EP2583790A1 - Strahlschneidvorrichtung - Google Patents

Strahlschneidvorrichtung Download PDF

Info

Publication number
EP2583790A1
EP2583790A1 EP12007193.1A EP12007193A EP2583790A1 EP 2583790 A1 EP2583790 A1 EP 2583790A1 EP 12007193 A EP12007193 A EP 12007193A EP 2583790 A1 EP2583790 A1 EP 2583790A1
Authority
EP
European Patent Office
Prior art keywords
cutting
chamber
jet
workpiece
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12007193.1A
Other languages
English (en)
French (fr)
Other versions
EP2583790B1 (de
Inventor
Eckhard Weidner
Stefan Pollak
Andreas Kilzer
Lena Engelmeier
Mark Krieg
Martin Bilz
Eckart Uhlmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Ruhr Universitaet Bochum
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Ruhr Universitaet Bochum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, Ruhr Universitaet Bochum filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2583790A1 publication Critical patent/EP2583790A1/de
Application granted granted Critical
Publication of EP2583790B1 publication Critical patent/EP2583790B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/003Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods using material which dissolves or changes phase after the treatment, e.g. ice, CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • B24C1/045Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material

Definitions

  • the invention relates to a jet cutting apparatus for beam cutting a workpiece by means of a cutting fluid, the jet cutting apparatus comprising a cutting fluid supply means and a nozzle through which pressurized cutting fluid supplied during operation of the jet cutting apparatus is pressed to produce a cutting jet.
  • Water-jet cutting in which water is used as the cutting fluid, which is pressed under high pressure (up to several thousand bar) through a nozzle to produce a cutting jet of water.
  • a workpiece to be cut is placed in the water jet downstream of the nozzle.
  • the nozzle To create a kerf, either the nozzle must be moved along the desired cutting path over the workpiece, or the workpiece must be moved relative to a fixed nozzle.
  • Water jet cutting is used today in many areas of industry, e.g. in the food industry, the electronics industry and also in classical mechanical engineering.
  • the invention has for its object to provide a jet cutting device that can produce a cutting jet also suitable for cutting editing with a variety of cutting fluids.
  • the jet cutting device has a running for enclosing the cutting beam from its exit from the nozzle to its impact on the workpiece chamber.
  • a chamber makes it possible to influence the cutting jet, in particular thermodynamically, but also fluidically, and in this way to produce it stable and sufficiently long when using a wide variety of cutting fluids.
  • the chamber enclosing the cutting jet is pressure-tight.
  • pressure-tight herein is meant that the chamber allows it to maintain a pressure that is more than slightly different than ambient pressure.
  • the chamber may be designed to maintain a pressure that is between 1 bar and 15 bar above ambient pressure. Depending on the application, the pressure in the chamber may also be lower than the ambient pressure.
  • the chamber encloses not only the cutting beam but also the workpiece to be machined.
  • Such a solution avoids sealing problems between the chamber and the workpiece to be machined, but requires depending on the workpiece to be machined relatively large chamber for receiving the complete workpiece.
  • the chamber enclosing the cutting jet is open toward the workpiece and is partially or completely limited on its open side during operation by the workpiece to be machined.
  • the chamber may preferably be made of elastic material, to adapt to a contour of the workpiece to be machined.
  • an end of the chamber open towards the workpiece may include sealing means sealing the chamber along its circumference between the open end of the chamber and a workpiece being processed.
  • a sealing device may for example be a resilient elastic lip or a sealing cap which is hingedly connected to the chamber of rigid or elastic material. The use of a sufficiently compliant sealing device also allows tilting of the cutting device with respect to the workpiece to be machined and thus the production of oblique cuts or holes.
  • an increased pressure relative to the ambient pressure is generated and maintained during operation in the chamber.
  • a portion of the cutting fluid itself may be used if the cutting fluid is a fluid that at least partially passes into the gas phase under the conditions prevailing in the chamber during operation.
  • an auxiliary gas can be supplied to the chamber in order to set a desired overpressure.
  • An auxiliary gas can also be used if the cutting fluid itself generates a gas phase, for example to form a protective gas envelope of the cutting jet.
  • the chamber is provided with a supply of pressurized gas.
  • a pressure regulating device is in flow-conducting communication with the chamber.
  • the pressure control device With the pressure control device, a desired pressure in the chamber can be reliably maintained by only enough gas flows out of the chamber through the pressure control device that the desired pressure in the chamber is maintained.
  • the pressure regulating device may be formed by a simple throttle, by other suitable flow resistances or by a combination of such elements.
  • a narrow annular gap between the free end of the chamber and the workpiece to be machined can act as a throttle.
  • an inner side of the chamber enclosing the cutting jet is arranged close to the cutting jet and designed to influence the flow.
  • the inside of the chamber may be conically tapered, may have longitudinal grooves or helical grooves, it may have auxiliary gas inlet ports, and the like.
  • the chamber may contain flow-influencing internals which serve to achieve a desired beam influencing, such as diaphragms, impact and / or baffles, beam splitters and the like.
  • the chamber enclosing the cutting jet can be designed to be coolable and / or heatable, for example by the chamber wall being double-walled, so that a cooling or heating medium can be circulated through the chamber wall.
  • a cooling or heating medium can be circulated through the chamber wall.
  • liquid nitrogen can be used to cool a chamber.
  • Advantageous embodiments of the jet cutting device according to the invention have a heat exchanger for setting a desired temperature of the cutting fluid prior to its exit from the nozzle.
  • the temperature which the cutting fluid used has prior to exiting the nozzle can significantly influence the nature of the cutting jet produced.
  • the cutting jet produced is sharper and more focused when the temperature of the cutting fluid before it exits the nozzle is low, whereas the cutting jet becomes more diffuse and fanned out as the temperature of the cutting fluid increases Exit from the nozzle is higher.
  • such embodiments provide cutting devices thus more degrees of freedom than previously customary, depending on a selected cutting fluid a specific, the intended use to produce optimally adapted cutting beam characteristics.
  • the cutting beam properties can be significantly changed and thus adjusted as desired.
  • the jet cutting device according to the invention is suitable due to the manifold possibilities of thermodynamic and / or fluid mechanical influenceability of the cutting beam to be generated for a variety of different cutting fluids with different physical properties.
  • the cutting fluid is or comprises a liquid or gas in a subcritical or supercritical state.
  • the cutting jet contains carbon dioxide in at least partially liquid or at least partially solid form.
  • a gaseous portion of the cutting jet can be used to build and maintain a desired overpressure in the chamber enclosing the cutting jet.
  • Fig. 1 schematically shows a first basic embodiment of a jet cutting device 10 for machining a workpiece by means of a cutting beam, which is produced by pressing a cutting fluid under high pressure through a nozzle.
  • jet cutting device 10 uses as cutting fluid liquid carbon dioxide, which is removed from a reservoir 12 and then brought in a compressor 14 to a desired, high pressure and to set a desired temperature, a heat exchanger 16 flows through.
  • the thus preconditioned, serving as cutting fluid carbon dioxide is then fed to the inlet of a nozzle 18, at the outlet of which a cutting jet 20 is formed with simultaneous relaxation of the carbon dioxide, which is used for processing a workpiece 22.
  • a chamber 24a completely encloses the nozzle 18 and the workpiece 22 to be machined.
  • an overpressure is built up during operation of the cutting device 10 by means of the carbon dioxide flowing through the nozzle 18, which is, for example, in a range of 1.5 to 15 bar above the ambient pressure when using carbon dioxide as the cutting fluid.
  • a desired working pressure in the chamber 24a may also be established and / or finely adjusted by introducing an auxiliary gas into the chamber 24a. In this way, a starting operation of the cutting device 10 can be shortened or eliminated, which is otherwise required until the working pressure in the chamber 24 a has reached the desired value by means of the carbon dioxide flowing through the nozzle 18.
  • the auxiliary gas may be carbon dioxide or another gas.
  • the working pressure in the chamber 24a is kept constant by means of a pressure regulating device 26 which is in flow communication with the interior of the chamber 24a and allows only enough gas to escape so that the desired working pressure in the chamber 24a is at least substantially equal is maintained.
  • the pressure regulating device 26 can be connected to a measuring and control device, not shown here.
  • the chamber 24a there is also a suitable traversing device, not shown here, for relatively changing the position of the nozzle 18 to the workpiece 22 to be machined.
  • This traversing device will not be described here, since it is a device known to a person skilled in the art for this purpose can act.
  • Fig. 2 schematically shows a second basic embodiment of a jet cutting device 10, which differs from the embodiment in Fig. 1 differs in that not the entire workpiece 22 is enclosed by the chamber 24 b, but only the nozzle 18 and a currently to be machined point on the workpiece 22.
  • the chamber 24b open towards the workpiece 22 and is limited at its open side during operation completely or at least partially by the workpiece 22 to be machined.
  • the chamber 24b is provided at its open end with a sealing device 28 only indicated here, which seals the free end of the chamber 24b along its circumference with respect to the workpiece 22 being processed. Excess pressure can be as in the Fig.
  • the in the Fig. 2 shown second basic embodiment of the jet cutting device 10 is universally applicable than the embodiment according to Fig. 1 because the limitation of a chamber 24a enclosing the workpiece 22 to be machined is also eliminated.
  • the cutting beam 20 and the workpiece 22 to be machined can be moved relative to one another more easily and can also be tilted. A generation of oblique cuts or oblique holes is thus easier possible.
  • the jet cutting device 10 is of course also suitable for processing non-plate-shaped workpieces. It has to be ensured in one embodiment according to Fig. 2 only a sufficient seal of the open end of the chamber 24b to the workpiece to be machined. This can be achieved with sufficiently flexible sealing lips or articulated at the end of the chamber 24b mounted sealing devices without particular difficulty.
  • Fig. 3 a flow chart of a pilot plant is reproduced, with the attempts to the basic suitability of carbon dioxide as a cutting fluid have been undertaken.
  • the jet cutting device 10 of Fig. 3 is similar to the one in Fig. 1 constructed shown first basic embodiment. As explained above, liquid carbon dioxide is removed from the reservoir 12, wherein the existing pressure in the reservoir 12 pressure can be measured by means of a pressure measuring device 30.
  • the carbon dioxide taken from the storage container 12 passes through a high-pressure heat exchanger 16, which is tempered with water here, and is brought to a desired temperature, which can be checked by means of a temperature measuring device 32 connected downstream of the heat exchanger 16. Subsequently, the carbon dioxide is compressed in the here designed as a membrane compressor compressor 14 to a desired Vorexpansionstik, the temperature and pressure of the carbon dioxide after passing through the compressor 14 by means of a second temperature measuring device 34 and a second pressure measuring device 36 can be checked.
  • a commercially available water jet cutting nozzle 18 is used here, which protrudes with its nozzle outlet opening into the chamber 24a, in which the workpiece 22 to be machined is located.
  • the so-called Nachexpansionstik i. the desired working pressure in the chamber 24a, at least approximately kept constant.
  • the conditions within the chamber 24a may be monitored by a third temperature measuring device 38 and a third pressure measuring device 40.
  • Liquid carbon dioxide was pressurized by compressor 14 to a pre-expansion pressure of 1800 bar and a pre-expansion temperature of 25 ° C and to produce a cutting jet 20 through a nozzle 18 having a nozzle diameter relaxed by 0.08 mm.
  • a 10 mm thick piece of wood was processed.
  • the distance of the workpiece 22 to the nozzle was 1 mm, the working pressure in the chamber 24a (post-expansion pressure) was 12 bar.
  • the cutting jet 20 had cut a hole of 2.4 mm depth and 1.4 mm diameter into the wood piece.
  • the cut edge was characterized by a sharp border with no visible damage to the unprocessed areas.
  • Liquid carbon dioxide was brought to a pre-expansion pressure of 1600 bar and a pre-expansion temperature of 25 ° C and expanded to produce a cutting jet 20 through a nozzle 18 having a nozzle diameter of 0.1 mm.
  • a 1 mm thick aluminum plate was processed.
  • the distance of the workpiece 22 to the nozzle 18 was 1 mm, the Nachexpansionstik was 3 bar.
  • Liquid carbon dioxide was brought to a pre-expansion pressure of 2000 bar and a pre-expansion temperature of 30 ° C and expanded through the nozzle of Experimental Example 2 to produce a cutting jet 20.
  • a 1 mm thick aluminum plate was processed, wherein the distance of the aluminum plate to the nozzle was 1 mm and the Nachexpansionstik was 10 bar.
  • a hole of 0.5 mm in depth and 0.5 mm in diameter was cut in the aluminum plate. The cut edge was characterized by a sharp border with no visible damage to the unprocessed areas.
  • Liquid carbon dioxide was brought to a pre-expansion pressure of 1600 bar and a pre-expansion temperature of 25 ° C and expanded through the nozzle of Experimental Examples 2 and 3.
  • a 1.2 mm thick polycarbonate disc a so-called compact disc, was processed, the distance to the nozzle being 1 mm and the post-expansion pressure being set to 10 bar.
  • a polycarbonate disk passing hole of 0.3 mm in diameter was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Die Erfindung betrifft eine Strahlschneidvorrichtung (10) zum Strahlspanen eines Werkstücks (22) mittels eines Schneidfluids, mit einer Zufuhreinrichtung für das Schneidfluid, und einer Düse (18), durch die im Betrieb der Strahlschneidvorrichtung zugeführtes, unter Druck stehendes Schneidfluid gepresst wird, um einen Schneidstrahl (20) zu erzeugen. Damit unabhängig von der Art des verwendeten Schneidfluids ein stabiler und ausreichend langer Schneidstrahl erzeugbar ist, weist die Strahlschneidvorrichtung (10) eine zum Umschließen des Schneidstrahls (20) von seinem Austritt aus der Düse (18) bis zu seinem Auftreffen auf das Werkstück (22) ausgeführte Kammer (24a) auf, die dazu ausgebildet ist, den Schneidstrahl (20) thermodynamisch und/oder strömungsmechanisch zu beeinflussen.

Description

  • Die Erfindung betrifft eine Strahlschneidvorrichtung zum Strahlspanen eines Werkstücks mittels eines Schneidfluids, wobei die Strahlschneidvorrichtung eine Zufuhreinrichtung für das Schneidfluid und eine Düse aufweist, durch die im Betrieb der Strahlschneidvorrichtung zugeführtes, unter Druck stehendes Schneidfluid gepresst wird, um einen Schneidstrahl zu erzeugen.
  • Allgemein bekannt ist seit vielen Jahren das sogenannte Wasserstrahlschneiden, bei dem als Schneidfluid Wasser verwendet wird, welches unter hohem Druck (bis zu mehreren Tausend bar) durch eine Düse gepresst wird, um einen Schneidstrahl aus Wasser zu erzeugen. Ein zu schneidendes Werkstück wird im Wasserstrahl stromabwärts der Düse platziert. Zum Erzeugen einer Schnittfuge muss entweder die Düse entlang der gewünschten Schnittbahn über das Werkstück bewegt werden oder es muss das Werkstück bezüglich einer feststehenden Düse entsprechend bewegt werden. Wasserstrahlschneiden wird heute in vielen Bereichen der Industrie eingesetzt, z.B. in der Lebensmittelindustrie, der Elektronikindustrie und auch im klassischen Maschinenbau.
  • Es sind bereits Versuche unternommen worden, andere Schneidfluide als Wasser zu verwenden. Es sind Vorrichtungen bekannt, die Trockeneisstrahlen und CO2-Schnee-strahlen verwenden, in denen feste Kohlendioxidpartikel das Strahlmedium bilden. Von Trockeneisstrahlen spricht man, wenn das Strahlmittel dem Prozess bereits in fester Form zugeführt wird. Die Trockeneispartikel werden durch Druckluft beschleunigt und auf die zu bearbeitende Oberfläche gestrahlt. Beim CO2-Schneestrahlen hingegen wird flüssiges Kohlendioxid mit einem Druck von etwa 60 bar bis 280 bar über eine Zweistoffringdüse in einen Mantelstrahl eingedüst, der mittels der Zweistoffringdüse bei niedrigerem Druck (ca. 8 bar bis 16 bar) aus Stickstoff oder Druckluft erzeugt wird. Aufgrund der schlagartigen Expansion des flüssigen Kohlendioxids nach dem Austritt aus der Düse und der damit verbundenen Abkühlung entsteht ein Strahl aus Trockeneispartikeln und Gas. Der Mantelstrahl bündelt die Partikel und beschleunigt sie teilweise auf mehrfache Schallgeschwindigkeit. Treffen die ca. -70°C kalten Trockeneispartikel auf eine zu bearbeitende Oberfläche, platzen aufgrund der Impulsübertragung und des Versprödungseffekts Verschmutzungen auf der Oberfläche ab. Zudem werden Schmutzpartikel durch die Volumenzunahme als Folge der Phasenumwandlung abgelöst und abgetragen. Die Trockeneispartikel sublimieren sodann und lassen eine gereinigte, trockene Oberfläche zurück. Aus den vorstehenden Erläuterungen wird deutlich, dass Trockeneisstrahlen und CO2-Schneestrahlen aufgrund mangelnder Strahlleistung nur zum Entschichten und Abtragen von Verunreinigungen oder Oberflächenschichten eingesetzt werden können. Zur schneidenden Bearbeitung von Werkstücken eignen sich Trockeneisstrahlen und CO2-Schnee-strahlen nicht, da es bisher nicht gelungen ist, einen aus Kohlendioxid bestehenden oder Kohlendioxid enthaltenden Strahl zu erzeugen, der eine zum Einsatz als Schneidstrahl ausreichende Länge und Stabilität aufweist.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Strahlschneidvorrichtung anzugeben, die mit unterschiedlichsten Schneidfluiden einen auch zum trennenden Bearbeiten geeigneten Schneidstrahl erzeugen kann.
  • Ausgehend von einer Strahlschneidvorrichtung der eingangs genannten Art ist diese Aufgabe erfindungsgemäß dadurch gelöst, dass die Strahlschneidvorrichtung eine zum Umschließen des Schneidstrahls von seinem Austritt aus der Düse bis zu seinem Auftreffen auf das Werkstück ausgeführte Kammer aufweist. Eine solche Kammer ermöglicht es, den Schneidstrahl insbesondere thermodynamisch, aber auch strömungsmechanisch zu beeinflussen und ihn auf diese Weise bei Verwendung unterschiedlichster Schneidfluide stabil und ausreichend lang zu erzeugen. Vorzugsweise ist die den Schneidstrahl umschließende Kammer druckdicht ausgeführt. Mit "druckdicht" ist vorliegend gemeint, dass die Kammer es erlaubt, in ihr einen Druck aufrechtzuerhalten, der sich vom Umgebungsdruck mehr als nur geringfügig unterscheidet. Beispielsweise kann die Kammer zur Aufrechterhaltung eines Drucks ausgebildet sein, der zwischen 1 bar und 15 bar über dem Umgebungsdruck liegt. Je nach Anwendungsfall kann der Druck in der Kammer aber auch niedriger als der Umgebungsdruck sein.
  • Gemäß einer Ausführungsform umschließt die Kammer nicht nur den Schneidstrahl, sondern auch das zu bearbeitende Werkstück. Eine solche Lösung vermeidet Abdichtungsprobleme zwischen der Kammer und dem zu bearbeitenden Werkstück, bedingt aber eine je nach zu bearbeitendem Werkstück relativ große Kammer zur Aufnahme des kompletten Werkstücks.
  • Gemäß einer anderen Ausführungsform ist die den Schneidstrahl umschließende Kammer zum Werkstück hin offen und wird an ihrer offenen Seite im Betrieb teilweise oder vollständig durch das zu bearbeitende Werkstück begrenzt. Bei einer solchen Ausführungsform kann die Kammer vorzugsweise aus elastischem Material bestehen, um sich einer zu bearbeitenden Kontur des Werkstücks anzupassen. Alternativ oder zusätzlich kann ein zum Werkstück hin offenes Ende der Kammer eine Dichtungseinrichtung aufweisen, die die Kammer entlang ihres Umfangs zwischen dem offenen Ende der Kammer und einem in Bearbeitung befindlichen Werkstück abdichtet. Eine solche Dichtungseinrichtung kann z.B. eine federnd elastische Dichtlippe oder auch ein Dichtaufsatz sein, der gelenkig mit der Kammer aus starrem oder elastischem Material verbunden ist. Der Einsatz einer ausreichend nachgiebigen Dichteinrichtung ermöglicht auch ein Kippen der Schneidvorrichtung bezüglich des zu bearbeitenden Werkstücks und somit die Erzeugung schräger Schnitte oder Bohrungen.
  • Bei bevorzugten Ausgestaltungen der erfindungsgemäßen Strahlschneidvorrichtung wird während des Betriebs in der Kammer ein gegenüber dem Umgebungsdruck erhöhter Druck erzeugt und aufrechterhalten. Zur Erzeugung dieses Überdrucks kann ein Teil des Schneidfluids selbst verwendet werden, wenn es sich bei dem Schneidfluid um ein Fluid handelt, das unter den im Betrieb in der Kammer herrschenden Bedingungen zumindest teilweise in die Gasphase übergeht. Kommt hingegen ein Schneidfluid zum Einsatz, welches selbst keine Gasphase erzeugt, kann der Kammer ein Hilfsgas zugeführt werden, um einen gewünschten Überdruck einzustellen. Ein Hilfsgas kann auch dann verwendet werden, wenn das Schneidfluid selbst eine Gasphase erzeugt, beispielsweise um eine Schutzgasumhüllung des Schneidstrahls zu bilden. Bei bevorzugten Ausführungsformen der Strahlschneidvorrichtung ist daher die Kammer mit einer Zuführung für unter Druck stehendes Gas versehen.
  • Ferner steht bei bevorzugten Ausgestaltungen der erfindungsgemäßen Strahlschneidvorrichtung eine Druckregeleinrichtung mit der Kammer in strömungsleitender Verbindung. Mit der Druckregeleinrichtung kann ein in der Kammer gewünschter Druck zuverlässig aufrechterhalten werden, indem durch die Druckregeleinrichtung jeweils nur soviel Gas aus der Kammer abströmt, dass der gewünschte Druck in der Kammer beibehalten wird. Bei einer einfachen Ausführungsform kann die Druckregeleinrichtung durch eine einfache Drossel, durch andere geeignete Strömungswiderstände oder durch eine Kombination solcher Elemente gebildet sein. Bei Ausführungsformen, bei denen die den Schneidstrahl umschließende Kammer ein zum Werkstück hin offenes Ende aufweist, kann als Drossel ein schmaler Ringspalt zwischen dem freien Ende der Kammer und dem zu bearbeitenden Werkstück fungieren.
  • Zur strömungsmechanischen Beeinflussung des Schneidstrahls ist bei bevorzugten Ausgestaltungen eine Innenseite der den Schneidstrahl umschließenden Kammer nahe des Schneidstrahls angeordnet und zur Strömungsbeeinflussung ausgebildet, etwa zum Fokussieren des Schneidstrahls, zum Abtrennen oder Umlenken einzelner Schneidstrahlbereiche, z.B. eines sich um den eigentlichen Schneidstrahl herum ausbildenden Streukegels, zum Erzeugen einer Stützströmung (Mantelstrahl) mit oder ohne Zudosierung von Hilfsgas, zur Steuerung der örtlichen Verteilung von Flüssigkeit, Feststoff und Gas in Mehrphasenstrahlen, zur Erzielung einer Drallströmung etc. Die Innenseite der Kammer kann dazu beispielsweise sich kegelförmig verjüngend ausgestaltet sein, sie kann Längsnuten oder schraubenförmig angeordnete Nuten haben, sie kann Einlassöffnungen für Hilfsgas aufweisen und ähnliches mehr. Alternativ und/oder zusätzlich kann die Kammer strömungsbeeinflussende Einbauten enthalten, die der Erzielung einer gewünschten Strahlbeeinflussung dienen, etwa Blenden, Prall- und/oder Leitbleche, Strahlteiler und ähnliches.
  • Zur weiteren Beeinflussung des zu erzeugenden Schneidstrahls kann die den Schneidstrahl umschließende Kammer kühl- und/oder beheizbar ausgebildet sein, beispielsweise indem die Kammerwand doppelwandig ausgeführt ist, so dass ein Kühl- oder Heizmedium durch die Kammerwand zirkuliert werden kann. Zum Kühlen einer Kammer kann beispielsweise flüssiger Stickstoff verwendet werden.
  • Vorteilhafte Ausführungsformen der erfindungsgemäßen Strahlschneidvorrichtung weisen einen Wärmetauscher zur Einstellung einer gewünschten Temperatur des Schneidfluids vor seinem Austritt aus der Düse auf. Die Temperatur, die das verwendete Schneidfluid vor seinem Austritt aus der Düse hat, die sogenannte Vorexpansionstemperatur kann die Beschaffenheit des erzeugten Schneidstrahls maßgeblich beeinflussen. Insbesondere dann, wenn als Schneidfluid ein hochverdichtetes Gas verwendet wird, ist der erzeugte Schneidstrahl schärfer und fokussierter, wenn die Temperatur des Schneidfluids vor seinem Austritt aus der Düse niedrig ist, wohingegen der Schneidstrahl diffuser und damit aufgefächerter wird, wenn die Temperatur des Schneidfluids vor seinem Austritt aus der Düse höher gewählt wird. Im Zusammenspiel mit der erfindungsgemäß vorgesehenen, zum Umschließen des Schneidstrahls von seinem Austritt aus der Düse bis zu seinem Auftreffen auf das Werkstück ausgeführten Kammer bieten solche Ausführungsformen erfindungsgemäßer Strahlschneidvorrichtungen somit mehr Freiheitsgrade als bisher üblich, um in Abhängigkeit eines gewählten Schneidfluids eine bestimmte, dem vorgesehenen Verwendungszweck optimal angepasste Schneidstrahlcharakteristik zu erzeugen. Insbesondere durch geeignetes Variieren der Vorexpansionstemperatur und des Drucks in der den Schneidstrahl umschließenden Kammer lassen sich die Schneidstrahleigenschaften deutlich verändern und somit wunschgemäß einstellen. Die erfindungsgemäße Strahlschneidvorrichtung ist aufgrund der mannigfaltigen Möglichkeiten der thermodynamischen und/oder strömungsmechanischen Beeinflussbarkeit des zu erzeugenden Schneidstrahls für eine Vielzahl unterschiedlicher Schneidfluide mit unterschiedlichsten physikalischen Eigenschaften geeignet. Vorzugsweise besteht das Schneidfluid aus oder umfasst eine Flüssigkeit oder ein Gas in unterkritischem oder überkritischem Zustand. Wie aus dem Stand der Technik bekannt, können dem Schneidfluid auch feste Partikel zugegeben werden, um die Schneidleistung bei bestimmten Anwendungen zu verbessern. Bei einer besonders bevorzugten Ausführungsform einer erfindungsgemäßen Schneidvorrichtung enthält der Schneidstrahl Kohlendioxid in zumindest teilweise flüssiger oder zumindest teilweise fester Form. Ein gasförmiger Anteil des Schneidstrahls kann dabei zum Aufbau und Erhalt eines gewünschten Überdrucks in der den Schneidstrahl umschließenden Kammer verwendet werden. Aufgrund der erfindungsgemäß den Schneidstrahl umschließenden Kammer ist es durch Aufrechterhalten eines Überdrucks in der Kammer möglich, aus Kohlendioxid bestehende oder Kohlendioxid umfassende Schneidstrahlen stabil und mit einer zum trennenden Bearbeiten ausreichenden Länge zu erzeugen. Hierzu reicht bereits ein relativ geringer Überdruck in der Kammer aus, etwa 1,5 bar Überdruck, wobei höhere Überdrücke die Stabilität eines aus Kohlendioxid bestehenden oder Kohlendioxid umfassenden Schneidstrahls noch verbessern.
  • Ausführungsbeispiele der erfindungsgemäßen Schneidvorrichtung werden im Folgenden anhand der beigefügten, schematischen Zeichnungen näher erläutert. Es zeigt:
  • Fig. 1
    ein Schaubild einer ersten grundsätzlichen Ausführungsform einer erfindungsgemäßen Schneidvorrichtung, bei der eine den Schneidstrahl umschließende Kammer auch ein zu bearbeitendes Werkstück vollständig umschließt,
    Fig. 2
    ein Schaubild einer zweiten grundsätzlichen Ausführungsform einer erfindungsgemäßen Schneidvorrichtung, bei der eine den Schneidstrahl umschließende Kammer nur bis an die Oberfläche eines zu bearbeitenden Werkstücks reicht, und
    Fig. 3
    ein detaillierter ausgeführtes Anlagenfließbild einer erfindungsgemäßen Schneidvorrichtung gemäß der ersten grundsätzlichen Ausführungsform.
  • Fig. 1 zeigt schematisch eine erste grundsätzliche Ausführungsform einer Strahlschneidvorrichtung 10 zum Bearbeiten eines Werkstücks mittels eines Schneidstrahls, der durch Pressen eines Schneidfluids unter hohem Druck durch eine Düse erzeugt wird.
  • Die in Fig. 1 dargestellte Strahlschneidvorrichtung 10 verwendet als Schneidfluid flüssiges Kohlendioxid, welches einem Vorratsbehälter 12 entnommen und anschließend in einem Verdichter 14 auf einen gewünschten, hohen Druck gebracht wird und zur Einstellung einer gewünschten Temperatur einen Wärmetauscher 16 durchströmt. Das solchermaßen vorkonditionierte, als Schneidfluid dienende Kohlendioxid wird dann dem Einlass einer Düse 18 zugeführt, an deren Auslass sich unter gleichzeitiger Entspannung des Kohlendioxids ein Schneidstrahl 20 bildet, der zum Bearbeiten eines Werkstücks 22 dient.
  • Bei der Ausführungsform gemäß Fig. 1 umschließt eine Kammer 24a die Düse 18 und das zu bearbeitende Werkstück 22 vollständig. In der Kammer 24a wird im Betrieb der Schneidvorrichtung 10 mittels des durch die Düse 18 strömenden Kohlendioxids ein Überdruck aufgebaut, der bei der Verwendung von Kohlendioxid als Schneidfluid beispielsweise in einem Bereich von 1,5 bis 15 bar über dem Umgebungsdruck liegt. Ein in der Kammer 24a gewünschter Arbeitsdruck kann auch durch eine Einleitung eines Hilfsgases in die Kammer 24a aufgebaut und/oder feinjustiert werden. Auf diese Weise lässt sich ein Anfahrvorgang der Schneidvorrichtung 10 verkürzen oder eliminieren, der ansonsten erforderlich ist, bis der Arbeitsdruck in der Kammer 24a mittels des durch die Düse 18 strömenden Kohlendioxids den gewünschten Wert erreicht hat. Das Hilfsgas kann Kohlendioxid oder ein anderes Gas sein.
  • Während eines Betriebs der Strahlschneidvorrichtung 10 wird der Arbeitsdruck in der Kammer 24a mittels einer Druckregeleinrichtung 26 konstant gehalten, die in strömungsleitender Verbindung mit dem Innenraum der Kammer 24a steht und nur so viel Gas abströmen lässt, dass der gewünschte Arbeitsdruck in der Kammer 24a zumindest im Wesentlichen beibehalten wird. Die Druckregeleinrichtung 26 kann dazu mit einer hier nicht dargestellten Mess- und Steuerungseinrichtung verbunden sein.
  • In der Kammer 24a befindet sich eine hier ebenfalls nicht dargestellte, geeignete Verfahreinrichtung zum relativen Verändern der Position der Düse 18 zum zu bearbeitenden Werkstück 22. Diese Verfahreinrichtung wird hier nicht näher erläutert, da es sich bei ihr um eine dem Fachmann zu diesem Zweck bekannte Vorrichtung handeln kann.
  • In Fig. 2 ist schematisch eine zweite grundsätzliche Ausführungsform einer Strahlschneidvorrichtung 10 wiedergegeben, die sich von der Ausführungsform in Fig. 1 dadurch unterscheidet, dass nicht das gesamte Werkstück 22 von der Kammer 24b umschlossen ist, sondern lediglich die Düse 18 und eine aktuell zu bearbeitende Stelle auf dem Werkstück 22. Mit anderen Worten ist bei der Ausführungsform gemäß Fig. 2 die Kammer 24b zum Werkstück 22 hin offen und wird an ihrer offenen Seite im Betrieb vollständig oder zumindest teilweise durch das zu bearbeitende Werkstück 22 begrenzt. Zur Abdichtung des offenen Endes der Kammer 24b ist die Kammer 24b an ihrem offenen Ende mit einer hier nur angedeuteten Dichtungseinrichtung 28 versehen, die das freie Ende der Kammer 24b entlang ihres Umfangs gegenüber dem in Bearbeitung befindlichen Werkstück 22 abdichtet. Überschüssiger Druck kann wie bei der in Fig. 1 gezeigten Ausführungsform durch die Druckregeleinrichtung 26 abströmen, wobei es je nach Anwendungsfall ausreichen kann, überschüssigen Druck durch eine im Werkstück 22 mittels des Schneidstrahls 20 erzeugte Schnittfuge (nicht gezeigt) und/oder durch einen schmalen Ringspalt zwischen dem freien Ende der Kammer 24b und der der Kammer 24b zugewandten Oberfläche des zu bearbeitenden Werkstücks 22 abströmen zu lassen. Gegebenenfalls kann dann die Druckregeleinrichtung 26 entfallen. Strömt im Betrieb abhängig vom Anwendungsfall zuviel Gas aus der Kammer 24b ab, kann es erforderlich sein, zur Aufrechterhaltung des gewünschten Arbeitsdrucks in der Kammer 24b letzterer Hilfsgas zuzuführen (nicht dargestellt), beispielsweise aus dem Vorratsbehälter 12.
  • Die in der Fig. 2 gezeigte zweite grundsätzliche Ausführungsform der Strahlschneidvorrichtung 10 ist universeller einsetzbar als die Ausführungsform gemäß Fig. 1, weil die Limitierung einer auch das zu bearbeitende Werkstück 22 umschließenden Kammer 24a entfällt. Der Schneidstrahl 20 und das zu bearbeitende Werkstück 22 können einfacher relativ zueinander bewegt und auch verkippt werden. Eine Erzeugung schräger Schnitte oder schräger Bohrungen ist damit einfacher möglich.
  • Obwohl in den Fig. 1 und 2 das zu bearbeitende Werkstück 22 plattenförmig dargestellt ist, eignet sich die Strahlschneidvorrichtung 10 selbstverständlich auch zur Bearbeitung nicht-plattenförmiger Werkstücke. Sicherzustellen ist bei einer Ausgestaltung gemäß Fig. 2 lediglich eine ausreichende Abdichtung des offenen Endes der Kammer 24b zum zu bearbeitenden Werkstück. Dies ist mit ausreichend nachgiebigen Dichtlippen oder gelenkig am Ende der Kammer 24b montierter Dichteinrichtungen ohne besondere Schwierigkeiten zu erreichen.
  • In Fig. 3 ist ein Fließbild einer Versuchsanlage wiedergegeben, mit der Versuche zur grundsätzlichen Eignung von Kohlendioxid als Schneidfluid unternommen worden sind. Die Strahlschneidvorrichtung 10 der Fig. 3 ist ähnlich der in Fig. 1 gezeigten ersten grundsätzlichen Ausführungsform aufgebaut. Wie bereits zuvor erläutert, wird flüssiges Kohlendioxid aus dem Vorratsbehälter 12 entnommen, wobei der im Vorratsbehälter 12 vorhandene Druck mittels einer Druckmesseinrichtung 30 gemessen werden kann.
  • Das dem Vorratsbehälter 12 entnommene Kohlendioxid passiert einen hier wassertemperierten Hochdruckwärmetauscher 16 und wird dabei auf eine gewünschte Temperatur gebracht, die mittels einer dem Wärmetauscher 16 nachgeschalteten Temperaturmesseinrichtung 32 überprüft werden kann. Anschließend wird das Kohlendioxid in dem hier als Membrankompressor ausgeführten Verdichter 14 auf einen gewünschten Vorexpansionsdruck komprimiert, wobei die Temperatur und der Druck des Kohlendioxids nach passieren des Verdichters 14 mittels einer zweiten Temperaturmesseinrichtung 34 und einer zweiten Druckmesseinrichtung 36 überprüft werden können.
  • Zur Expansion des als Schneidfluid dienenden Kohlendioxids wird hier eine handelsübliche Wasserstrahlschneiddüse 18 verwendet, die mit ihrer Düsenaustrittsöffnung in die Kammer 24a hineinragt, in der sich das zu bearbeitende Werkstück 22 befindet. Durch eine mit dem Innenraum der Kammer 24a in strömungsleitender Verbindung stehende Druckregeleinrichtung 26, die hier als einfaches Überströmventil ausgebildet ist, wird der sogenannte Nachexpansionsdruck, d.h. der gewünschte Arbeitsdruck in der Kammer 24a, zumindest annähernd konstant gehalten.
  • Die Bedingungen innerhalb der Kammer 24a können mittels einer dritten Temperaturmesseinrichtung 38 und einer dritten Druckmesseinrichtung 40 überwacht werden.
  • Mit der Strahlschneidvorrichtung 10 gemäß Fig. 3 wurden eine Reihe von Versuchen durchgeführt, von denen einige im Folgenden genauer beschrieben sind.
  • Versuchsbeispiel 1
  • Flüssiges Kohlendioxid wurde mittels des Verdichters 14 auf einen Vorexpansionsdruck von 1800 bar und eine Vorexpansionstemperatur von 25°C gebracht und zur Erzeugung eines Schneidstrahls 20 durch eine Düse 18 mit einem Düsendurchmesser von 0,08 mm entspannt. Mit dem so erzeugten Schneidstrahl 20 wurde ein 10 mm dickes Holzstück bearbeitet. Der Abstand des Werkstücks 22 zur Düse betrug 1 mm, der Arbeitsdruck in der Kammer 24a (Nachexpansionsdruck) betrug 12 bar.
  • Nach einigen Sekunden Bearbeitungszeit hatte der Schneidstrahl 20 ein Loch von 2,4 mm Tiefe und 1,4 mm Durchmesser in das Holzstück geschnitten. Die Schnittkante zeichnete sich durch eine scharfe Grenze ohne sichtbare Beschädigung der nicht bearbeiteten Bereiche aus.
  • Versuchsbeispiel 2
  • Flüssiges Kohlendioxid wurde auf einen Vorexpansionsdruck von 1600 bar und eine Vorexpansionstemperatur von 25°C gebracht und zur Erzeugung eines Schneidstrahls 20 durch eine Düse 18 mit einem Düsendurchmesser von 0,1 mm entspannt. Mit dem Schneidstrahl 20 wurde eine 1 mm dicke Aluminiumplatte bearbeitet. Der Abstand des Werkstücks 22 zur Düse 18 betrug 1 mm, der Nachexpansionsdruck betrug 3 bar.
  • Nach einigen Sekunden Bearbeitungszeit wurde ein Loch von 0,3 mm Tiefe und 0,8 mm Durchmesser in der als Werkstück 22 dienenden Aluminiumplatte erhalten. Trotz eines unterhalb des Tripelpunktdrucks von CO2 (5,18 bar) liegenden Nachexpansionsdrucks wurde durch ein Sichtfenster in der Kammer 24a ein flüssiger Anteil im Kohlendioxidschneidstrahl 20 beobachtet. Die erhaltene Schnittkante zeichnete sich durch eine scharfe Grenze ohne sichtbare Beschädigung der nicht bearbeiteten Bereiche aus.
  • Versuchsbeispiel 3
  • Flüssiges Kohlendioxid wurde auf einen Vorexpansionsdruck von 2000 bar und eine Vorexpansionstemperatur von 30°C gebracht und durch die Düse des Versuchsbeispiels 2 entspannt, um einen Schneidstrahl 20 zu erzeugen. Mit diesem Schneidstrahl wurde eine 1 mm dicke Aluminiumplatte bearbeitet, wobei der Abstand der Aluminiumplatte zur Düse 1 mm betrug und der Nachexpansionsdruck 10 bar betrug. Nach einigen Sekunden Bearbeitungszeit war in die Aluminiumplatte ein Loch von 0,5 mm Tiefe und 0,5 mm Durchmesser geschnitten. Die Schnittkante zeichnete sich durch eine scharfe Grenze ohne sichtbare Beschädigung der nicht bearbeiteten Bereiche aus.
  • Versuchsbeispiel 4
  • Flüssiges Kohlendioxid wurde auf einen Vorexpansionsdruck von 1600 bar und eine Vorexpansionstemperatur von 25°C gebracht und durch die Düse der Versuchsbeispiele 2 und 3 entspannt. Mit dem erzeugten Schneidstrahl wurde eine 1,2 mm dicke Polycarbonatscheibe, eine sogenannte Compact Disc, bearbeitet, wobei der Abstand zur Düse 1 mm betrug und der Nachexpansionsdruck auf 10 bar eingestellt war. Nach einigen Sekunden Bearbeitungszeit wurde ein die Polycarbonatscheibe durchsetzendes Loch mit einem Durchmesser von 0,3 mm erhalten.

Claims (13)

  1. Strahlschneidvorrichtung (10) zum Strahlspanen eines Werkstücks (22) mittels eines Schneidfluids, mit
    - einer Zufuhreinrichtung für das Schneidfluid, und
    - einer Düse (18), durch die im Betrieb der Strahlschneidvorrichtung zugeführtes, unter Druck stehendes Schneidfluid gepresst wird, um einen Schneidstrahl (20) zu erzeugen,
    dadurch gekennzeichnet, dass eine zum Umschließen des Schneidstrahls (20) von seinem Austritt aus der Düse (18) bis zu seinem Auftreffen auf das Werkstück (22) ausgeführte Kammer (24a; 24b) vorhanden ist, die dazu ausgebildet ist, den Schneidstrahl (20) thermodynamisch und/oder strömungsmechanisch zu beeinflussen.
  2. Strahlschneidvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass die Kammer (24a; 24b) druckdicht ist.
  3. Strahlschneidvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Kammer (24a) auch das Werkstück (22) umschließt.
  4. Strahlschneidvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Kammer (24b) zum Werkstück (22) offen ist und im Betrieb teilweise oder vollständig durch das Werkstück (22) begrenzt ist.
  5. Strahlschneidvorrichtung nach Anspruch 4,
    dadurch gekennzeichnet, dass die Kammer (24a; 24b) aus elastischem Material besteht.
  6. Strahlschneidvorrichtung nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, dass ein zum Werkstück (22) offenes Ende der Kammer (24b) eine Dichtungseinrichtung (28) aufweist, die die Kammer (24b) entlang ihres Umfangs zwischen dem offenen Ende und einem in Bearbeitung befindlichen Werkstück (22) abdichtet.
  7. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Druckregeleinrichtung (26) mit der Kammer (24a; 24b) in strömungsleitender Verbindung steht.
  8. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kammer (24a; 24b) mit einer Zuführung für unter Druck stehendes Gas versehen ist.
  9. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Innenseite der Kammer (24a; 24b) im strahlnahen Bereich angeordnet und zur Strömungsbeeinflussung des Schneidstrahls (20) ausgebildet ist und/oder die Kammer (24a; 24b) strömungsbeeinflussende Einbauten enthält.
  10. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kammer (24a; 24b) kühl- und/oder beheizbar ausgebildet ist.
  11. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Schneidfluid eine Flüssigkeit oder ein Gas in unterkritischem oder überkritischem Zustand umfasst.
  12. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schneidstrahl (20) CO2 in zumindest teilweise flüssiger oder zumindest teilweise fester Form enthält.
  13. Strahlschneidvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Wärmetauscher (16) zur Einstellung einer gewünschten Temperatur des Schneidfluids vor seinem Austritt aus der Düse (18) vorhanden ist.
EP12007193.1A 2011-10-17 2012-10-17 Strahlschneidvorrichtung Active EP2583790B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110116228 DE102011116228A1 (de) 2011-10-17 2011-10-17 Strahlschneidvorrichtung

Publications (2)

Publication Number Publication Date
EP2583790A1 true EP2583790A1 (de) 2013-04-24
EP2583790B1 EP2583790B1 (de) 2014-09-03

Family

ID=47073261

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12007193.1A Active EP2583790B1 (de) 2011-10-17 2012-10-17 Strahlschneidvorrichtung

Country Status (2)

Country Link
EP (1) EP2583790B1 (de)
DE (1) DE102011116228A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3180163B1 (de) * 2014-08-14 2021-04-14 Gottfried Wilhelm Leibniz Universität Hannover Strahlschneidvorrichtung und strahlschneidverfahren
WO2023203020A1 (de) * 2022-04-20 2023-10-26 Alfred Kärcher SE & Co. KG Reinigungsgerät

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204883A1 (de) 2017-03-23 2018-09-27 Robert Bosch Gmbh Materialbearbeitung mit einem Eisstrahl

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0569708A1 (de) * 1992-04-15 1993-11-18 Air Products And Chemicals, Inc. Reinigungseinrichtung für harte Oberflächen mittels cryogenen Aerosols
DE4402247A1 (de) * 1993-01-27 1994-07-28 Sumitomo Heavy Industries Oberflächenreinigung mit Argon
WO1997006923A1 (en) * 1995-08-11 1997-02-27 Crycle Cryogenic C.V. Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids
US5782253A (en) * 1991-12-24 1998-07-21 Mcdonnell Douglas Corporation System for removing a coating from a substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313347A1 (de) * 1993-04-23 1995-01-05 Saechsische Werkzeug Und Sonde Schutzglocke für den Schneidstrahl einer Wasserstrahlschneidanlage
DE19648618A1 (de) * 1996-11-12 1998-05-14 Pretec Gmbh Spritz- und Schallschutz für Flüssigkeitsstrahlvorrichtungen
US6280302B1 (en) * 1999-03-24 2001-08-28 Flow International Corporation Method and apparatus for fluid jet formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5782253A (en) * 1991-12-24 1998-07-21 Mcdonnell Douglas Corporation System for removing a coating from a substrate
EP0569708A1 (de) * 1992-04-15 1993-11-18 Air Products And Chemicals, Inc. Reinigungseinrichtung für harte Oberflächen mittels cryogenen Aerosols
DE4402247A1 (de) * 1993-01-27 1994-07-28 Sumitomo Heavy Industries Oberflächenreinigung mit Argon
WO1997006923A1 (en) * 1995-08-11 1997-02-27 Crycle Cryogenic C.V. Method and apparatus for cutting, abrading, and drilling with sublimable particles and vaporous liquids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3180163B1 (de) * 2014-08-14 2021-04-14 Gottfried Wilhelm Leibniz Universität Hannover Strahlschneidvorrichtung und strahlschneidverfahren
WO2023203020A1 (de) * 2022-04-20 2023-10-26 Alfred Kärcher SE & Co. KG Reinigungsgerät

Also Published As

Publication number Publication date
DE102011116228A1 (de) 2013-04-18
EP2583790B1 (de) 2014-09-03

Similar Documents

Publication Publication Date Title
DE60028949T2 (de) Verfahren und vorrichtung zur flüssigkeitsstrahl- formung
DE69607221T2 (de) Verfahren und vorrichtung zum schneiden von hohlglas mittels laserstrahls
DE3804694C2 (de)
EP0787059B1 (de) Verfahren zum kühlen eines schweissnahtbereichs beim laserschweissen und vorrichtung zum durchführen des verfahrens
EP3213859B1 (de) Laserbearbeitungsmaschine mit reststoffentfernungsvorrichtung
EP0985802A1 (de) Filmkühlbohrung und Verfahren zur Herstellung derselben
DE3822097C2 (de)
DE1949315A1 (de) Verfahren und Vorrichtung zum Kuehlen eines Schneidwerkzeugs durch Nebel
EP0081082B1 (de) Verfahren und Vorrichtung zur Herstellung von Wollefasern
DE102012003202A1 (de) Vorrichtung und Verfahren zum Bearbeiten von Werkstücken, insbesondere von Schneiden oder mit Schneiden versehenen Werkstücken, mit einem Nasslaser
EP2583790B1 (de) Strahlschneidvorrichtung
DE69612692T2 (de) Verfahren und Vorrichtung zum Bearbeiten eines Sacklochs
DE102006008959A1 (de) Reinigung von Trommeln in einer Maschine der Tabak verarbeitenden Industrie mittels Trockeneisstrahlen
EP1765551B1 (de) Vorrichtung zur erzeugung eines strahls von trockeneispartikeln
DE3720992C2 (de)
DE4326517A1 (de) Verfahren zur spanenden Bearbeitung von metallischen Werkstücken mit Kühlung
DE102005061401A1 (de) Verfahren zur Mikrostrukturierung einer Oberfläche eines Werkstücks
DE1515240C3 (de) Verfahren zur Bearbeitung von Materialien mittels eines Strahles geladener Partikel und Vorrichtung zur Durchführung dieses Verfahrens
DE102004018133B3 (de) Anordnung zur Erzeugung eines Trockeneispartikel-Strahls sowie deren Verwendung
DE2726078C3 (de) Verfahren und Vorrichtung zum Entfernen von Schlacke o.dgl. von geschmolzenem Metall
DE102010038799A1 (de) Vorrichtung zum Trocknen von Werkstücken nach einem Reinigungsvorgang
DE102007062212A1 (de) Verfahren und Vorrichtung zum Laser-Remote-Schneiden
WO2007020043A1 (de) Verbesserte luftführung an der folienblase
EP3180163B1 (de) Strahlschneidvorrichtung und strahlschneidverfahren
EP2692477A1 (de) Verfahren und Vorrichtung zur Herstellung einer Sägezahnstruktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B24C 9/00 20060101ALI20140311BHEP

Ipc: B24C 1/00 20060101AFI20140311BHEP

Ipc: B24C 1/04 20060101ALI20140311BHEP

INTG Intention to grant announced

Effective date: 20140409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ENGELMEIER, LENA

Inventor name: WEIDNER, ECKHARD

Inventor name: UHLMANN, ECKART

Inventor name: KRIEG, MARK

Inventor name: KILZER, ANDREAS

Inventor name: POLLAK, STEFAN

Inventor name: BILZ, MARTIN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 685298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012001181

Country of ref document: DE

Effective date: 20141016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141204

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140903

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150103

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012001181

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

26N No opposition filed

Effective date: 20150604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141017

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121017

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140903

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 685298

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171017

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231018

Year of fee payment: 12