EP2055386A1 - Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen - Google Patents

Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen Download PDF

Info

Publication number
EP2055386A1
EP2055386A1 EP08105572A EP08105572A EP2055386A1 EP 2055386 A1 EP2055386 A1 EP 2055386A1 EP 08105572 A EP08105572 A EP 08105572A EP 08105572 A EP08105572 A EP 08105572A EP 2055386 A1 EP2055386 A1 EP 2055386A1
Authority
EP
European Patent Office
Prior art keywords
grinding
grinding container
container
cryogenic refrigerant
feed material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08105572A
Other languages
English (en)
French (fr)
Inventor
Oliver Dietrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Group GmbH filed Critical Messer Group GmbH
Publication of EP2055386A1 publication Critical patent/EP2055386A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/04Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls with unperforated container

Definitions

  • the invention relates to a process for fine grinding of solids, in which a feed material is placed in a grinding container with grinding bodies and comminuted by means of the relative movement of the grinding bodies relative to one another and relative to the wall of the grinding container.
  • the invention further relates to a corresponding device.
  • additives are added to the feedstock, for example common salt or graphite, which are softer than that mecanicgut are and in which the particle fragments are distributed in the milling process in dispersed form.
  • the additive is removed - in the case of common salt, for example, by dissolution in water, in the case of graphite by burning, in the case of other substances by suitable solvents which, although they remove the additive, do not attack the material to be ground. In general, however, some impurities are left behind, which is unacceptable in many products.
  • Dry ice is characterized, in addition to a low hardness of about 2 MOHS, in particular characterized by sublimation when heated without residue.
  • a ball mill is used to achieve particularly fine grain sizes.
  • the mill is cooled indirectly by means of a cooling jacket with liquid nitrogen to a temperature of -80 ° C, just below the sublimation temperature of carbon dioxide. Subsequently, the millbase is added together with dry ice particles in the mill and ground.
  • the fine material mixed with the additive is separated from the grinding media and fed to an additive evaporation plant in which the dry ice sublimates without residue to gaseous carbon dioxide.
  • an additive evaporation plant in which the dry ice sublimates without residue to gaseous carbon dioxide.
  • the addition of additives enables the production of nanoscale particles. To produce particles in the range between 1 and 10 microns, however, these methods are too expensive; Moreover, this method can not be used if it can come to a chemical reaction between the millbase and the carbon dioxide used as an additive.
  • Object of the present invention is therefore to provide a method and apparatus for producing very fine particles, in particular from materials with elastic or plastic properties in the size range between 1 and 10 microns, which / works reliably and is easy and inexpensive to implement.
  • This object is achieved in a method of the type mentioned in that the feed material is cooled during the milling process by direct contact with a fed into the grinding container cryogenic refrigerant.
  • a mill with loose grinding media is used, such as, for example, a ball, rod, vibration, agitator, agitator ball or planetary mill.
  • the millbase is placed with the grinding media in a grinding container and ground under the movement of the grinding media against each other and against the container wall.
  • grinding media are balls, Cylpeps, rods, stones or coarse Mahlgutp
  • the direct contact of the feed with the cryogenic refrigerant in the grinding container leads to a very rapid cooling of the surfaces of the feed and thus to the formation of a large temperature difference of the surfaces relative to the core of theassiteilchen.
  • the resulting internal stresses reduce the strength of the mecanicteilchen and thereby in turn favor the crushing process.
  • the grinding media are cooled after a short time and no longer remove heat from the material to be ground; the subcooling of the ground material increases its hardness and thus its grinding ability, whereby the realization of smaller grain sizes is favored, at the same time reduces the agglomeration readiness of the milled material.
  • particle sizes of less than 10 .mu.m, in particular from 1 to 3 .mu.m can be realized with a relatively low outlay on equipment, even when grinding plastic, viscoelastic and rubber-elastic materials.
  • the addition of additives can be dispensed with; This eliminates the time-consuming separation of the ground material from the additive.
  • the at least predominantly registered in the solid or liquid state refrigerant evaporates during thermal contact with the feed material or the grinding media and is then discharged or for cooling a the grinding container downstream classification unit, such as a filter or a scraper used to prevent re-agglomeration in the classification.
  • a the grinding container downstream classification unit such as a filter or a scraper used to prevent re-agglomeration in the classification.
  • care must also be taken to ensure that no chemical reaction between the grinding stock and the refrigerant is triggered unless it is intended.
  • the milled material is classified and the oversize removed during the classification is expediently returned to the mill immediately after classification.
  • the usually still cold oversize contributes to the cooling of the grinding stock to be ground and thus reduces the consumption of refrigerant.
  • the preferred cryogenic refrigerant used is liquid nitrogen.
  • the feed can be cooled down to minus 196 ° C.
  • Very low temperatures lead to an extremely high degree of dissipation of the feed, which favors the production of very small particles. This applies in particular to partially vulcanized elastomers whose reactivity is already reduced at temperatures below -20 ° C. in such a way that fine grinding becomes possible and the flowability is essentially retained even after the grinding.
  • the supply of the cryogenic refrigerant is regulated in dependence on a temperature measured in the grinding container.
  • a further development of the invention provides that the cryogenic refrigerant, which is introduced into the grinding container in the liquid or solid state and evaporates on contact with the feed material and / or the grinding media and / or the wall of the grinding container, produces an overpressure relative to the outside atmosphere in the grinding container.
  • the evaporating refrigerant thus forms an inert gas atmosphere in the grinding container; Due to the overpressure, which may also be a rather slight overpressure of less than 0.1 bar, the penetration of moisture and / or atmospheric oxygen from the outside atmosphere is effectively prevented.
  • the object of the invention is also achieved by a device for fine grinding of solids, with a grinding container for receiving grinding media and a feed material to be ground and with a task unit for supplying the feed to the grinding container, which is characterized in that the task unit and / or Grist container is assigned a feed for a cryogenic refrigerant.
  • the only drawing ( Fig. 1 ) shows a schematic view of an inventive device for producing fines.
  • the apparatus 1 shown in the drawing is a grinding mill in which the feed material in the interior of a grinding container 2 by means of freely movable grinding media 3, such as balls, Cylpeps, rods, stones or coarse feed material particles, by mechanical stress of the feed material between the Mahl morn be comminuted with each other and / or between the grinding media 3 and the inner wall of the grinding container 2.
  • the grinding container 2 is in the exemplary embodiment to a rotatably mounted about its longitudinal axis 4 drum with thermally insulated or cooled walls. By rotation of the grinding container 2, the grinding media 3 located inside move together with the feed material and carry out the mentioned comminuting work.
  • the feed material is fed to the grinding container 2 by means of a feed unit 5.
  • the task unit 5 comprises a metering device, for example a screw 6, by means of which a precisely predetermined amount of feed material can be supplied to the grinding container 2 via a shaft 7.
  • a vortex screw cooler can be used, in which the feed material is already pre-cooled before being fed to the grinding container.
  • a retaining screen 9 In one of the task unit 5 opposite section of the grinding container 2 is a retaining screen 9, the mesh size is smaller than the diameter of the grinding media 3 is selected and thus the grinding media 3 inside holds back the grinding container.
  • the retention screen 9 separates in the grinding container 2 from the actual grinding area from a rear portion 10, in which a pouring opening 11 is provided for the ground Good.
  • the rear portion 10 of the grinding container 2 is rotatably received in a chute 12, in such a way that the ground material is introduced from the pouring opening 11 into the chute 12.
  • a device for sifting and filtering At the chute 12 is followed in a manner not shown here, a device for sifting and filtering. From the device for sifting and filtering can - in here also not shown way - return a return line to the task unit 5, which makes it possible to feed ground material with a grain size above a predetermined maximum value (oversize) of the re-grinding.
  • a supply line 14 which is in a manner not shown here with a source of cryogenic refrigerant in combination.
  • the cryogenic refrigerant used is preferably a cryogenic liquefied gas, for example nitrogen.
  • the supply line 14 is preferably equipped with a thermal insulation.
  • a cryogenic refrigerant and another liquefied gas can be used, for example, carbon dioxide, which is introduced under pressure and relaxes upon entry into the shaft 7 under strong cooling; In this case, at the confluence of the supply line 14 in the shaft 7 to provide a relaxation nozzle.
  • the source of the cryogenic refrigerant is, for example, a tank or a pipeline.
  • a valve 15 is further provided, which is connected via a control circuit 16 with a device 17 for temperature detection.
  • the optionally pre-cooled feed material is introduced via the metering unit 5 and the shaft 7 into the grinding container 2 and comminuted by mechanical loading by the grinding bodies 3.
  • the cryogenic refrigerant is introduced in the liquid state into the shaft 7 and from there into the grinding container 2 via the supply line 14.
  • the feed material in the shaft 7 and the feed material and the grinding media 3 in the grinding container 2 are cooled to a low temperature of, for example, minus 120 ° C. or below. Due to the strong cooling, the feed material in the grinding container. 2 be reliably ground to particle sizes of 1 to 3 microns.
  • the cooled and ground material is fed via the chute 12 to the sifting and filtering device.
  • the cryogenic refrigerant vaporizes to form a certain overpressure in the grinding container 2 and flows via the pouring opening 11 into the chute 12. From there it is passed through the device for filtering and sifting through and then optionally supplied to a further use, for example for the pre-cooling of the feedstock.
  • the device for sifting and filtering is cooled to a very low temperature, in which the flowability of the ground particles is maintained.
  • the device for filtering and screening is preferably also equipped with a thermal insulation or cooling. Via the control circuit 16, the temperature in the interior of the grinding container 2 can be set to a predetermined value or varied according to a predetermined program.
  • the device 1 it is possible to easily and inexpensively produce and classify fines with a particle size of 1 to 3 ⁇ m in the case of solids, in particular also with chemically active substances and substances having plastic or elastic properties.
  • the chemical and physical reactivity of the material to be ground, if present is reduced during the entire process and the risk of re-agglomeration is reduced.
  • the ingress of atmospheric moisture and / or atmospheric oxygen during the grinding process is effectively suppressed.

Abstract

Zur Herstellung feinster Festkörperpartikeln kommen Mahlkörpermühlen zum Einsatz, bei denen das zu mahlende Gut mit Hilfe von Mahlkörpern, insbesondere Kugeln, Cylpeps, Stäben, Steinen oder groben Teilen des Aufgabeguts zerkleinert wird. Aufgrund der Neigung der gemahlenen Partikel zur Agglomeration gestaltet sich die zuverlässige Herstellung kleiner Partikel in der Größenordnung von unter 10 µm sehr schwierig oder sehr aufwändig. Erfindungsgemäß wird dem Mahlgut im Mahlraum ein kryogenes Kältemittel, bevorzugt flüssiger Stickstoff, zugesetzt, um das Mahlgut zu kühlen. Dadurch werden zähe oder elastische Werkstoffe versprödet und die Tendenz zur Agglomeration der gemahlenen Teilchen unterdrückt. Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren ermöglichen die Herstellung von Feinpartikeln auch für plastische, elastische oder gummielastische Werkstoffe mit einer Korngröße von 1 - 3 µm mit einem vergleichsweise geringen apparativen Aufwand.

Description

  • Die Erfindung betrifft ein Verfahren zum Feinstmahlen von Feststoffen, bei dem ein Aufgabegut in einen Mahlbehälter mit Mahlkörpern gegeben und mittels der Relativbewegung der Mahlkörper zueinander und relativ zur Wandung des Mahlbehälters zerkleinert werden. Die Erfindung betrifft ferner eine entsprechende Vorrichtung.
  • Als besonders schwer mahlbare Produkte gelten Materialien mit gummielastischen, viskoelastischen oder plastischen Eigenschaften und/oder Materialien, die aus unterschiedlichen Gründen eine hohen Agglomerationsbereitschaft der gemahlenen Partikel aufweisen, wie technische Kunststoffe, Wachse, Pharmazeutika oder bestimmte Naturstoffe. Zum Zerkleinern derartiger Materialien kommen bislang überwiegend Prallmühlen zum Einsatz. Da genannten Eigenschaften eine zuverlässige Zerkleinerung behindern, werden diese Materialen beim so genannten Kaltmahlen vor dem Mahlvorgang in einem Wirbelschneckenkühler mittels eines kryogenen Kältemittels versprödet und anschließend dosiert der Mühle zugeführt. Problematisch dabei ist, dass beim Mahlvorgang Wärme im beträchtlichen Umfang in das kalte Mahlgut eingetragen wird. Dies macht sich umso stärker bemerkbar, je geringer die Teilchengröße ist. Je kleiner nämlich die Partikel sind, desto höher ist der massenspezifische Energieaufwand, der für die Mahlung erforderlich ist. Unterhalb einer - materialabhängigen - Teilchengröße von wenigen Mikrometern neigen die bereits gemahlenen Partikel dazu, sich zu neuen Agglomeraten zusammenfügen. Die beim Mahlen auftretenden hohen Temperaturen können so zu einem Zusammensintern der Teilchen führen, mit der Folge dass die Agglomerate eine vergleichbare Festigkeit zum ursprünglichen Aufgabegut aufweisen. Dadurch ist es bei einer konventionellen Mahlung auch mit Kühlung nicht möglich, zuverlässig Teilchengrößen von weniger als 10 µm zu realisieren. Bei Materialien mit elastischen oder plastischen Eigenschaften liegt die Grenze der mit konventionellen Mahltechniken wirtschaftlich erzielbaren Korngrößen sogar bei lediglich ca. 50 µm.
  • Um die Re-Agglomeration nach dem Mahlprozess zu vermeiden, setzt man dem Aufgabegut Additive zu, beispielsweise Kochsalz oder Graphit, die weicher als das Aufgabegut sind und in denen die Partikelbruchstücke beim Mahlprozess in dispergierter Form verteilt vorliegen. Nach dem Mahlprozess wird das Additiv entfernt - bei Kochsalz beispielsweise durch Auflösen im Wasser, bei Graphit durch Verbrennen, bei anderen Substanzen durch geeignete Lösemittel, die zwar das Additiv entfernen, jedoch das Mahlgut nicht angreifen. Im allgemeinen bleiben jedoch gewisse Verunreinigungen zurück, was bei vielen Produkten nicht hinnehmbar ist.
  • In der DE 198 32 304 A1 wird demzufolge vorgeschlagen, als Additiv Wassereis oder Trockeneis einzusetzen. Trockeneis zeichnet sich, neben einer geringen Härte von ca. 2 MOHS, insbesondere dadurch aus, bei Erwärmung rückstandfrei zu sublimieren. Bei dem Gegenstand der DE 198 32 304 A1 wird zudem eine Kugelmühle eingesetzt, um besonders feine Korngrößen zu erzielen. Um das als Additiv verwendete Trockeneis auch während des Mahlprozesses im festen Zustand zu halten, wird die Mühle indirekt, mittels eines Kühlmantels mit flüssigem Stickstoff auf eine Temperatur von -80°C, also knapp unterhalb der Sublimationstemperatur von Kohlendioxid, gekühlt. Anschließend wird das Mahlgut zusammen mit Trockeneispartikeln in die Mühle aufgegeben und zermahlen. Das mit dem Additiv vermengte Feingut wird von den Mahlkörpern getrennt und einer Additiv-Verdampfungsanlage zugeführt, in der das Trockeneis rückstandsfrei zu gasförmigem Kohlendioxid sublimiert. Insgesamt gelingt mit der Zugabe von Additiven die Herstellung von Partikeln im Nanobereich. Zur Erzeugung von Partikeln im Bereich zwischen 1 und 10 µm sind diese Verfahren jedoch zu aufwändig; zudem ist dieses Verfahren nicht einsetzbar, wenn es zwischen dem Mahlgut und dem als Additiv eingesetzten Kohlendioxid zu einer chemischen Reaktion kommen kann.
  • Aufgabe der vorliegenden Erfindung ist daher, ein Verfahren sowie eine Vorrichtung zur Erzeugung feinster Partikel insbesondere aus Materialien mit elastischen oder plastischen Eigenschaften im Größenbereich zwischen 1 und 10 µm anzugeben, das/die zuverlässig arbeitet und einfach und preiswert zu realisieren ist.
  • Gelöst ist diese Aufgabe bei einem Verfahren der eingangs genannten Art dadurch, dass das Aufgabegut während des Mahlvorgangs durch direkten Kontakt mit einem in den Mahlbehälter zugeführten kryogenen Kältemittel gekühlt wird.
  • Erfindungsgemäß kommt also eine Mühle mit losen Mahlkörpern zum Einsatz, wie beispielsweise eine Kugel-, Stab-, Schwing-, Rührwerk-, Rührwerkskugel- oder Planetenmühle. Dabei wird das Mahlgut mit den Mahlkörpern in einen Mahlbehälter gegeben und unter der Bewegung der Mahlkörper gegeneinander sowie gegen die Behälterwand zerrieben. Als Mahlkörper dienen Kugeln, Cylpeps, Stäbe, Steine oder grobe Mahlgutpartikel. Durch die direkte Zuführung des Kältemittels in den Mahlbehälter werden sowohl die Mahlkörper als auch das Aufgabegut während des Mahlvorgangs laufend gekühlt. Der insbesondere bei Mahlgut mit elastischen oder plastischen Eigenschaften hochproblematische Wärmeeintrag durch das Mahlen wird also während des Mahlvorgangs laufend kompensiert und kann somit gut kontrolliert werden. Der direkte Kontakt des Aufgabeguts mit dem kryogenen Kältemittel im Mahlbehälter führt zu einer sehr raschen Kühlung der Oberflächen des Aufgabeguts und damit zur Ausbildung einer großen Temperaturdifferenz der Oberflächen gegenüber dem Kern der Aufgabeteilchen. Die dadurch hervorgerufenen inneren Spannungen mindern die Festigkeit der Aufgabeteilchen und begünstigen dadurch wiederum den Zerkleinerungsprozess. Weiterhin sind die Mahlkörper nach kürzester Zeit durchgekühlt und ziehen keine Wärme mehr vom Mahlgut ab; die Unterkühlung des Mahlguts erhöht dessen Härte und damit seine Mahlfähigkeit, wodurch die Realisierung kleinerer Korngrößen begünstigt wird, gleichzeitig vermindert sich die Agglomerationsbereitschaft des gemahlenen Gutes.
  • Beim erfindungsgemäßen Verfahren lassen sich mit einem verhältnismäßig geringen apparativen Aufwand auch beim Mahlen von plastischern, viskoelastischen und gummielastischen Werkstoffen problemlos Korngrößen von unter 10 µm, insbesondere 1 bis 3 µm realisieren. Auf die Zugabe von Additiven kann dabei verzichtet werden; damit entfällt auch die aufwändige Abtrennung des gemahlenen Guts vom Additiv. Das zumindest überwiegend im festen oder flüssigen Zustand eingetragene Kältemittel verdampft beim thermischen Kontakt mit dem Aufgabegut bzw. dem Mahlkörpern und wird anschließen abgeführt oder zur Kühlung einer dem Mahlbehälter nachgeordneten Klassierungseinheit, etwa ein Filter oder ein Schter, eingesetzt, um eine Re-Agglomeration bei der Klassierung zu unterbinden. Selbstverständlich ist bei der Wahl des Kältemittels auch darauf zu achten, dass keine chemische Reaktion zwischen Mahlgut und Kältemittel ausgelöst wird, es sei denn, sie ist bezweckt.
  • Um das erfindungsgemäße Verfahren besonders wirtschaftlich zu gestalten, wird das gemahlene Gut klassiert und das bei der Klassierung abgetrennte Überkorn zweckmäßigerweise unmittelbar nach der Klassierung erneut der Mühle zugeführt. Das dabei in der Regel noch kalte Überkorn trägt mit zur Kühlung des zu mahlenden Mahlguts bei und vermindert so den Kältemittelverbrauch.
  • Als bevorzugtes kryogenes Kältemittel kommt flüssiger Stickstoff zum Einsatz. Durch die direkte Kühlung mit Flüssigstickstoff kann das Aufgabegut bis hinab zu minus 196°C gekühlt werden. Sehr tiefe Temperaturen führen zu einer extrem starken Verspödung des Aufgabeguts, durch die die Erzeugung kleinster Partikel begünstigt wird. Dies gilt insbesondere für teilvulkanisierter Elastomere, deren Reaktivität bereits bei Temperaturen von unter minus 120°C derart herabgesetzt wird, dass eine Feinmahlung möglich wird und die Rieselfähigkeit auch nach der Mahlung im Wesentlichen erhalten bleibt.
  • Vorzugsweise wird die Zuführung des kryogenen Kältemittels in Abhängigkeit von einer im Mahlbehälter gemessenen Temperatur geregelt.
  • Eine Weiterbildung der Erfindung sieht vor, dass das im flüssigen oder festen Zustand in den Mahlbehälter eingetragene und beim Kontakt mit dem Aufgabegut und/oder den Mahlkörpern und/oder der Wand des Mahlbehälters verdampfende kryogene Kältemittel im Mahlbehälter einen Überdruck gegenüber der Außenatmosphäre herstellt. Das verdampfende Kältemittel bildet so eine Inertgasatmosphäre im Mahlbehälter aus; durch den Überdruck, bei dem es sich auch um einen eher geringfügigen Überdruck von weniger als 0,1 bar handeln kann, wird das Eindringen von Feuchtigkeit und/oder Luftsauerstoff aus der Außenatmosphäre wirksam unterbunden.
  • Die Aufgabe der Erfindung wird auch durch eine Vorrichtung zum Feinmahlen von Feststoffen, mit einem Mahlbehälter zum Aufnehmen von Mahlkörpern und einem zu mahlenden Aufgabegut und mit einer Aufgabeeinheit zum Zuführen des Aufgabeguts zum Mahlbehälter gelöst, die dadurch gekennzeichnet ist, dass der Aufgabeeinheit und/oder dem Mahlbehälter eine Zuführung für ein kryogenes Kältemittel zugeordnet ist.
  • Anhand der Zeichnung soll nachfolgend ein Ausführungsbeispiel der Erfindung näher erläutert werden.
  • Die einzige Zeichnung (Fig. 1) zeigt in schematischer Ansicht eine erfindungsgemäße Vorrichtung zum Herstellen von Feingut.
  • Bei der in der Zeichnung dargestellten Vorrichtung 1 handelt es sich um eine Mahlkörpermühle, bei der das Aufgabegut im Innern eines Mahlbehälters 2 mittels frei beweglicher Mahlkörper 3, wie beispielsweise Kugeln, Cylpeps, Stäbe, Steine oder grobe Aufgabegutgutpartikel, durch mechanische Beanspruchung des Aufgabeguts zwischen den Mahlkörpern untereinander und/oder zwischen den Mahlkörper 3 und der Innenwand des Mahlbehälters 2 zerkleinert werden. Beim Mahlbehälter 2 handelt es sich im Ausführungsbeispiel um eine drehbar um ihre Längsachse 4 gelagerte Trommel mit thermisch isolierten oder gekühlten Wänden. Durch Drehung des Mahlbehälters 2 geraten die im Innern befindlichen Mahlkörper 3 zusammen mit dem Aufgabegut in Bewegung und vollziehen die erwähnte Zerkleinerungsarbeit.
  • Das Aufgabegut wird dem Mahlbehälter 2 mittels einer Aufgabeeinheit 5 zugeführt. Die Aufgabeeinheit 5 umfasst eine Dosiereinrichtung, beispielsweise eine Schnecke 6, mittels der eine genau vorbestimmte Menge an Aufgabegut dem Mahlbehälter 2 über einen Schacht 7 zugeführt werden kann. Anstelle einer Schnecke 6 kann auch ein Wirbelschneckenkühler zum Einsatz kommen, in dem das Aufgabegut bereits vor der Zuführung zum Mahlbehälter vorgekühlt wird. Im einem der Aufgabeeinheit 5 gegenüberliegenden Abschnitt des Mahlbehälters 2 befindet sich eine Rückhaltesieb 9, dessen Maschenweite kleiner als die Durchmesser der Mahlkörper 3 gewählt ist und das somit die Mahlkörper 3 im Innern des Mahlbehälters zurückhält. Das Rückhaltesieb 9 trennt im Mahlbehälter 2 vom eigentlichen Mahlbereich einen hinteren Abschnitt 10 ab, in dem eine Schüttöffnung 11 für das gemahlene Gut vorgesehen ist. Der hintere Abschnitt 10 des Mahlbehälters 2 ist in einem Fallschacht 12 drehbar aufgenommen, und zwar derart, dass das gemahlene Gut aus der Schüttöffnung 11 in den Fallschacht 12 eingetragen wird. An den Fallschacht 12 schließt sich in hier nicht gezeigter Weise eine Einrichtung zum Sichten und Filtern an. Von der Einrichtung zum Sichten und Filtern kann - in hier gleichfalls nicht gezeigter Weise - eine Rückleitung zur Aufgabeeinheit 5 zurückführen, die es ermöglicht, gemahlenes Gut mit einer Korngröße oberhalb eines vorgegebenen Höchstwerts (Überkorn) der erneuten Mahlung zuzuführen.
  • In den Schacht 7 mündet eine Zuleitung 14 ein, die in hier nicht gezeigter Weise mit einer Quelle für ein kryogenes Kältemittel in Verbindung steht. Als kryogenes Kältemittel kommt bevorzugt ein tiefkalt verflüssigtes Gas, beispielsweise Stickstoff zum Einsatz. In diesem Falle ist die Zuleitung 14 vorzugsweise mit einer thermischen Isolierung ausgestattet. Als kryogenes Kältemittel kann auch ein anderes verflüssigtes Gas eingesetzt werden, beispielsweise Kohlendioxid, das unter Druck herangeführt wird und beim Eintritt in den Schacht 7 unter starker Abkühlung entspannt; in diesem Falle ist an der Einmündung der Zuleitung 14 in den Schacht 7 eine Entspannungsdüse vorzusehen. Als Quelle für das kryogene Kältemittel dient beispielsweise ein Tank oder eine Rohrleitung. In der Zuleitung 14 ist weiterhin ein Ventil 15 vorgesehen, das über einen Regelkreis 16 mit einer Einrichtung 17 zur Temperaturerfassung verbunden ist.
  • Beim Betrieb der Vorrichtung 1 wird das gegebenenfalls vorgekühlte Aufgabegut über die Dosiereinheit 5 und den Schacht 7 in den Mahlbehälter 2 eingegeben und durch mechanische Beanspruchung durch die Mahlkörper 3 zerkleinert. Zugleich wird über die Zuleitung 14 das kryogene Kältemittel im flüssigen Zustand in den Schacht 7 und von dort in den Mahlbehälter 2 eingeleitet. Durch die Vermengung des Kältemittels mit dem Aufgabegut bzw. den Mahlkörpern 3 wird das Aufgabegut im Schacht 7 sowie das Aufgabegut und die Mahlkörper 3 im Mahlbehälter 2 auf eine tiefe Temperatur von beispielsweise minus 120°C oder darunter gekühlt. Aufgrund der starken Kühlung kann das Aufgabegut im Mahlbehälter 2 auf Korngrößen zuverlässig von 1 bis 3 µm zermahlen werden. Das gekühlte und gemahlene Gut wird über den Fallschacht 12 der Einrichtung zum Sichten und Filtern zugeführt. Das kryogene Kältemittel verdampft unter Ausbildung eines gewissen Überdrucks im Mahlbehälter 2 und strömt über die Schüttöffnung 11 in den Fallschacht 12 ein. Von dort wird es durch die Einrichtung zum Filtern und Sichten hindurch geleitet und anschließend gegebenenfalls einer weiteren Verwendung zugeführt, beispielsweise für die Vorkühlung des Aufgabeguts. Durch diese Führung des kalten gasförmigen Kältemittels wird zugleich auch die Einrichtung zum Sichten und Filtern auf eine sehr tiefe Temperatur gekühlt, bei der die Rieselfähigkeit der gemahlenen Teilchen erhalten bleibt. Die Einrichtung zum Filtern und Sichten ist dabei bevorzugt ebenfalls mit einer thermischen Isolierung oder einer Kühlung ausgerüstet. Über den Regelkreis 16 kann die Temperatur im Innern des Mahlbehälters 2 auf einen vorgegebenen Wert eingestellt oder nach einem vorgegebenen Programm variiert werden.
  • Mit der Vorrichtung 1 ist es möglich, bei Feststoffen, insbesondere auch bei chemisch aktiven Stoffen und Stoffen mit plastischen oder elastischen Eigenschaften einfach und kostengünstig Feingut mit einer Korngröße von 1 - 3 µm zu produzieren und zu klassieren. Mit dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung wird die chemische und physikalische Reaktivität des Mahlgutes - falls vorhanden - während des gesamten Prozesses herabgesetzt und die Gefahr einer Re-Agglomeration reduziert. Zudem wird der Eintritt von Luftfeuchtigkeit und/oder Luftsauerstoff während des Mahlvorgangs wirksam unterdrückt.
  • Bezugszeichenliste
  • 1.
    Vorrichtung
    2.
    Mahlbehälter
    3.
    Mahlkörper
    4.
    Längsachse
    5.
    Aufgabeeinheit
    6.
    Dosiereinrichtung
    7.
    Schacht
    8.
    -
    9.
    Rückhaltesieb
    10.
    Abschnitt
    11.
    Schüttöffnung
    12.
    Fallschacht
    13.
    -
    14.
    Zuleitung
    15.
    Ventil
    16.
    Regelkreis
    17.
    Einrichtung zur Temperaturerfassung

Claims (6)

  1. Verfahren zum Feinstmahlen von Feststoffen, bei dem ein Aufgabegut in einen Mahlbehälter (2) mit Mahlkörpern (3) gegeben und mittels der Relativbewegung der Mahlkörper (3) zueinander und relativ zur Wandung des Mahlbehälters (2) zerkleinert werden,
    dadurch gekennzeichnet,
    dass das Aufgabegut während des Mahlvorgangs durch direkten Kontakt mit einem in den Mahlbehälter (2) zugeführten kryogenen Kältemittel gekühlt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das gemahlene Aufgabegut einer Klassierung unterzogen und das dabei abgetrennte Überkorn wieder dem Mahlbehälter (2) zugeführt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als kryogenes Kältemittel flüssiger Stickstoff eingesetzt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zuführung des kryogenen Kältemittels in Abhängigkeit von einer im Mahlbehälter (2) gemessenen Temperatur geregelt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das im flüssigen oder festen Zustand in den Mahlbehälter (2) eingetragene kryogene Kältemittel im Mahlbehälter (2) verdampft und sich durch Verdampfen des Kältemittels ein Überdruck im Mahlbehälter (2) ausbildet.
  6. Vorrichtung zum Feinmahlen von Feststoffen, mit einem Mahlbehälter (2) zum Aufnehmen von Mahlkörpern (3) und einem zu mahlenden Aufgabegut, und einer Aufgabeeinheit (5) zum Zuführen des Aufgabeguts zum Mahlbehälter (2),
    dadurch gekennzeichnet,
    dass der Aufgabeeinheit (5) und/oder dem Mahlbehälter (2) eine Zuführung (14) für ein kryogenes Kältemittel zugeordnet ist.
EP08105572A 2007-10-29 2008-10-15 Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen Withdrawn EP2055386A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710051545 DE102007051545A1 (de) 2007-10-29 2007-10-29 Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen

Publications (1)

Publication Number Publication Date
EP2055386A1 true EP2055386A1 (de) 2009-05-06

Family

ID=40293762

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08105572A Withdrawn EP2055386A1 (de) 2007-10-29 2008-10-15 Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen

Country Status (2)

Country Link
EP (1) EP2055386A1 (de)
DE (1) DE102007051545A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140341772A1 (en) * 2013-05-16 2014-11-20 Kennametal lndia Limited Methods Of Milling Carbide And Applications Thereof
CN105381848A (zh) * 2015-12-22 2016-03-09 常熟市方塔涂料化工有限公司 卧式涂料研磨机
WO2019073172A1 (fr) * 2017-10-12 2019-04-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procédé de broyage cryogénique avec média de broyage sous forme de gaz cryogénique solidifié
EP3608025A1 (de) * 2018-08-09 2020-02-12 Synron Gmbh Vorrichtung zum kühlen und mahlen von aufbereitungsgut
CN113546745A (zh) * 2021-06-22 2021-10-26 国家能源集团宁夏煤业有限责任公司 制备聚合物粉末的深冷粉碎装置和深冷粉碎方法
CN113769845A (zh) * 2021-09-18 2021-12-10 方运平 一种超低温脱水粉碎机构、城市污泥的处理方法及其应用
CN116332385A (zh) * 2023-04-11 2023-06-27 南方环境科技(杭州)有限公司 一种高效一体化医疗废水处理设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012448A1 (de) * 2010-03-24 2011-09-29 Messer Group Gmbh Verfahren und Vorrichtung zum Kaltmahlen
DE102015111488A1 (de) * 2015-07-15 2017-01-19 Thyssenkrupp Ag Verfahren zur Aufbereitung von Ersatzbrennstoff sowie ein Verfahren zur anschließenden Analyse des Ersatzbrennstoffs
CN108212407A (zh) * 2018-02-08 2018-06-29 西安航空学院 一种低温多级超微粉碎设备及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734412A (en) * 1970-12-16 1973-05-22 Kloeckner Humboldt Deutz Ag Method and arrangement for performing low-temperature grinding operations in a vibrating mill
US3785575A (en) * 1970-11-21 1974-01-15 Kloeckner Humboldt Deutz Ag Vibrating mill with introduction of refrigerants into the solid material being ground in the grinding chamber
US5513809A (en) * 1995-07-03 1996-05-07 Tdf, Inc. Cryogenic vibratory mill apparatus
DE19832304A1 (de) 1998-07-17 2000-01-20 Reiner Weichert Verfahren und Vorrichtung zur Ultrafein-Mahlung von festen Materialien

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4220014A1 (de) * 1992-06-19 1993-12-23 Messer Griesheim Gmbh Verfahren zur Feinmahlung in Apparaten mit Mahlkörpern

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785575A (en) * 1970-11-21 1974-01-15 Kloeckner Humboldt Deutz Ag Vibrating mill with introduction of refrigerants into the solid material being ground in the grinding chamber
US3734412A (en) * 1970-12-16 1973-05-22 Kloeckner Humboldt Deutz Ag Method and arrangement for performing low-temperature grinding operations in a vibrating mill
US5513809A (en) * 1995-07-03 1996-05-07 Tdf, Inc. Cryogenic vibratory mill apparatus
DE19832304A1 (de) 1998-07-17 2000-01-20 Reiner Weichert Verfahren und Vorrichtung zur Ultrafein-Mahlung von festen Materialien

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140341772A1 (en) * 2013-05-16 2014-11-20 Kennametal lndia Limited Methods Of Milling Carbide And Applications Thereof
CN104162476A (zh) * 2013-05-16 2014-11-26 钴碳化钨硬质合金印度有限公司 碾磨碳化物的方法及其应用
US10040123B2 (en) * 2013-05-16 2018-08-07 Kennametal India Limited Methods of milling carbide and applications thereof
CN105381848A (zh) * 2015-12-22 2016-03-09 常熟市方塔涂料化工有限公司 卧式涂料研磨机
WO2019073172A1 (fr) * 2017-10-12 2019-04-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procédé de broyage cryogénique avec média de broyage sous forme de gaz cryogénique solidifié
FR3072308A1 (fr) * 2017-10-12 2019-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif et procede de broyage cryogenique avec media de broyage sous forme de gaz cryogenique solidifie
JP2021508285A (ja) * 2017-10-12 2021-03-04 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 固化した低温ガスの形態の粉砕媒体を用いた低温粉砕のための装置及び方法
EP3608025A1 (de) * 2018-08-09 2020-02-12 Synron Gmbh Vorrichtung zum kühlen und mahlen von aufbereitungsgut
CN113546745A (zh) * 2021-06-22 2021-10-26 国家能源集团宁夏煤业有限责任公司 制备聚合物粉末的深冷粉碎装置和深冷粉碎方法
CN113769845A (zh) * 2021-09-18 2021-12-10 方运平 一种超低温脱水粉碎机构、城市污泥的处理方法及其应用
CN116332385A (zh) * 2023-04-11 2023-06-27 南方环境科技(杭州)有限公司 一种高效一体化医疗废水处理设备

Also Published As

Publication number Publication date
DE102007051545A1 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2055386A1 (de) Verfahren und Vorrichtung zur Feinstmahlung von Feststoffen
EP1100620B1 (de) Verfahren und vorrichtung zur ultrafein-mahlung und -mischung von festen materialien
DE4337215A1 (de) Umlaufmahlanlage
EP3829843A1 (de) Verfahren und vorrichtung zum zerkleinern eines kunststoffs und zur herstellung von pulverförmigen stoffen aus diesem kunststoff
WO2020173704A1 (de) Befülleinrichtung und verfahren zur zuführung von verarbeitungsmaterial an eine extruderschnecke
EP2852480A1 (de) Verfahren und vorrichtung zur herstellung eines holz-kunststoff-verbundwerkstoffs (wpc)
DE4132906C2 (de) Verwendung einer Maschine zur Gipskartonplattenwiederaufarbeitung
EP3643429A1 (de) Wolframlegierungsprodukt, sowie herstellungsverfahren und verwendung für ein wolframlegierungsprodukt
DE102012017906A1 (de) Strahlmittel und Verfahren zu dessen Herstellung
EP1404499B1 (de) Verfahren und vorrichtung zum kühlen von stoffgemischen mittels unterkühltem wassereis
EP2368638B1 (de) Verfahren und vorrichtung zum kaltmahlen
EP3608025A1 (de) Vorrichtung zum kühlen und mahlen von aufbereitungsgut
DE19533078A1 (de) Verfahren und Vorrichtung zum Mahlen und Sichten von Mahlgut
DE102020103912A1 (de) Transportvorrichtung zum Befördern von Kunststoffpartikeln sowie Verfahren zum Zerkleinern von Kunststoffpartikeln
EP3642373B1 (de) Verfahren und vorrichtung zur herstellung von stückigem aufgabegut aus metall
EP1339497B1 (de) Vorrichtung und verfahren zur herstellung von feingut aus chemisch aktivem mahlgut
EP3520899B1 (de) Vorrichtung und verfahren zur hochenergie- und/oder feinstmahlung von partikeln
EP3180163B1 (de) Strahlschneidvorrichtung und strahlschneidverfahren
DE2828053A1 (de) Verfahren und vorrichtung zur herstellung aktivierter gemische aus vorzugsweise pulverfoermigen komponenten, welche zur weiterbearbeitung durch pressen und nachfolgendes sintern bestimmt ist
WO2016203041A1 (de) Verfahren zum zerkleinern von kunststoffmaterial, ein mit diesem verfahren hergestelltes produkt und verwendung desselbigen
DE202009017909U1 (de) Vorrichtung zur Kühlung von Feststoffpartikeln
EP0589444B1 (de) Verfahren und Vorrichtung zum Konditionieren von wiederverwertbarem Kunststoffmaterial
DE19717006A1 (de) Verfahren zur Kühlung von stückigem oder körnigem Gut sowie Vorrichtung zur Durchführung des Verfahrens
DE10352300A1 (de) Verfahren zum Kryogenzerkleinern eines Schüttgutes sowie Anlage zum Kryogenzerkleinern eines Schüttgutes
DE19755578A1 (de) Verfahren und Vorrichtung zur Herstellung von anreagierten Bindepartikeln aus Ausgangskomponenten unterschiedlicher Rezepturen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091106

17Q First examination report despatched

Effective date: 20091201

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100612