metal when starting the HP turbine part after a forty-eight hour turbine standstill taking into account the allowable stress of the critical points of the turbine metal by means of the module according to the invention 1.
  • Fig. 6a are the turbine speed n, the curves of the manipulated variable for the FD-control valves Y HD, the fresh steam pressure upstream of the HP turbine p FD, VHDT, the vapor pressures before blading of the HP turbine p VHDB, at the boiler outlet p aK, and behind the HD- Partial turbine p hHDT , as well as the temperature profiles of the radial temperature distribution in the critical turbine component with the outer fiber T a , the integral mean temperature T m and the inner fiber T i and the profiles of the temperatures upstream of the HP sub-turbine T FD, vHDT , before blasting the HD turbine T VHDB, and applied at the boiler outlet T aK.
  • the course of the steam mass flows m HDT , m MDT by the HD and MD turbine and the steam mass flow m HDBP by the HD diverter station and the generator power P Gen for the optimized approach is shown.
  • the permissible equivalent stresses ⁇ a, perm , ⁇ i, perm refer to the outer fiber stress ⁇ a and inner fiber stress ⁇ i of the critical metal locations of the turbine in the corresponding permissible limit of the characteristic temperature differences ⁇ T iZUL , ⁇ T aZUL as the difference ⁇ T a , ⁇ T i between the integral mean temperature T m of the radial temperature distribution in the turbine component and the temperature of the outer fiber T a , or the integral mean temperature T m of the radial temperature distribution in the turbine component and the temperature of the inner fiber T i of the metal turbine component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (46)

  1. Procédé pour le démarrage prédictif de turbines à vapeur d'une installation de turbines au moyen d'un module (1), dans lequel
    - des courbes optimisées dans le temps des paramètres de vapeur à l'entrée de la turbine et à la sortie de la chaudière avant et/ou pendant le démarrage de la turbine sont déterminées en tenant compte de la contrainte admissible des points critiques du métal de la turbine au moyen d'un module prédictif (10) intégré dans le module (1),
    - la contrainte aux points critiques du métal de la turbine est régulée selon une consigne de contrainte augmentant de façon optimale jusqu'à ce que soit atteinte une limite de contrainte admissible, au moyen du modèle prédictif (10),
    - le modèle prédictif (10) est également utilisé pour maintenir la contrainte admissible aux points critiques du métal de la turbine jusqu'à ce que soient atteintes des températures nominales de vapeur prédéterminées, et
    - les grandeurs de régulation utilisées pour la régulation de la chaudière et/ou de la turbine comprennent la vitesse d'ouverture des vannes de régulation de la vapeur vive (YHD) et des vannes de régulation des dérivations (YMD) et, lorsque la position maximale des vannes est atteinte, la grandeur de réglage utilisée est la vitesse de modification des paramètres de vapeur à l'entrée de la turbine correspondante.
  2. Procédé selon la revendication 1, caractérisé en ce que la modification de la contrainte au point critique du métal de la turbine est reconnue à l'aide d'une modification des coefficients thermiques par le modèle prédictif (10), et la part de l'activité de régulation de la contrainte aux points critiques du métal de la turbine est réduite à la valeur de consigne identique à la contrainte admissible selon la grandeur restante de la contrainte régulée.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les paramètres de vapeur se rapportent à la pression de vapeur vive en amont de la turbine HP (PFD,vHD) et à la sortie de la chaudière (paK) et à la température de la vapeur vive en amont de la turbine HP (TFD, vHDT) et à la sortie de la chaudière (TaK) pour les turbines sans resurchauffe ou à la pression de vapeur vive en amont de la turbine HP (PFD,vHD) et à la sortie de la chaudière (paK), à la température de la vapeur vive (TFD, vHDT) en amont de la turbine HP et à la sortie de la chaudière (TaK), à la pression de vapeur en amont de la turbine MP (p, vmD) et à la sortie de la chaudière (pazü) et à la température de la vapeur en amont de la turbine MP (T, vMDT) et à la sortie de la chaudière (Tazü) pour les turbines à resurchauffe.
  4. Procédé selon l'une des revendications précédentes, dans lequel les courbes dans le temps optimisées des paramètres de vapeur sont caractérisées par des coûts de démarrage minimaux pour un démarrage au meilleur coût de la turbine.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'en vue de réguler la contrainte admissible aux points critiques du métal de la turbine, la tension comparative du métal critique de la turbine est générée comme grandeur de régulation.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la tension comparative admissible du métal critique de la turbine est convertie dans la limite admissible correspondante de la différence de température caractéristique (ΔTadm) représentant la différence entre la température moyenne intégrale (Tm) de la répartition radiale de la température dans le composant de turbine et la température de la surface extérieure (Ta) ou entre la température intégrale moyenne (Tm) de la répartition radiale de la température dans le composant de turbine et la température de la surface intérieure (Ti) du métal de la turbine et la limite admissible correspondante de la différence de température caractéristique (ΔTadm) est utilisée à la place de la tension comparative pour réguler la contrainte admissible aux points critiques du métal de la turbine.
  7. Procédé selon l'une des revendications précédentes, caractérisé en ce que la contrainte admissible aux points critiques du métal de la turbine est régulée en fonction de températures du métal de la turbine mesurées instantanément ou simulées.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le module (1) intègre un modèle (12) destiné à reproduire le comportement statique et dynamique de l'installation de turbines réelle, qui reproduit le comportement thermodynamique de l'installation de turbines y compris les températures du métal des turbines dans les parties critiques des turbines, et le transmet pour traitement au modèle prédictif (10).
  9. Procédé selon la revendication 8, caractérisé en ce que le modèle (12) permet de modéliser, pour reproduire l'installation de turbines réelle, la turbine, les postes de dérivation, les conduites de vapeur de communication entre la chaudière et la turbine, la perte de chaleur et de pression dans la conduite de vapeur entre la chaudière et la turbine et la contrainte thermique sur les composants critiques de la turbine.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'au moyen du modèle prédictif (10), les paramètres de vapeur représentés par la courbe de température de la vapeur dans le temps en amont de la turbine (TvT(t)), la courbe de pression de la vapeur dans le temps en amont de la turbine (pvT(t)), le rendement thermique de la turbine et/ou le rendement du générateur (P(t)), les tensions comparatives des zones métalliques critiques de la turbine (σv(t)), les tensions comparatives admissibles des zones métalliques critiques de la turbine (σv,adm(t)), les différences de température du métal (ΔT(t)) des tensions comparatives (σv(t)), les différences de température admissibles du métal (ΔTadm(t)) des tensions comparatives admissibles (σv,adm(t)), la température de vapeur souhaitée (Tstart,so) à l'entrée de la turbine et l'écofacteur sont déterminés.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'à partir du modèle prédictif (10), les courbes dans le temps d'autres grandeurs physiques (Va1), par exemple de l'enthalpie de la vapeur vive, sont créées en vue d'un démarrage optimal de la turbine et/ou à partir du modèle (12) reproduisant l'installation de turbines réelles, d'autres courbes dans le temps sont créées pour les grandeurs physiques importantes pour le démarrage (Va2), par exemple la vitesse de rotation de la turbine selon un diagramme de démarrage.
  12. Procédé selon la revendication 11, caractérisé en ce qu'une augmentation monotone de l'enthalpie de la vapeur vive en vue d'une génération de vapeur homogène est obtenue au moyen d'une régulation à la limite de l'enthalpie de la vapeur vive, la grandeur de réglage utilisée étant la vitesse de modification de la pression de vapeur vive.
  13. Procédé selon la revendication 12, caractérisé en ce que l'augmentation de l'enthalpie est optimisée en tenant compte de l'augmentation de la température de la vapeur vive sous la forme d'un pourcentage du rapport des différences entre les valeurs initiales et nominales des enthalpies de la vapeur vive et des températures de vapeur vive.
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce que les paramètres de vapeur optimisés sont déterminés au moyen de modèles partiels (P1-P15) présents dans le modèle prédictif (10) et en ce que les modèles partiels (P1-P15) comprennent par exemple un modèle thermodynamique de la turbine à vapeur y compris le chauffage à régénération de l'eau d'alimentation, les postes de dérivation et la dynamique de pression de la resurchauffe (P1), une dynamique du rotor du turbogénérateur (P7), des modèles de simulation des conduites de vapeur de communication entre la chaudière et la turbine (P12), (P13), un régulateur pour la détermination des contraintes (P2), (P3), (P10), (P11), une régulation de l'enthalpie de la vapeur vive en amont de la turbine HP (P4), des modules pour déterminer les contraintes dans les composants critiques de la turbine (P5), (P6), un autre modèle de simulation pour déterminer la tension comparative du rotor (P8), une unité pour déterminer les contraintes comparatives admissibles et convertir les contraintes comparatives admissibles en valeurs de différence de température admissibles au niveau des rotors (P9), un modèle pour la détermination de l'écofacteur (P14) et un modèle de simulation pour déterminer les températures d'entrée souhaitées (P15).
  15. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour déterminer des paramètres de vapeur optimisés à l'entrée de la turbine et à la sortie de la chaudière au moyen du modèle prédictif (10), des signaux de limitation (K2) de la chaudière (2) et une pression initiale de la chaudière (K1) sont traités dans le modèle prédictif (10).
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'un régulateur (5) ajuste un facteur d'accélération pour une détermination prédictive accélérée plusieurs fois du démarrage de l'installation de turbines par rapport au comportement de l'installation de turbines réelle.
  17. Procédé selon l'une des revendications 10 à 16, caractérisé en ce qu'en vue de la comparaison avec le démarrage optimisé de la turbine, l'écofacteur est déterminé avec le modèle prédictif (10) lors du démarrage de la turbine selon un diagramme de démarrage.
  18. Procédé selon l'une des revendications précédentes, caractérisé en ce que lorsque la turbine est à l'arrêt, les fonctions du modèle prédictif (10), par exemple l'équilibrage avec les paramètres actuels de la turbine, sont vérifiées au moyen du modèle (12) reproduisant l'installation de turbines réelle.
  19. Procédé selon l'une des revendications précédentes, caractérisé en ce que le modèle prédictif (10) et/ou le modèle (12) reproduisant l'installation de turbines réelle traitent des paramètres prescrits (X1), par exemple des températures de vapeur et des pressions de vapeur prédéterminées selon des diagrammes logiques thermiques, des valeurs de matériaux des rotors des turbines et/ou du corps des turbines et des tensions comparatives admissibles à des endroits critiques du métal de la turbine.
  20. Procédé selon l'une des revendications précédentes, caractérisé en ce que le modèle prédictif (10) traite, pour déterminer les courbes dans le temps des paramètres de vapeur, des signaux de mesure (R1) provenant de la turbine réelle 3 ou des signaux de mesure simulés (M1) provenant du modèle (12) reproduisant l'installation de turbines.
  21. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour déterminer les courbes dans le temps les plus favorables pour les paramètres de vapeur d'entrée, une détermination prévisionnelle avec le modèle prédictif (10) est réalisée avant le démarrage de la turbine et/ou pendant un processus de démarrage déjà entamé de la turbine réelle 3.
  22. Procédé selon l'une des revendications précédentes, caractérisé en ce que le coût du démarrage est déterminé au moyen du modèle prédictif (10) pour différents processus de démarrage et/ou un coût minimum est déterminé pour le processus de démarrage en question.
  23. Module pour l'optimisation prédictive du démarrage de turbines à vapeur d'une installation de turbines,
    - qui comprend un modèle prédictif (10) pour déterminer des courbes dans le temps optimisées des paramètres de vapeur à l'entrée de la turbine et à la sortie de la chaudière avant chaque démarrage de la turbine, en tenant compte de la contrainte admissible aux points critiques du métal de la turbine,
    - le modèle prédictif (10) régule la contrainte aux points critiques du métal de la turbine à une consigne de contrainte augmentant de façon optimale jusqu'à ce que soit atteinte une limite de contrainte admissible,
    - le modèle prédictif (10) régule en outre la contrainte admissible aux points critiques du métal de la turbine jusqu'à ce que soient atteintes des températures de vapeur nominales prédéterminées, et
    - les grandeurs de réglage pour la régulation de la chaudière et/ou de la turbine comprennent la vitesse d'ouverture des vannes de régulation de la vapeur vive (YHD) et des vannes de régulation des dérivations (YMD) et l'arrivée dans la position maximale des vannes comme grandeurs de réglage de la vitesse d'augmentation des paramètres de vapeur à l'entrée de chaque turbine.
  24. Module selon la revendication 23, caractérisé en ce que le modèle prédictif (10) reconnaît la modification de la contrainte au point critique du métal de la turbine à partir d'une modification du coefficient thermique et la part d'activité de régulation de la contrainte aux points critiques du métal de la turbine peut être réduire à la valeur de consigne identique à la contrainte admissible en fonction de la grandeur restante de la contrainte régulée.
  25. Module selon l'une des revendications 23 ou 24, caractérisé en ce que les paramètres de vapeur se rapportent à la pression de vapeur vive en amont de la turbine HP (PFD,vHD) et à la sortie de la chaudière (paK) et à la température de la vapeur vive en amont de la turbine HP (TFD, vHDT) et à la sortie de la chaudière (TaK) pour les turbines sans resurchauffe ou à la pression de vapeur vive en amont de la turbine HP (PFD, vHD) et à la sortie de la chaudière (paK), à la température de la vapeur vive (TFD, vHDT) en amont de la turbine HP et à la sortie de la chaudière (TaK), à la pression de vapeur en amont de la turbine MP (p, vmD) et à la sortie de la chaudière (pazü) et à la température de la vapeur en amont de la turbine MP (T, vMDT) et à la sortie de la chaudière (Tazü) pour les turbines à resurchauffe.
  26. Module selon l'une des revendications 23 à 25, dans lequel les courbes dans le temps optimisées des paramètres de vapeur sont caractérisées par des coûts de démarrage minimaux pour un démarrage au meilleur coût de la turbine.
  27. Module selon l'une des revendications 23 à 26, caractérisé en ce que qu'en vue de réguler la contrainte admissible aux points critiques du métal de la turbine, la tension comparative du métal critique de la turbine est générée comme grandeur de régulation.
  28. Module selon la revendication 27, caractérisé en ce que la tension comparative admissible du métal critique de la turbine est convertie dans la limite admissible correspondante de la différence de température caractéristique (ΔTadm) représentant la différence entre la température moyenne intégrale (Tm) de la répartition radiale de la température dans le composant de turbine et la température de la surface extérieure (Ta) ou entre la température intégrale moyenne (Tm) de la répartition radiale de la température dans le composant de turbine et la température de la surface intérieure (Ti) du métal de la turbine et la limite admissible correspondante de la différence de température caractéristique (ΔTadm) est utilisée à la place de la tension comparative pour réguler la contrainte admissible aux points critiques du métal de la turbine.
  29. Module selon l'une des revendications 23 à 28, caractérisé en ce qu'un appareil (4) est prévu pour la mesure en service du champ de température dans le rotor et/ou le corps de la turbine, qui capte les températures actuelles du métal des parties critiques de la turbine et les transmet au modèle prédictif (10).
  30. Module selon l'une des revendications 23 à 29, caractérisé en ce que dans un modèle (12) reproduisant le comportement statique et dynamique de l'installation de turbines réelle, le comportement thermique de l'installation de turbines, y compris les températures du métal des parties critiques des turbines, est simulé et transmis pour traitement au modèle prédictif (10).
  31. Module selon la revendication 30, caractérisé en ce que le modèle (12) reproduisant l'installation de turbines réelle comprend un modèle de la turbine, un modèle des postes de dérivation des conduites de vapeur de communication entre la chaudière et la turbine pour déterminer la perte de chaleur et de pression dans la conduite de vapeur entre la chaudière et la turbine et un module pour déterminer la contrainte thermique sur les composants critiques de la turbine.
  32. Module selon l'une des revendications 23 à 31, caractérisé en ce que le modèle prédictif (10) détermine comme paramètres de vapeur la courbe de température de la vapeur dans le temps en amont de la turbine (TvT(t)), la courbe de pression de la vapeur dans le temps en amont de la turbine (pvT(t)), le rendement thermique de la turbine et/ou le rendement du générateur (P(t)), les tensions comparatives des zones métalliques critiques de la turbine (σv(t)), les tensions comparatives admissibles des zones métalliques critiques de la turbine (σv,adm(t)), les différences de température du métal (ΔT(t)) des tensions comparatives (σv(t)), les différences de température admissibles du métal (ΔTadm(t)) des tensions comparatives admissibles (σv,adm(t)), la température de vapeur souhaitée (Tstart,so) à l'entrée de la turbine et l'écofacteur.
  33. Module selon l'une des revendications 23 à 32, caractérisé en ce que le modèle prédictif (10) fournit les courbes dans le temps d'autres grandeurs physiques (Va1), par exemple de l'enthalpie de la vapeur vive, en vue d'un démarrage optimal de la turbine, et/ou le modèle (12) reproduisant l'installation de turbines réelles fournit d'autres courbes dans le temps pour les grandeurs physiques importantes pour le démarrage (Va2), par exemple la vitesse de rotation de la turbine selon un diagramme de démarrage.
  34. Module selon la revendication 33, caractérisé en ce qu'une augmentation monotone de l'enthalpie de la vapeur vive peut être obtenue au moyen d'une régulation à la limite de l'enthalpie de la vapeur vive, la grandeur de réglage utilisée étant la vitesse de modification de la pression de la vapeur vive.
  35. Module selon la revendication 34, caractérisé en ce que l'augmentation de l'enthalpie peut être optimisée en tenant compte de l'augmentation de la température de la vapeur vive sous la forme d'un pourcentage du rapport des différences entre les valeurs initiales et nominales des enthalpies de la vapeur vive et des températures de vapeur vive.
  36. Module selon l'une des revendications 23 à 35, caractérisé en ce que le modèle prédictif (10) pour la détermination des paramètres de vapeur optimisés contient des modèles partiels (P1-P15) et en ce que les modèles partiels (P1-P15) comprennent par exemple un modèle thermodynamique de la turbine à vapeur y compris le chauffage à régénération de l'eau d'alimentation, les postes de dérivation et la dynamique de pression de la resurchauffe (P1), une dynamique du rotor du turbogénérateur (P7), des modèles de simulation des conduites de vapeur de communication entre la chaudière et la turbine (P12), (P13), un régulateur pour la détermination des contraintes (P2), (P3), (P10), (P11), une régulation de l'enthalpie de la vapeur vive en amont de la turbine HP (P4), des modules pour déterminer les contraintes dans les composants critiques de la turbine (P5), (P6), un autre modèle de simulation pour déterminer la tension comparative du rotor (P8), une unité pour déterminer les contraintes comparatives admissibles et convertir les contraintes comparatives admissibles en valeurs de différence de température admissibles au niveau des rotors (P9), un modèle pour la détermination de l'écofacteur (P14) et un modèle de simulation pour déterminer les températures d'entrée souhaitées (P15).
  37. Module selon la revendication 36, caractérisé en ce que les modèles partiels (P1-P15) reproduisant l'installation de turbines réelle peuvent être utilisés pour déterminer les pertes de chaleur et de pression dans les conduites de vapeur entre la chaudière (2) et la turbine (3) afin de prédire les paramètres de vapeur à réaliser avec la chaudière (2) à la sortie de la chaudière.
  38. Module selon l'une des revendications 23 à 37, caractérisé en ce que le modèle prédictif (10) pour déterminer des paramètres de vapeur optimisés à l'entrée de la turbine et à la sortie de la chaudière traite des signaux de limitation (K2) de la chaudière (2) et une pression initiale de la chaudière (K1).
  39. Module selon l'une des revendications 23 à 38, caractérisé en ce qu'un régulateur (5) est prévu pour régler un facteur d'accélération en vue d'une détermination prédictive du démarrage de la turbine accélérée plusieurs fois par rapport au comportement de l'installation de turbines réelle.
  40. Module selon l'une des revendications 32 à 39, caractérisé en ce que le modèle prédictif (10) détermine l'écofacteur selon un diagramme de démarrage lors du démarrage de la turbine en vue de la comparaison avec le démarrage optimisé de la turbine.
  41. Module selon l'une des revendications 23 à 40, caractérisé en ce que lorsque la turbine est à l'arrêt, les fonctions du modèle prédictif (10), par exemple l'équilibrage avec les paramètres actuels de la turbine, peuvent être vérifiées au moyen du modèle (12) reproduisant l'installation de turbines réelle.
  42. Module selon l'une des revendications 23 à 41, caractérisé en ce que le modèle prédictif (10) et/ou le modèle (12) reproduisant l'installation de turbines réelle traitent des paramètres prescrits (X1), par exemple des températures de vapeur et des pressions de vapeur prédéterminées selon des diagrammes logiques thermiques, des valeurs de matériaux des rotors de la turbine et/ou du corps de la turbine et des tensions comparatives admissibles à des endroits critiques du métal de la turbine.
  43. Module selon l'une des revendications 23 à 42, caractérisé en ce que le modèle prédictif (10) traite, pour déterminer les courbes dans le temps des paramètres de vapeur, des signaux de mesure (R1) provenant de la turbine réelle 3 ou des signaux de mesure simulés (M1) provenant du modèle (12) reproduisant l'installation de turbines réelle.
  44. Module selon l'une des revendications 23 à 43, caractérisé en ce que pour déterminer les courbes dans le temps les plus favorables pour les paramètres de vapeur d'entrée, une détermination prévisionnelle avec le modèle prédictif (10) est réalisée avant le démarrage de la turbine et/ou pendant un processus de démarrage déjà entamé de la turbine réelle 3.
  45. Module selon l'une des revendications 23 à 44, caractérisé en ce que le modèle prédictif (10) compare le coût du démarrage de différents processus de démarrage et/ou détermine un coût minimum pour le processus de démarrage en question.
  46. Utilisation du procédé et du module selon la présente invention selon l'une des revendications précédentes pour l'optimisation prédictive du démarrage de turbines à vapeur dans une installation de turbines.
EP05785118A 2004-10-02 2005-09-08 Procede et module de demarrage a prediction de turbines a vapeur Not-in-force EP1797284B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05785118T PL1797284T3 (pl) 2004-10-02 2005-09-08 Sposób i moduł do planowanego uruchamiania turbin parowych

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004048171 2004-10-02
DE102004058171A DE102004058171A1 (de) 2004-10-02 2004-12-02 Verfahren und Modul zum vorrausschauenden Anfahren von Dampfturbinen
PCT/EP2005/009640 WO2006037417A1 (fr) 2004-10-02 2005-09-08 Procede et module de demarrage a prediction de turbines a vapeur

Publications (2)

Publication Number Publication Date
EP1797284A1 EP1797284A1 (fr) 2007-06-20
EP1797284B1 true EP1797284B1 (fr) 2008-03-12

Family

ID=35453570

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05785118A Not-in-force EP1797284B1 (fr) 2004-10-02 2005-09-08 Procede et module de demarrage a prediction de turbines a vapeur

Country Status (6)

Country Link
EP (1) EP1797284B1 (fr)
AT (1) ATE389097T1 (fr)
DE (2) DE102004058171A1 (fr)
DK (1) DK1797284T3 (fr)
PL (1) PL1797284T3 (fr)
WO (1) WO2006037417A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328633B2 (en) 2012-06-04 2016-05-03 General Electric Company Control of steam temperature in combined cycle power plant

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20110498A1 (it) * 2011-03-28 2012-09-29 Stamicarbon Metodo per l avviamento di un impianto termico a ciclo combinato per la produzione di energia elettrica da una condizione di impianto fermo ad una condizione di impianto in marcia.
US9140192B2 (en) 2012-01-11 2015-09-22 Alstom Technology Ltd. Startup method for large steam turbines
CN103267684B (zh) * 2013-05-08 2015-12-23 广东电网公司电力科学研究院 一种电站锅炉承压元件寿命损耗获取方法及系统
ITUB20155614A1 (it) * 2015-11-16 2017-05-16 Ansaldo Energia Spa Metodo di controllo di una turbina a vapore e impianto a turbina a vapore
CN111639417B (zh) * 2020-05-07 2023-04-28 西安陕鼓动力股份有限公司 一种余热利用发电汽轮机蒸汽参数优选方法及系统
US11428115B2 (en) 2020-09-25 2022-08-30 General Electric Company Control of rotor stress within turbomachine during startup operation
CN113970890A (zh) * 2021-11-10 2022-01-25 北京京能电力股份有限公司 一种基于数字仿真的火电机组自启停系统及其开发方法
CN114412590A (zh) * 2021-12-01 2022-04-29 上海发电设备成套设计研究院有限责任公司 核电汽轮机汽缸的法兰中分面严密性的在线安全监控方法
CN114942659B (zh) * 2022-06-30 2023-08-29 佛山仙湖实验室 窑炉温度控制方法、系统、装置及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320625A (en) * 1980-04-30 1982-03-23 General Electric Company Method and apparatus for thermal stress controlled loading of steam turbines
JPS57179509A (en) * 1981-04-28 1982-11-05 Tokyo Shibaura Electric Co Method of controlling temperature of superheated steam of boiler
JPS59226211A (ja) * 1983-06-08 1984-12-19 Hitachi Ltd 火力プラント制御方法
JPS59231604A (ja) * 1983-06-14 1984-12-26 Hitachi Ltd 火力発電プラントの運転制御方法
DE3710990A1 (de) * 1986-04-02 1987-10-22 Hitachi Ltd Betriebssystem und verfahren zum anfahren eines waermekraftwerkes
EP0731397B1 (fr) * 1994-09-26 2001-05-16 Kabushiki Kaisha Toshiba Methode et systeme d'optimisation du service d'une installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328633B2 (en) 2012-06-04 2016-05-03 General Electric Company Control of steam temperature in combined cycle power plant

Also Published As

Publication number Publication date
ATE389097T1 (de) 2008-03-15
EP1797284A1 (fr) 2007-06-20
DE502005003245D1 (de) 2008-04-24
WO2006037417A1 (fr) 2006-04-13
DE102004058171A1 (de) 2006-04-06
DK1797284T3 (da) 2008-07-14
PL1797284T3 (pl) 2008-08-29

Similar Documents

Publication Publication Date Title
EP1797284B1 (fr) Procede et module de demarrage a prediction de turbines a vapeur
DE3116340C3 (fr)
EP1267229B1 (fr) Méthode et dispositif de commande et de régulation pour démarrer et arrêter une composante de traitement d'un procédé technique
DE2833277C3 (de) Steueranordnung für eine einen Generator antreibende Dampfturbine eines Dampfkraftwerkes
EP2614303B1 (fr) Procédé pour faire fonctionner un système combiné de turbines à gaz et à vapeur, système de turbines à gaz et à vapeur conçu pour ce procédé et dispositif de régulation correspondant
US4245162A (en) Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control
EP2038517A2 (fr) Procédé pour faire fonctionner une turbine à gaz et turbine à gaz permettant la mise en oeuvre du procédé
EP0937194B1 (fr) Dispositif de commande de turbine et procede de regulation du cycle d'effort d'une turbine
US3778347A (en) Method and system for operating a boiling water reactor-steam turbine plant preferably under digital computer control
EP2071157A1 (fr) Procédé de contrôle d'une turbine à gaz dans une centrale électrique et centrale électrique de mise en oeuvre du procédé
EP3025031B1 (fr) Procédé de fonctionnement d'une centrale à turbine à vapeur
DE102015121754A1 (de) Modellbasierte Lastregelung eines Gas-und-Dampf-Kombikraftwerks
DE112015004014B4 (de) Steuervorrichtung, System, Steuerverfahren, Energiesteuervorrichtung, Gasturbine und Energiesteuerverfahren
DE102011052624A1 (de) Dampftemperaturregelung mittels dynamischer Matrixsteuerung
EP1285150A1 (fr) Procede et dispositif pour faire fonctionner une turbine a vapeur a plusieurs niveaux au ralenti ou a faible charge
DE3415165C2 (fr)
CH698282B1 (de) Kombikraftwerkssystem.
EP2022945A1 (fr) Procédé destiné au fonctionnement d'une installation de turbine de centrale et dispositif de réglage pour une installation de turbine de centrale
EP1365110B1 (fr) Procédé et dispositif pour l'exploitation d'une centrale à vapeur, en particulier en charge partielle
EP3097293A1 (fr) Régulation variable de la puissance limite de turbines à gaz
EP2037086B1 (fr) Mise en route d'une turbine à vapeur
EP0842350A1 (fr) Systeme de regulation du regime d'une turbine et procede de regulation du regime d'une turbine pendant un delestage
DE2356390C2 (de) Verfahren zur Steuerung des Betriebs einer Dampfturbine
DE19621824A1 (de) Verfahren zum Regeln von Gasdrücken bei Einsatz von Gasentspannungsturbinen
US20100298996A1 (en) Method for operating a power station

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005003245

Country of ref document: DE

Date of ref document: 20080424

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080712

EN Fr: translation not filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ALSTOM TECHNOLOGY LTD

Effective date: 20081211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

BERE Be: lapsed

Owner name: ABB TECHNOLOGY A.G.

Effective date: 20080930

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALSTOM TECHNOLOGY LTD

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090102

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080908

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080908

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005003245

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160920

Year of fee payment: 12

Ref country code: DK

Payment date: 20160920

Year of fee payment: 12

Ref country code: NL

Payment date: 20160920

Year of fee payment: 12

Ref country code: DE

Payment date: 20160921

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20160822

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502005003245

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20171205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003245

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170908

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170908