EP3182996B1 - Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies - Google Patents

Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies Download PDF

Info

Publication number
EP3182996B1
EP3182996B1 EP15757389.0A EP15757389A EP3182996B1 EP 3182996 B1 EP3182996 B1 EP 3182996B1 EP 15757389 A EP15757389 A EP 15757389A EP 3182996 B1 EP3182996 B1 EP 3182996B1
Authority
EP
European Patent Office
Prior art keywords
compound
administered
antibody
multiple myeloma
stem cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15757389.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3182996A1 (en
Inventor
Anjan THAKURTA
Mohamed HUSSEIN
Christian JACQUES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celgene Corp
Original Assignee
Celgene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54035318&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3182996(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Celgene Corp filed Critical Celgene Corp
Priority to EP21172501.5A priority Critical patent/EP3925609B1/en
Priority to SI201531929T priority patent/SI3182996T1/sl
Priority to HRP20230265TT priority patent/HRP20230265T1/hr
Priority to SM20230081T priority patent/SMT202300081T1/it
Priority to RS20230191A priority patent/RS64038B1/sr
Publication of EP3182996A1 publication Critical patent/EP3182996A1/en
Application granted granted Critical
Publication of EP3182996B1 publication Critical patent/EP3182996B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/69Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/07Tetrapeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/39558Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against tumor tissues, cells, antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3061Blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • This invention relates to compounds for use in methods of treating multiple myeloma in patients who have received stem cell transplantation, compounds being the immunomodulatory compound lenalidomide in combination with an anti-CS1 antibody such as elotuzumab.
  • the invention also relates to pharmaceutical compositions for such use and dosing regimens applied in such methods.
  • Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, or lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis).
  • Clinical data and molecular biologic studies indicate that cancer is a multistep process that begins with minor preneoplastic changes, which may under certain conditions progress to neoplasia.
  • the neoplastic lesion may evolve clonally and develop an increasing capacity for invasion, growth, metastasis, and heterogeneity, especially under conditions in which the neoplastic cells escape the host's immune surveillance.
  • cancers There is an enormous variety of cancers which are described in detail in the medical literature. Examples includes cancer of the lung, colon, rectum, prostate, breast, brain, and intestine. The incidence of cancer continues to climb as the general population ages, as new cancers develop, and as susceptible populations ( e.g., people infected with AIDS or excessively exposed to sunlight) grow. A tremendous demand therefore exists for new methods and compositions that can be used to treat patients with cancer.
  • angiogenesis a process known as angiogenesis.
  • cytokines with angiogenic properties. Examples of these cytokines include acidic and basic fibroblastic growth factor (a,b-FGF), angiogenin, vascular endothelial growth factor (VEGF), and TNF- ⁇ .
  • a,b-FGF acidic and basic fibroblastic growth factor
  • VEGF vascular endothelial growth factor
  • TNF- ⁇ tumor cells can release angiogenic peptides through the production of proteases and the subsequent breakdown of the extracellular matrix where some cytokines are stored (e.g ., b-FGF).
  • Angiogenesis can also be induced indirectly through the recruitment of inflammatory cells (particularly macrophages) and their subsequent release of angiogenic cytokines (e.g ., TNF- ⁇ , bFGF).
  • angiogenesis A variety of other diseases and disorders are also associated with, or characterized by, undesired angiogenesis.
  • enhanced or unregulated angiogenesis has been implicated in a number of diseases and medical conditions including, but not limited to, ocular neovascular diseases, choroidal neovascular diseases, retina neovascular diseases, rubeosis (neovascularization of the angle), viral diseases, genetic diseases, inflammatory diseases, allergic diseases, fibrosis, arthritis and autoimmune diseases.
  • diseases and conditions include, but are not limited to: diabetic retinopathy; retinopathy of prematurity; corneal graft rejection; neovascular glaucoma; retrolental fibroplasia; and proliferative vitreoretinopathy.
  • compounds that can control and/or inhibit unwanted angiogenesis or inhibit the production of certain cytokines, including TNF- ⁇ , may be useful in the treatment and prevention of various diseases and conditions.
  • Multiple myeloma is a cancer of plasma cells in the bone marrow. Normally, plasma cells produce antibodies and play a key role in immune function. However, uncontrolled growth of these cells leads to bone pain and fractures, anemia, infections, and other complications. Multiple myeloma is the second most common hematological malignancy, although the exact causes of multiple myeloma remain unknown. Multiple myeloma causes high levels of proteins in the blood, urine, and organs, including but not limited to M-protein and other immunoglobulins (antibodies), albumin, and beta-2-microglobulin. M-protein, short for monoclonal protein, also known as paraprotein, is a particularly abnormal protein produced by the myeloma plasma cells and can be found in the blood or urine of almost all patients with multiple myeloma.
  • Skeletal symptoms including bone pain, are among the most clinically significant symptoms of multiple myeloma.
  • Malignant plasma cells release osteoclast stimulating factors (including IL-1, IL-6 and TNF) which cause calcium to be leached from bones causing lytic lesions; hypercalcemia is another symptom.
  • the osteoclast stimulating factors also referred to as cytokines, may prevent apoptosis, or death of myeloma cells.
  • cytokines also referred to as cytokines
  • Other common clinical symptoms for multiple myeloma include polyneuropathy, anemia, hyperviscosity, infections, and renal insufficiency.
  • Bone marrow stromal cells are well known to support multiple myeloma disease progression and resistance to chemotherapy. Disrupting the interactions between multiple myeloma cells and stromal cells is an additional target of multiple myeloma chemotherapy.
  • MRD minimal residual disease
  • PFS progression-free survival
  • the 10 -4 MRD threshold was originally based on technical capability, but quantitative MRD detection is now possible at 10 -5 by flow cytometry and 10 -6 by high-throughput sequencing.
  • Methods for measuring MRD include polymerase chain reaction (PCR) and multiparameter flow cytometry (MPF).
  • Assays for MRD e.g., based on clonotype profile measurement are also described in US Patent No. 8,628,927, to Faham et al. .
  • hormonal therapy can be effective, it is often used to prevent or delay recurrence of cancer after other treatments have removed the majority of cancer cells.
  • Biological therapies and immunotherapies are limited in number and may produce side effects such as rashes or swellings, flu-like symptoms, including fever, chills and fatigue, digestive tract problems or allergic reactions.
  • chemotherapeutic agents available for treatment of cancer.
  • a majority of cancer chemotherapeutics act by inhibiting DNA synthesis, either directly, or indirectly by inhibiting the biosynthesis of deoxyribonucleotide triphosphate precursors, to prevent DNA replication and concomitant cell division.
  • chemotherapeutic agents Despite availability of a variety of chemotherapeutic agents, chemotherapy has many drawbacks. Stockdale, Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. 10, 1998 . Almost all chemotherapeutic agents are toxic, and chemotherapy causes significant, and often dangerous side effects including severe nausea, bone marrow depression, and immunosuppression. Additionally, even with administration of combinations of chemotherapeutic agents, many tumor cells are resistant or develop resistance to the chemotherapeutic agents. In fact, those cells resistant to the particular chemotherapeutic agents used in the treatment protocol often prove to be resistant to other drugs, even if those agents act by different mechanism from those of the drugs used in the specific treatment. This phenomenon is referred to as pleiotropic drug or multidrug resistance. Because of the drug resistance, many cancers prove refractory to standard chemotherapeutic treatment protocols.
  • cancer e.g., multiple myeloma
  • other diseases and conditions associated with, or characterized by, undesired angiogenesis while reducing or avoiding the toxicities and/or side effects associated with the conventional therapies.
  • immunomodulatory drug(s) include, but are not limited to, the substituted 2-(2,6-dioxopiperidin-3-yl) phthalimides and substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindoles described in United States Patent Nos. 6,281,230 and 6,316,471, both to G.W. Muller, et al.
  • Compounds for the methods provided herein include, but are not limited to, the substituted 2-(2,6-dioxopiperidin-3-yl) phthalimides and substituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindoles described in U.S. Patent Nos. 6,281,230 and 6,316,471, both to G.W. Muller, et al. Still other specific compounds disclosed herein belong to a class of isoindole-imides disclosed in U.S. Patent Nos. 6,395,754 , 6,555,554 , 7,091,353 , U.S. Publication No. 2004/0029832 , and International Publication No. WO 98/54170 .
  • Thalidomide and immunomodulatory drugs such as lenalidomide and pomalidomide have shown remarkable responses in patients with multiple myeloma, lymphoma and other hematological diseases such as myelodysplastic syndrome. See Galustian C, et al., Expert Opin Pharmacother., 2009, 10:125-133 . These drugs display a broad spectrum of activity, including anti-angiogenic properties, modulation of proinflammatory cytokines, co-stimulation of T cells, increased NK cell toxicity, direct antitumor effects and modulation of stem cell differentiation.
  • thalidomide, lenalidomide and pomalidomide have emerged as important options for the treatment of multiple myeloma in newly diagnosed patients, in patients with advanced disease who have failed chemotherapy or transplantation, and in patients with relapsed or refractory multiple myeloma.
  • Lenalidomide in combination with dexamethasone has been approved for the treatment of patients with multiple myeloma who have received at least one prior therapy.
  • Pomalidomide has also been approved for the treatment of patients with multiple myeloma who have received at least two prior therapies including lenalidomide and bortezomib and have demonstrated disease progression on or within 60 days of completion of the last therapy.
  • One aspect of the invention encompasses lenalidomide for use in methods of treating multiple myeloma, in a patient that has received prior stem cell transplantation,wherein the patient has received an induction therapy with the compound before receiving the stem cell transplantation; and wherein the method comprises: (a) determining the minimal residual disease (MRD) status of the patient following the stem cell transplantation; and (b) if the minimal residual disease (MRD) status of the patient is greater than 0.01%, the compound is administered in the amount of from 1 to 50 mg per day in combination with a therapeutically effective amount of an anti-CS1 antibody.
  • MRD minimal residual disease
  • the terms "immunomodulatory compound(s)","compound(s) of the invention” or “compound(s) for use of the invention” refer to lenalidomide or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof.
  • the methods comprise administering to a patient in need of such treatment a therapeutically effective amount of an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, in combination with a therapeutically effective amount of an anti-CS1 antibody.
  • the immunomodulatory compound has the formula of or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof.
  • the compound is the free base.
  • the compound is a pharmaceutically acceptable salt or a pharmaceutically acceptable solvate.
  • the compound is a hydrate.
  • the multiple myeloma is relapsed, refractory, or relapsed and refractory multiple myeloma.
  • the method comprises cyclic administration of the compound.
  • the compound is administered for 21 days followed by seven days of rest in a 28 day cycle.
  • the compound is administered in an amount of from 1 to about 50 mg per day, in combination with the anti-CS1 antibody, preferably with elotuzumab. In some embodiments, the compound is administered in an amount of 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg or 25 mg per day, in combination with with the anti-CS1 antibody, preferably with elotuzumab. In a preferred embodiment, the compound is administered in an amount of about 25 mg per day, in combination with the anti-CS1 antibody, preferably with elotuzumab. In a preferred embodiment, the compound is administered in an amount of about 20 mg per day, in combination with the anti-CS1 antibody, preferably with elotuzumab.
  • the compound is administered in an amount of about 15 mg per day, in combination with the anti-CS1 antibody, preferably with elotuzumab. In another preferred embodiment, the compound is administered in an amount of about 10 mg per day; in combination with the anti-CS1 antibody, preferably with elotuzumab. In a preferred embodiment, the compound is administered in an amount of about 5 mg per day, in combination with the anti-CS1 antibody, preferably with elotuzumab. In a preferred embodiment, the compound is administered in an amount of about 2.5 mg per day, in combination with the anti-CS1 antibody, preferably with elotuzumab.
  • the compound is administered orally. In certain embodiments, the compound is administered orally, whereas the anti-CS1 antibody during combination therapy is not administered orally. In some embodiments, the compound is administered in the form of a capsule or tablet.
  • the capsule may comprise about 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg or 25 mg of the compound.
  • the tablet may comprise about 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg or 25 mg of the compound.
  • the capsule may comprise about 2.5 mg of the compound.
  • the tablet may comprise about 2.5 mg of the compound.
  • the capsule may comprise about 5 mg.
  • the tablet may comprise about 5 mg of the compound.
  • the capsule may comprise about 10 mg of the compound.
  • the tablet may comprise about 10 mg of the compound.
  • the capsule may comprise about 15 mg of the compound.
  • the tablet may comprise about 15 mg of the compound.
  • the capsule may comprise about 20 mg of the compound.
  • the tablet may comprise about 20 mg of the compound.
  • the capsule may comprise about 25 mg of the compound.
  • the tablet may comprise about 25 mg of the compound.
  • the capsule comprises lactose anhydrous, microcrystalline cellulose, croscarmellose sodium and magnesium stearate in addition to the compound.
  • the antibody administered with the compound is an anti-CSl antibody.
  • the anti-CSl antibody is a monoclonal antibody.
  • the anti-CSl antibody administered with the compound is a monoclonal antibody, the compound is preferably lenalidomide.
  • the anti-CS antibody is a humanized monoclonal antibody.
  • the anti-CS antibody administered with the compound is a humanized monoclonal antibody, the compound is preferably lenalidomide.
  • the anti-CSl antibody is elotuzumab.
  • the anti-CSl antibody administered with the compound is elotuzumab, the compound is lenalidomide.
  • the anti-CS1 antibody is administered intravenously in an amount of from about 1 to about 1000 mg weekly or every other week.
  • elotuzumab is administered as a 10 mg/kg IV solution.
  • elotuzumab is administered weekly on days 1, 8, 15, 22 in a 28-day cycle (cycles 1 & 2), and days 1 and 15 in a 28-day cycle (cycles 3-onward).
  • the stem cell transplantation is autologous stem cell transplantation. In other embodiments, the stem cell transplantation is hematopoietic stem cell transplantation or peripheral blood stem cell transplantation. In other embodiments, the stem cell transplantation is hematopoietic stem cell transplantation. In other embodiments, the stem cell transplantation is peripheral blood stem cell transplantation.
  • the patient has received treatment with the compound for use of the invention, and optionally a proteasome inhibitor prior to receiving the stem cell transplantation.
  • the proteasome inhibitor is bortezomib or carfilzomib.
  • the proteasome inhibitor is bortezomib.
  • the proteasome inhibitor is carfilzomib.
  • the patient is identified as minimal residual disease positive (MRD(+)) prior to administering the compound.
  • MRD(+) minimal residual disease positive
  • the immunomodulatory compound is administered in further combination with a second active agent or therapy conventionally used to treat, prevent or manage cancer.
  • second active agents include, but are not limited to, proteasome inhibitors such as ixazomib and marizomib, immunomodulators such as cyclophosphamide, vaccines such as Prevnar, checkpoint inhibitors such as PD-L1 inhibitors, and epigenetic modifiers such as azacitidine.
  • conventional therapies include, but are not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy.
  • specific examples include, but are not limited to, cell therapy such as CAR T-cell immunotherapy.
  • compositions, single unit dosage forms, dosing regimens and kits for use of the invention which comprise an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, and an anti-CS1 antibody.
  • An embodiment of the invention encompasses compounds for use in methods of treating multiple myeloma which comprises administering to a patient in need of such treatment or prevention a therapeutically effective amount of an immunomodulatory compound described in section 4.1, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, in combination with a therapeutically effective amount of an anti-CS1 antibody.
  • the term "in combination with” or “administered with” within the meaning of the invention includes administration as a mixture, simultaneous administration using separate formulations, and consecutive administration in any order.
  • Anti-CS1 antibodies that can be used in combination with compounds of the invention include monoclonal and polyclonal antibodies.
  • the antibody is an anti-CS1 antibody, and, more preferably, a humanized monoclonal anti-CS1 antibody.
  • the anti-CS1 antibody is elotuzumab.
  • the immunomodulatory compound is administered in combination with elotuzumab in patients having multiple myeloma who have received autologous stem cell transplantation.
  • the patients have received treatment with the immunomodulatory compound, a proteasome inhibitor (e.g ., bortezomib or carfilzomib), or both in induction therapy prior to the autologous stem cell transplantation.
  • a proteasome inhibitor e.g ., bortezomib or carfilzomib
  • Compounds for use in methods encompassed by the present invention may comprise administering a therapeutically or prophylactically effective amount of one or more additional active agents (i.e., second active agent) or other method of treating, managing, or preventing multiple myeloma.
  • Second active agents include small molecules and large molecules (e.g ., proteins), examples of which are provided herein, as well as stem cells.
  • Methods or therapies that can be used in combination with the administration of the immunomodulatory compound and the anti-CS1 antibody include, but are not limited to, surgery, blood transfusions, immunotherapy, biological therapy, radiation therapy, and other non-drug based therapies presently used to treat, prevent or manage cancer or disease and conditions associated with, or characterized by, undesired angiogenesis.
  • compositions e.g ., single unit for use of the invention dosage forms
  • kits for use of the invention.
  • Particular pharmaceutical compositions or kits comprise an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, and an anti-CS1 antibody.
  • Compounds used in the invention include immunomodulatory compounds that are racemic, stereomerically enriched or stereomerically pure, and pharmaceutically acceptable salts, solvates, hydrates or stereoisomers thereof.
  • Preferred compounds used in the invention are small organic molecules having a molecular weight less than about 1,000 g/mol, and are not proteins, peptides, oligonucleotides, oligosaccharides or other macromolecules.
  • immunomodulatory compounds encompass lenalidemide.
  • TNF- ⁇ is an inflammatory cytokine produced by macrophages and monocytes during acute inflammation. TNF- ⁇ is responsible for a diverse range of signaling events within cells. TNF- ⁇ may play a pathological role in cancer. Without being limited by theory, one of the biological effects exerted by the immunomodulatory compounds of the invention is the reduction of synthesis of TNF- ⁇ . Immunomodulatory compounds of the invention enhance the degradation of TNF- ⁇ mRNA.
  • immunomodulatory compounds used in the invention may also be potent co-stimulators of T cells and increase cell proliferation dramatically in a dose dependent manner. Immunomodulatory compounds of the invention may also have a greater co-stimulatory effect on the CD8+ T cell subset than on the CD4+ T cell subset. In addition, the compounds preferably have anti-inflammatory properties, and efficiently co-stimulate T cells.
  • the immunomodulatory compounds of the invention is 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione.
  • the compounds can be obtained via standard, synthetic methods (see e.g., U.S. Patent No. 5,635,517 ).
  • the compound is available from Celgene Corporation, Warren, NJ.
  • the compound 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) has the following chemical structure:
  • the term "pharmaceutically acceptable salt” encompasses non-toxic acid and base addition salts of the compound to which the term refers.
  • Acceptable non-toxic acid addition salts include those derived from organic and inorganic acids or bases know in the art, which include, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embolic acid, enanthic acid, and the like.
  • bases that can be used to prepare pharmaceutically acceptable base addition salts of such acidic compounds are those that form non-toxic base addition salts, i.e., salts containing pharmacologically acceptable cations such as, but not limited to, alkali metal or alkaline earth metal salts and the calcium, magnesium, sodium or potassium salts in particular.
  • Suitable organic bases include, but are not limited to, N,N-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine, and procaine.
  • Immunomodulatory compounds for use of the invention contain one chiral centers, and can exist as racemic mixtures of enantiomers or mixtures of diastereomers. This invention encompasses the use of stereomerically pure forms of such compounds, as well as the use of mixtures of those forms. For example, mixtures comprising equal or unequal amounts of the enantiomers of a particular immunomodulatory compounds for use of the invention may be used in compounds for use in methods and compositions for use of the invention. These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents.
  • stereomerically pure means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound.
  • a stereomerically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
  • a stereomerically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound.
  • a typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
  • a stereomerically pure compound for use according to the invention comprises greater than about 80% by weight of one stereoisomer of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound.
  • stereomerically enriched means a composition that comprises greater than about 60% by weight of one stereoisomer of a compound, preferably greater than about 70% by weight, more preferably greater than about 80% by weight of one stereoisomer of a compound.
  • the term “enantiomerically pure” means a stereomerically pure composition of a compound having one chiral center.
  • stereomerically enriched means a stereomerically enriched composition of a compound having one chiral center.
  • isotopically enriched analogs of the compounds for use of the invention provided herein.
  • Isotopic enrichment for example, deuteration
  • PK pharmacokinetics
  • PD pharmacodynamics
  • toxicity profiles has been demonstrated previously with some classes of drugs. See, for example, Lijinsky et. al., Food Cosmet. Toxicol., 20: 393 (1982 ); Lijinsky et. al., J. Nat. Cancer Inst., 69: 1127 (1982 ); Mangold et. al., Mutation Res. 308: 33 (1994 ); Gordon et. al., Drug Metab. Dispos., 15: 589 (1987 ); Zello et. al., Metabolism, 43: 487 (1994 ); Gately et. al., J. Nucl. Med., 27: 388 (1986 ); Wade D, Chem. Biol. Interact. 117: 191 (1999 ).
  • isotopic enrichment of a drug can be used, for example, to (1) reduce or eliminate unwanted metabolites, (2) increase the half-life of the parent drug, (3) decrease the number of doses needed to achieve a desired effect, (4) decrease the amount of a dose necessary to achieve a desired effect, (5) increase the formation of active metabolites, if any are formed, and/or (6) decrease the production of deleterious metabolites in specific tissues and/or create a more effective drug and/or a safer drug for combination therapy, whether the combination therapy is intentional or not.
  • KIE Kinetic Isotope Effect
  • DKIE Deuterium Kinetic Isotope Effect
  • the magnitude of the DKIE can be expressed as the ratio between the rates of a given reaction in which a C-H bond is broken, and the same reaction where deuterium is substituted for hydrogen.
  • the DKIE can range from about 1 (no isotope effect) to very large numbers, such as 50 or more, meaning that the reaction can be fifty, or more, times slower when deuterium is substituted for hydrogen.
  • high DKIE values may be due in part to a phenomenon known as tunneling, which is a consequence of the uncertainty principle. Tunneling is ascribed to the small mass of a hydrogen atom, and occurs because transition states involving a proton can sometimes form in the absence of the required activation energy. Because deuterium has more mass than hydrogen, it statistically has a much lower probability of undergoing this phenomenon.
  • isotopes for other elements, including, but not limited to, 13 C or 14 C for carbon, 33 S, 34 S, or 36 S for sulfur, 15 N for nitrogen, and 17 O or 18 O for oxygen, will provide a similar kinetic isotope effects.
  • the animal body expresses a variety of enzymes for the purpose of eliminating foreign substances, such as therapeutic agents, from its circulation system.
  • enzymes include the cytochrome P450 enzymes ("CYPs"), esterases, proteases, reductases, dehydrogenases, and monoamine oxidases, to react with and convert these foreign substances to more polar intermediates or metabolites for renal excretion.
  • CYPs cytochrome P450 enzymes
  • esterases esterases
  • proteases proteases
  • reductases reductases
  • dehydrogenases dehydrogenases
  • monoamine oxidases monoamine oxidases
  • the resultant metabolites may be stable or unstable under physiological conditions, and can have substantially different pharmacokinetic, pharmacodynamic, and acute and long-term toxicity profiles relative to the parent compounds.
  • oxidations are rapid.
  • these drugs often require the administration of multiple or high daily doses.
  • Isotopic enrichment at certain positions of a compound for use of the invention may produce a detectable KIE that affects the pharmacokinetic, pharmacologic, and/or toxicological profiles of a compound for use of the invention in comparison with a similar compound having a natural isotopic composition.
  • the deuterium enrichment is performed on the site of C-H bond cleavage during metabolism.
  • Anti-CS1 antibodies that can be used in combination with the immunomodulatory compounds include monoclonal and polyclonal antibodies.
  • the antibody is an anti-CS1 antibody, and, more preferably, a humanized monoclonal anti-CS1 antibody.
  • the anti-CS1 antibody is elotuzumab.
  • the immunomodulatory compounds and anti-CS1 antibodies can be administered in further combination with other pharmacologically active compounds ("second active agents") in compounds for use in methods and compositions for use of the invention. It is believed that certain combinations work synergistically in the treatment of particular types of cancer and certain diseases and conditions associated with, or characterized by, undesired angiogenesis. Immunomodulatory compounds can also work to alleviate adverse effects associated with certain second active agents, and some second active agents can be used to alleviate adverse effects associated with immunomodulatory compounds.
  • second active agents pharmacologically active compounds
  • Second active ingredients or agents can be used in the compounds for use in methods and compositions for use of the invention together with an immunomodulatory compound and an anti-CS1 antibody.
  • Second active agents can be large molecules (e.g ., proteins) or small molecules (e.g ., synthetic inorganic, organometallic, or organic molecules).
  • large molecule active agents include, but are not limited to, hematopoietic growth factors and cytokines.
  • Typical large molecule active agents are biological molecules, such as naturally occurring or artificially made proteins. Proteins that are particularly useful in this invention include proteins that stimulate the survival and/or proliferation of hematopoietic precursor cells and immunologically active poietic cells in vitro or in vivo. Others stimulate the division and differentiation of committed erythroid progenitors in cells in vitro or in vivo.
  • interleukins such as IL-2 (including recombinant IL-II ("rIL2") and canarypox IL-2), IL-10, IL-12, and IL-18
  • interferons such as interferon alfa-2a, interferon alfa-2b, interferon alfa-nl, interferon alfa-n3, interferon beta-I a, and interferon gamma-I b
  • GM-CF and GM-CSF GM-CF and GM-CSF
  • EPO EPO
  • Particular proteins that can be used in the compounds for use in methods and compositions for use of the invention include, but are not limited to: filgrastim, which is sold in the United States under the trade name Neupogen ® (Amgen, Thousand Oaks, CA); sargramostim, which is sold in the United States under the trade name Leukine ® (Immunex, Seattle, WA); and recombinant EPO, which is sold in the United States under the trade name Epogen ® (Amgen, Thousand Oaks, CA).
  • Recombinant and mutated forms of GM-CSF can be prepared as described in U.S. Patent Nos. 5,391,485 ; 5,393,870 ; and 5,229,496 .
  • Recombinant and mutated forms of G-CSF can be prepared as described in U.S. Patent Nos. 4,810,643 ; 4,999,291 ; 5,528,823 ; and 5,580,755 .
  • This invention further encompasses the use of native, naturally occurring, and recombinant proteins.
  • the invention further encompasses the use of mutants and derivatives (e.g ., modified forms) of naturally occurring proteins that exhibit, in vivo, at least some of the pharmacological activity of the proteins upon which they are based.
  • mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins.
  • mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins.
  • mutants include proteins that lack carbohydrate moieties normally present in their naturally occurring forms (e.g ., nonglycosylated forms).
  • derivatives include, but are not limited to, pegylated derivatives and fusion proteins, such as proteins formed by fusing IgG1 or IgG3 to the protein or active portion of the protein of interest. See, e.g., Penichet, M.L. and Morrison, S.L., J. Immunol. Methods 248:91-101 (2001 ).
  • molecule active agents may be administered in the form of anti-cancer vaccines.
  • vaccines that secrete, or cause the secretion of, cytokines such as IL2, G-CSF, and GM-CSF can be used in the compounds for use in methods, pharmaceutical compositions, and kits for use of the invention. See, e.g., Emens, L.A., et al., Curr. Opinion Mol. Ther. 3(1):77-84 (2001 ).
  • Other vaccines include anti-infection vaccines such as Prevnar.
  • the large molecule active agent reduces, eliminates, or prevents an adverse effect associated with the administration of an immunomodulatory compound.
  • adverse effects can include, but are not limited to, drowsiness and somnolence, dizziness and orthostatic hypotension, neutropenia, infections that result from neutropenia, increased HIV-viral load, bradycardia, Stevens-Johnson Syndrome and toxic epidermal necrolysis, and seizures ( e.g ., grand mal convulsions).
  • a specific adverse effect is neutropenia.
  • Second active agents that are small molecules can also be used to alleviate adverse effects associated with the administration of an immunomodulatory compound. However, like some large molecules, many are believed to be capable of providing a synergistic effect when administered with ( e.g ., before, after or simultaneously) an immunomodulatory compound.
  • small molecule second active agents include, but are not limited to, anti-cancer agents, antibiotics, immunosuppressive agents, and steroids.
  • anti-cancer agents include, but are not limited to: acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin; cedefingol; celecoxib (COX-2 inhibitor); chloramb
  • anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA;
  • Specific second active agents include, but are not limited to, oblimersen (Genasense ® ), remicade, docetaxel, celecoxib, melphalan, dexamethasone (Decadron ® ), steroids, gemcitabine, cisplatinum, temozolomide, etoposide, temodar, carboplatin, procarbazine, gliadel, tamoxifen, topotecan, methotrexate, Arisa ® , taxol, taxotere, fluorouracil, leucovorin, irinotecan, xeloda, CPT-11, interferon alpha, pegylated interferon alpha (e.g., PEG INTRON-A), capecitabine, cisplatin, thiotepa, fludarabine, carboplatin, liposomal daunorubicin, cytarabine, doxetaxol
  • second active agents include, but are not limited to, proteasome inhibitors such as ixazomib and marizomib, immunomodulators such as cyclophosphamide, checkpoint inhibitors such as PD-L1 inhibitors, and epigenetic modifiers such as azacitidine.
  • proteasome inhibitors such as ixazomib and marizomib
  • immunomodulators such as cyclophosphamide
  • checkpoint inhibitors such as PD-L1 inhibitors
  • epigenetic modifiers such as azacitidine.
  • Compounds for use in methods of use this invention encompass methods of treating multiple myeloma.
  • treating refers to the administration of an immunomodulatory compound described herein and an anti-CS1 antibody, and, optionally, other additional active agent after the onset of symptoms of multiple myeloma.
  • preventing refers to the administration prior to the onset of symptoms, particularly to patients at risk of multiple myeloma.
  • prevention includes the inhibition of a symptom of multiple myeloma. Patients with familial history of multiple myeloma are preferred candidates for preventive regimens.
  • the term “managing” encompasses preventing the recurrence of multiple myeloma in a patient who had suffered from it, and/or lengthening the time a patient who had suffered from multiple myeloma remains in remission.
  • This invention encompasses compounds for use in methods of treating patients who have been previously treated for multiple myeloma, but are non-responsive to standard therapies, as well as those who have not previously been treated.
  • the invention also encompasses compounds for use in methods of treating patients regardless of patient's age, although multiple myeloma is more common in certain age groups.
  • the invention further encompasses compounds for use in methods of treating patients who have undergone surgery in an attempt to treat the disease or condition at issue, as well as those who have not. Because patients with multiple myeloma have heterogenous clinical manifestations and varying clinical outcomes, the treatment given to a patient may vary, depending on his/her prognosis. The skilled clinician will be able to readily determine without undue experimentation specific secondary agents, types of surgery, and types of non-drug based standard therapy that can be effectively used to treat an individual patient with multiple myeloma.
  • Compounds for use in methods encompassed by this invention comprise administering one or more immunomodulatory compounds described herein, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, in combination with one or more anti-CS1 antibodies to a patient (e.g., a human) suffering, or likely to suffer, from multiple myeloma.
  • an immunomodulatory compound for use of the invention can be administered orally and in single or divided daily doses in an amount of from 1 to 50 mg/day.
  • 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl-piperidine-2,6-dione is administered in an amount of from about 1 to 50 mg per day, or more preferably from about 5 to about 25 mg per day.
  • 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione may be administered initially in an amount of 5 mg/day and the dose can be escalated every week to 10, 15, 20, 25, 30, 35, 40, 45 and 50 mg/day.
  • the escalating dosing regimen can be used to overcome adverse effects.
  • lenalidomide can be administered in an amount of about 2.5 mg, 5 mg, 10 mg, 15 mg, 20 mg or 25 mg per day to patients with multiple myeloma.
  • an anti-CS1 antibody is administered.
  • an anti-CS1 antibody can be administered intravenously or subcutaneously, in an amount of from about 1 to about 1000 mg weekly or every other week.
  • an anti-CS1 antibody e.g ., elotuzumab
  • Specific compounds for use in methods of the invention comprise administering an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, and an anti-CS1 antibody (e . g ., elotuzumab) further in combination with one or more second active agents, and/or in combination with radiation therapy, blood transfusions, or surgery.
  • Specific compounds for use in of the invention comprise administering an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, and an anti-CS1 antibody (e.g ., elotuzumab) further in combination with one or more second active agents, or in combination with radiation therapy, blood transfusions, or surgery.
  • Specific compounds for use in methods of the invention comprise administering an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, and an anti-CS1 antibody (e.g., elotuzumab) further in combination with one or more second active agents, and in combination with radiation therapy, blood transfusions, or surgery.
  • an immunomodulatory compound or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof
  • an anti-CS1 antibody e.g., elotuzumab
  • second active agents are also disclosed herein ( see, e.g., section 4.2).
  • Administration of the immunomodulatory compounds, the anti-CS1 antibodies, and the second active agents to a patient can occur simultaneously or sequentially by the same or different routes of administration.
  • the suitability of a particular route of administration employed for a particular active agent will depend on the active agent itself ( e.g., whether it can be administered orally without decomposing prior to entering the blood stream) and the disease being treated.
  • a preferred route of administration for an immunomodulatory compound is orally.
  • a preferred route of administration for an anti-CS1 antibody e.g., elotuzumab
  • Preferred routes of administration for the second active agents or ingredients for use of the invention are known to those of ordinary skill in the art. See, e.g., Physicians' Desk Reference, 1755-1760 (56th ed., 2002 ).
  • the second active agent can be administered orally, intravenously or subcutaneously and once or twice daily in an amount of from about 1 to about 1000 mg, from about 5 to about 500 mg, from about 10 to about 350 mg, or from about 50 to about 200 mg.
  • the specific amount of the second active agent will depend on the specific agent used, the type of disease being treated or managed, the severity and stage of disease, and the amount(s) of immunomodulatory compounds for use of the invention and any optional additional active agents concurrently administered to the patient.
  • the second active agent is oblimersen (Genasense ® ), GM-CSF, G-CSF, EPO, taxotere, irinotecan, dacarbazine, transretinoic acid, topotecan, pentoxifylline, ciprofloxacin, dexamethasone, vincristine, doxorubicin, COX-2 inhibitor, IL2, IL8, IL18, IFN, Ara-C, vinorelbine, ixazomib, marizomib, cyclophosphamide, Prevnar, an PD-L1 inhibitor, azacitidine, or a combination thereof.
  • Gene ® oblimersen
  • GM-CSF GM-CSF
  • G-CSF G-CSF
  • EPO taxotere
  • irinotecan dacarbazine
  • transretinoic acid topotecan
  • pentoxifylline ciprofloxacin
  • GM-CSF, G-CSF or EPO is administered subcutaneously during about five days in a four or six week cycle in an amount of from about 1 to about 750 mg/m 2 /day, preferably in an amount of from about 25 to about 500 mg/m 2 /day, more preferably in an amount of from about 50 to about 250 mg/m 2 /day, and most preferably in an amount of from about 50 to about 200 mg/m 2 /day.
  • GM-CSF may be administered in an amount of from about 60 to about 500 mcg/m 2 intravenously over 2 hours, or from about 5 to about 12 mcg/m 2 /day subcutaneously.
  • G-CSF may be administered subcutaneously in an amount of about 1 mcg/kg/day initially and can be adjusted depending on rise of total granulocyte counts.
  • the maintenance dose of G-CSF may be administered in an amount of about 300 (in smaller patients) or 480 mcg subcutaneously.
  • EPO may be administered subcutaneously in an amount of 10,000 Unit 3 times per week.
  • the second active agents that can be administered to patients with various types or stages of multiple myeloma in combination with an immunomodulatory compound and an anti-CS1 antibody include, but are not limited to, dexamethasone, zoledronic acid, palmitronate, GM-CSF, biaxin, vinblastine, melphalan, busulphan, cyclophosphamide, IFN, palmidronate, prednisone, bisphosphonate, celecoxib, arsenic trioxide, PEG INTRON-A, vincristine, ixazomib, marizomib, Prevnar, an PD-L1 inhibitor, azacitidine, or a combination thereof.
  • the second active agents that can be administered to patients with relapsed or refractory multiple myeloma in combination with an immunomodulatory compound and an anti-CS1 antibody is doxorubicin (Doxil ® ), vincristine and/or dexamethasone (Decadron ® ).
  • lenalidomide is administered in combination with elotuzumab and dexamethasone to patients with multiple myeloma.
  • an immunomodulatory compound can be administered orally and daily in an amount of from about 1 to about 50 mg, more preferably from about 2 to about 25 mg prior to, during, or after the occurrence of the adverse effect associated with the administration of an anti-cancer drug to a patient.
  • an immunomodulatory compound for use of the invention is administered further in combination with specific agents such as heparin, aspirin, coumadin, or G-CSF to avoid adverse effects that are associated with anti-cancer drugs such as but not limited to neutropenia or thrombocytopenia.
  • an immunomodulatory compound for use according to the invention can be administered to patients with multiple myeloma further in combination with additional active ingredients including but not limited to anti-cancer drugs, anti-inflammatories, antihistamines, antibiotics, and steroids.
  • this invention encompasses a compound for use in a method of treating multiple myeloma in a patient having multiple myeloma and having received a stem cell transplantation, which comprises administering an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate; hydrate or stereoisomer thereof, in combination with an anti-CS1 antibody, further in conjunction with ( e.g . before, during, or after) conventional therapy including, but not limited to, surgery, immunotherapy, biological therapy, radiation therapy, or other non-drug based therapy presently used to treat, prevent or manage cancer.
  • Such therapies also include cell therapy such as CAR T-cell immunotherapy.
  • immunomodulatory compound anti-CS1 antibody and conventional therapy may provide a unique treatment regimen that is unexpectedly effective in certain patients. Without being limited by theory, it is believed that immunomodulatory compounds and/or anti-CS1 antibodies may provide additive or synergistic effects when given concurrently with conventional therapy.
  • the invention encompasses a compound for use in method or treating, multiple myeloma in a patient having multiple myeloma and/or which comprises administering the immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof, and an anti-CS1 antibody in conjunction with the patient having receiveied a stem cell transplantation therapy.
  • an immunomodulatory compound exhibits immunomodulatory activity that may provide additive or synergistic effects when given concurrently with transplantation therapy in patients with cancer.
  • This invention encompasses a compound for use in method of treating multiple myeloma which comprises administering to a patient having multiple myeloma (e.g ., a human) an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof in combination with an anti-CS1 antibody, after the transplantation of umbilical cord blood, placental blood, peripheral blood stem cell, hematopoietic stem cell preparation or bone marrow.
  • multiple myeloma e.g ., a human
  • an immunomodulatory compound e.g a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof in combination with an anti-CS1 antibody
  • an immunomodulatory compound is administered in combination with an anti-CS1 antibody to patients with relapsing multiple myeloma after the stem cell transplantation.
  • an immunomodulatory compound for use according to the invention an anti-CS1 antibody and dexamethasone are administered as salvage therapy for low risk post transplantation to patients with multiple myeloma.
  • an immunomodulatory compound for use according to the invention an anti-CS1 antibody and dexamethasone are administered as maintenance therapy to patients with multiple myeloma following the transplantation of autologous bone marrow.
  • an immunomodulatory compound for use according to the invention and an anti-CS1 antibody are administered following the administration of high dose of melphalan and the transplantation of autologous stem cell to patients with chemotherapy responsive multiple myeloma.
  • an immunomodulatory compound anti-CS1 antibody and PEG INTRO-A are administered to patients with multiple myeloma following the transplantation of autologous CD34-selected peripheral stem cell.
  • an immunomodulatory compound for use according to the invention and an anti-CS1 antibody are administered with post transplant consolidation chemotherapy to patients with newly diagnosed multiple myeloma to evaluate anti-angiogenesis.
  • an immunomodulatory compound for use accrding to the invention an anti-CS1 antibody and dexamethasone are administered as maintenance therapy after DCEP consolidation, following the treatment with high dose of melphalan and the transplantation of peripheral blood stem cell to 65 years of age or older patients with multiple myeloma.
  • an immunomodulatory compound e.g ., lenalidomide
  • an anti-CS1 antibody e.g ., elotuzumab
  • the patient has received treatment with an immunomodulatory compound (e.g ., lenalidomide) for use according to the invention and optionally, a proteasome inhibitor (e.g ., bortezomib or carfilzomib) as induction therapy for newly diagnosed multiple myeloma.
  • an immunomodulatory compound e.g ., lenalidomide
  • an anti-CS1 antibody e.g ., elotuzumab
  • dexamethasone e.g ., dexamethasone
  • the therapeutic agents for use of the invention are cyclically administered to a patient. Cycling therapy involves the administration of an active agent for a period of time, followed by a rest for a period of time, and repeating this sequential administration. Cycling therapy can reduce the development of resistance to one or more of the therapies, avoid or reduce the side effects of one of the therapies, and/or improves the efficacy of the treatment.
  • an immunomodulatory compound is administered daily in a single or divided doses in a four to six week cycle with a rest period of about a week or two weeks.
  • the invention further allows the frequency, number, and length of dosing cycles to be increased.
  • another specific embodiment of the invention encompasses the administration of an immunomodulatory compound for use of the invention for more cycles than are typical when it is administered alone.
  • an immunomodulatory compound for use of the invention is administered for a greater number of cycles that would typically cause doselimiting toxicity in a patient to whom a second active ingredient is not also being administered.
  • Lenalinomide is administered in the amount of from 1 to 50 mg per day. In another particular embodiment, lenalidomide is administered in an amount of about 2.5, 5, 10, 15, 20 or 25 mg/day, preferably in an amount of about 10 mg/day or 25 mg/day for three to four weeks, followed by one week or two weeks of rest in a four or six week cycle.
  • an immunomodulatory compound and a second active ingredient are administered orally, with administration of an immunomodulatory compound of the invention occurring 30 to 60 minutes prior to a second active ingredient, during a cycle of four to six weeks.
  • the combination of an immunomodulatory compound and a second active ingredient is administered by intravenous infusion over about 90 minutes every cycle.
  • one cycle comprises the administration of from about 5 to about 25 mg/day of lenalidomide and from about 50 to about 200 mg/m 2 /day of a second active ingredient daily for three to four weeks and then one or two weeks of rest.
  • the number of cycles during which the combinatorial treatment is administered to a patient will be from about one to about 24 cycles, more typically from about two to about 16 cycles, and even more typically from about four to about three cycles.
  • Anti-CS1 antibodies in the methods of the present invention can also be administered cyclically to patients with multiple myeloma.
  • An anti-CS1 antibody e.g ., elotuzumab
  • the anti-CSl antibody is administered on days 1, 8, 15 and 22 in the first two 28-day cycles, and then on days 1 and 15 in the following 28-day cycles.
  • compositions can be used in the preparation of individual, single unit dosage forms.
  • Pharmaceutical compositions and dosage forms for use of the invention comprise an immunomodulatory compound for use of the invention, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof.
  • Pharmaceutical compositions and dosage forms for use of the invention can further comprise one or more excipients.
  • compositions and dosage forms for use of the invention also comprise one or more anti-CS1 antibodies, and, optionally, additional active ingredients. Consequently, pharmaceutical compositions and dosage forms for use of the invention comprise the active ingredients disclosed herein (e.g., an immunomodulatory compound and an anti-CS1 antibody). Examples of optional second, or additional, active ingredients are disclosed herein ( see, e.g., section 5.2).
  • Single unit dosage forms for use of the invention are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient.
  • mucosal e.g., nasal, sublingual, vaginal, buccal, or rectal
  • parenteral e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial
  • topical e.g., eye drops or other ophthalmic preparations
  • transdermal or transcutaneous administration e.g., transcutaneous administration to a patient.
  • dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches; lozenges; dispersions; suppositories; powders; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including suspensions ( e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions, or a water-in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; eye drops or other ophthalmic preparations suitable for topical administration; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
  • suspensions e.g., aqueous or non-aqueous liquid suspensions, oil-in-water
  • composition, shape, and type of dosage forms for use of the invention will typically vary depending on their use.
  • a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active ingredients it comprises than a dosage form used in the chronic treatment of the same disease.
  • a parenteral dosage form may contain smaller amounts of one or more of the active ingredients it comprises than an oral dosage form used to treat the same disease.
  • Typical pharmaceutical compositions and dosage forms comprise one or more excipients.
  • Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient.
  • oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms.
  • the suitability of a particular excipient may also depend on the specific active ingredients in the dosage form. For example, the decomposition of some active ingredients may be accelerated by some excipients such as lactose, or when exposed to water.
  • lactose-free means that the amount of lactose present, if any, is insufficient to substantially increase the degradation rate of an active ingredient.
  • Lactose-free compositions for use of the invention can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002).
  • lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in pharmaceutically compatible and pharmaceutically acceptable amounts.
  • Preferred lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
  • This invention further encompasses anhydrous pharmaceutical compositions and dosage forms for use of the invention comprising active ingredients, since water can facilitate the degradation of some compounds.
  • water e.g., 5%
  • water is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen, Drug Stability: Principles & Practice, 2d. Ed., Marcel Dekker, NY, NY, 1995, pp. 379-80 .
  • water and heat accelerate the decomposition of some compounds.
  • the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
  • Anhydrous pharmaceutical compositions and dosage forms for use of the invention can be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
  • Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprises a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
  • anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g ., vials), blister packs, and strip packs.
  • compositions and dosage forms for use of the invention that comprise one or more compounds that reduce the rate by which an active ingredient will decompose.
  • compounds which are referred to herein as “stabilizers,” include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.
  • the amounts and specific types of active ingredients in a dosage form may differ depending on factors such as, but not limited to, the route by which it is to be administered to patients.
  • typical dosage forms for use of the invention comprise an immunomodulatory compound or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof in an amount of from about 1 to about 50 mg.
  • Typical dosage forms comprise an immunomodulatory compound for use of the invention or a pharmaceutically acceptable salt, solvate, hydrate or strereoisomer thereof in an amount of about 1, 2, 2.5, 3, 4, 5, 7.5, 10, 12.5, 15, 17.5, 20, 25 or 50 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 2.5, 5, 10, 15, 20, 25 or 50 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 2.5 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 5 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 10 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 15 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 20 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 25 mg.
  • a preferred dosage form comprises 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione (lenalidomide) in an amount of about 50 mg.
  • Typical dosage forms comprise the anti-CS1 antibody in an amount of 1 to about 1000 mg, from about 5 to about 500 mg, from about 10 to about 350 mg, or from about 50 to about 200 mg.
  • elotuzumab is in a 10 mg/kg IV solution.
  • the specific amount of the anti-CS1 antibody or second, additional anticancer drug will depend on the specific agent used, the type of cancer being treated or managed, and the amount(s) of an immunomodulatory compound and any optional additional active agents concurrently administered to the patient.
  • compositions for use of the invention that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups).
  • dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton PA (1990 ).
  • Typical oral dosage forms for use of the invention are prepared by combining the active ingredients in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques.
  • Excipients can take a wide variety of forms depending on the form of preparation desired for administration.
  • excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents.
  • excipients suitable for use in solid oral dosage forms e.g., powders, tablets, capsules, and caplets
  • tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.
  • a tablet can be prepared by compression or molding.
  • Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient.
  • Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives ( e.g.
  • ethyl cellulose cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose
  • polyvinyl pyrrolidone methyl cellulose
  • pre-gelatinized starch hydroxypropyl methyl cellulose, ( e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.
  • Suitable forms of microcrystalline cellulose include, but are not limited to, the materials sold as AVICEL-PH-101, AVICEL-PH-103 AVICEL RC-581, AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA), and mixtures thereof.
  • An specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581.
  • Suitable anhydrous or low moisture excipients or additives include AVICEL-PH-103 TM and Starch 1500 LM.
  • fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g ., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
  • the binder or filler in pharmaceutical compositions for use of the invention is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.
  • Disintegrants are used in the compositions for use of the invention to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms for use of the invention. The amount of disintegrant used varies based upon the type of formulation, and is readily discernible to those of ordinary skill in the art. Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.
  • Disintegrants that can be used in pharmaceutical compositions and dosage forms for use of the invention include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.
  • Lubricants that can be used in pharmaceutical compositions and dosage forms for use of the invention include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof.
  • Additional lubricants include, for example, a syloid silica gel (AEROSIL200, manufactured by W.R. Grace Co. of Baltimore, MD), a coagulated aerosol of synthetic silica (marketed by Degussa Co. of Plano, TX), CAB-O-SIL (a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, MA), and mixtures thereof. If used at all, lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
  • AEROSIL200 a syloid silica gel
  • a coagulated aerosol of synthetic silica marketed by Degussa Co. of Plano, TX
  • CAB-O-SIL a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, MA
  • lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
  • a preferred solid oral dosage form for use of the invention comprises an immunomodulatory compound described herein, anhydrous lactose, microcrystalline cellulose, polyvinylpyrrolidone, stearic acid, colloidal anhydrous silica, and gelatin.
  • the solid oral dosage form is a capsule comprising an immunomodulatory compound, lactose anhydrous, microcrystalline cellulose, croscarmellose sodium and magnesium stearate.
  • Active ingredients for use of the invention can be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Patent Nos.: 3,845,770 ; 3,916,899 ; 3,536,809 ; 3,598,123 ; and 4,008,719 , 5,674,533 , 5,059,595 , 5,591,767 , 5,120,548 , 5,073,543 , 5,639,476 , 5,354,556 , and 5,733,566 .
  • Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
  • Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients for use of the invention.
  • the invention thus encompasses single unit dosage forms for use of the invention suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.
  • controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts.
  • the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time.
  • Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance.
  • controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side ( e.g ., adverse) effects.
  • Controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time.
  • the drug In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
  • Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
  • Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions, suspensions ready for injection, and emulsions.
  • Suitable vehicles that can be used to provide parenteral dosage forms for use of the invention are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
  • aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's In
  • cyclodextrin and its derivatives can be used to increase the solubility of an immunomodulatory compound for use of the invention and its derivatives. See, e.g., U.S. Patent No. 5,134,127 .
  • Topical and mucosal dosage forms for use of the invention include, but are not limited to, sprays, aerosols, solutions, emulsions, suspensions, eye drops or other ophthalmic preparations, or other forms known to one of skill in the art. See, e.g., Remington's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton PA (1980 & 1990 ); and Introduction to Pharmaceutical Dosage Forms, 4th ed., Lea & Febiger, Philadelphia (1985 ). Dosage forms suitable for treating mucosal tissues within the oral cavity can be formulated as mouthwashes or as oral gels.
  • Suitable excipients e.g. , carriers and diluents
  • other materials that can be used to provide topical and mucosal dosage forms for use of this invention are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied.
  • typical excipients include, but are not limited to, water, acetone, ethanol, ethylene glycol, propylene glycol, butane-1,3-diol, isopropyl myristate, isopropyl palmitate, mineral oil, and mixtures thereof to form solutions, emulsions or gels, which are non-toxic and pharmaceutically acceptable.
  • Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well known in the art. See, e.g., Remington's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton PA (1980 & 1990 ).
  • the pH of a pharmaceutical composition or dosage form may also be adjusted to improve delivery of one or more active ingredients.
  • the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to improve delivery.
  • Compounds such as stearates can also be added to pharmaceutical compositions or dosage forms to advantageously alter the hydrophilicity or lipophilicity of one or more active ingredients so as to improve delivery.
  • stearates can serve as a lipid vehicle for the formulation, as an emulsifying agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent.
  • Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition.
  • active ingredients for use of the invention are preferably not administered to a patient at the same time or by the same route of administration.
  • This invention therefore encompasses kits for use of the invention which, when used by the medical practitioner, can simplify the administration of appropriate amounts of active ingredients to a patient.
  • kits for use of the invention comprises a dosage form of an immunomodulatory compound, or a pharmaceutically acceptable salt, solvate, hydrate or stereoisomer thereof.
  • Kits for use of this invention can further comprise an anti-CS1 antibody (e.g ., elotuzumab) for administration with the immunomodulatory compound.
  • kits can further comprise additional active ingredients such as oblimersen (Genasense ® ), melphalan, G-CSF, GM-CSF, EPO, topotecan, dacarbazine, irinotecan, taxotere, IFN, COX-2 inhibitor, pentoxifylline, ciprofloxacin, dexamethasone, IL2, IL8, IL18, Ara-C, vinorelbine, isotretinoin, 13 cis-retinoic acid, or a pharmacologically active mutant or derivative thereof, or a combination thereof.
  • additional active ingredients include, but are not limited to, those disclosed herein ( see, e.g., section 4.2).
  • Kits for use of the invention can further comprise devices that are used to administer the active ingredients.
  • devices include, but are not limited to, syringes, drip bags, patches, and inhalers.
  • Kits for use of the invention can further comprise cells or blood for transplantation as well as pharmaceutically acceptable vehicles that can be used to administer one or more active ingredients.
  • the kit can comprise a sealed container of a suitable vehicle in which the active ingredient can be dissolved to form a particulate-free sterile solution that is suitable for parenteral administration.
  • Examples of pharmaceutically acceptable vehicles include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
  • aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection
  • water-miscible vehicles such as, but not limited to, ethyl alcohol
  • an immunomodulatory compound e.g ., lenalidomide
  • Cycling therapy involves the administration of a first agent for a period of time, followed by a rest for a period of time and repeating this sequential administration. Cycling therapy can reduce the development of resistance to one or more of the therapies, avoid or reduce the side effects of one of the therapies, and/or improves the efficacy of the treatment.
  • prophylactic or therapeutic agents are administered in a cycle of about 4 to 6 weeks, about once or twice every day.
  • One cycle can comprise the administration of a therapeutic on prophylactic agent for three to four weeks and at least a week or two weeks of rest.
  • the number of cycles administered is from about one to about 24 cycles, more typically from about two to about 16 cycles, and more typically from about four to about eight cycles.
  • An anti-CS1 antibody e.g. , elotuzumab
  • Clinical studies of patients who have received stem cell transplantation for treating multiple myeloma is conducted to assess the ability of lenalidomide in combination with elotuzumab to treat multiple myeloma.
  • MRD(+) (MRD positive) is defined as having 10 -5 cells or greater as determined by Sequenta.
  • Patients eighteen years of age or older can participate in this study after signing informed consent.
  • the patients must have newly diagnosed multiple myeloma with symptomatic multiple myeloma and have undergone induction lenalidomide in combination with bortezomib/carfilzomib and dexamethasone (triplet) or bortezomib/carfilzomib in combination with dexamethasone (doublet) therapy and, subsequently, stem cell transplantation.
  • induction lenalidomide in combination with bortezomib/carfilzomib and dexamethasone (triplet) or bortezomib/carfilzomib in combination with dexamethasone (doublet) therapy and, subsequently, stem cell transplantation.
  • triplet bortezomib/carfilzomib
  • dexamethasone doublet
  • MRD residue disease
  • ISS stage serum albumin
  • CR Complete response
  • VGPR very good partial response
  • PR partial response
  • SD stable disease
  • the patients Prior to the autologous stem cell transplantation, the patients must have received in induction a proteasome inhibitor- or lenalidomide-based therapy.
  • the patients who achieve at least stable disease are randomized to lenalidomide plus elotuzumab cohort and lenalidomide plus placebo cohort. The stratification at randomization is based on cytogenetics (high risk vs standard risk), types of induction therapy prior to stem cell transplantation (doublet vs triplet regimen), and minimization.
  • lenalidomide plus elotuzumab cohort lenalidomide is administered orally in an amount of 10 mg per day on days 1-21 of 28-day cycles.
  • Elotuzumab is administered as a 10 mg/kg IV solution weekly on days 1, 8, 15, 22 in 28-day cycles (cycles 1 & 2); and on days 1 & 15 in 28-day cycles (cycle 3 and onward). In both cohorts the treatments continue until progressive disease (PD) or unacceptable toxicity.
  • PD progressive disease
  • the MRD status Prior to the lenalidomide- or proteasome inhibitor-based induction therapy, the MRD status is evaluated by bone marrow aspirate (BMA) and Sequenta. Baseline evaluation of cytogenetics is also conducted. The MRD status is also monitored at randomization (BMA), every 12 months (BMA), every 2 cycles (BMA), and at discontinuation (peripheral blood). Once MRD (-) status is obtained, the status is confirmed with BMA.
  • BMA bone marrow aspirate
  • Sequenta Baseline evaluation of cytogenetics is also conducted. The MRD status is also monitored at randomization (BMA), every 12 months (BMA), every 2 cycles (BMA), and at discontinuation (peripheral blood).
  • the primary endpoint of the study is progression-free survival (PFS).
  • the second endpoints for all patient subjects include the following: progression-free survival 2 (PFS2); overall survival (OS); overall response rate (ORR); duration of response (DoR); MRD(-) conversion rate; time from randomization to MRD(-) conversion; safety; duration of MRD(-) status; MRD levels over time (Exploratory); correlation of MRD status change with outcomes (PFS, OS) (Exploratory); and quality of life (QoL).
  • the second end points for patient subjects achieving MRD(-) conversion include the following: time to MRD(+) recurrence (Exploratory); and time from MRD(+) recurrence to IMWG-defined progression (Exploratory). An interim analysis will be performed to assess MRD(-) conversion rates.
  • MRD(-) (MRD negative) is defined as having 10 -4 cells or fewer as determined by Sequenta.
  • MRD(-) MRD negative
  • the patients Prior to the autologous stem cell transplantation, the patients must have received in induction a proteasome inhibitor- or lenalidomide-based therapy.
  • the patients who achieve at least stable disease are randomized to lenalidomide plus elotuzumab cohort and lenalidomide plus placebo cohort. The stratification at randomization is based on cytogenetics (high risk vs standard risk), and types of induction therapy prior to stem cell transplantation (doublet vs triplet regimen).
  • lenalidomide plus elotuzumab cohort lenalidomide is administered orally in an amount of 10 mg per day on days 1-21 of 28-day cycles.
  • Elotuzumab is administered as a 10 mg/kg IV solution weekly on days 1, 8, 15, 22 in 28-day cycles (cycles 1 & 2); and on days 1 & 15 in 28-day cycles (cycle 3 and onward). In both cohorts the treatments continue until progressive disease (PD) or unacceptable toxicity.
  • PD progressive disease
  • the MRD status Prior to the lenalidomide- or proteasome inhibitor-based induction therapy, the MRD status is evaluated by bone marrow aspirate (BMA) and Sequenta. Baseline evaluation of cytogenetics is also conducted. The MRD status is also monitored at randomization (BMA), every 12 months (BMA), every 2 cycles (BMA), and at discontinuation (peripheral blood). Once MRD (+) status is obtained, the status is confirmed with peripheral blood.
  • BMA bone marrow aspirate
  • Sequenta Baseline evaluation of cytogenetics is also conducted. The MRD status is also monitored at randomization (BMA), every 12 months (BMA), every 2 cycles (BMA), and at discontinuation (peripheral blood). Once MRD (+) status is obtained, the status is confirmed with peripheral blood.
  • the primary endpoint of the study is progression-free survival (PFS) Rate at 24 months.
  • the second endpoints for all patient subjects include the following: PFS; PFS2; PFS at interim analysis; OS; OS at interim analysis; ORR; DoR; rate of loss of MRD(-); comparison of High Risk patients vs. Standard Risk patients for loss of MRD(-) status; MRD(+) conversion at 12 and 18 months; time from MRD(+) conversion to IMWG-defined progression; time to MRD(+) conversion; duration of MRD(-) status; MRD levels over time (Exploratory); correlation of MRD status change with outcomes (PFS, OS) (Exploratory); QoL; and safety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
EP15757389.0A 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies Active EP3182996B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21172501.5A EP3925609B1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies
SI201531929T SI3182996T1 (sl) 2014-08-22 2015-08-20 Postopki zdravljenja multiplega mieloma z imunomodulatornimi spojinami v kombinaciji s protitelesi
HRP20230265TT HRP20230265T1 (hr) 2014-08-22 2015-08-20 Postupci liječenja multiplog mijeloma imunomodulatornim spojevima u kombinaciji s protutijelima
SM20230081T SMT202300081T1 (it) 2014-08-22 2015-08-20 Metodi di trattamento di mieloma multiplo con composti immunomodulatori in combinazione con anticorpi
RS20230191A RS64038B1 (sr) 2014-08-22 2015-08-20 Postupci za lečenje multiplog mijeloma imunomodulatornim jedinjenjima u kombinaciji sa antitelima

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462040918P 2014-08-22 2014-08-22
PCT/US2015/046091 WO2016029004A1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP21172501.5A Division-Into EP3925609B1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies
EP21172501.5A Division EP3925609B1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies

Publications (2)

Publication Number Publication Date
EP3182996A1 EP3182996A1 (en) 2017-06-28
EP3182996B1 true EP3182996B1 (en) 2022-12-28

Family

ID=54035318

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15757389.0A Active EP3182996B1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies
EP21172501.5A Active EP3925609B1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21172501.5A Active EP3925609B1 (en) 2014-08-22 2015-08-20 Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies

Country Status (24)

Country Link
US (1) US10034872B2 (enExample)
EP (2) EP3182996B1 (enExample)
JP (2) JP7120763B2 (enExample)
KR (1) KR20170042598A (enExample)
CN (1) CN107073115A (enExample)
AU (2) AU2015305449B2 (enExample)
BR (1) BR112017003620A2 (enExample)
CA (1) CA2958867A1 (enExample)
CL (1) CL2017000416A1 (enExample)
DK (1) DK3182996T3 (enExample)
EA (1) EA201790439A1 (enExample)
ES (2) ES3043078T3 (enExample)
FI (1) FI3182996T3 (enExample)
HR (1) HRP20230265T1 (enExample)
HU (1) HUE061382T2 (enExample)
IL (1) IL250724A0 (enExample)
LT (1) LT3182996T (enExample)
MX (1) MX388383B (enExample)
PL (1) PL3182996T3 (enExample)
PT (1) PT3182996T (enExample)
RS (1) RS64038B1 (enExample)
SI (1) SI3182996T1 (enExample)
SM (1) SMT202300081T1 (enExample)
WO (1) WO2016029004A1 (enExample)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2886657T3 (es) * 2015-06-29 2021-12-20 Bristol Myers Squibb Co Regímenes de dosificación inmunoterapéutica que comprenden pomalidomida y un anticuerpo anti-CS1 para el tratamiento de cáncer
KR20190093205A (ko) * 2016-12-21 2019-08-08 바이오테릭스, 인코포레이티드 단백질 표적화에 사용하기 위한 티에노피롤 유도체, 조성물, 방법 및 이의 용도
WO2019072220A1 (zh) * 2017-10-13 2019-04-18 江苏恒瑞医药股份有限公司 Pd-1抗体和表观遗传调节剂联合在制备治疗肿瘤的药物中的用途
PL3703750T3 (pl) 2017-11-01 2025-04-07 Juno Therapeutics, Inc. Chimeryczne receptory antygenowe specyficzne dla antygenu dojrzewania komórek b i kodujące polinukleotydy
CN112601751B (zh) * 2018-06-13 2024-04-02 拜欧斯瑞克斯公司 稠合噻吩化合物
KR20210069642A (ko) * 2018-10-01 2021-06-11 셀진 코포레이션 암 치료를 위한 병용 요법
US12263190B2 (en) 2018-11-08 2025-04-01 Juno Therapeutics, Inc. Methods and combinations for treatment and T cell modulation
TW202038975A (zh) * 2018-11-13 2020-11-01 美商南塞爾公司 多發性骨髓瘤之組合治療
US20220143002A1 (en) * 2019-02-25 2022-05-12 Shanghaitech University Sulfur-containing compound based on glutarimide skeleton and application thereof
US20230028293A1 (en) * 2019-12-08 2023-01-26 The Regents Of The University Of Colorado, A Body Corporate Multiple myeloma combination therapies based on protein translation inhibitors and immunomodulators
WO2021118353A1 (en) * 2019-12-11 2021-06-17 Erasmus University Medical Center Rotterdam Method for monitoring of deep remissions in multiple myeloma and other plasma cell dyscrasias
WO2022072538A1 (en) * 2020-09-30 2022-04-07 Biotheryx, Inc. Antibody-drug conjugates, pharmaceutical compositions thereof, and their therapeutic applications
EP4277901A1 (en) 2021-01-13 2023-11-22 Monte Rosa Therapeutics, Inc. Isoindolinone compounds
CN117794909A (zh) * 2021-08-04 2024-03-29 株式会社艾比斯生物 改进物质特性的免疫调节酰胺衍生物
KR102362871B1 (ko) * 2021-11-19 2022-02-15 케이블루바이오 주식회사 신규한 사환구조 트리테르펜 화합물을 유효성분으로 포함하는 다발성골수종의 예방 또는 치료용 조성물

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1164829B (de) 1961-04-26 1964-03-05 Bayer Ag Verfahren zur elektrophotographischen Herstellung von Bildern mit Fluessigkeitsaerosolen
US3536809A (en) 1969-02-17 1970-10-27 Alza Corp Medication method
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4008719A (en) 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US5001116A (en) 1982-12-20 1991-03-19 The Children's Medical Center Corporation Inhibition of angiogenesis
US4994443A (en) 1982-12-20 1991-02-19 The Children's Medical Center Corporation Inhibition of angiogenesis
US4551177A (en) 1984-04-23 1985-11-05 National Starch And Chemical Corporation Compressible starches as binders for tablets or capsules
IE58110B1 (en) 1984-10-30 1993-07-14 Elan Corp Plc Controlled release powder and process for its preparation
US5391485A (en) 1985-08-06 1995-02-21 Immunex Corporation DNAs encoding analog GM-CSF molecules displaying resistance to proteases which cleave at adjacent dibasic residues
US4810643A (en) 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
JPS63500636A (ja) 1985-08-23 1988-03-10 麒麟麦酒株式会社 多分化能性顆粒球コロニー刺激因子をコードするdna
US5974203A (en) 1988-04-11 1999-10-26 Canon Kabushiki Kaisha Pattern recognition communication apparatus for transmitting and receiving image data
US5073543A (en) 1988-07-21 1991-12-17 G. D. Searle & Co. Controlled release formulations of trophic factors in ganglioside-lipsome vehicle
IT1229203B (it) 1989-03-22 1991-07-25 Bioresearch Spa Impiego di acido 5 metiltetraidrofolico, di acido 5 formiltetraidrofolico e dei loro sali farmaceuticamente accettabili per la preparazione di composizioni farmaceutiche in forma a rilascio controllato attive nella terapia dei disturbi mentali organici e composizioni farmaceutiche relative.
US5120548A (en) 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
KR0166088B1 (ko) 1990-01-23 1999-01-15 . 수용해도가 증가된 시클로덱스트린 유도체 및 이의 용도
US5733566A (en) 1990-05-15 1998-03-31 Alkermes Controlled Therapeutics Inc. Ii Controlled release of antiparasitic agents in animals
AU8868891A (en) 1990-10-12 1992-05-20 Amgen, Inc. Megakaryocyte maturation factors
US5387421A (en) 1991-01-31 1995-02-07 Tsrl, Inc. Multi stage drug delivery system
AU1531492A (en) 1991-02-14 1992-09-15 Rockefeller University, The Method for controlling abnormal concentration tnf alpha in human tissues
US5580578A (en) 1992-01-27 1996-12-03 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5358941A (en) 1992-12-02 1994-10-25 Merck & Co., Inc. Dry mix formulation for bisphosphonic acids with lactose
US5360352A (en) 1992-12-24 1994-11-01 The Whitaker Corporation Wire retainer for current mode coupler
US5591767A (en) 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US6114355A (en) 1993-03-01 2000-09-05 D'amato; Robert Methods and compositions for inhibition of angiogenesis
US5629327A (en) 1993-03-01 1997-05-13 Childrens Hospital Medical Center Corp. Methods and compositions for inhibition of angiogenesis
US20010056114A1 (en) 2000-11-01 2001-12-27 D'amato Robert Methods for the inhibition of angiogenesis with 3-amino thalidomide
US6228879B1 (en) 1997-10-16 2001-05-08 The Children's Medical Center Methods and compositions for inhibition of angiogenesis
US5594637A (en) 1993-05-26 1997-01-14 Base Ten Systems, Inc. System and method for assessing medical risk
US5698579A (en) 1993-07-02 1997-12-16 Celgene Corporation Cyclic amides
US5641758A (en) 1993-11-10 1997-06-24 Kluge; Michael Cytarabine derivatives, the preparation and use thereof
US6432924B1 (en) 1993-12-26 2002-08-13 East Carolina University Method of treating disorders characterized by overexpression of cytidine deaminase or deoxycytidine deaminase
GB9412394D0 (en) 1994-06-21 1994-08-10 Danbiosyst Uk Colonic drug delivery composition
IT1270594B (it) 1994-07-07 1997-05-07 Recordati Chem Pharm Composizione farmaceutica a rilascio controllato di moguisteina in sospensione liquida
EP0800680A4 (en) 1994-10-28 1998-08-12 Advanced Health Med E Systems PRESCRIPTION MANAGEMENT SYSTEM
US5593696A (en) 1994-11-21 1997-01-14 Mcneil-Ppc, Inc. Stabilized composition of famotidine and sucralfate for treatment of gastrointestinal disorders
US5619991A (en) 1995-04-26 1997-04-15 Lucent Technologies Inc. Delivery of medical services using electronic data communications
US5731325A (en) 1995-06-06 1998-03-24 Andrulis Pharmaceuticals Corp. Treatment of melanomas with thalidomide alone or in combination with other anti-melanoma agents
US5643915A (en) 1995-06-06 1997-07-01 Andrulis Pharmaceuticals Corp. Treatment of ischemia/reperfusion injury with thalidomide alone or in combination with other therapies
US5832449A (en) 1995-11-13 1998-11-03 Cunningham; David W. Method and system for dispensing, tracking and managing pharmaceutical trial products
US6063026A (en) 1995-12-07 2000-05-16 Carbon Based Corporation Medical diagnostic analysis system
HU228769B1 (en) 1996-07-24 2013-05-28 Celgene Corp Substituted 2(2,6-dioxopiperidin-3-yl)phthalimides and -1-oxoisoindolines and their use for production of pharmaceutical compositions for mammals to reduce the level of tnf-alpha
US6281230B1 (en) 1996-07-24 2001-08-28 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US5798368A (en) 1996-08-22 1998-08-25 Celgene Corporation Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels
CZ302378B6 (cs) 1996-07-24 2011-04-20 Celgene Corporation Optický izomer (S)-1,3-dioxo-2-(2,6-dioxopiperidin-3-yl)-4-aminoisoindolin a farmaceutická kompozice s jeho obsahem
US5635517B1 (en) 1996-07-24 1999-06-29 Celgene Corp Method of reducing TNFalpha levels with amino substituted 2-(2,6-dioxopiperidin-3-YL)-1-oxo-and 1,3-dioxoisoindolines
US5929117A (en) 1996-08-12 1999-07-27 Celgene Corporation Immunotherapeutic agents
US5924074A (en) 1996-09-27 1999-07-13 Azron Incorporated Electronic medical records system
DE69734290T2 (de) 1996-11-05 2006-07-06 The Children's Medical Center Corp., Boston Mittel zur hemmung von angiogenese enthaltend thalodomid und einen nsaid
US6131090A (en) 1997-03-04 2000-10-10 Pitney Bowes Inc. Method and system for providing controlled access to information stored on a portable recording medium
EP0998271B3 (en) 1997-06-06 2014-10-29 Depomed, Inc. Gastric-retentive oral drug dosage forms for controlled release of highly soluble drugs
US6635280B2 (en) 1997-06-06 2003-10-21 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
AU8909898A (en) 1997-08-22 1999-03-16 Deka Products Limited Partnership Health care system and method for physician order entry
US5874448A (en) 1997-11-18 1999-02-23 Celgene Corporation Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels
US5955476A (en) 1997-11-18 1999-09-21 Celgene Corporation Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels
US6096757A (en) 1998-12-21 2000-08-01 Schering Corporation Method for treating proliferative diseases
TR200101504T2 (tr) 1998-03-16 2002-06-21 Celgene Corporation 2-(2,6-dioksopiperidin-3-il)izoindolin türevleri, bunların hazırlanması ve enflamatuar sitokinlerin inhibitörleri olarak kullanımı.
JPH11286455A (ja) 1998-03-31 1999-10-19 Kanebo Ltd 骨髄異形成症候群治療薬
US6673828B1 (en) 1998-05-11 2004-01-06 Children's Medical Center Corporation Analogs of 2-Phthalimidinoglutaric acid
US6045501A (en) 1998-08-28 2000-04-04 Celgene Corporation Methods for delivering a drug to a patient while preventing the exposure of a foetus or other contraindicated individual to the drug
US6020358A (en) 1998-10-30 2000-02-01 Celgene Corporation Substituted phenethylsulfones and method of reducing TNFα levels
US20030013739A1 (en) 1998-12-23 2003-01-16 Pharmacia Corporation Methods of using a combination of cyclooxygenase-2 selective inhibitors and thalidomide for the treatment of neoplasia
GB9904585D0 (en) 1999-02-26 1999-04-21 Gemini Research Limited Clinical and diagnostic database
CA2361806C (en) 1999-03-18 2012-03-13 Celgene Corporation Substituted 1-oxo- and 1,3-dioxoisoindolines and their use in pharmaceutical compositions for reducing inflammatory cytokine levels
US20010021380A1 (en) 1999-04-19 2001-09-13 Pluenneke John D. Soluble tumor necrosis factor receptor treatment of medical disorders
US7629360B2 (en) 1999-05-07 2009-12-08 Celgene Corporation Methods for the treatment of cachexia and graft v. host disease
KR20020012006A (ko) 1999-07-16 2002-02-09 오오쯔끼쥰조 점막 흡수용 글리시리진 제제
US6202923B1 (en) 1999-08-23 2001-03-20 Innovation Associates, Inc. Automated pharmacy
US6878733B1 (en) 1999-11-24 2005-04-12 Sugen, Inc. Formulations for pharmaceutical agents ionizable as free acids or free bases
US7182953B2 (en) 1999-12-15 2007-02-27 Celgene Corporation Methods and compositions for the prevention and treatment of atherosclerosis restenosis and related disorders
US6326388B1 (en) 1999-12-21 2001-12-04 Celgene Corporation Substituted 1,3,4-oxadiazoles and a method of reducing TNF-alpha level
CA2319872C (en) 2000-02-02 2012-06-19 Chun-Ying Huang Pharmaceutical composition for the treatment of hepatocellular carcinoma
ATE340563T1 (de) 2000-02-04 2006-10-15 Depomed Inc DOSIERUNGSFORM DES TYPS ßHÜLLE UND KERNß MIT EINER WIRKSTOFFFREISETZUNG, DIE SICH DER NULLTEN ORDNUNG ANNÄHERT
CA2402643A1 (en) 2000-03-17 2001-09-27 Cell Therapeutics, Inc. Polyglutamic acid-camptothecin conjugates and methods of preparation
US20020022627A1 (en) 2000-03-31 2002-02-21 Dannenberg Andrew J. Inhibition of cyclooxygenase-2activity
DK1286671T3 (da) 2000-05-15 2006-07-17 Celgene Corp Sammensætninger til behandling af colorektal cancer hvilke indeholder thalidomid og irinotecan
WO2001087307A2 (en) 2000-05-15 2001-11-22 Celgene Corp. Compositions and methods for the treatment of cancer
WO2002015926A1 (en) 2000-08-24 2002-02-28 Kirin Beer Kabushiki Kaisha c-mpl LIGAND-CONTAINING MEDICINAL COMPOSITIONS FOR INCREASING PLATELETS AND ERYTHROCYTES
US6315720B1 (en) 2000-10-23 2001-11-13 Celgene Corporation Methods for delivering a drug to a patient while avoiding the occurrence of an adverse side effect known or suspected of being caused by the drug
US6458810B1 (en) 2000-11-14 2002-10-01 George Muller Pharmaceutically active isoindoline derivatives
CA2430669C (en) 2000-11-30 2011-06-14 The Children's Medical Center Corporation Synthesis of 3-amino-thalidomide and its enantiomers
US20020128228A1 (en) 2000-12-01 2002-09-12 Wen-Jen Hwu Compositions and methods for the treatment of cancer
US20030045552A1 (en) 2000-12-27 2003-03-06 Robarge Michael J. Isoindole-imide compounds, compositions, and uses thereof
US7091353B2 (en) 2000-12-27 2006-08-15 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof
GB0102342D0 (en) 2001-01-30 2001-03-14 Smithkline Beecham Plc Pharmaceutical formulation
US7320991B2 (en) 2001-02-27 2008-01-22 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, National Institutes Of Health Analogs of thalidomide as potential angiogenesis inhibitors
CA2457319C (en) 2001-08-06 2011-07-05 The Children's Medical Center Corporation Synthesis and anti-tumor activity of nitrogen substituted thalidomide analogs
US6723340B2 (en) 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
JP4027693B2 (ja) 2002-03-20 2007-12-26 トリニティ工業株式会社 塗料送給装置及びバルブユニット
US20030220254A1 (en) 2002-03-29 2003-11-27 Texas Tech University System Composition and method for preparation of an oral dual controlled release formulation of a protein and inhibitor
US7498171B2 (en) 2002-04-12 2009-03-03 Anthrogenesis Corporation Modulation of stem and progenitor cell differentiation, assays, and uses thereof
US20050148034A1 (en) 2002-04-12 2005-07-07 Hariri Robert J. Methods for identification of modulators of angiogenesis, compounds discovered thereby, and methods of treatment using the compounds
US7393862B2 (en) 2002-05-17 2008-07-01 Celgene Corporation Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
SI1505973T1 (sl) 2002-05-17 2010-06-30 Celgene Corp Kombinacija za zdravljenje multiplega mieloma
US7323479B2 (en) 2002-05-17 2008-01-29 Celgene Corporation Methods for treatment and management of brain cancer using 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline
US7968569B2 (en) * 2002-05-17 2011-06-28 Celgene Corporation Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
NZ536908A (en) 2002-05-17 2008-09-26 Celgene Corp Treating or preventing cancer comprising administering an effective amount of cytokine inhibitory drug plus a second active ingredient
US8404717B2 (en) 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes using lenalidomide
US7189740B2 (en) 2002-10-15 2007-03-13 Celgene Corporation Methods of using 3-(4-amino-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myelodysplastic syndromes
US8404716B2 (en) 2002-10-15 2013-03-26 Celgene Corporation Methods of treating myelodysplastic syndromes with a combination therapy using lenalidomide and azacitidine
US20040091455A1 (en) 2002-10-31 2004-05-13 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for treatment and management of macular degeneration
US20040162263A1 (en) 2002-10-31 2004-08-19 Supergen, Inc., A Delaware Corporation Pharmaceutical formulations targeting specific regions of the gastrointesinal tract
US20040152632A1 (en) 2002-11-06 2004-08-05 Wyeth Combination therapy for the treatment of acute leukemia and myelodysplastic syndrome
US7563810B2 (en) 2002-11-06 2009-07-21 Celgene Corporation Methods of using 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione for the treatment and management of myeloproliferative diseases
US6943249B2 (en) 2003-03-17 2005-09-13 Ash Stevens, Inc. Methods for isolating crystalline Form I of 5-azacytidine
US6887855B2 (en) 2003-03-17 2005-05-03 Pharmion Corporation Forms of 5-azacytidine
CL2004001004A1 (es) 2003-05-19 2005-03-18 Upjohn Co Combinacion farmaceutica que comprende irinotecan y revimid para tratar el mieloma multiple.
UA83504C2 (en) 2003-09-04 2008-07-25 Селджин Корпорейшн Polymorphic forms of 3-(4-amino-1-oxo-1,3 dihydro-isoindol-2-yl)-piperidine-2,6-dione
WO2005110085A2 (en) 2004-04-14 2005-11-24 Celgene Corporation Use of selective cytokine inhibitory drugs in myelodysplastic syndromes
WO2005110408A1 (en) 2004-04-14 2005-11-24 Celgene Corporation Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myelodysplastic syndromes
US20060128654A1 (en) 2004-12-10 2006-06-15 Chunlin Tang Pharmaceutical formulation of cytidine analogs and derivatives
US20070155791A1 (en) 2005-12-29 2007-07-05 Zeldis Jerome B Methods for treating cutaneous lupus using aminoisoindoline compounds
US8058260B2 (en) 2006-05-22 2011-11-15 Xenoport, Inc. 2′-C-methyl-ribofuranosyl cytidine prodrugs, pharmaceutical compositions and uses thereof
CA2660356C (en) * 2006-08-07 2016-04-05 Pdl Biopharma, Inc. Methods of treating multiple myeloma using combination therapies based on anti-cs1 antibodies
US8877780B2 (en) 2006-08-30 2014-11-04 Celgene Corporation 5-substituted isoindoline compounds
JP5278968B2 (ja) 2006-08-30 2013-09-04 テンプル・ユニバーシティ−オブ・ザ・コモンウェルス・システム・オブ・ハイアー・エデュケイション 骨髄異形性症候群及び急性骨髄性白血病の治療のための組成物及び方法
WO2008028193A2 (en) 2006-09-01 2008-03-06 Pharmion Corporation Colon-targeted oral formulations of cytidine analogs
CN107445940A (zh) 2006-09-26 2017-12-08 细胞基因公司 作为抗肿瘤剂的5‑取代的喹唑酮衍生物
BRPI0817525A2 (pt) 2007-09-26 2014-11-18 Celgene Corp Composto, composição farmacêutica, e, metódo de tratamento, controle ou prevenção de uma doença ou distúrbio.
JO2778B1 (en) 2007-10-16 2014-03-15 ايساي انك Certain Compounds, Compositions and Methods
WO2009058394A1 (en) 2007-11-01 2009-05-07 Celgene Corporation Cytidine analogs for treatment of myelodysplastic syndromes
SI2695609T1 (sl) 2008-05-15 2020-03-31 Celgene Corporation Oral formulacije anologov citidina in postopki za njihovo uporabo
EP3354646A1 (en) 2008-10-29 2018-08-01 Celgene Corporation Isoindoline compounds for use in the treatment of cancer
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
SMT201700097T1 (it) 2009-05-19 2017-03-08 Celgene Corp Formulazioni di 4-ammino-2-(2,6-diossopiperidin-3-il)isoindolin-1,3-dione
SG10201501062SA (en) 2010-02-11 2015-04-29 Celgene Corp Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same
EP3025715A1 (en) 2011-03-11 2016-06-01 Celgene Corporation Methods of treating cancer using 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione
US20140142128A1 (en) 2012-11-20 2014-05-22 Celgene Avilomics Research, Inc. Methods of treating a disease or disorder associated with bruton's tyrosine kinase
WO2016109668A1 (en) * 2014-12-31 2016-07-07 Anthrogenesis Corporation Methods of treating hematological disorders, solid tumors, or infectious diseases using natural killer cells
US9713375B1 (en) 2015-02-26 2017-07-25 Brett Einar Rahm Collapsible portable table
ES2886657T3 (es) * 2015-06-29 2021-12-20 Bristol Myers Squibb Co Regímenes de dosificación inmunoterapéutica que comprenden pomalidomida y un anticuerpo anti-CS1 para el tratamiento de cáncer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIMOPOULOS MELETIOS A. ET AL: "Elotuzumab plus lenalidomide/dexamethasone for relapsed or refractory multiple myeloma: ELOQUENT-2 follow-up and post-hoc analyses on progression-free survival and tumour growth", BRITISH JOURNAL OF HAEMATOLOGY, vol. 178, no. 6, 5 July 2017 (2017-07-05), GB, pages 896 - 905, XP055777239, ISSN: 0007-1048, Retrieved from the Internet <URL:https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fbjh.14787> DOI: 10.1111/bjh.14787 *
KUZNAR WAYNE: "Maintenance Therapy With Elotuzumab/Lenalidomide Boosts Response Conversions in Multiple Myeloma", 14 December 2017 (2017-12-14), pages 1 - 6, XP055777221, Retrieved from the Internet <URL:https://www.targetedonc.com/view/maintenance-therapy-with-elotuzumablenalidomide-boosts-response-conversions-in-multiple-myeloma> [retrieved on 20210217] *
MAGEN HILA: "Elotuzumab: the first approved monoclonal antibody for multiple myeloma treatment", THER ADV HEMATOL, 1 January 2016 (2016-01-01), pages 187 - 195, XP055777063, Retrieved from the Internet <URL:https://journals.sagepub.com/doi/pdf/10.1177/2040620716652862> [retrieved on 20210217], DOI: 10.1177/2040620716652862Therapeutic *

Also Published As

Publication number Publication date
CL2017000416A1 (es) 2017-09-08
CA2958867A1 (en) 2016-02-25
SMT202300081T1 (it) 2023-05-12
WO2016029004A1 (en) 2016-02-25
MX2017002382A (es) 2017-05-17
PL3182996T3 (pl) 2023-04-17
DK3182996T3 (da) 2023-03-13
BR112017003620A2 (pt) 2017-12-05
JP2021006557A (ja) 2021-01-21
JP7120763B2 (ja) 2022-08-17
FI3182996T3 (fi) 2023-03-28
SI3182996T1 (sl) 2023-04-28
US10034872B2 (en) 2018-07-31
EP3925609A1 (en) 2021-12-22
AU2015305449B2 (en) 2021-05-06
JP2017525713A (ja) 2017-09-07
HRP20230265T1 (hr) 2023-04-14
CN107073115A (zh) 2017-08-18
IL250724A0 (en) 2017-04-30
EA201790439A1 (ru) 2017-07-31
ES2940302T3 (es) 2023-05-05
RS64038B1 (sr) 2023-04-28
MX388383B (es) 2025-03-19
ES3043078T3 (en) 2025-11-24
US20160051530A1 (en) 2016-02-25
EP3182996A1 (en) 2017-06-28
HUE061382T2 (hu) 2023-06-28
LT3182996T (lt) 2023-03-10
AU2021209158A1 (en) 2021-08-19
PT3182996T (pt) 2023-03-21
EP3925609B1 (en) 2025-07-30
AU2015305449A1 (en) 2017-03-16
KR20170042598A (ko) 2017-04-19

Similar Documents

Publication Publication Date Title
EP3182996B1 (en) Methods of treating multiple myeloma with immunomodulatory compounds in combination with antibodies
US9498472B2 (en) Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
EP2046331B1 (en) Use of 3- (4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for the treatment of mantle cell lymphomas
EP2316455A1 (en) Pharmaceutical compositions for treating cancer
AU2016204119B2 (en) Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
HK1179160A (en) Methods using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20230265T

Country of ref document: HR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602015082087

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: A61K0039000000

Ipc: A61K0031454000

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 45/06 20060101ALI20220629BHEP

Ipc: A61P 35/00 20060101ALI20220629BHEP

Ipc: A61K 35/28 20150101ALI20220629BHEP

Ipc: A61K 31/69 20060101ALI20220629BHEP

Ipc: A61K 31/573 20060101ALI20220629BHEP

Ipc: A61K 31/5377 20060101ALI20220629BHEP

Ipc: A61K 39/00 20060101ALI20220629BHEP

Ipc: A61K 31/454 20060101AFI20220629BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015082087

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1540030

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

Ref country code: DK

Ref legal event code: T3

Effective date: 20230310

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3182996

Country of ref document: PT

Date of ref document: 20230321

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20230315

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 41330

Country of ref document: SK

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20230265

Country of ref document: HR

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20221228

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20230400423

Country of ref document: GR

Effective date: 20230410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2940302

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230505

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E023146

Country of ref document: EE

Effective date: 20230310

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E061382

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20230265

Country of ref document: HR

Payment date: 20230626

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015082087

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221228

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: AL

Effective date: 20230313

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20230265

Country of ref document: HR

Payment date: 20240709

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1540030

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20240710

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20250715

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20250704

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20230265

Country of ref document: HR

Payment date: 20250714

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20250814

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20250729

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SM

Payment date: 20250730

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20250905

Year of fee payment: 11

Ref country code: PT

Payment date: 20250812

Year of fee payment: 11

Ref country code: FI

Payment date: 20250814

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20250723

Year of fee payment: 11

Ref country code: DK

Payment date: 20250814

Year of fee payment: 11

Ref country code: DE

Payment date: 20250702

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20250728

Year of fee payment: 11

Ref country code: NO

Payment date: 20250808

Year of fee payment: 11

Ref country code: GR

Payment date: 20250716

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20250714

Year of fee payment: 11

Ref country code: IT

Payment date: 20250722

Year of fee payment: 11

Ref country code: TR

Payment date: 20250807

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20250703

Year of fee payment: 11

Ref country code: BG

Payment date: 20250715

Year of fee payment: 11

Ref country code: GB

Payment date: 20250703

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HR

Payment date: 20250714

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20250812

Year of fee payment: 11

Ref country code: FR

Payment date: 20250703

Year of fee payment: 11

Ref country code: AT

Payment date: 20250725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20250901

Year of fee payment: 11

Ref country code: SE

Payment date: 20250702

Year of fee payment: 11

Ref country code: MT

Payment date: 20250818

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20250730

Year of fee payment: 11

Ref country code: RS

Payment date: 20250811

Year of fee payment: 11

Ref country code: EE

Payment date: 20250818

Year of fee payment: 11

Ref country code: IE

Payment date: 20250702

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20250725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20250714

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20250807

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20250703

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20250709

Year of fee payment: 11