EP3180163B1 - Strahlschneidvorrichtung und strahlschneidverfahren - Google Patents

Strahlschneidvorrichtung und strahlschneidverfahren Download PDF

Info

Publication number
EP3180163B1
EP3180163B1 EP15759385.6A EP15759385A EP3180163B1 EP 3180163 B1 EP3180163 B1 EP 3180163B1 EP 15759385 A EP15759385 A EP 15759385A EP 3180163 B1 EP3180163 B1 EP 3180163B1
Authority
EP
European Patent Office
Prior art keywords
cutting
jet
medium
supply connection
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15759385.6A
Other languages
English (en)
French (fr)
Other versions
EP3180163A1 (de
Inventor
Thomas Hassel
Hans Jürgen Maier
David ZAREMBA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Universitaet Hannover
Original Assignee
Leibniz Universitaet Hannover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Universitaet Hannover filed Critical Leibniz Universitaet Hannover
Publication of EP3180163A1 publication Critical patent/EP3180163A1/de
Application granted granted Critical
Publication of EP3180163B1 publication Critical patent/EP3180163B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • B24C1/045Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting

Definitions

  • the invention relates to a beam cutting device for separating materials by means of a cutting beam according to the features of claim 1 and a corresponding beam cutting method according to claim 9.
  • the invention relates to the field of separating materials by means of a cutting jet in the form of a liquid jet.
  • a cutting jet in the form of a liquid jet.
  • water jet cutting is known.
  • an abrasive can be added to the water, for example garnet or corundum.
  • the remaining particles of the abrasive are disruptive. This can be counteracted by collecting the abrasives present in the cutting jet, but this again increases the effort.
  • the residual kinetic energy of the cutting beam and in particular of the abrasive that is still present after the impact on the workpiece must be absorbed in a suitable manner.
  • self-dissolving abrasive materials such as ice particles.
  • the DE 197 56 506 A1 discloses a method for abrasive water jet cutting in which dry ice is used as the abrasive.
  • the water used as the cutting medium is disruptive in many cases, since it has to be disposed of after the cutting process.
  • From the publications DE 101 60 275 A1 and JP H006 329398 A suggests using liquefied nitrogen to which solidified carbon dioxide particles are added for jet cutting.
  • the EP 2 583 790 A1 describes a jet cutting device with an overpressure chamber that encloses the cutting jet of the device from the nozzle outlet to the workpiece and influences it thermodynamically or fluidically.
  • This jet cutting device has a cutting head that can be set up to discharge the cutting jet onto the material to be cut.
  • the cutting head has a supply connection which is connected to a supply line which guides the cutting medium so that the supply connection can supply the cutting medium to the cutting head.
  • the cutting medium consists of carbon dioxide in partly liquid and partly solid form.
  • the invention is therefore based on the object of specifying a beam cutting device and a beam cutting method with which residue-free beam cutting can be carried out.
  • a beam cutting device according to claim 1.
  • a mixture of the cutting medium and the abrasive is then emitted from the cutting head as a cutting jet.
  • the invention has the advantage that a gas is used both for the liquid cutting medium and for the abrasive, i.e. a substance or mixture of substances which, by definition, is in a gaseous state under standard conditions (temperature 20 ° C., pressure 1 bar).
  • the jet cutting device can therefore be used to cut with high cutting power without leaving any residues of the cutting medium or the abrasive. These evaporate into the gaseous phase after the cutting process and therefore do not have to be disposed of with technical effort.
  • the abrasive can be supplied in the form of particles, i.e. as abrasive particles.
  • Another advantage of the invention is that the use of gaseous media for both the abrasive and the cutting medium results in a particularly pronounced cooling effect at the cutting point. In this way, undesired heating of the materials to be separated can be counteracted particularly effectively.
  • An additional increase in cutting performance compared to classic water abrasive jet cutting processes is achieved in the invention in that the substances contained in the cutting jet are at a low temperature level when they exit the cutting head and cause additional cooling by changing to the gaseous state of aggregation. In this way, a temperature difference between the media of the cutting beam and the materials to be cut can cause embrittlement or thermal stress in certain materials, which can also be used to promote removal.
  • the invention is particularly suitable for mobile applications, for example for cutting CFRP connections and for use in bio-medical technology.
  • Another advantage is that the solid abrasive particles are thermally stabilized by the gas liquefied by cooling, which is used as the cutting medium.
  • Such gases have the property that, under certain conditions with regard to pressure and temperature, they can be in liquid as well as in solid form and can be mixed with one another accordingly.
  • the same gas is used for the cutting medium and the abrasive, that is, the cutting medium and the abrasive form the same gas in the gaseous state.
  • the use of non-flammable gases is particularly advantageous.
  • carbon dioxide is suitable for forming the liquid cutting medium and / or the abrasive.
  • Carbon dioxide has the advantage that it is of relatively little technical nature Effort can be produced in liquid and solid form. The temperatures required for this are still in a range that can be controlled with justifiable technical effort.
  • Another advantage is that the carbon dioxide is non-flammable and also has a flame-retardant effect.
  • the liquid cutting medium can for example be provided in a storage container, for example in a so-called riser bottle, or it can be produced on site in the area of the jet cutting device by a gas liquefaction device. Accordingly, the first supply line is connected either to the storage container or to the gas liquefaction device.
  • the abrasive can also be kept ready in a separate additional storage container provided for this purpose, or it can be produced on site in the area of the jet cutting device by a gas solidifying device.
  • the second supply line is correspondingly connected to the further storage container or the gas solidification device.
  • first and the second supply line with good thermal insulation and, if necessary, with temperature control.
  • the jet cutting device in particular its cutting head, has an expansion chamber in which the abrasive is mixed with the liquid cutting medium.
  • the jet cutting device has at least one first transition point, which is narrowed with regard to the passage cross section, through which the liquid Cutting medium is guided from the first supply connection into the expansion chamber.
  • the expansion chamber is also a mixing chamber in which the mixture of liquid cutting medium and abrasive is provided.
  • a liquid cutting medium that transports the abrasive particles
  • improved cutting conditions and thus a higher cutting performance can be achieved compared to a gaseous transport medium.
  • larger, sharp-edged abrasive particles can also be transported and optimally accelerated through the liquid cutting medium. In this way, the abrasive particles hit the materials to be cut at a high impact speed.
  • the ability to use larger, sharp-edged abrasive particles can further increase the cutting performance.
  • these abrasive particles achieve greater kinetic energy when the cutting beam emerges, whereby the cutting performance can also be increased.
  • the abrasive particles can already be provided in the storage container or by the gas solidification device in the desired size and sharp-edged outer shape. It is also possible to initially have the abrasive ready in larger pieces or in one or a few larger blocks and then to convert it into the desired particles of a certain size and sharpness via a comminution device.
  • a crusher for example, can be used as the comminuting device.
  • the expansion chamber has, on an exit side for the abrasive mixed with the cutting medium, a second transition point, narrowed with regard to the passage cross-section, into an exit pipe of the cutting head.
  • the cutting head has at least one temperature-controlled chamber. At least the expansion chamber can thus be arranged within the temperature-controlled chamber. This has the advantage that it can be ensured by means of the temperature control that neither the cutting medium nor the abrasive change their physical state prematurely. The cutting medium is thereby kept liquid, the abrasive is kept in solid form.
  • the jet cutting device has at least one third supply connection for supplying a pressurized gaseous medium, which is connected to a pressurized gas supply and / or a pressurized gas generator, the expansion chamber and / or the second supply line with the third within the beam cutting device Feed port is connected.
  • a pressurized gas can be used to set and maintain a desired pressure in the expansion chamber.
  • the abrasive can be subjected to the same pressure as the compressed gas.
  • the flow caused by the pressure drop in the expansion chamber as a result of the exiting cutting jet and the flowing cutting medium generates a fluid flow that entrains the abrasive particles supplied via the second supply line.
  • Compressed air in particular, can be used as the compressed gas.
  • the cutting head or an outlet pipe of the cutting head has a fourth supply connection, arranged downstream of the first and / or the second supply connection, for supplying a pressurized gaseous medium, which is directly or via a first pressure reducer with a pressurized gas supply and / or a compressed gas generator is connected.
  • a fourth supply connection can be used to set a defined, preferably low pressure gradient in the cutting head or the outlet pipe in the area in which the liquid cutting medium with the abrasive is to be accelerated in a movement that is as homogeneous as possible.
  • a relatively small pressure difference between the first or second supply connection and the fourth supply connection can ensure that the liquid cutting medium still remains in the liquid phase, so that the liquid cutting medium can be accelerated together with the abrasive in a defined manner without turbulence caused by gas bubbles.
  • the cutting head or an outlet pipe of the cutting head has a fifth supply connection, which is arranged downstream of the fourth supply connection, for supplying a gaseous medium under excess pressure, which is directly or via a second pressure reducer with a pressurized gas supply and / or a pressurized gas generator connected is.
  • the method is carried out by means of a beam cutting device of the type described above.
  • the liquid cutting medium is guided under high pressure through a feed pipe to a nozzle of a cutting head, in particular the cutting head of the Jet cutting device of the type described above.
  • a liquid cutting jet is generated which, in order to lower the pressure, is guided into an expansion chamber in which the abrasive is mixed with the liquid cutting medium.
  • the expansion chamber can be exposed to a gaseous medium under excess pressure, for example compressed air.
  • At least the expansion chamber is temperature-regulated in such a way that the liquid cutting medium and the solid abrasive do not change their physical state directly, at least in the expansion chamber.
  • the Figure 1 shows a beam cutting device 1 with a cutting head 3, from which a cutting beam 2 is emitted onto a workpiece 4 to be cut.
  • the cutting beam 2 emerges from a focusing tube 9 of the cutting head 3 at an exit point 10.
  • the focusing tube 9 is used to guide and focus the emitted cutting beam 2.
  • the cutting head 3 has a first supply connection 31 for supplying a liquid cutting medium to the cutting head 3, furthermore a second supply connection 32 for supplying an abrasive to be added to the cutting medium and a third supply connection 33 for supplying a gaseous medium under overpressure, which is hereinafter referred to as pressurized gas .
  • the first supply connection 31 is connected to a device 21 via a supply line 11.
  • the second supply connection 32 is connected to a device 22 via a second supply line 12.
  • the third supply connection 33 is connected to a device 23 via a third supply line 13.
  • the device 21 can be designed as a storage container, for example as a riser bottle, for the liquid cutting medium, or as a gas liquefaction device for the gas to be liquefied to form the liquid cutting medium.
  • the device 21 can additionally have a storage container, for example for the intermediate storage of liquefied gas. Via the first supply line 11, the liquefied gas is as Cutting medium fed to the cutting head 3. To generate the required high pressure of the liquefied gas, the device 21 can have a high pressure pump, for example a high pressure pump of conventional design, with which the liquid cutting medium is compressed to the operating pressure.
  • a high pressure pump for example a high pressure pump of conventional design, with which the liquid cutting medium is compressed to the operating pressure.
  • the device 22 can be designed as a storage container for the abrasive or as a gas solidification device for converting the gas from which the abrasive is formed into solid form. If the device 22 is designed as a gas solidification device, it can additionally have a storage container for the abrasive produced, for example as an intermediate store. The solidified gas is fed as an abrasive to the cutting head 3 via the second supply line 12.
  • the device 23 can be designed as a storage container for the compressed gas or as a compressed gas generator, for example as a compressor.
  • the compressed gas can in particular be compressed air. If the device 23 is designed as a compressed gas generator, it can additionally have a storage container, for example for the intermediate storage of the compressed gas generated.
  • Feed lines 11, 12, 13 shown in the form of individual lines can be shorter or longer depending on the configuration of the beam cutting device. In particular, they can be so short that one or more of the devices 21, 22, 23 are wholly or partially integrated into the cutting head 3 or flanged to it. In particular in the case of longer execution of the supply lines 11, 12, it is advantageous to insulate them well thermally and / or to provide them with a cooling device, in particular a temperature-regulated cooling device.
  • the cutting head 3 can have a handle 34 have on which it is held during beam cutting.
  • the Figure 2 shows the cutting head 3 with the first, the second and the third supply line 11, 12, 13 and the device 22 in an enlarged, more detailed sectional illustration. It can be seen that the jet cutting device can be operated with three different temperature levels T 1 , T 2 and T 3 and two different pressure levels P 1 , P 2.
  • the cutting head 3 has an expansion chamber 7 to which the liquid cutting medium is supplied via the first supply line 11 and the first supply connection 31.
  • the supply to the expansion chamber 7 takes place via a first transition point 6 which is narrowed with regard to the passage cross section, for example in the form of a nozzle.
  • the first transition point 6 reduces the pressure from the value P 1 to the value P 2 .
  • the expansion chamber 7 particles of the abrasive are supplied to the cutting medium via the second supply line 12 and the second supply connection 32. Furthermore, the expansion chamber 7 is supplied with the compressed gas from the device 23 via the third supply line 13 and the third supply connection 33.
  • the expansion chamber 7 is located at the same pressure level P 2 as the areas which carry the abrasive, that is to say the device 22 and the second supply line 12.
  • the abrasive mixed with the cutting medium passes through a nozzle 8 into the focusing tube 9 and emerges therefrom as a cutting jet 2 at the exit point 10.
  • jet cutting device The operation of the jet cutting device is explained below on the basis of the gas carbon dioxide, both for the abrasive and for the cutting medium.
  • the Figure 3 shows a phase transition diagram for carbon dioxide.
  • the temperature in degrees Celsius is plotted along the linearly scaled abscissa, and the pressure is plotted along the logarithmically scaled ordinate in cash.
  • Line 40 is the sublimation line
  • line 41 is the melting line
  • line 42 is the saturation line.
  • the carbon dioxide is in the area above the melting line and the sublimation line in the solid state of aggregation, between the melting line and the saturation line in the liquid state of aggregation, and below the saturation line and the sublimation line in the gaseous state of aggregation.
  • Reference number 43 denotes the triple point of the diagram, reference number 44 the critical point.
  • the jet cutting device 1 can be operated as a cutting medium with a high pressure, liquid, temperature-controlled CO 2 medium.
  • This can be provided, for example, at 0 ° C with 3000 bar (corresponding to point 37 in Figure 3 ), or at 20 ° C with 4000 bar (corresponding to point 38 in Figure 3 ).
  • the CO 2 medium provided in this way is fed through the first supply line 11 into the first supply connection 31 through the first transition point 6, in which a liquid jet of the cutting medium is generated at a lower pressure level.
  • the state of the cutting medium after exiting the first transition point 6 is shown in FIG Figure 3 represented by point 39. There is thus a transition from point 37 to 39 or from point 38 to point 39.
  • the solid CO 2 particles are fed to this liquid cutting medium as an abrasive. These already have an output size that is suitable for beam cutting. The effect can occur that the abrasive particles enlarge on the way through the focusing tube 9 as a result of the accumulation of freezing liquid cutting medium.
  • an operating point at -57 ° C and 7 bar pressure can be set, corresponding to point 39 in Figure 3 .
  • the cooling chamber can, for example, have a cooling coil through which a liquid cooling medium, for example glycol or R134a, is conveyed.
  • the flow of liquid and solid CO 2 is passed through a second transition point 8 into the focusing tube 9, in which a nozzle effect also occurs due to the exit from the cooled environment and the positive pressure difference between the expansion chamber 7 and the environment so that at the end of the focusing tube 9 the flow of liquid and solid CO 2 and the compressed air exits in an accelerated manner.
  • the solid CO 2 particles are thermally stabilized by the liquid CO 2 cutting medium.
  • the carbon dioxide has a triple point depending on pressure and temperature, i.e. the carbon dioxide can be present next to one another in a solid and in a liquid state at the same temperature and the same pressure.
  • the phase transition (liquid to gaseous or solid to gaseous) takes place after the end of the cutting process after the cutting area of the workpiece 4 has been separated and cooled.
  • only gaseous carbon dioxide remains from the cutting beam 2.
  • residue-free jet cutting is possible.
  • FIG. 4 shows a further embodiment of the beam cutting device, with a detailed illustration similar to that of FIG Figure 2 is used.
  • the cutting head 3 has a fourth supply connection in the area of the outlet pipe 9 56 and, as a further option, a fifth supply port 57.
  • the fourth supply port 56 is connected via a first pressure reducer 54 via lines 51, 52 to a pressurized gas supply, for example with the pressurized device 22 or the pressurized gas supply 23.
  • the fifth supply port 57 is connected to a second pressure reducer 55 via lines 51, 53
  • the pressurized gas supply is connected, for example to the device 22 which is under excess pressure or the pressurized gas supply 23.
  • a pressure gradient is to be created with respect to the second supply port 32 or the expansion chamber 7.
  • the pressure present at the fourth supply connection 34 should be slightly lower than the pressure present at the second transition point 8. To do this, a pressure reduction is necessary if both points are fed from the same pressure supply as in the Figure 4 shown.
  • the first pressure reducer 54 with respect to the fourth supply connection 56 and the second pressure reducer 55 with respect to the second supply connection 57 are used for this purpose.
  • the pressure reducers 54, 55 can be designed as throttles or diaphragms with a fixed or adjustable cross section.
  • the transition into the gaseous phase can be controlled even more precisely. For example, if a pressure of 15 bar is present at the transition point 8, a pressure of 5 bar can be fed in via the fifth supply connection 57.
  • the fourth supply connection 56 is advantageously arranged in the lower half of the longitudinal extension L, for example at the transition into the lower third, based on the longitudinal extension L of the outlet pipe 9 between the transition point 8 and the outlet point 10. In this way, a relatively long acceleration path is provided for the liquid cutting medium in combination with the abrasive, in which the latter can be accelerated in a defined manner without gaseous turbulence.

Description

  • Die Erfindung betrifft eine Strahlschneidvorrichtung zum Trennen von Materialien mittels eines Schneidstrahls gemäß den Merkmalen des Anspruchs 1 sowie ein entsprechendes Strahlschneidverfahren gemäß Anspruch 9.
  • Allgemein betrifft die Erfindung das Gebiet des Trennens von Materialien mittels eines Schneidstrahls in Form eines Flüssigkeitsstrahls. Bekannt ist zum Beispiel das Wasserstrahlschneiden. Zur Erhöhung der Schneidleistung kann dem Wasser ein Abrasivmittel zugesetzt werden, zum Beispiel Granat oder Korund. In vielen Fällen sind die verbleibenden Partikel des Abrasivmittels aber störend. Dem kann man zwar durch eine Auffangmöglichkeit für im Schneidstrahl vorhandene Abrasivmittel entgegenwirken, dies erhöht den Aufwand aber wieder. Zudem muss auf geeignete Weise die nach dem Aufprall auf das Werkstück noch vorhandene kinetische Restenergie des Schneidstrahls und insbesondere des Abrasivmittels absorbiert werden. Es gibt daher bereits Vorschläge, sich selbst auflösende Abrasivmaterialien zu verwenden, wie zum Beispiel Eispartikel. So offenbart die DD 298 618 A5 ein Verfahren zum Schneiden mit Hochdruckwasser-Eiskristallstrahl. Die DE 197 56 506 A1 offenbart ein Verfahren zum Abrasiv-Wasserstrahlschneiden, bei dem als Abrasivmittel Trockeneis verwendet wird. Auch hier ist das als Schneidmedium verwendete Wasser in vielen Fällen störend, da es nach dem Schneidvorgang entsorgt werden muss. Aus den Veröffentlichungen DE 101 60 275 A1 und JP H006 329398 A geht der Vorschlag hervor, zum Strahlschneiden verflüssigten Stickstoff zu verwenden, dem verfestigte Kohlendioxid-Partikel beigemischt sind. Die EP 2 583 790 A1 beschreibt eine Strahlschneidvorrichtung mit einer Überdruckkammer, die den Schneidstrahl der Vorrichtung von dem Düsenaustritt bis zum Werkstück umschließt und thermodynamisch oder strömungsmechanisch beeinflusst Diese Strahlschneidvorrichtung weist einen Schneidkopf auf, der zum Auslass des Schneidstrahls auf das zu trennende Material eingerichtet werden kann. Der Schneidkopf hat einen Zufuhranschluss, die mit einer Zufuhrleitung verbunden ist, die das Schneidmedium führt, sodass der Zufuhranschluss das Schneidmedium dem Schneidkopf zuführen kann. Das Schneidmedium besteht aus Kohlendioxid in teilweise flüssiger und teilweise fester Form.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Strahlschneidvorrichtung und ein Strahlschneidverfahren anzugeben, mit denen ein rückstandsloses Strahlschneiden durchgeführt werden kann.
  • Diese Aufgabe wird durch eine Strahlschneidvorrichtung gemäß Anspruch 1 gelöst. Als Schneidstrahl wird dann eine Mischung aus dem Schneidmedium und dem Abrasivmittel vom Schneidkopf abgegeben. Die Erfindung hat den Vorteil, dass sowohl für das flüssige Schneidmedium als auch für das Abrasivmittel ein Gas verwendet wird, das heißt ein Stoff oder Stoffgemisch, das definitionsgemäß bei Standardbedingungen (Temperatur 20°C, Druck 1 bar) in gasförmigem Aggregatzustand vorliegt. Somit kann mittels der Strahlschneidvorrichtung mit großer Schneidleistung geschnitten werden, ohne dass Rückstände des Schneidmediums oder des Abrasivmittels verbleiben. Diese verflüchtigen sich nach dem Schneidvorgang in die gasförmige Phase und müssen daher nicht mit technischem Aufwand entsorgt werden. Das Abrasivmittel kann in Form von Partikeln zugeführt werden, d.h. als Abrasivpartikel.
  • Ein weiterer Vorteil der Erfindung besteht darin, dass durch die Verwendung gasförmiger Medien sowohl für das Abrasivmittel als auch für das Schneidmedium eine besonders ausgeprägte Kühlwirkung an der Schneidstelle entsteht. Hierdurch kann unerwünschten Erwärmungen der zu trennenden Materialien besonders effektiv entgegengewirkt werden.
  • Eine zusätzliche Steigerung der Schneidleistung wird im Vergleich zu klassischen Wasserabrasivstrahlschneidverfahren bei der Erfindung noch dadurch erreicht, dass die im Schneidstrahl enthaltenen Substanzen sich beim Austritt aus dem Schneidkopf auf einem niedrigen Temperaturniveau befinden und zusätzliche Kühlung durch den Wechsel in den gasförmigen Aggregatzustand bewirken. Auf diese Weise kann durch eine Temperaturdifferenz zwischen den Medien des Schneidstrahls und den zu trennenden Materialien bei bestimmten Werkstoffen eine Versprödung oder thermische Spannung hervorgerufen werden, die zusätzlich abtragsbegünstigend genutzt werden kann.
  • Die Erfindung eignet sich insbesondere für mobile Einsatzfälle, zum Beispiel zum Schneiden von CFK-Verbindungen und für den Einsatz in der Bio-Medizintechnik.
  • Ein weiterer Vorteil ist, dass die festen Abrasivpartikel eine thermische Stabilisierung durch das durch Kühlung verflüssigte Gas, das als Schneidmedium verwendet wird, erfahren.
  • Es ist insbesondere vorteilhaft, ein Gas mit einem sogenannten Tripelpunkt zu verwenden. Solche Gase haben die Eigenschaft, dass sie bei bestimmten Bedingungen hinsichtlich Druck und Temperatur sowohl in flüssiger als auch in fester Form vorliegen können und entsprechend miteinander gemischt werden können.
  • Vorteilhaft ist es hierbei, ein solches Gas oder solche Gase zu verwenden, die für Mensch und Umwelt unschädlich sind, zum Beispiel ohnehin in der Umgebungsluft vorhandene Gasbestandteile. Gemäß der Erfindung wird für das Schneidmedium und das Abrasivmittel dasselbe Gas verwendet, das heißt das Schneidmedium und das Abrasivmittel bilden im gasförmigen Zustand dasselbe Gas. Vorteilhaft ist insbesondere die Verwendung nicht brennbarer Gase. Insbesondere eignet sich Kohlenstoffdioxid zur Bildung des flüssigen Schneidmediums und/oder des Abrasivmittels. Kohlenstoffdioxid hat den Vorteil, dass es mit relativ geringem technischen Aufwand in flüssiger und in fester Form hergestellt werden kann. Die hierfür erforderlichen Temperaturen liegen noch in einem Bereich, der mit vertretbarem technischen Aufwand beherrschbar ist. Ein weiterer Vorteil ist, dass das Kohlenstoffdioxid nicht brennbar ist und zudem flammenhemmend wirkt.
  • Das flüssige Schneidmedium kann zum Beispiel in einem Vorratsbehälter bereitgestellt werden, zum Beispiel in einer sogenannten Steigflasche, oder es kann vor Ort im Bereich der Strahlschneidvorrichtung durch eine Gasverflüssigungseinrichtung hergestellt werden. Dementsprechend ist die erste Zufuhrleitung entweder mit dem Vorratsbehälter oder der Gasverflüssigungseinrichtung verbunden.
  • Das Abrasivmittel kann ebenfalls in einem dafür vorgesehenen getrennten weiteren Vorratsbehälter bereitgehalten werden oder vor Ort im Bereich der Strahlschneidvorrichtung durch eine Gasverfestigungseinrichtung hergestellt werden. Dementsprechend ist die zweite Zufuhrleitung mit dem weiteren Vorratsbehälter oder der Gasverfestigungseinrichtung verbunden.
  • Es ist dabei vorteilhaft, die erste und die zweite Zufuhrleitung gut wärmeisoliert und gegebenenfalls temperaturgeregelt auszubilden. Das Gleiche gilt für die Vorratsbehälter für das Schneidmedium und das Abrasivmittel beziehungsweise die Gasverfestigungseinrichtung und die Gasverflüssigungseinrichtung.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Strahlschneidvorrichtung, insbesondere deren Schneidkopf, eine Expansionskammer auf, in der dem flüssigen Schneidmedium das Abrasivmittel zugemischt wird. Gemäß einer weiteren vorteilhaften Weiterbildung weist die Strahlschneidvorrichtung wenigstens eine hinsichtlich des Durchtrittquerschnitts verengte erste Übergangsstelle auf, durch den das flüssige Schneidmedium vom ersten Zufuhranschluss in die Expansionskammer geführt ist. Auf diese Weise kann das flüssige Schneidmedium unter Hochdruck stehend über den ersten Zufuhranschluss zum Schneidkopf zugeführt werden und auf ein Druckniveau expandiert werden, bei dem ein Mischen mit dem Abrasivmittel durchgeführt werden kann. In diesem Sinne ist die Expansionskammer zugleich eine Mischkammer, in der die Mischung aus flüssigem Schneidmedium und Abrasivmittel bereitgestellt wird.
  • Durch die Verwendung eines flüssigen Schneidmediums, das die Abrasivpartikel transportiert, können im Vergleich zu einem gasförmigen Transportmedium verbesserte Schneidbedingungen und damit eine höhere Schneidleistung erreicht werden. Insbesondere können durch das flüssige Schneidmedium auch größere, scharfkantige Abrasivpartikel transportiert werden und optimal beschleunigt werden. Auf diese Weise gelangen die Abrasivpartikel mit hoher Aufprallgeschwindigkeit auf die zu trennenden Materialien. Durch die Möglichkeit des Einsatzes größerer, scharfkantiger Abrasivpartikel kann die Schneidleistung weiter gesteigert werden.
  • Durch die mögliche Steigerung der Größe der Abrasivpartikel im Vergleich zum Stand der Technik erreichen diese Abrasivpartikel eine größere kinetische Energie beim Austritt des Schneidstrahls, wodurch die Schneidleistung zusätzlich gesteigert werden kann.
  • Es ist möglich, relativ scharfkantige und dennoch große Partikel des Abrasivmittels einzusetzen, da mögliche entstehende Turbulenzen vom flüssigen Strom des Schneidmediums nahezu egalisiert werden und hierdurch die Schneidleistung gesteigert werden kann. So kann bei Verwendung von Trockeneis als Abrasivmittel eine Mohs-Härte von 3 erreicht werden, was eine hohe Schneidleistung der Strahlschneidvorrichtung ermöglicht. Auf diese Weise kann auch für Einsatzfälle, in denen konstruktionsbedingt keine Fluid- oder Partikelentsorgung vorgenommen werden kann, mit der erfindungsgemäßen Strahlschneidvorrichtung ein Schneidvorgang auch an schwer zu schneidenden Materialien mit hoher Schneidleistung durchgeführt werden.
  • Die Abrasivmittel-Partikel können in dem Vorratsbehälter oder durch die Gasverfestigungseinrichtung bereits in der gewünschten Größe und scharfkantigen äußeren Form bereitgestellt werden. Es ist auch möglich, das Abrasivmittel zunächst in größeren Stücken oder einem oder wenigen größeren Blöcken bereitzuhalten und dann über eine Zerkleinerungseinrichtung in die gewünschten Partikel einer bestimmten Größe und Scharfkantigkeit umzuwandeln. Als Zerkleinerungseinrichtung kann zum Beispiel ein Crusher verwendet werden.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Expansionskammer an einer Austrittsseite für das mit dem Schneidmedium gemischte Abrasivmittel eine hinsichtlich des Durchtrittsquerschnitts verengte zweite Übergangsstelle in ein Austrittsrohr des Schneidkopfes auf. Dies hat den Vorteil, dass sich durch das Verlassen der gekühlten Umgebung und der positiven Druckdifferenz zwischen der Expansionskammer und der Umgebung ein zusätzlicher Düseneffekt einstellt, so dass am Ende des Austrittsrohrs der Strom von flüssigem und festem Schneidmaterial, gegebenenfalls mit einem Druckgas, beschleunigt austritt. Das Austrittsrohr dient hierbei zusätzlich zur Fokussierung des austretenden Schneidstrahls und kann daher auch als Fokussierungsrohr bezeichnet werden.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung weist der Schneidkopf wenigstens eine temperaturgeregelte Kammer auf. So kann zumindest die Expansionskammer innerhalb der temperaturgeregelten Kammer angeordnet sein. Dies hat den Vorteil, dass mittels der Temperaturregelung sichergestellt werden kann, dass weder das Schneidmedium noch das Abrasivmittel vorzeitig ihren Aggregatzustand ändern. Das Schneidmedium wird hierdurch flüssig gehalten, das Abrasivmittel in Feststoffform gehalten.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung weist die Strahlschneidvorrichtung wenigstens einen dritten Zufuhranschluss zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums auf, der mit einem Druckgasvorrat und/oder einem Druckgaserzeuger verbunden ist, wobei innerhalb der Strahlschneidvorrichtung die Expansionskammer und/oder die zweite Zufuhrleitung mit dem dritten Zufuhranschluss verbunden ist. Durch eine solche Druckgasbeaufschlagung kann in der Expansionskammer ein gewünschter Druck eingestellt und aufrechterhalten werden. Insbesondere kann das Abrasivmittel mit dem gleichen Druck des Druckgases beaufschlagt sein. Durch die gleichen Drücke im Abrasivmittel und in der Expansionskammer wird durch die in der Expansionskammer hervorgerufene druckabfallbedingte Strömung in Folge des austretenden Schneidstrahls und des nachfließenden Schneidmediums ein Fluidstrom erzeugt, der die über die zweite Zufuhrleitung zugeführten Abrasivpartikel mitreißt. Als Druckgas kann insbesondere Druckluft verwendet werden.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass der Schneidkopf oder ein Austrittsrohr des Schneidkopfs einen stromabwärts des ersten und/oder des zweiten Zufuhranschlusses angeordneten vierten Zufuhranschluss zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums aufweist, der direkt oder über einen ersten Druckminderer mit einem Druckgasvorrat und/oder einem Druckgaserzeuger verbunden ist. Über einen solchen vierten Zufuhranschluss kann ein definiertes, vorzugsweise geringes Druckgefälle in dem Schneidkopf bzw. dem Austrittsrohr in dem Bereich eingestellt werden, in dem das flüssige Schneidmedium mit dem Abrasivmittel in einer möglichst homogenen Bewegung beschleunigt werden soll. Insbesondere kann durch eine relativ geringe Druckdifferenz zwischen dem ersten bzw. zweiten Zufuhranschlusses und dem vierten Zufuhranschluss sichergestellt werden, dass das flüssige Schneidmedium noch in der flüssigen Phase verbleibt, so dass das flüssige Schneidmedium zusammen mit dem Abrasivmittel in definierter Weise ohne gasblasen-bedingte Turbulenzen beschleunigt werden kann.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass der Schneidkopf oder ein Austrittsrohr des Schneidkopfs einen stromabwärts des vierten Zufuhranschlusses angeordneten fünften Zufuhranschluss zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums aufweist, der direkt oder über einen zweiten Druckminderer mit einem Druckgasvorrat und/oder einem Druckgaserzeuger verbunden ist. Dies hat den Vorteil, dass das bis zum vierten Zufuhranschluss in flüssigem Zustand gehaltene Schneidmedium durch Wahl einer geeigneten Druckdifferenz zwischen dem vierten und dem fünften Zufuhranschluss in definierter Weise an einer Stelle zwischen dem vierten und dem fünften Zufuhranschluss in die gasförmige Phase überführt werden kann.
  • Die eingangs genannte Aufgabe wird außerdem durch ein Strahlschneidverfahren gemäß Anspruch 9 gelöst. Durch ein solches Verfahren können ebenfalls die zuvor genannten Vorteile der Erfindung realisiert werden.
  • Dabei wird das Verfahren mittels einer Strahlschneidvorrichtung der zuvor beschriebenen Art durchgeführt.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung wird das flüssige Schneidmedium unter Hochdruck stehend durch ein Zuführrohr zu einer Düse eines Schneidkopfes geführt, insbesondere des Schneidkopfes der Strahlschneidvorrichtung der zuvor beschriebenen Art. Hier wird ein flüssiger Schneidstrahl erzeugt, der zur Druckabsenkung in eine Expansionskammer geführt wird, in der dem flüssigen Schneidmedium das Abrasivmittel zugemischt wird. Hierbei kann die Expansionskammer mit einem unter Überdruck stehenden gasförmigen Medium, zum Beispiel mit Druckluft, beaufschlagt werden.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung wird zumindest die Expansionskammer derart temperaturgeregelt, dass das flüssige Schneidmedium und das feste Abrasivmittel zumindest in der Expansionskammer nicht unmittelbar den Aggregatzustand wechseln.
  • Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass in dem Schneidkopf oder in einem Austrittsrohr des Schneidkopfs stromabwärts der Expansionskammer ein relativer Unterdruck gegenüber dem Druck in der Expansionskammer erzeugt wird, durch den das flüssige Schneidmedium mit dem beigemischten Abrasivmittel ohne Änderung des Phasenzustands beschleunigt wird. Dies hat den Vorteil, dass zunächst ein homogenes Beschleunigen des flüssigen Schneidmediums mit dem Abrasivmittel durchgeführt werden kann, ohne dass hierbei störende Einflüsse durch einen Phasenübergang des flüssigen Schneidmediums in die gasförmige Phase auftreten.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Verwendung von Zeichnungen näher erläutert.
  • Es zeigen:
  • Figur 1
    - eine schematische Darstellung einer Strahlschneidvorrichtung
    und Figur 2
    - Details der Strahlschneidvorrichtung gemäß Figur 1 im Bereich des Schneidkopfs und
    Figur 3
    - ein Phasenübergangsdiagramm für Kohlenstoffdioxid.
    Figur 4
    - eine weitere Ausführungsform der Strahlschneidvorrichtung in Detaildarstellung.
  • In den Figuren werden gleiche Bezugszeichen für einander entsprechende Elemente verwendet.
  • Die Figur 1 zeigt eine Strahlschneidvorrichtung 1 mit einem Schneidkopf 3, aus dem ein Schneidstrahl 2 auf ein zu trennendes Werkstück 4 abgegeben wird. Der Schneidstrahl 2 tritt an einer Austrittsstelle 10 aus einem Fokussierrohr 9 des Schneidkopfes 3 aus. Das Fokussierrohr 9 dient zur Führung und Fokussierung des abgegebenen Schneidstrahls 2.
  • Der Schneidkopf 3 weist einen ersten Zufuhranschluss 31 zur Zufuhr eines flüssigen Schneidmediums zum Schneidkopf 3 auf, ferner einen zweiten Zufuhranschluss 32 zur Zufuhr eines dem Schneidmedium zuzusetzenden Abrasivmittels und einen dritten Zufuhranschluss 33 zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums, das nachfolgend als Druckgas bezeichnet wird. Der erste Zufuhranschluss 31 ist über eine Zufuhrleitung 11 mit einer Einrichtung 21 verbunden. Der zweite Zufuhranschluss 32 ist über eine zweite Zufuhrleitung 12 mit einer Einrichtung 22 verbunden. Der dritte Zufuhranschluss 33 ist über eine dritte Zufuhrleitung 13 mit einer Einrichtung 23 verbunden. Die Einrichtung 21 kann als Vorratsbehälter, zum Beispiel als Steigflasche, für das flüssige Schneidmedium ausgebildet sein, oder als Gasverflüssigungseinrichtung für das zum flüssigen Schneidmedium zu verflüssigende Gas. Ist die Einrichtung 21 als Gasverflüssigungseinrichtung ausgebildet, kann sie zusätzlich einen Vorratsbehälter aufweisen, zum Beispiel zur Zwischenspeicherung verflüssigten Gases. Über die erste Zufuhrleitung 11 wird das verflüssigte Gas als Schneidmedium dem Schneidkopf 3 zugeführt. Zur Erzeugung des erforderlichen Hochdrucks des verflüssigten Gases kann die Einrichtung 21 eine Hochdruckpumpe, z.B. eine Hochdruckpumpe konventioneller Bauart, aufweisen, mit der das flüssige Schneidmedium auf den Betriebsdruck verdichtet wird.
  • Die Einrichtung 22 kann als Vorratsbehälter für das Abrasivmittel oder als Gasverfestigungseinrichtung zur Umwandlung des Gases, aus dem das Abrasiv-mittel gebildet ist, in Feststoffform ausgebildet sein. Ist die Einrichtung 22 als Gasverfestigungseinrichtung ausgebildet, kann sie zusätzlich einen Vorratsbehälter für das erzeugte Abrasivmittel aufweisen, zum Beispiel als Zwischenspeicher. Über die zweite Zufuhrleitung 12 wird das verfestigte Gas als Abrasivmittel zu dem Schneidkopf 3 geführt.
  • Die Einrichtung 23 kann als Vorratsbehälter für das Druckgas oder als Druckgaserzeuger, zum Beispiel als Kompressor, ausgebildet sein. Das Druckgas kann insbesondere Druckluft sein. Ist die Einrichtung 23 als Druckgaserzeuger ausgebildet, kann sie zusätzlich einen Vorratsbehälter aufweisen, zum Beispiel zur Zwischenspeicherung des erzeugten Druckgases.
  • Die in der Figur 1 in Form einzelner Leitungen dargestellten Zufuhrleitungen 11, 12, 13 können je nach Ausgestaltung der Strahlschneidvorrichtung kürzer oder länger ausfallen. Insbesondere können Sie derart kurz sein, dass eine oder mehrere der Einrichtungen 21, 22, 23 ganz oder teilweise in den Schneidkopf 3 integriert oder daran angeflanscht sind. Insbesondere im Falle längerer Ausführung der Zufuhrleitungen 11, 12 ist es vorteilhaft, diese gut thermisch zu isolieren und/oder mit einer Kühleinrichtung zu versehen, insbesondere einer temperaturgeregelten Kühleinrichtung.
  • Zur besseren Handhabung kann der Schneidkopf 3 einen Handgriff 34 aufweisen, an dem er beim Strahlschneiden gehalten wird.
  • Die Figur 2 zeigt den Schneidkopf 3 mit der ersten, der zweiten und der dritten Zufuhrleitung 11, 12, 13 sowie der Einrichtung 22 in vergrößerter, detaillierterer Schnitt-Darstellung. Erkennbar ist, dass die Strahlschneidvorrichtung mit drei unterschiedlichen Temperaturniveaus T1, T2 und T3 sowie zwei unterschiedlichen Druckniveaus P1, P2 betrieben werden kann. Der Schneidkopf 3 weist eine Expansionskammer 7 auf, der das flüssige Schneidmedium über die erste Zufuhrleitung 11 und den ersten Zufuhranschluss 31 zugeführt wird. Die Zuführung zur Expansionskammer 7 erfolgt über eine hinsichtlich des Durchtrittquerschnitts verengte erste Übergangsstelle 6, z.B. in Form einer Düse. Durch die erste Übergangsstelle 6 erfolgt eine Verringerung des Drucks vom Wert P1 auf den Wert P2. In der Expansionskammer 7 werden dem Schneidmedium Partikel des Abrasivmittels über die zweite Zufuhrleitung 12 und den zweiten Zufuhranschluss 32 zugeführt. Ferner wird die Expansionskammer 7 über die dritte Zufuhrleitung 13 und den dritten Zufuhranschluss 33 mit dem Druckgas aus der Einrichtung 23 versorgt. Die Expansionskammer 7 befindet sich dabei auf dem gleichen Druckniveau P2 wie die Bereiche, die das Abrasivmittel führen, das heißt die Einrichtung 22 und die zweite Zufuhrleitung 12.
  • Das mit dem Schneidmedium vermischte Abrasivmittel gelangt über eine Düse 8 in das Fokussierrohr 9 und tritt als Schneidstrahl 2 an der Austrittsstelle 10 daraus aus.
  • Nachfolgend wird der Betrieb der Strahlschneidvorrichtung anhand des Gases Kohlenstoffdioxid, sowohl für das Abrasivmittel als auch für das Schneidmedium, erläutert.
  • Die Figur 3 zeigt ein Phasenübergangsdiagramm für Kohlenstoffdioxid. Dort ist entlang der linear skalierten Abszisse die Temperatur in Grad Celsius aufgetragen, entlang der logarithmisch skalierten Ordinate der Druck in bar. Die Linie 40 ist dabei die Sublimationslinie, die Linie 41 die Schmelzlinie und die Linie 42 die Sättigungslinie. Das Kohlenstoffdioxid befindet sich in dem Bereich oberhalb der Schmelzlinie und der Sublimationslinie im festen Aggregatszustand, zwischen der Schmelzlinie und der Sättigungslinie im flüssigen Aggregatszustand und unterhalb der Sättigungslinie und der Sublimationslinie im gasförmigen Aggregatszustand. Das Bezugszeichen 43 kennzeichnet den Tripelpunkt des Diagramms, das Bezugszeichen 44 den kritischen Punkt.
  • Die Strahlschneidvorrichtung 1, wie zuvor erläutert, kann als Schneidmedium mit einem unter Hochdruck stehenden, flüssigen temperaturgeregelten CO2 Medium betrieben werden. Dieses kann zum Beispiel bei 0°C mit 3000 bar bereitgestellt sein (entsprechend dem Punkt 37 in Figur 3), oder bei 20°C mit 4000 bar (entsprechend dem Punkt 38 in Figur 3). Das auf diese Weise bereitgestellte CO2-Medium wird durch die erste Zufuhrleitung 11 in den ersten Zufuhranschluss 31 durch erste Übergangsstelle 6 geführt, in der ein flüssiger Strahl des Schneidmediums auf geringerem Druckniveau erzeugt wird. Der Zustand des Schneidmediums nach Austritt aus der ersten Übergangsstelle 6 ist in der Figur 3 durch den Punkt 39 dargestellt. Es erfolgt somit ein Übergang vom Punkt 37 zum 39 oder vom Punkt 38 zum Punkt 39. In der Expansionskammer 7 werden diesem flüssigen Schneidmedium die festen CO2-Partikel als Abrasivmittel zugeführt. Diese weisen bereits eine Ausgangsgröße auf, die für ein Strahlschneiden geeignet ist. Es kann der Effekt auftreten, dass sich die Abrasivpartikel auf dem Weg durch das Fokussierungsrohr 9 in Folge der Anlagerung gefrierenden flüssigen Schneidmediums vergrößern.
  • In der Expansionskammer kann zum Beispiel ein Arbeitspunkt bei -57°C und 7 bar Druck eingestellt werden, entsprechend dem Punkt 39 in Figur 3.
  • Da sich die Drücke P1 und P2 voneinander unterscheiden, ist es erforderlich, in unmittelbarer Umgebung der Expansionskammer 7 eine temperaturgeregelte Kühlkammer 5 vorzusehen, so dass zum einen der flüssige CO2-Strom nicht in die gasförmige Phase übertritt und zum anderen die festen CO2-Partikel (Trockeneis) ebenfalls nicht unmittelbar den Aggregatzustand wechseln. Die Kühlkammer kann zum Beispiel Kühlwendel aufweisen, durch die ein flüssiges Kühlmedium, zum Beispiel Glykol oder R134a, gefördert wird.
  • Nach Durchquerung der Expansionskammer 7 wird der Strom von flüssigem und festem CO2 durch eine zweite Übergangsstelle 8 in das Fokussierungsrohr 9 geleitet, in dem bedingt durch das Verlassen der gekühlten Umgebung und der positiven Druckdifferenz zwischen der Expansionskammer 7 und der Umgebung sich zusätzlich ein Düseneffekt einstellt, so dass am Ende des Fokussierungsrohrs 9 der Strom von flüssigem und festem CO2 sowie der Druckluft beschleunigt austritt. Zusätzlich erfahren die festen CO2-Partikel eine thermische Stabilisierung durch das flüssige CO2-Schneidmedium.
  • Hierbei wird der Effekt genutzt, dass das Kohlenstoffdioxid in Abhängigkeit von Druck und Temperatur über einen Tripelpunkt verfügt, das heißt das Kohlenstoffdioxid kann in festem sowie in flüssigem Zustand bei gleicher Temperatur und gleichem Druck nebeneinander vorliegen. Der Phasenübergang (flüssig nach gasförmig beziehungsweise fest nach gasförmig) erfolgt nach Beendigung des Schneidvorgangs nach erfolgter Trennung und Kühlung des Schneidbereichs des Werkstücks 4. Letztendlich bleibt vom Schneidstrahl 2 nur gasförmiges Kohlenstoffdioxid über. Somit ist ein rückstandsfreies Strahlschneiden möglich.
  • Die Figur 4 zeigt eine weitere Ausführungsform der Strahlschneidvorrichtung, wobei eine Detaildarstellung ähnlich der Figur 2 verwendet wird. Im Unterschied zur anhand der Figur 2 erläuterten Ausführungsform weist der Schneidkopf 3 im Bereich des Austrittsrohrs 9 einen vierten Zufuhranschluss 56 sowie als weitere Option einen fünften Zufuhranschluss 57 auf. Der vierte Zufuhranschluss 56 ist über einen ersten Druckminderer 54 über Leitungen 51, 52 mit einem Druckgasvorrat verbunden, z.B. mit der unter Überdruck stehenden Einrichtung 22 oder dem Druckgasvorrat 23. Der fünfte Zufuhranschluss 57 ist über einen zweiten Druckminderer 55 über Leitungen 51, 53 mit einem Druckgasvorrat verbunden, z.B. mit der unter Überdruck stehenden Einrichtung 22 oder dem Druckgasvorrat 23.
  • Über die Druckgaszufuhr über den vierten und ggf. den fünften Zufuhranschluss 56, 57 soll ein Druckgefälle gegenüber dem zweiten Zufuhranschluss 32 bzw. der Expansionskammer 7 geschaffen werden. Insbesondere soll der am vierten Zufuhranschluss 34 vorliegende Druck geringfügig niedriger sein als der an der zweiten Übergangsstelle 8 vorliegende Druck. Hierzu ist eine Druckminderung erforderlich, wenn beide Stellen aus demselben Druckvorrat gespeist werden, wie in der Figur 4 dargestellt. Hierfür dienen der erste Druckminderer 54 bzgl. des vierten Zufuhranschlusses 56 und der zweite Druckminderer 55 bzgl. des zweiten Zufuhranschlusses 57. Die Druckminderer 54, 55 können als Drossel oder Blende mit festem oder einstellbarem Querschnitt ausgebildet sein.
  • Über den vierten Zufuhranschluss 56 wird ein nur minimal niedrigerer Druck als an der Übergangsstelle 8 erzeugt. Durch diese geringfügige Druckdifferenz, z.B. im Bereich von 0,1 bar, kann das mit dem Abrasivmittel gemischte flüssige Schneidmedium bis zu dem vierten Zufuhranschluss 56 beschleunigt werden, ohne dass ein Phasenübergang stattfindet, d.h. das flüssige Schneidmedium bleibt in der flüssigen Phase. Erst hinter dem vierten Zufuhranschluss 56 kann ein Übergang des flüssigen Schneidmediums in die gasförmige Phase erfolgen. Dies kann, wenn der fünfte Zufuhranschluss 57 nicht vorgesehen ist, einfach durch den stromabwärts des vierten Zufuhranschlusses 56 erfolgenden Druckanstieg auf das Atmosphärenniveau im Bereich der Austrittsstelle 10 erfolgen. Wenn der fünfte Zufuhranschluss 57 vorhanden ist, kann dort durch Einspeisen eines weiteren, in diesem Fall erheblich niedrigeren Druckwerts als am vierten Zufuhranschluss 56 der Übergang in die gasförmige Phase noch präziser gesteuert werden. So kann z.B., wenn an der Übergangsstelle 8 einen Druck von 15 bar anliegt, über den fünften Zufuhranschluss 57 ein Druck von 5 bar eingespeist werden.
  • Der vierte Zufuhranschluss 56 ist vorteilhafterweise, bezogen auf die Längserstreckung L des Austrittsrohrs 9 zwischen der Übergangsstelle 8 und der Austrittsstelle 10, in der unteren Hälfte der Längserstreckung L angeordnet, z.B. am Übergang in das untere Drittel. Auf diese Weise wird eine relativ lange Beschleunigungsstrecke für das flüssige Schneidmedium in Kombination mit dem Abrasivmittel bereitgestellt, in dem dieses in definierter Weise ohne gasförmige Turbulenzen beschleunigt werden kann.

Claims (13)

  1. Strahlschneidvorrichtung (1) zum Trennen von Materialien (4) mittels eines Schneidstrahls (2), wobei die Strahlschneidvorrichtung (1) wenigstens einen Schneidkopf (3) aufweist, der zum Auslass des Schneidstrahls (2) auf das zu trennende Material (4) eingerichtet werden kann,
    wobei der Schneidkopf (3) wenigstens einen ersten Zufuhranschluss (31) zur Zufuhr eines Schneidmediums in flüssiger Form und wenigstens einen zweiten Zufuhranschluss (32) zur Zufuhr eines dem Schneidmedium zuzusetzenden Abrasivmittels in Feststoffform aufweist, wobei der erste Zufuhranschluss (31) mit einer ersten Zufuhrleitung (11), die ein verflüssigtes Gas führt, und der zweite Zufuhranschluss mit einer zweiten Zufuhrleitung (12), die als Abrasivmittel ein in Feststoffform verfestigtes Gas führt, gekoppelt ist, sodass der erste Zufuhranschluss (31) das verflüssigte Gas dem Schneidkopf (3) zuführt und der zweite Zufuhranschluss (32) das in Feststoffform verfestigte Gas dem Schneidkopf (3) zuführt, und wobei das Schneidmedium und das Abrasivmittel im gasförmigen Zustand dasselbe Gas bilden.
  2. Strahlschneidvorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Strahlschneidvorrichtung (1), insbesondere deren Schneidkopf (3), eine Expansionskammer (7) aufweist, in der dem flüssigen Schneidmedium das Abrasivmittel zugemischt wird.
  3. Strahlschneidvorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Strahlschneidvorrichtung (1) wenigstens eine hinsichtlich des Durchtrittquerschnitts verengte erste Übergangsstelle (6) aufweist, durch den das flüssige Schneidmedium vom ersten Zufuhranschluss (11) in die Expansionskammer (7) geführt ist.
  4. Strahlschneidvorrichtung nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, dass die Expansionskammer (7) an einer Austrittsseite für das mit dem Schneidmedium gemischten Abrasivmittel eine hinsichtlich des Durchtrittquerschnitts verengte zweite Übergangsstelle (8) in ein Austrittsrohr (9) des Schneidkopfes (3) aufweist.
  5. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schneidkopf (3) wenigstens eine temperaturgeregelte Kammer (5) aufweist.
  6. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strahlschneidvorrichtung (1) wenigstens einen dritten Zufuhranschluss (33) zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums aufweist, der mit einem Druckgasvorrat (23) und/oder einem Druckgaserzeuger verbunden ist, wobei innerhalb der Strahlschneidvorrichtung (1) die Expansionskammer (7) und/oder die zweite Zufuhrleitung (12) mit dem dritten Zufuhranschluss (33) verbunden ist.
  7. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schneidkopf (3) oder ein Austrittsrohr (9) des Schneidkopfs (3) einen stromabwärts des ersten und/oder des zweiten Zufuhranschlusses (31, 32) angeordneten vierten Zufuhranschluss (56) zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums aufweist, der direkt oder über einen ersten Druckminderer (54) mit einem Druckgasvorrat (23) und/oder einem Druckgaserzeuger verbunden ist.
  8. Strahlschneidvorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Schneidkopf (3) oder ein Austrittsrohr (9) des Schneidkopfs (3) einen stromabwärts des vierten Zufuhranschlusses (56) angeordneten fünften Zufuhranschluss (57) zur Zufuhr eines unter Überdruck stehenden gasförmigen Mediums aufweist, der direkt oder über einen zweiten Druckminderer (55) mit einem Druckgasvorrat (23) und/oder einem Druckgaserzeuger verbunden ist.
  9. Strahlschneidverfahren zum Trennen von Materialien (4) mittels eines Schneidstrahls (2), wobei einem flüssigen Schneidmedium ein Abrasivmittel in Feststoffform zugeführt werden, wobei das Schneidmedium ein verflüssigtes Gas ist und das Abrasivmittel aus einem in Feststoffform verfestigten Gas besteht, wobei das Schneidmedium und das Abrasivmittel im gasförmigen Zustand dasselbe Gas bilden, gekennzeichnet durch eine Durchführung des Verfahrens mittels einer Strahlschneidvorrichtung (1) nach einem der Ansprüche 1 bis 8.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das flüssige Schneidmedium unter Hochdruck stehend durch ein Zuführrohr (11) zu einer Düse (6) eines Schneidkopfes (3) geführt wird, in der ein flüssiger Schneidstrahl erzeugt wird, der zur Druckabsenkung in eine Expansionskammer (7) geführt wird, in der dem flüssigen Schneidmedium das Abrasivmittel zugemischt werden.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Expansionskammer (7) mit einem unter Überdruck stehenden gasförmigen Medium beaufschlagt wird.
  12. Verfahren nach einem der Ansprüche 10 bis 11, dadurch gekennzeichnet, dass zumindest die Expansionskammer (7) derart temperaturgeregelt wird, dass das flüssige Schneidmedium und das feste Abrasivmittel zumindest in der Expansionskammer (7) nicht unmittelbar den Aggregatzustand wechseln.
  13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass in dem Schneidkopf (3) oder in einem Austrittsrohr (9) des Schneidkopfs (3) stromabwärts der Expansionskammer (7) ein relativer Unterdruck gegenüber dem Druck in der Expansionskammer erzeugt wird, durch den das flüssige Schneidmedium mit dem beigemischten Abrasivmittel ohne Änderung des Phasenzustands beschleunigt wird.
EP15759385.6A 2014-08-14 2015-07-24 Strahlschneidvorrichtung und strahlschneidverfahren Active EP3180163B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014111639.9A DE102014111639A1 (de) 2014-08-14 2014-08-14 Strahlschneidvorrichtung und Strahlschneidverfahren
PCT/EP2015/067038 WO2016023734A1 (de) 2014-08-14 2015-07-24 Strahlschneidvorrichtung und strahlschneidverfahren

Publications (2)

Publication Number Publication Date
EP3180163A1 EP3180163A1 (de) 2017-06-21
EP3180163B1 true EP3180163B1 (de) 2021-04-14

Family

ID=54062702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15759385.6A Active EP3180163B1 (de) 2014-08-14 2015-07-24 Strahlschneidvorrichtung und strahlschneidverfahren

Country Status (3)

Country Link
EP (1) EP3180163B1 (de)
DE (1) DE102014111639A1 (de)
WO (1) WO2016023734A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204883A1 (de) * 2017-03-23 2018-09-27 Robert Bosch Gmbh Materialbearbeitung mit einem Eisstrahl

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160275A1 (de) * 2001-12-07 2003-07-03 Messer Griesheim Gmbh Schneiden von Objekten mit Flüssiggas
EP2583790A1 (de) * 2011-10-17 2013-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlschneidvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389820A (en) * 1980-12-29 1983-06-28 Lockheed Corporation Blasting machine utilizing sublimable particles
DD298618A5 (de) 1989-12-08 1992-03-05 Technische Universitaet "Otto Von Guericke" Magdeburg,De Verfahren zum schneiden mit hochdruckwasser-eiskristallstrahl
US5111984A (en) * 1990-10-15 1992-05-12 Ford Motor Company Method of cutting workpieces having low thermal conductivity
JPH06328398A (ja) * 1993-05-21 1994-11-29 Nissin Electric Co Ltd ジェット切断方法及び切断装置
DE19630000C2 (de) * 1996-07-25 2001-05-31 Carl Ingolf Lange Verfahren zum Schneiden von Papier, Pappe, Kunststoff-Folien oder dgl. und Vorrichtung zur Durchführung des Verfahrens
DE19756506C2 (de) 1997-12-19 2001-02-08 Fraunhofer Ges Forschung Verfahren zum Abrasiv-Wasserstrahlschneiden
DE10012393C2 (de) * 2000-03-15 2002-06-27 Preising Paul Eric Reinigungsverfahren und -vorrichtung für hochspannungsführende Anlagenteile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160275A1 (de) * 2001-12-07 2003-07-03 Messer Griesheim Gmbh Schneiden von Objekten mit Flüssiggas
EP2583790A1 (de) * 2011-10-17 2013-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlschneidvorrichtung

Also Published As

Publication number Publication date
EP3180163A1 (de) 2017-06-21
DE102014111639A1 (de) 2016-02-18
WO2016023734A1 (de) 2016-02-18

Similar Documents

Publication Publication Date Title
EP4051749A1 (de) Verfahren zur herstellung von schleifmittelteilchen
DE1949315A1 (de) Verfahren und Vorrichtung zum Kuehlen eines Schneidwerkzeugs durch Nebel
EP2055386A1 (de) Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen
EP2151300B1 (de) Vorrichtung und Verfahren zum Reinigen von Gegenständen mittels Trockenschnee
EP3180163B1 (de) Strahlschneidvorrichtung und strahlschneidverfahren
DE102010064406A1 (de) Vorrichtung und Verfahren zum Partikelstrahlen mittels gefrorener Gaspartikel
DE4105558A1 (de) Verfahren und vorrichtung zum schneiden mittels eines fluessigkeitsstrahls
DE102007018338B4 (de) Vorrichtung und Verfahren zum Partikelstrahlen mittels gefrorener Gaspartikel
DE202013103529U1 (de) Vorrichtung zur Aerosolerzeugung
EP2667116B1 (de) Verfahren und Vorrichtung zum Kühlen
DE102004018133B3 (de) Anordnung zur Erzeugung eines Trockeneispartikel-Strahls sowie deren Verwendung
EP2583790B1 (de) Strahlschneidvorrichtung
DE102005061401A1 (de) Verfahren zur Mikrostrukturierung einer Oberfläche eines Werkstücks
DE102014000381B4 (de) Verfahren und Misch-Vorrichtung zum Erzeugen eines mehrphasigen Kühl- und Schmierstoffes für eine Kühlung und Schmierung einer Bearbeitungsvorrichtung
DE102012008593A1 (de) Verfahren und Vorrichtung zum Kühlen von Produkten
DE4010045A1 (de) Verfahren und vorrichtung zur kuehlung einer pulverfoermigen substanz
DE102004062670B4 (de) Verfahren und Vorrichtung zur Kühlung von Zement
EP2985116B1 (de) Reinigungsvorrichtung und Reinigungsverfahren für Transportrollen in einem Rollenkühlofen einer Anlage zum Herstellen von Floatglas
WO2003022525A2 (de) Strahlverfahren und -vorrichtung
EP3106217B1 (de) Vorrichtung und verfahren zum kühlen und zerstäuben flüssiger oder pastöser stoffe
DE4326518A1 (de) Verfahren zur spanenden Bearbeitung von kunststofflichen Werkstücken
EP2032309B1 (de) Vorrichtung und verfahren zur bearbeitung eines festen werkstoffs mit einem wasserstrahl
EP1091181A1 (de) Expansionskühldüse
DE102022201367A1 (de) Verfahren und Strahlmühle zum überkritischen Strahlmahlen
DE102016107468B3 (de) Verfahren und Anlage zur Nutzung eines von einer Gaszerlegeeinrichtung bereitgestellten Zielgases

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZAREMBA, DAVID

Inventor name: HASSEL, THOMAS

Inventor name: MAIER, HANS JUERGEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201028

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014566

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1381895

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210816

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014566

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20220117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1381895

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 9