EP3178969B1 - Copper-tin alloy plating bath - Google Patents
Copper-tin alloy plating bath Download PDFInfo
- Publication number
- EP3178969B1 EP3178969B1 EP15829133.6A EP15829133A EP3178969B1 EP 3178969 B1 EP3178969 B1 EP 3178969B1 EP 15829133 A EP15829133 A EP 15829133A EP 3178969 B1 EP3178969 B1 EP 3178969B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- copper
- compound
- plating
- amount
- tin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007747 plating Methods 0.000 title claims description 101
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical class [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 title claims description 31
- 150000001875 compounds Chemical class 0.000 claims description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 16
- 150000001491 aromatic compounds Chemical class 0.000 claims description 15
- 239000004094 surface-active agent Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 11
- 239000005749 Copper compound Substances 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 150000001880 copper compounds Chemical class 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 150000003606 tin compounds Chemical class 0.000 claims description 10
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 8
- -1 polyoxyethylene Polymers 0.000 claims description 8
- 229910001431 copper ion Inorganic materials 0.000 claims description 7
- 239000011734 sodium Substances 0.000 claims description 7
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 6
- 239000002736 nonionic surfactant Substances 0.000 claims description 6
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 claims description 6
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 claims description 6
- 150000003934 aromatic aldehydes Chemical class 0.000 claims description 5
- 150000008365 aromatic ketones Chemical class 0.000 claims description 5
- 229910001432 tin ion Inorganic materials 0.000 claims description 5
- PDHFSBXFZGYBIP-UHFFFAOYSA-N 2-[2-(2-hydroxyethylsulfanyl)ethylsulfanyl]ethanol Chemical compound OCCSCCSCCO PDHFSBXFZGYBIP-UHFFFAOYSA-N 0.000 claims description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims description 4
- WTWBUQJHJGUZCY-UHFFFAOYSA-N cuminaldehyde Chemical compound CC(C)C1=CC=C(C=O)C=C1 WTWBUQJHJGUZCY-UHFFFAOYSA-N 0.000 claims description 4
- INBDPOJZYZJUDA-UHFFFAOYSA-N methanedithiol Chemical compound SCS INBDPOJZYZJUDA-UHFFFAOYSA-N 0.000 claims description 4
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 claims description 4
- AXZKCQSGDARVRL-UHFFFAOYSA-N 2-hydroxy-5-methylbenzenesulfonic acid Chemical compound CC1=CC=C(O)C(S(O)(=O)=O)=C1 AXZKCQSGDARVRL-UHFFFAOYSA-N 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- 150000003973 alkyl amines Chemical class 0.000 claims description 3
- WIYCQLLGDNXIBA-UHFFFAOYSA-L disodium;3-(3-sulfonatopropyldisulfanyl)propane-1-sulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)CCCSSCCCS([O-])(=O)=O WIYCQLLGDNXIBA-UHFFFAOYSA-L 0.000 claims description 3
- 229940079877 pyrogallol Drugs 0.000 claims description 3
- 239000001414 (2E)-2-(phenylmethylidene)octanal Substances 0.000 claims description 2
- 239000001496 (E)-2-methyl-3-phenylprop-2-enal Substances 0.000 claims description 2
- KJPRLNWUNMBNBZ-QPJJXVBHSA-N (E)-cinnamaldehyde Chemical compound O=C\C=C\C1=CC=CC=C1 KJPRLNWUNMBNBZ-QPJJXVBHSA-N 0.000 claims description 2
- VLUMOWNVWOXZAU-VQHVLOKHSA-N (e)-2-methyl-3-phenylprop-2-enal Chemical compound O=CC(/C)=C/C1=CC=CC=C1 VLUMOWNVWOXZAU-VQHVLOKHSA-N 0.000 claims description 2
- VYMPLPIFKRHAAC-UHFFFAOYSA-N 1,2-ethanedithiol Chemical compound SCCS VYMPLPIFKRHAAC-UHFFFAOYSA-N 0.000 claims description 2
- HMKKIXGYKWDQSV-SDNWHVSQSA-N 2-Pentyl-3-phenyl-2-propenal Chemical compound CCCCC\C(C=O)=C/C1=CC=CC=C1 HMKKIXGYKWDQSV-SDNWHVSQSA-N 0.000 claims description 2
- BWHOZHOGCMHOBV-UHFFFAOYSA-N Benzalacetone Natural products CC(=O)C=CC1=CC=CC=C1 BWHOZHOGCMHOBV-UHFFFAOYSA-N 0.000 claims description 2
- GUUHFMWKWLOQMM-NTCAYCPXSA-N alpha-hexylcinnamaldehyde Chemical compound CCCCCC\C(C=O)=C/C1=CC=CC=C1 GUUHFMWKWLOQMM-NTCAYCPXSA-N 0.000 claims description 2
- 229940072717 alpha-hexylcinnamaldehyde Drugs 0.000 claims description 2
- GUUHFMWKWLOQMM-UHFFFAOYSA-N alpha-n-hexylcinnamic aldehyde Natural products CCCCCCC(C=O)=CC1=CC=CC=C1 GUUHFMWKWLOQMM-UHFFFAOYSA-N 0.000 claims description 2
- 229940117916 cinnamic aldehyde Drugs 0.000 claims description 2
- KJPRLNWUNMBNBZ-UHFFFAOYSA-N cinnamic aldehyde Natural products O=CC=CC1=CC=CC=C1 KJPRLNWUNMBNBZ-UHFFFAOYSA-N 0.000 claims description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 claims description 2
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims description 2
- ZJLMKPKYJBQJNH-UHFFFAOYSA-N propane-1,3-dithiol Chemical compound SCCCS ZJLMKPKYJBQJNH-UHFFFAOYSA-N 0.000 claims description 2
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 claims description 2
- 235000010378 sodium ascorbate Nutrition 0.000 claims description 2
- 229960005055 sodium ascorbate Drugs 0.000 claims description 2
- 235000010352 sodium erythorbate Nutrition 0.000 claims description 2
- 239000004320 sodium erythorbate Substances 0.000 claims description 2
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 claims description 2
- RBWSWDPRDBEWCR-RKJRWTFHSA-N sodium;(2r)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethanolate Chemical compound [Na+].[O-]C[C@@H](O)[C@H]1OC(=O)C(O)=C1O RBWSWDPRDBEWCR-RKJRWTFHSA-N 0.000 claims description 2
- BWHOZHOGCMHOBV-BQYQJAHWSA-N trans-benzylideneacetone Chemical compound CC(=O)\C=C\C1=CC=CC=C1 BWHOZHOGCMHOBV-BQYQJAHWSA-N 0.000 claims description 2
- 239000010949 copper Substances 0.000 description 18
- 239000000243 solution Substances 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 10
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 239000008139 complexing agent Substances 0.000 description 8
- 230000002378 acidificating effect Effects 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000006174 pH buffer Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 4
- 229910000375 tin(II) sulfate Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002518 antifoaming agent Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 235000011180 diphosphates Nutrition 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229940048084 pyrophosphate Drugs 0.000 description 3
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical compound OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical compound [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 1
- WHOZNOZYMBRCBL-OUKQBFOZSA-N (2E)-2-Tetradecenal Chemical compound CCCCCCCCCCC\C=C\C=O WHOZNOZYMBRCBL-OUKQBFOZSA-N 0.000 description 1
- YXTDAZMTQFUZHK-ZVGUSBNCSA-L (2r,3r)-2,3-dihydroxybutanedioate;tin(2+) Chemical compound [Sn+2].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O YXTDAZMTQFUZHK-ZVGUSBNCSA-L 0.000 description 1
- CKUJRAYMVVJDMG-IYEMJOQQSA-L (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate;tin(2+) Chemical compound [Sn+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O CKUJRAYMVVJDMG-IYEMJOQQSA-L 0.000 description 1
- YCELPWGPXSJYMB-OWOJBTEDSA-N (e)-2-sulfobut-2-enedioic acid Chemical compound OC(=O)\C=C(/C(O)=O)S(O)(=O)=O YCELPWGPXSJYMB-OWOJBTEDSA-N 0.000 description 1
- YCELPWGPXSJYMB-UPHRSURJSA-N (z)-2-sulfobut-2-enedioic acid Chemical compound OC(=O)\C=C(\C(O)=O)S(O)(=O)=O YCELPWGPXSJYMB-UPHRSURJSA-N 0.000 description 1
- COCZYVIRPAUEIY-UHFFFAOYSA-N 2-(sulfomethyl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)CS(O)(=O)=O COCZYVIRPAUEIY-UHFFFAOYSA-N 0.000 description 1
- GEZAUFNYMZVOFV-UHFFFAOYSA-J 2-[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetan-2-yl)oxy]-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetane 2-oxide Chemical compound [Sn+2].[Sn+2].[O-]P([O-])(=O)OP([O-])([O-])=O GEZAUFNYMZVOFV-UHFFFAOYSA-J 0.000 description 1
- HSXUNHYXJWDLDK-UHFFFAOYSA-N 2-hydroxypropane-1-sulfonic acid Chemical compound CC(O)CS(O)(=O)=O HSXUNHYXJWDLDK-UHFFFAOYSA-N 0.000 description 1
- ZMPRRFPMMJQXPP-UHFFFAOYSA-N 2-sulfobenzoic acid Chemical compound OC(=O)C1=CC=CC=C1S(O)(=O)=O ZMPRRFPMMJQXPP-UHFFFAOYSA-N 0.000 description 1
- WBGKAOURNYRYBT-UHFFFAOYSA-N 2-sulfopropanoic acid Chemical compound OC(=O)C(C)S(O)(=O)=O WBGKAOURNYRYBT-UHFFFAOYSA-N 0.000 description 1
- RAADBCJYJHQQBI-UHFFFAOYSA-N 2-sulfoterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(S(O)(=O)=O)=C1 RAADBCJYJHQQBI-UHFFFAOYSA-N 0.000 description 1
- QMWGSOMVXSRXQX-UHFFFAOYSA-N 3-sulfobenzoic acid Chemical compound OC(=O)C1=CC=CC(S(O)(=O)=O)=C1 QMWGSOMVXSRXQX-UHFFFAOYSA-N 0.000 description 1
- OURSFPZPOXNNKX-UHFFFAOYSA-N 3-sulfopropanoic acid Chemical compound OC(=O)CCS(O)(=O)=O OURSFPZPOXNNKX-UHFFFAOYSA-N 0.000 description 1
- HWAQOZGATRIYQG-UHFFFAOYSA-N 4-sulfobenzoic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C=C1 HWAQOZGATRIYQG-UHFFFAOYSA-N 0.000 description 1
- WNKQDGLSQUASME-UHFFFAOYSA-N 4-sulfophthalic acid Chemical compound OC(=O)C1=CC=C(S(O)(=O)=O)C=C1C(O)=O WNKQDGLSQUASME-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- YCPXWRQRBFJBPZ-UHFFFAOYSA-N 5-sulfosalicylic acid Chemical compound OC(=O)C1=CC(S(O)(=O)=O)=CC=C1O YCPXWRQRBFJBPZ-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 229910021594 Copper(II) fluoride Inorganic materials 0.000 description 1
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-araboascorbic acid Natural products OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- WINXNKPZLFISPD-UHFFFAOYSA-M Saccharin sodium Chemical compound [Na+].C1=CC=C2C(=O)[N-]S(=O)(=O)C2=C1 WINXNKPZLFISPD-UHFFFAOYSA-M 0.000 description 1
- 229910001245 Sb alloy Inorganic materials 0.000 description 1
- GAMYVSCDDLXAQW-AOIWZFSPSA-N Thermopsosid Natural products O(C)c1c(O)ccc(C=2Oc3c(c(O)cc(O[C@H]4[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O4)c3)C(=O)C=2)c1 GAMYVSCDDLXAQW-AOIWZFSPSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002140 antimony alloy Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000003788 bath preparation Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- JALQQBGHJJURDQ-UHFFFAOYSA-L bis(methylsulfonyloxy)tin Chemical compound [Sn+2].CS([O-])(=O)=O.CS([O-])(=O)=O JALQQBGHJJURDQ-UHFFFAOYSA-L 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000009 copper(II) carbonate Inorganic materials 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- GWFAVIIMQDUCRA-UHFFFAOYSA-L copper(ii) fluoride Chemical compound [F-].[F-].[Cu+2] GWFAVIIMQDUCRA-UHFFFAOYSA-L 0.000 description 1
- JEHRBPXRCQRGBW-UHFFFAOYSA-L copper;2-hydroxyethanesulfonate Chemical compound [Cu+2].OCCS([O-])(=O)=O.OCCS([O-])(=O)=O JEHRBPXRCQRGBW-UHFFFAOYSA-L 0.000 description 1
- PNUALFVKGRHZQN-UHFFFAOYSA-L copper;2-hydroxypropane-1-sulfonate Chemical compound [Cu+2].CC(O)CS([O-])(=O)=O.CC(O)CS([O-])(=O)=O PNUALFVKGRHZQN-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- ZQLBQWDYEGOYSW-UHFFFAOYSA-L copper;disulfamate Chemical compound [Cu+2].NS([O-])(=O)=O.NS([O-])(=O)=O ZQLBQWDYEGOYSW-UHFFFAOYSA-L 0.000 description 1
- SDFNZYMSEOUVIF-UHFFFAOYSA-N copper;methanesulfonic acid Chemical compound [Cu].CS(O)(=O)=O SDFNZYMSEOUVIF-UHFFFAOYSA-N 0.000 description 1
- 239000011646 cupric carbonate Substances 0.000 description 1
- 235000019854 cupric carbonate Nutrition 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 235000010350 erythorbic acid Nutrition 0.000 description 1
- 239000004318 erythorbic acid Substances 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 229930003944 flavone Natural products 0.000 description 1
- 235000011949 flavones Nutrition 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 229940026239 isoascorbic acid Drugs 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229940044654 phenolsulfonic acid Drugs 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- UUWCBFKLGFQDME-UHFFFAOYSA-N platinum titanium Chemical compound [Ti].[Pt] UUWCBFKLGFQDME-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000001472 potassium tartrate Substances 0.000 description 1
- 229940111695 potassium tartrate Drugs 0.000 description 1
- 235000011005 potassium tartrates Nutrition 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 231100000046 skin rash Toxicity 0.000 description 1
- 229940083542 sodium Drugs 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000001119 stannous chloride Substances 0.000 description 1
- 229940007163 stannous tartrate Drugs 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- AGGIJOLULBJGTQ-UHFFFAOYSA-N sulfoacetic acid Chemical compound OC(=O)CS(O)(=O)=O AGGIJOLULBJGTQ-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- ZPRVNEJJMJMSCN-UHFFFAOYSA-L tin(2+);disulfamate Chemical compound [Sn+2].NS([O-])(=O)=O.NS([O-])(=O)=O ZPRVNEJJMJMSCN-UHFFFAOYSA-L 0.000 description 1
- 229910000597 tin-copper alloy Inorganic materials 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 1
- VHBFFQKBGNRLFZ-UHFFFAOYSA-N vitamin p Natural products O1C2=CC=CC=C2C(=O)C=C1C1=CC=CC=C1 VHBFFQKBGNRLFZ-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/58—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/60—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
Definitions
- the present invention relates to a copper-tin alloy plating bath.
- Nickel plating has been widely used in electroplating. However, there are indications that nickel plating has a nickel allergy problem such that the metallic element (nickel) contained in the plating film causes skin rashes or inflammation. There is thus a need for a technique that replaces nickel plating.
- copper-tin alloys are known to have a white appearance and film properties that are comparable to those of nickel. For this reason, copper-tin alloy plating is drawing attention as an alternative to nickel plating.
- Cyanide ion-containing plating baths have been used for copper-tin alloy plating, but are problematic in terms of the work environment and wastewater treatment regulations.
- pyrophosphate baths e.g., Patent Literature 1 to 3
- acidic baths e.g., Patent Literature 4 and 5
- non-cyanide cyanide-ion-free
- copper-tin alloy baths copper-tin alloy baths.
- a pyrophosphate bath compared with the case in which a cyanide bath is used, the formed plating film has high internal stress, and therefore, cracks are generated during plating, thus making it difficult to thicken the plating film.
- US 2005/263403 A1 discloses a method for electrodeposition of bronzes, with which the substrate to be coated is plated in an acid electrolyte that contains at least tin and copper ions, an alkylsulfonic acid and a wetting agent, and the preparation of such an electrolyte.
- US 2004/035714 A1 relates to an electrolyte and a method for depositing tin-copper alloy layers.
- EP 1 591 563 A1 describes a tin-containing plating bath.
- a primary object of the present invention is to provide a copper-tin alloy plating bath that allows for film thickening without using cyanide ions, and that can also be applied to barrel plating.
- the present inventors conducted extensive research to achieve the above object, and found that a copper-tin alloy plating bath that allows for film thickening without using cyanide ions and that can also be applied to barrel plating can be obtained by using a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound.
- the present invention has been accomplished through further research based on this finding.
- the copper-tin alloy plating bath of the present invention since, regarding the copper-tin alloy plating bath of the present invention, the current density has a small influence on the alloy ratio compared with the case in which hitherto known acidic baths are used, the copper-tin alloy plating bath of the present invention can also be applied to barrel plating with a large variation in the current density. Moreover, a plating film having an excellent bright appearance can be obtained by a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde comprised in the aqueous solution of the copper-tin alloy plating bath.
- Fig. 1 is a diagram showing the relationship between the current density of a copper-tin alloy plating bath and the copper content of a plating film.
- the copper-tin alloy plating bath of the present invention is described in detail below.
- the copper-tin alloy plating bath of the present invention comprises an aqueous solution containing a water-soluble copper compound and a water-soluble divalent tin compound as metal sources, a sulfur-containing compound represented by formula (1): R-(CH 2 ) l -S-(CH 2 ) m -S-(CH 2 ) n -R (1), wherein R is H, OH, or SO 3 Na, and l, m, and n are each independently an integer of 0 to 3, as a complexing agent, and a hydroxyl group-containing aromatic compound.
- the water-soluble copper compound which is a copper ion source, is not particularly limited as long as it is a water-soluble compound containing divalent copper as a copper component.
- Specific examples of water-soluble copper compounds include copper(II) chloride, copper(II) sulfate, copper(II) nitrate, copper(II) carbonate, copper(II) oxide, copper(II) acetate, copper(II) methanesulfonate, copper(II) sulfamate, copper(II) fluoride, copper(II) 2-hydroxyethanesulfonate, copper(II) 2-hydroxypropanesulfonate, copper(II) pyrophosphate, and the like.
- copper(II) sulfate is preferable.
- These water-soluble copper compounds can generally be used singly, or in a combination of two or more.
- the concentration of the water-soluble copper compound is such that the copper ion concentration is 1 to 60 g/L, and preferably 10 to 40 g/L.
- the water-soluble divalent tin compound which is a tin ion source, is not particularly limited as long as it is a water-soluble compound containing divalent tin as a tin component.
- Specific examples of water-soluble divalent tin compounds include stannous chloride, stannous sulfate, stannous acetate, stannous pyrophosphate, stannous methanesulfonate, stannous sulfamate, stannous gluconate, stannous tartrate, stannous oxide, stannous fluoroborate, stannous 2-hydroxyethanesulfonate, stannous 2-hydroxypropanesulfonate, and the like.
- stannous sulfate is preferable.
- These water-soluble divalent tin compounds can generally be used singly, or in a combination of two or more.
- the concentration of the water-soluble divalent tin compound is such that the divalent tin ion concentration is 5 to 40 g/L, and preferably 5 to 25 g/L.
- the proportions of the water-soluble copper compound and the water-soluble divalent tin compound are preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.6, and more preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.3.
- a significant feature of the present invention is that a sulfur-containing compound represented by formula (1): R-(CH 2 ) l -S-(CH 2 ) m -S-(CH 2 ) n -R (1), wherein R is H, OH, or SO 3 Na, and l, m, and n are each independently an integer of 0 to 3 is used as a complexing agent.
- Specific examples of sulfur-containing compounds represented by formula (1) include methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, bis-(sodium sulfopropyl)-disulfide, and the like.
- 3,6-dithia-1,8-octanediol and bis-(sodium sulfopropyl)-disulfide, both of which have little odor, are preferable from the viewpoint of the work environment, and 3,6-dithia-1,8-octanediol is more preferable.
- These sulfur-containing compounds can generally be used singly, or in a combination of two or more.
- the concentration of the complexing agent is 5 to 500 g/L, and preferably 80 to 320 g/L.
- a hydroxyl group-containing aromatic compound is used.
- hydroxyl group-containing aromatic compounds include compounds in which a benzene ring or a furan ring is substituted with one or more hydroxyl groups.
- Compounds having a benzene ring are preferable from the viewpoint of the work environment and solution stability.
- Specific examples of hydroxyl group-containing aromatic compounds include phenol, catechol, hydroquinone, resorcinol, pyrogallol, p -cresolsulfonic acid, ascorbic acid, erythorbic acid; alkali metal salts thereof; and the like.
- alkali metals include sodium, potassium, and the like.
- Preferred hydroxyl group-containing aromatic compounds are phenol, catechol, hydroquinone, resorcinol, pyrogallol, p -cresolsulfonic acid, sodium ascorbate, and sodium erythorbate. These hydroxyl group-containing aromatic compounds are considered to have the action of reducing divalent copper ions (Cu 2+ ) to monovalent copper ions (Cu 1+ ), and are considered to aid copper ions and the complexing agent in forming a complex. These hydroxyl group-containing aromatic compounds can generally be used singly, or in a combination of two or more. The concentration of the hydroxyl group-containing aromatic compound is 1 to 50 g/L, and preferably 5 to 30 g/L.
- the amounts of the complexing agent and the hydroxyl group-containing aromatic compound are such that relative to 1 mol/L of copper, the amount of the complexing agent is preferably 2 mol/L or more, and the amount of the hydroxyl group-containing aromatic compound is preferably 1 mol/L or more.
- acids constituting the base of the copper-tin alloy plating bath include a wide variety of known organic acids and inorganic acids.
- organic acids include methanesulfonic acid, ethanesulfonic acid, 2-propanolsulfonic acid, 2-sulfoacetic acid, 2-sulfopropionic acid, 3-sulfopropionic acid, sulfosuccinic acid, sulfomethylsuccinic acid, sulfofumaric acid, sulfomaleic acid, 2-sulfobenzoic acid, 3-sulfobenzoic acid, 4-sulfobenzoic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, phenolsulfonic acid, and the like.
- inorganic acids include sulfuric acid, hydrochloric acid, sulfamic acid, and the like.
- sulfuric acid, methanesulfonic acid, sulfosuccinic acid, and the like are preferable.
- These acids can generally be used singly, or in a combination of two or more.
- the concentration of the acid is 10 to 400 g/L, and preferably 150 to 200 g/L.
- the copper-tin alloy plating bath is generally in a weakly acidic to strongly acidic pH range. More specifically, the pH of the solution of the plating bath is adjusted to 4.5 or less. An overly high pH is not preferable because if the pH is overly high, the obtained plating film will have insufficient smoothness.
- Examples of usable pH adjusting agents include various acids, such as hydrochloric acid and sulfuric acid; various bases, such as ammonium hydroxide, sodium hydroxide, and potassium hydroxide; and the like.
- a pH buffer may be added to reduce variation in the pH of the plating bath. As the pH buffer, a known pH buffer can be used.
- pH buffers include sodium or potassium acetate, sodium, potassium, or ammonium borate, sodium or potassium formate, sodium or potassium tartrate, sodium, potassium, or ammonium dihydrogen phosphate, and the like. These pH adjusting agents and pH buffers can generally be used singly, or in a combination of two or more.
- the plating bath contains a surfactant, and a leveler. Further, the plating bath may contain additives, such as high molecular compounds, if necessary.
- high molecular compounds examples include polyethylene glycol and the like.
- the surfactant is at least one nonionic surfactant selected from the group consisting of polyoxyethylene alkylamines, polyoxyalkylene phenyl ethers, and polyoxyalkylene naphthyl ethers.
- the concentration of the high molecular compound can be in the range of 0.01 to 100 g/L, and preferably 0.1 to 40 g/L.
- the surfactant is present in an amount of 0.1 to 40 g/L.
- Levelers are additives that improve smoothness and brightness.
- the leveler is at least one aromatic ketone or aromatic aldehyde selected from the group consisting of benzalacetone, cinnamaldehyde, ⁇ -methylcinnamaldehyde, ⁇ -hexylcinnamaldehyde, ⁇ -amylcinnamaldehyde, cuminaldehyde, benzaldehyde, and anisaldehyde.
- aromatic ketone or aromatic aldehyde selected from the group consisting of benzalacetone, cinnamaldehyde, ⁇ -methylcinnamaldehyde, ⁇ -hexylcinnamaldehyde, ⁇ -amylcinnamaldehyde, cuminaldehyde, benzaldehyde, and anisaldehyde.
- the leveler is present in the plating bath in a concentration of 0.01 to 10 g/L.
- a surfactant and a leveler are used in combination.
- the combined use of a surfactant and a leveler can expand the current-density region in which a bright plating film is obtained. This enables a plating film obtained from the plating bath of the present invention to have more excellent smoothness and higher brightness.
- a combination of a surfactant and a leveler a combination of a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde is used.
- the nonionic surfactant is preferably a polyoxyethylene alkylamine.
- a plating film having excellent bright appearance can be obtained by the nonionic surfactant, and the aromatic ketone or the aromatic aldehyde comprised in the aqueous solution of the plating bath.
- a surfactant and a leveler are used in combination, wherein the concentration of the surfactant is 0.1 to 40 g/L, the concentration of the leveler is 0.01 to 10 g/L, and the surfactant:leveler ratio is 1:1 to 100:1.
- Additives other than the additives mentioned above such as stress-reducing agents, conductive auxiliary agents, antifoaming agents, and brighteners, may be suitably selected and added to the plating bath, if necessary.
- stress-reducing agents include naphtholsulfonic acid, saccharin, sodium 1,5-naphthalenedisulfonate, and the like. These can be used singly, or in a combination of two or more.
- conductive auxiliary agents include hydrochloric acid, sulfuric acid, acetic acid, nitric acid, sulfamic acid, pyrophosphoric acid, boric acid, and like acids; ammonium salts, sodium salts, potassium salts, and organic amine salts thereof; and the like. These can be used singly, or in a combination of two or more.
- antifoaming agents and brighteners commercially available antifoaming agents and brighteners for copper plating, tin plating, copper-tin alloy plating, and general plating can be suitably selected and used.
- the bath preparation method for the plating bath of the present invention is not particularly limited.
- the target plating solution can be obtained by dissolving a water-soluble copper compound and a water-soluble divalent tin compound in an aqueous solution in which an acid such as sulfuric acid is dissolved; adding a complexing agent and a reducing agent thereto; adding additives of the present invention thereto and, if necessary, adding other additives thereto; and, finally, adjusting the pH to a predetermined pH.
- the plating bath of the present invention can be used in known plating methods, and can also be applied to barrel plating, in which the variation in current density is large.
- the bath temperature is preferably in the range of 5 to 40°C.
- the cathode current density can also be appropriately determined according to the plating solution used, type of object to be plated, etc.
- a cathode current density of 0.1 to 3 A/dm 2 is preferable.
- the anode may be any known anode that can be used for copper-tin alloy plating, such as a soluble anode (e.g., a tin anode, a phosphorus-containing copper anode, an oxygen-free copper anode, or a copper-tin alloy anode) or an insoluble anode (e.g., a stainless anode, a carbon anode, a lead anode, a lead-tin alloy anode, a lead-antimony alloy anode, a platinum anode, a titanium anode, a titanium-platinum anode, or an oxide coated anode, such as an iridium-oxide-coated titanium electrode).
- a soluble anode e.g., a tin anode, a phosphorus-containing copper anode, an oxygen-free copper anode, or a copper-tin alloy anode
- an insoluble anode e.g
- the cathode is an object to be plated that is described below.
- the method for copper-tin alloy plating of the present invention is a method in which electrolysis is performed using an object to be plated as a cathode in the copper-tin alloy plating bath described above.
- the copper-tin alloy plating film described above is formed on the surface of an article to be plated by the above plating method.
- the alloy composition of the obtained film is such that the Cu:Sn weight ratio is 95:5 to 5:95, and the alloy composition can be easily changed by varying the Cu concentration or the Sn concentration in the plating solution.
- the article to be plated is not particularly limited as long as the surface is conductive and smooth. Examples of such articles include home appliances, faucet fittings, sundry articles, decorations, clothing accessories, and the like.
- the copper-tin alloy plating bath of the present invention can be suitably used for plating for clothing accessories or decorations; and plating for, for example, electronic or electric components. However, this does not limit applications to other purposes.
- Plating treatment was performed using plating baths having the compositions shown in Tables 1 to 6 below under the following conditions to individually form plating films on objects to be plated.
- Tables 1 to 6 show the state of each plating solution, wherein the examples are reference examples, and the properties of each of the plating films formed as described above.
- the evaluation methods for the properties are as follows.
- Solution state The state of each solution was visually confirmed.
- Solution stability After being allowed to stand for 24 hours, each plating solution was visually confirmed.
- Plating appearance and occurrence of cracking Plating appearance and occurrence of cracking were observed with a digital microscope.
- Cu:Sn ratio The Cu:Sn ratio was evaluated with a fluorescent X-ray film thickness measurement apparatus.
- Example 3 which is a reference example, and Comparative Examples 11 and 12
- plating treatment was performed at current densities of 0.01, 0.1, 0.5, 1, 2, and 3 A/dm 2 , and the copper content of the formed plating films was determined.
- Fig. 1 shows the results.
- Tables 1 to 5 reveal that no precipitates were formed in the plating baths of Examples 1 to 50 which are reference examples; that the solution state was stable, especially in the plating baths of Examples 1 to 5, 10 to 31, 34 to 42, and 45 to 50 which are reference examples; and that crack-free plating films were obtained by plating.
- a copper-tin alloy plating film having any ratio can be obtained by adjusting the metal concentration in the plating solution.
- Tables 3 to 5 show that adding a surfactant or a leveler to the plating solution improves brightness of a plating appearance, and that a plating appearance having excellent brightness can be obtained by adding both a surfactant and a leveler to the plating solution.
- Fig. 1 shows that in the plating bath of Example 3, which is a reference example, the current density has a small influence on the alloy ratio as compared with the case of a hitherto known acidic bath (Comparative Example 12).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
- The present invention relates to a copper-tin alloy plating bath.
- Nickel plating has been widely used in electroplating. However, there are indications that nickel plating has a nickel allergy problem such that the metallic element (nickel) contained in the plating film causes skin rashes or inflammation. There is thus a need for a technique that replaces nickel plating.
- Meanwhile, copper-tin alloys are known to have a white appearance and film properties that are comparable to those of nickel. For this reason, copper-tin alloy plating is drawing attention as an alternative to nickel plating.
- Cyanide ion-containing plating baths (cyanide baths) have been used for copper-tin alloy plating, but are problematic in terms of the work environment and wastewater treatment regulations. In recent years, pyrophosphate baths (e.g.,
Patent Literature 1 to 3), acidic baths (e.g., Patent Literature 4 and 5), and the like have been proposed as cyanide-ion-free (hereinafter may be referred to as "non-cyanide"), copper-tin alloy baths. However, when a pyrophosphate bath is used, compared with the case in which a cyanide bath is used, the formed plating film has high internal stress, and therefore, cracks are generated during plating, thus making it difficult to thicken the plating film. In acidic baths, the deposition potentials of copper and tin are not adjusted; therefore, when an acidic bath is used for barrel plating with a large variation in the current density, copper is preferentially deposited, resulting in a large variation in the alloy composition.
US 2010/216302 A1 describes electrolyte compositions including tin ions, ions of one or more alloying metals, a flavone compound and a dihydroxy bis-sulfide, wherein the electrolyte compositions are free of lead and cyanide.
US 2005/263403 A1 discloses a method for electrodeposition of bronzes, with which the substrate to be coated is plated in an acid electrolyte that contains at least tin and copper ions, an alkylsulfonic acid and a wetting agent, and the preparation of such an electrolyte.
US 2004/035714 A1 relates to an electrolyte and a method for depositing tin-copper alloy layers.
EP 1 591 563 A1 - There is thus a demand for a plating bath that enables thickening of a plating film as in the case of a cyanide bath, and that can also be applied to barrel plating.
- PTL 1: JPH10-102278A
- PTL 2:
JP2001-295092A - PTL 3:
JP2004-035980A - PTL 4:
JP2009-161804A - PTL 5:
JP2010-189753A - The present invention has been accomplished in view of the above-described problems of the conventional techniques. A primary object of the present invention is to provide a copper-tin alloy plating bath that allows for film thickening without using cyanide ions, and that can also be applied to barrel plating.
- The present inventors conducted extensive research to achieve the above object, and found that a copper-tin alloy plating bath that allows for film thickening without using cyanide ions and that can also be applied to barrel plating can be obtained by using a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound. The present invention has been accomplished through further research based on this finding.
- More specifically, the present invention and embodiments thereof are defined in the claims.
- Since a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound are used in combination in the copper-tin alloy plating bath of the present invention, an alloy film containing copper and tin at any ratio can be obtained. In addition, since a specific sulfur-containing compound is used as a complexing agent in the copper-tin alloy plating bath of the present invention, cracking is less likely to occur compared with the case in which hitherto known pyrophosphate baths are used, and the plating film can be thickened without using a cyanide bath. Further, since, regarding the copper-tin alloy plating bath of the present invention, the current density has a small influence on the alloy ratio compared with the case in which hitherto known acidic baths are used, the copper-tin alloy plating bath of the present invention can also be applied to barrel plating with a large variation in the current density. Moreover, a plating film having an excellent bright appearance can be obtained by a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde comprised in the aqueous solution of the copper-tin alloy plating bath.
-
Fig. 1 is a diagram showing the relationship between the current density of a copper-tin alloy plating bath and the copper content of a plating film. - The copper-tin alloy plating bath of the present invention is described in detail below.
- The copper-tin alloy plating bath of the present invention comprises an aqueous solution containing a water-soluble copper compound and a water-soluble divalent tin compound as metal sources, a sulfur-containing compound represented by formula (1):
R-(CH2)l-S-(CH2)m-S-(CH2)n-R (1),
wherein R is H, OH, or SO3Na, and l, m, and n are each independently an integer of 0 to 3, as a complexing agent, and a hydroxyl group-containing aromatic compound. - The water-soluble copper compound, which is a copper ion source, is not particularly limited as long as it is a water-soluble compound containing divalent copper as a copper component. Specific examples of water-soluble copper compounds include copper(II) chloride, copper(II) sulfate, copper(II) nitrate, copper(II) carbonate, copper(II) oxide, copper(II) acetate, copper(II) methanesulfonate, copper(II) sulfamate, copper(II) fluoride, copper(II) 2-hydroxyethanesulfonate, copper(II) 2-hydroxypropanesulfonate, copper(II) pyrophosphate, and the like. Among these copper compounds, copper(II) sulfate is preferable. These water-soluble copper compounds can generally be used singly, or in a combination of two or more. The concentration of the water-soluble copper compound is such that the copper ion concentration is 1 to 60 g/L, and preferably 10 to 40 g/L.
- The water-soluble divalent tin compound, which is a tin ion source, is not particularly limited as long as it is a water-soluble compound containing divalent tin as a tin component. Specific examples of water-soluble divalent tin compounds include stannous chloride, stannous sulfate, stannous acetate, stannous pyrophosphate, stannous methanesulfonate, stannous sulfamate, stannous gluconate, stannous tartrate, stannous oxide, stannous fluoroborate, stannous 2-hydroxyethanesulfonate, stannous 2-hydroxypropanesulfonate, and the like. Among these tin compounds, stannous sulfate is preferable. These water-soluble divalent tin compounds can generally be used singly, or in a combination of two or more. The concentration of the water-soluble divalent tin compound is such that the divalent tin ion concentration is 5 to 40 g/L, and preferably 5 to 25 g/L.
- The proportions of the water-soluble copper compound and the water-soluble divalent tin compound are preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.6, and more preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.3.
- A significant feature of the present invention is that a sulfur-containing compound represented by formula (1):
R-(CH2)l-S-(CH2)m-S-(CH2)n-R (1),
wherein R is H, OH, or SO3Na, and l, m, and n are each independently an integer of 0 to 3
is used as a complexing agent. Specific examples of sulfur-containing compounds represented by formula (1) include methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, bis-(sodium sulfopropyl)-disulfide, and the like. Among these compounds, for example, 3,6-dithia-1,8-octanediol and bis-(sodium sulfopropyl)-disulfide, both of which have little odor, are preferable from the viewpoint of the work environment, and 3,6-dithia-1,8-octanediol is more preferable. These sulfur-containing compounds can generally be used singly, or in a combination of two or more. The concentration of the complexing agent is 5 to 500 g/L, and preferably 80 to 320 g/L. - In the present invention, a hydroxyl group-containing aromatic compound is used. Examples of hydroxyl group-containing aromatic compounds include compounds in which a benzene ring or a furan ring is substituted with one or more hydroxyl groups. Compounds having a benzene ring are preferable from the viewpoint of the work environment and solution stability. Specific examples of hydroxyl group-containing aromatic compounds include phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, ascorbic acid, erythorbic acid; alkali metal salts thereof; and the like. Examples of alkali metals include sodium, potassium, and the like. Preferred hydroxyl group-containing aromatic compounds are phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate. These hydroxyl group-containing aromatic compounds are considered to have the action of reducing divalent copper ions (Cu2+) to monovalent copper ions (Cu1+), and are considered to aid copper ions and the complexing agent in forming a complex. These hydroxyl group-containing aromatic compounds can generally be used singly, or in a combination of two or more. The concentration of the hydroxyl group-containing aromatic compound is 1 to 50 g/L, and preferably 5 to 30 g/L.
- The amounts of the complexing agent and the hydroxyl group-containing aromatic compound are such that relative to 1 mol/L of copper, the amount of the complexing agent is preferably 2 mol/L or more, and the amount of the hydroxyl group-containing aromatic compound is preferably 1 mol/L or more.
- Examples of acids constituting the base of the copper-tin alloy plating bath include a wide variety of known organic acids and inorganic acids. Specific examples of organic acids include methanesulfonic acid, ethanesulfonic acid, 2-propanolsulfonic acid, 2-sulfoacetic acid, 2-sulfopropionic acid, 3-sulfopropionic acid, sulfosuccinic acid, sulfomethylsuccinic acid, sulfofumaric acid, sulfomaleic acid, 2-sulfobenzoic acid, 3-sulfobenzoic acid, 4-sulfobenzoic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, phenolsulfonic acid, and the like. Specific examples of inorganic acids include sulfuric acid, hydrochloric acid, sulfamic acid, and the like. Among these, sulfuric acid, methanesulfonic acid, sulfosuccinic acid, and the like are preferable. These acids can generally be used singly, or in a combination of two or more. The concentration of the acid is 10 to 400 g/L, and preferably 150 to 200 g/L.
- The copper-tin alloy plating bath is generally in a weakly acidic to strongly acidic pH range. More specifically, the pH of the solution of the plating bath is adjusted to 4.5 or less. An overly high pH is not preferable because if the pH is overly high, the obtained plating film will have insufficient smoothness. Examples of usable pH adjusting agents include various acids, such as hydrochloric acid and sulfuric acid; various bases, such as ammonium hydroxide, sodium hydroxide, and potassium hydroxide; and the like. In addition, a pH buffer may be added to reduce variation in the pH of the plating bath. As the pH buffer, a known pH buffer can be used. Examples of pH buffers include sodium or potassium acetate, sodium, potassium, or ammonium borate, sodium or potassium formate, sodium or potassium tartrate, sodium, potassium, or ammonium dihydrogen phosphate, and the like. These pH adjusting agents and pH buffers can generally be used singly, or in a combination of two or more.
- The plating bath contains a surfactant, and a leveler. Further, the plating bath may contain additives, such as high molecular compounds, if necessary.
- Examples of high molecular compounds include polyethylene glycol and the like.
- The surfactant is at least one nonionic surfactant selected from the group consisting of polyoxyethylene alkylamines, polyoxyalkylene phenyl ethers, and polyoxyalkylene naphthyl ethers.
- When a high molecular compound is added to the plating bath, the concentration of the high molecular compound can be in the range of 0.01 to 100 g/L, and preferably 0.1 to 40 g/L. The surfactant is present in an amount of 0.1 to 40 g/L.
- Levelers are additives that improve smoothness and brightness. The leveler is at least one aromatic ketone or aromatic aldehyde selected from the group consisting of benzalacetone, cinnamaldehyde, α-methylcinnamaldehyde, α-hexylcinnamaldehyde, α-amylcinnamaldehyde, cuminaldehyde, benzaldehyde, and anisaldehyde. These levelers can be used singly, or in a combination of two or more.
- The leveler is present in the plating bath in a concentration of 0.01 to 10 g/L.
- In the present invention, a surfactant and a leveler are used in combination. The combined use of a surfactant and a leveler can expand the current-density region in which a bright plating film is obtained. This enables a plating film obtained from the plating bath of the present invention to have more excellent smoothness and higher brightness. As a combination of a surfactant and a leveler, a combination of a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde is used. The nonionic surfactant is preferably a polyoxyethylene alkylamine. A plating film having excellent bright appearance can be obtained by the nonionic surfactant, and the aromatic ketone or the aromatic aldehyde comprised in the aqueous solution of the plating bath.
- In the present invention, a surfactant and a leveler are used in combination, wherein the concentration of the surfactant is 0.1 to 40 g/L, the concentration of the leveler is 0.01 to 10 g/L, and the surfactant:leveler ratio is 1:1 to 100:1.
- Additives other than the additives mentioned above, such as stress-reducing agents, conductive auxiliary agents, antifoaming agents, and brighteners, may be suitably selected and added to the plating bath, if necessary.
- Examples of stress-reducing agents include naphtholsulfonic acid, saccharin,
sodium 1,5-naphthalenedisulfonate, and the like. These can be used singly, or in a combination of two or more. Examples of conductive auxiliary agents include hydrochloric acid, sulfuric acid, acetic acid, nitric acid, sulfamic acid, pyrophosphoric acid, boric acid, and like acids; ammonium salts, sodium salts, potassium salts, and organic amine salts thereof; and the like. These can be used singly, or in a combination of two or more. As antifoaming agents and brighteners, commercially available antifoaming agents and brighteners for copper plating, tin plating, copper-tin alloy plating, and general plating can be suitably selected and used. - The bath preparation method for the plating bath of the present invention is not particularly limited. For example, the target plating solution can be obtained by dissolving a water-soluble copper compound and a water-soluble divalent tin compound in an aqueous solution in which an acid such as sulfuric acid is dissolved; adding a complexing agent and a reducing agent thereto; adding additives of the present invention thereto and, if necessary, adding other additives thereto; and, finally, adjusting the pH to a predetermined pH.
- There is no particular limitation on the plating method in which the plating bath of the present invention is used. The plating bath of the present invention can be used in known plating methods, and can also be applied to barrel plating, in which the variation in current density is large.
- When the bath temperature during plating is low, throwing power increases, but the film formation speed tends to decrease. Conversely, when the bath temperature is high, the film formation speed increases, but throwing power onto low-current-density regions tends to decrease. Taking this point into consideration, an appropriate bath temperature can be determined. The bath temperature is preferably in the range of 5 to 40°C.
- The cathode current density can also be appropriately determined according to the plating solution used, type of object to be plated, etc. A cathode current density of 0.1 to 3 A/dm2 is preferable.
- The anode may be any known anode that can be used for copper-tin alloy plating, such as a soluble anode (e.g., a tin anode, a phosphorus-containing copper anode, an oxygen-free copper anode, or a copper-tin alloy anode) or an insoluble anode (e.g., a stainless anode, a carbon anode, a lead anode, a lead-tin alloy anode, a lead-antimony alloy anode, a platinum anode, a titanium anode, a titanium-platinum anode, or an oxide coated anode, such as an iridium-oxide-coated titanium electrode). The cathode is an object to be plated that is described below. Thus, it can be said that the method for copper-tin alloy plating of the present invention is a method in which electrolysis is performed using an object to be plated as a cathode in the copper-tin alloy plating bath described above.
- The copper-tin alloy plating film described above is formed on the surface of an article to be plated by the above plating method. The alloy composition of the obtained film is such that the Cu:Sn weight ratio is 95:5 to 5:95, and the alloy composition can be easily changed by varying the Cu concentration or the Sn concentration in the plating solution. The article to be plated is not particularly limited as long as the surface is conductive and smooth. Examples of such articles include home appliances, faucet fittings, sundry articles, decorations, clothing accessories, and the like.
- The copper-tin alloy plating bath of the present invention can be suitably used for plating for clothing accessories or decorations; and plating for, for example, electronic or electric components. However, this does not limit applications to other purposes.
- The present invention is described below in more detail with reference to Reference Examples and Comparative Examples.
- Plating treatment was performed using plating baths having the compositions shown in Tables 1 to 6 below under the following conditions to individually form plating films on objects to be plated.
- Object to be plated: iron plate (5 cm × 5 cm)
- Plating method:
- Anode: pure tin plate (10 cm × 5 cm, two plates)
- Amount of solution: 1.5 L (a plastic container having a size of 14 cm × 8 cm × 18 cm was used)
- Stirring: shaking with a cathode rocker
- Plating conditions:
- Temperature: 18 to 20°C
- Current density: 1 A/dm2
- Electrolytic time: 25 minutes
- Tables 1 to 6 show the state of each plating solution, wherein the examples are reference examples, and the properties of each of the plating films formed as described above. The evaluation methods for the properties are as follows. Solution state: The state of each solution was visually confirmed. Solution stability: After being allowed to stand for 24 hours, each plating solution was visually confirmed.
Plating appearance and occurrence of cracking: Plating appearance and occurrence of cracking were observed with a digital microscope.
Cu:Sn ratio: The Cu:Sn ratio was evaluated with a fluorescent X-ray film thickness measurement apparatus. - In addition, in the plating baths of Example 3, which is a reference example, and Comparative Examples 11 and 12, plating treatment was performed at current densities of 0.01, 0.1, 0.5, 1, 2, and 3 A/dm2, and the copper content of the formed plating films was determined.
Fig. 1 shows the results.Table 6 Comparative Example 11 Comparative Example 12 Potassium pyrophosphate (g/L) 200 - Copper pyrophosphate (g/L) 20 - Stannous sulfate (g/L) 10 - Organic sulfonic acid (g/L) - 100 Stannous sulfate (g/L) - 36 Copper sulfate pentahydrate (g/L) - 12 Brightener Appropriate amount Appropriate amount pH 7 to 8 0.5 Solution state No precipitates No precipitates Solution stability Good Poor Plating appearance (1 A/dm2) White White Presence or absence of cracks Cracks No cracks Cu:Sn ratio (wt%) 58:42 53:47 - The results of Tables 1 to 5 reveal that no precipitates were formed in the plating baths of Examples 1 to 50 which are reference examples; that the solution state was stable, especially in the plating baths of Examples 1 to 5, 10 to 31, 34 to 42, and 45 to 50 which are reference examples; and that crack-free plating films were obtained by plating. As is clear from the results of Examples 1 to 5, which are reference examples, in Table 1, a copper-tin alloy plating film having any ratio can be obtained by adjusting the metal concentration in the plating solution. The results of Tables 3 to 5 show that adding a surfactant or a leveler to the plating solution improves brightness of a plating appearance, and that a plating appearance having excellent brightness can be obtained by adding both a surfactant and a leveler to the plating solution. In addition,
Fig. 1 shows that in the plating bath of Example 3, which is a reference example, the current density has a small influence on the alloy ratio as compared with the case of a hitherto known acidic bath (Comparative Example 12).
Claims (4)
- A copper-tin alloy plating bath comprising an aqueous solution having a pH of 4.5 or less, the aqueous solution containing a water-soluble divalent copper compound, a water-soluble divalent tin compound, a sulfur-containing compound represented by formula (1) :
R-(CH2)l-S-(CH2)m-S-(CH2)n-R (1),
wherein R is H, OH, or SO3Na, and l, m, and n are each independently an integer of 0 to 3,a hydroxyl group-containing aromatic compound, a surfactant, and a leveler,the surfactant being at least one nonionic surfactant selected from the group consisting of polyoxyethylene alkylamines, polyoxyalkylene phenyl ethers, and polyoxyalkylene naphthyl ethers,the leveler being at least one aromatic ketone or aromatic aldehyde selected from the group consisting of benzalacetone, cinnamaldehyde, α-methylcinnamaldehyde, α-hexylcinnamaldehyde, α-amylcinnamaldehyde, cuminaldehyde, benzaldehyde, and anisaldehyde,the water-soluble divalent copper compound being present in an amount such that the amount of divalent copper ions is 1 to 60 g/L,the water-soluble divalent tin compound being present in an amount such that the amount of divalent tin ions is 5 to 40 g/L,the sulfur-containing compound being present in an amount of 5 to 500 g/L,the hydroxyl group-containing aromatic compound being present in an amount of 1 to 50 g/L,the surfactant being present in an amount of 0.1 to 40 g/L,the leveler being present in an amount of 0.01 to 10 g/L, andthe surfactant:leveler ratio being 1:1 to 100:1. - The copper-tin alloy plating bath according to claim 1, wherein the sulfur-containing compound is at least one member selected from the group consisting of methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, and bis-(sodium sulfopropyl)-disulfide.
- The copper-tin alloy plating bath according to claim 1 or 2, wherein the hydroxyl group-containing aromatic compound is at least one member selected from the group consisting of phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate.
- A method for copper-tin alloy plating, the method comprising performing electrolysis using an object to be plated as a cathode in the copper-tin alloy plating bath according to any one of claims 1 to 3.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014162294 | 2014-08-08 | ||
PCT/JP2015/071330 WO2016021439A1 (en) | 2014-08-08 | 2015-07-28 | Copper-tin alloy plating bath |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3178969A1 EP3178969A1 (en) | 2017-06-14 |
EP3178969A4 EP3178969A4 (en) | 2017-12-27 |
EP3178969B1 true EP3178969B1 (en) | 2020-01-01 |
Family
ID=55263710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15829133.6A Active EP3178969B1 (en) | 2014-08-08 | 2015-07-28 | Copper-tin alloy plating bath |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170204528A1 (en) |
EP (1) | EP3178969B1 (en) |
JP (1) | JP6048712B2 (en) |
CN (1) | CN106661752B (en) |
CA (1) | CA2957587C (en) |
HK (1) | HK1232261A1 (en) |
TW (1) | TWI641729B (en) |
WO (1) | WO2016021439A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019052355A (en) * | 2017-09-15 | 2019-04-04 | 上村工業株式会社 | Tin electroplating or tin-alloy plating solution, and production method of tin or tin-alloy plated material |
JP6645609B2 (en) * | 2018-07-27 | 2020-02-14 | 三菱マテリアル株式会社 | Tin alloy plating solution |
CN110205659B (en) * | 2019-07-17 | 2020-06-16 | 广州三孚新材料科技股份有限公司 | Electrotinning additive and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3871013B2 (en) * | 1998-11-05 | 2007-01-24 | 上村工業株式会社 | Tin-copper alloy electroplating bath and plating method using the same |
DE50106133D1 (en) * | 2000-09-20 | 2005-06-09 | Schloetter Fa Dr Ing Max | ELECTROLYTE AND METHOD OF DEPOSITING TIN COPPER ALLOY LAYERS |
ES2531163T3 (en) * | 2002-10-11 | 2015-03-11 | Enthone | Procedure and electrolyte for galvanic deposition of bronzes |
JP4441726B2 (en) * | 2003-01-24 | 2010-03-31 | 石原薬品株式会社 | Method for producing tin or tin alloy aliphatic sulfonic acid plating bath |
US20060260948A2 (en) * | 2005-04-14 | 2006-11-23 | Enthone Inc. | Method for electrodeposition of bronzes |
EP2357268A4 (en) * | 2008-11-11 | 2012-12-05 | Yuken Kogyo Co Ltd | Zincate zinc plating bath |
EP2221396A1 (en) * | 2008-12-31 | 2010-08-25 | Rohm and Haas Electronic Materials LLC | Lead-Free Tin Alloy Electroplating Compositions and Methods |
JP5313773B2 (en) * | 2009-06-04 | 2013-10-09 | 三菱伸銅株式会社 | Plated copper strip and method for producing the same |
JP6133056B2 (en) * | 2012-12-27 | 2017-05-24 | ローム・アンド・ハース電子材料株式会社 | Tin or tin alloy plating solution |
-
2015
- 2015-07-28 WO PCT/JP2015/071330 patent/WO2016021439A1/en active Application Filing
- 2015-07-28 CN CN201580038971.8A patent/CN106661752B/en not_active Expired - Fee Related
- 2015-07-28 JP JP2015559750A patent/JP6048712B2/en active Active
- 2015-07-28 CA CA2957587A patent/CA2957587C/en active Active
- 2015-07-28 US US15/326,328 patent/US20170204528A1/en not_active Abandoned
- 2015-07-28 EP EP15829133.6A patent/EP3178969B1/en active Active
- 2015-08-04 TW TW104125247A patent/TWI641729B/en active
-
2017
- 2017-06-12 HK HK17105769.9A patent/HK1232261A1/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
WO2016021439A1 (en) | 2016-02-11 |
JP6048712B2 (en) | 2016-12-21 |
CN106661752A (en) | 2017-05-10 |
EP3178969A4 (en) | 2017-12-27 |
TW201612362A (en) | 2016-04-01 |
JPWO2016021439A1 (en) | 2017-04-27 |
CN106661752B (en) | 2021-08-10 |
CA2957587C (en) | 2019-03-05 |
US20170204528A1 (en) | 2017-07-20 |
CA2957587A1 (en) | 2016-02-11 |
TWI641729B (en) | 2018-11-21 |
EP3178969A1 (en) | 2017-06-14 |
HK1232261A1 (en) | 2018-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1874982B1 (en) | Method for electrodeposition of bronzes | |
TWI404834B (en) | Electroplating bronze | |
JP4249438B2 (en) | Pyrophosphate bath for copper-tin alloy plating | |
US20150284864A1 (en) | High temperature resistant silver coated substrates | |
JP4812365B2 (en) | Tin electroplating solution and tin electroplating method | |
US9145617B2 (en) | Adhesion promotion of cyanide-free white bronze | |
TWI548782B (en) | Cyanide-free acidic matte silver electroplating compositions and methods | |
JP2011520037A (en) | Improved copper-tin electrolyte and bronze layer deposition method | |
EP3178969B1 (en) | Copper-tin alloy plating bath | |
US8545689B2 (en) | Gallium electrodeposition processes and chemistries | |
US20090159453A1 (en) | Method for silver plating | |
JP4283256B2 (en) | Electrodeposition method for metals | |
JPH02301588A (en) | Tin, lead or tin-lead alloy electroplating bath and electroplating method | |
CN111485262A (en) | Indium electroplating compositions and methods for electroplating indium on nickel | |
US2757134A (en) | Zinc cyanide electrolyte | |
JPS6312954B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170202 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602015044851 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C25D0003600000 Ipc: C25D0003580000 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20171129 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 3/60 20060101ALI20171123BHEP Ipc: C25D 3/58 20060101AFI20171123BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180706 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190723 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OKUNO CHEMICAL INDUSTRIES CO., LTD. |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: NAGAO, TOSHIMITSU Inventor name: OTSUKA, KUNIAKI Inventor name: KATAYAMA, JUNICHI Inventor name: TSUJIMOTO, TAKAMITSU Inventor name: HARA, KENJI |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1219869 Country of ref document: AT Kind code of ref document: T Effective date: 20200115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015044851 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200101 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200527 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200401 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200402 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200501 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015044851 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1219869 Country of ref document: AT Kind code of ref document: T Effective date: 20200101 |
|
26N | No opposition filed |
Effective date: 20201002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200728 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200728 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200728 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200728 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200101 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220531 Year of fee payment: 8 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602015044851 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 |