CA2957587A1 - Copper-tin alloy plating bath - Google Patents
Copper-tin alloy plating bath Download PDFInfo
- Publication number
- CA2957587A1 CA2957587A1 CA2957587A CA2957587A CA2957587A1 CA 2957587 A1 CA2957587 A1 CA 2957587A1 CA 2957587 A CA2957587 A CA 2957587A CA 2957587 A CA2957587 A CA 2957587A CA 2957587 A1 CA2957587 A1 CA 2957587A1
- Authority
- CA
- Canada
- Prior art keywords
- copper
- tin alloy
- compound
- alloy plating
- plating bath
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/58—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/60—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Mechanical Engineering (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
The objective of the present invention is to provide a copper-tin alloy plating bath which is capable of forming a thick film without using cyanide ions, and which is able to be suited to barrel plating. The present invention relates to a copper-tin alloy plating bath which is composed of an aqueous solution that contains a water-soluble copper compound, a water-soluble divalent tin compound, a sulfur-containing compound represented by formula (1) and an aromatic compound having a hydroxyl group. R-(CH2)l-S-(CH2)m-S-(CH2)n-R (1) (In the formula, R represents H, OH or SO3Na; and each of l, m and n independently represents an integer of 0-3.)
Description
DESCRIPTION
Title of Invention: COPPER-TIN ALLOY PLATING BATH
Technical Field [0001]
The present invention relates to a copper-tin alloy plating bath.
Background Art
Title of Invention: COPPER-TIN ALLOY PLATING BATH
Technical Field [0001]
The present invention relates to a copper-tin alloy plating bath.
Background Art
[0002]
Nickel plating has been widely used in electroplating.
However, there are indications that nickel plating has a nickel allergy problem such that the metallic element (nickel) contained in the plating film causes skin rashes or inflammation. There is thus a need for a technique that replaces nickel plating.
Nickel plating has been widely used in electroplating.
However, there are indications that nickel plating has a nickel allergy problem such that the metallic element (nickel) contained in the plating film causes skin rashes or inflammation. There is thus a need for a technique that replaces nickel plating.
[0003]
Meanwhile, copper-tin alloys are known to have a white appearance and film properties that are comparable to those of nickel. For this reason, copper-tin alloy plating is drawing attention as an alternative to nickel plating.
Meanwhile, copper-tin alloys are known to have a white appearance and film properties that are comparable to those of nickel. For this reason, copper-tin alloy plating is drawing attention as an alternative to nickel plating.
[0004]
Cyanide ion-containing plating baths (cyanide baths) have been used for copper-tin alloy plating, but are problematic in terms of the work environment and wastewater treatment regulations. In recent years, pyrophosphate baths (e.g., Patent Literature 1 to 3), acidic baths (e.g., Patent Literature 4 and
Cyanide ion-containing plating baths (cyanide baths) have been used for copper-tin alloy plating, but are problematic in terms of the work environment and wastewater treatment regulations. In recent years, pyrophosphate baths (e.g., Patent Literature 1 to 3), acidic baths (e.g., Patent Literature 4 and
5), and the like have been proposed as cyanide-ion-free (hereinafter may be referred to as "non-cyanide÷), copper-tin alloy baths. However, when a pyrophosphate bath is used, compared with the case in which a cyanide bath is used, the foLmed plating film has high internal stress, and therefore, cracks are generated during plating, thus making it difficult to thicken the plating film. In acidic baths, the deposition potentials of copper and tin are not adjusted; therefore, when an acidic bath is used for barrel plating with a large variation in the current density, copper is preferentially deposited, resulting in a large variation in the alloy composition.
[0005]
There is thus a demand for a plating bath that enables thickening of a plating film as in the case of a cyanide bath, and that can also be applied to barrel plating.
Citation List Patent Literature
[0005]
There is thus a demand for a plating bath that enables thickening of a plating film as in the case of a cyanide bath, and that can also be applied to barrel plating.
Citation List Patent Literature
[0006]
PTL 1: JPH10-102278A
PTL 2: JP2001-295092A
PTL 3: JP2004-035980A
PTL 4: JP2009-161804A
PTL 5: JP2010-189753A
Summary of Invention Technical Problem
PTL 1: JPH10-102278A
PTL 2: JP2001-295092A
PTL 3: JP2004-035980A
PTL 4: JP2009-161804A
PTL 5: JP2010-189753A
Summary of Invention Technical Problem
[0007]
The present invention has been accomplished in view of the above-described problems of the conventional techniques. A
primary object of the present invention is to provide a copper-tin alloy plating bath that allows for film thickening without using cyanide ions, and that can also be applied to barrel plating.
Solution to Problem
The present invention has been accomplished in view of the above-described problems of the conventional techniques. A
primary object of the present invention is to provide a copper-tin alloy plating bath that allows for film thickening without using cyanide ions, and that can also be applied to barrel plating.
Solution to Problem
[0008]
The present inventors conducted extensive research to achieve the above object, and found that a copper-tin alloy plating bath that allows for film thickening without using cyanide ions and that can also be applied to barrel plating can be obtained by using a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound. The present invention has been accomplished through further research based on this finding.
The present inventors conducted extensive research to achieve the above object, and found that a copper-tin alloy plating bath that allows for film thickening without using cyanide ions and that can also be applied to barrel plating can be obtained by using a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound. The present invention has been accomplished through further research based on this finding.
[0009]
More specifically, the present invention provides the following copper-tin alloy plating bath and the like.
Item 1. A copper-tin alloy plating bath comprising an aqueous solution containing a water-soluble copper compound, a water-soluble divalent tin compound, a sulfur-containing compound represented by formula (1):
R-(CHJI-S-(CH2)m-S-(CHJn-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3, and a hydroxyl group-containing aromatic compound.
Item 2. The copper-tin alloy plating bath according to Item 1, wherein the water-soluble copper compound is present in an amount such that the amount of copper ions is 1 to 60 g/L, the water-soluble divalent tin compound is present in an amount such that the amount of divalent tin ions is 5 to 40 g/L, the sulfur-containing compound is present in an amount of 5 to 500 g/L, and the hydroxyl group-containing aromatic compound is present in an amount of 1 to 50 g/L.
Item 3. The copper-tin alloy plating bath according to Item 1 or 2, wherein the sulfur-containing compound is at least one member selected from the group consisting of methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, and bis-(sodium sulfopropy1)-disulfide.
Item 4. The copper-tin alloy plating bath according to any one of Items 1 to 3, wherein the hydroxyl group-containing aromatic compound is at least one member selected from the group consisting of phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate.
Item 5. The copper-tin alloy plating bath according to any one of Items 1 to 4, wherein the aqueous solution further contains a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde.
Item 6. A method for copper-tin alloy plating, the method comprising perfoLming electrolysis using an object to be plated as a cathode in the copper-tin alloy plating bath according to any one of Items 1 to 5.
Item 7. An article comprising a copper-tin alloy plating film formed by the method according to Item 6.
Advantageous Effects of Invention
More specifically, the present invention provides the following copper-tin alloy plating bath and the like.
Item 1. A copper-tin alloy plating bath comprising an aqueous solution containing a water-soluble copper compound, a water-soluble divalent tin compound, a sulfur-containing compound represented by formula (1):
R-(CHJI-S-(CH2)m-S-(CHJn-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3, and a hydroxyl group-containing aromatic compound.
Item 2. The copper-tin alloy plating bath according to Item 1, wherein the water-soluble copper compound is present in an amount such that the amount of copper ions is 1 to 60 g/L, the water-soluble divalent tin compound is present in an amount such that the amount of divalent tin ions is 5 to 40 g/L, the sulfur-containing compound is present in an amount of 5 to 500 g/L, and the hydroxyl group-containing aromatic compound is present in an amount of 1 to 50 g/L.
Item 3. The copper-tin alloy plating bath according to Item 1 or 2, wherein the sulfur-containing compound is at least one member selected from the group consisting of methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, and bis-(sodium sulfopropy1)-disulfide.
Item 4. The copper-tin alloy plating bath according to any one of Items 1 to 3, wherein the hydroxyl group-containing aromatic compound is at least one member selected from the group consisting of phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate.
Item 5. The copper-tin alloy plating bath according to any one of Items 1 to 4, wherein the aqueous solution further contains a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde.
Item 6. A method for copper-tin alloy plating, the method comprising perfoLming electrolysis using an object to be plated as a cathode in the copper-tin alloy plating bath according to any one of Items 1 to 5.
Item 7. An article comprising a copper-tin alloy plating film formed by the method according to Item 6.
Advantageous Effects of Invention
[0010]
Since a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound are used in combination in the copper-tin alloy plating bath of the present invention, an alloy film containing copper and tin at any ratio can be obtained. In addition, since a specific sulfur-containing compound is used as a complexing agent in the copper-tin alloy plating bath of the present invention, cracking is less likely to occur compared with the case in which hitherto known pyrophosphate baths are used, and the plating film can be thickened without using a cyanide bath. Further, since, regarding the copper-tin alloy plating bath of the present invention, the current density has a small influence on the alloy ratio compared with the case in which hitherto known acidic baths are used, the copper-tin alloy plating bath of the present invention can also be applied to barrel plating with a large variation in the current density. Moreover, a plating film having an excellent bright appearance can be obtained by further adding a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde to the copper-tin alloy plating bath.
Brief Description of Drawings
Since a specific sulfur-containing compound and a specific hydroxyl group-containing aromatic compound are used in combination in the copper-tin alloy plating bath of the present invention, an alloy film containing copper and tin at any ratio can be obtained. In addition, since a specific sulfur-containing compound is used as a complexing agent in the copper-tin alloy plating bath of the present invention, cracking is less likely to occur compared with the case in which hitherto known pyrophosphate baths are used, and the plating film can be thickened without using a cyanide bath. Further, since, regarding the copper-tin alloy plating bath of the present invention, the current density has a small influence on the alloy ratio compared with the case in which hitherto known acidic baths are used, the copper-tin alloy plating bath of the present invention can also be applied to barrel plating with a large variation in the current density. Moreover, a plating film having an excellent bright appearance can be obtained by further adding a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde to the copper-tin alloy plating bath.
Brief Description of Drawings
[0011]
Fig. 1 is a diagram showing the relationship between the current density of a copper-tin alloy plating bath and the copper content of a plating film.
Description of Embodiments
Fig. 1 is a diagram showing the relationship between the current density of a copper-tin alloy plating bath and the copper content of a plating film.
Description of Embodiments
[0012]
The copper-tin alloy plating bath of the present invention is described in detail below.
The copper-tin alloy plating bath of the present invention is described in detail below.
[0013]
The copper-tin alloy plating bath of the present invention comprises an aqueous solution containing a water-soluble copper compound and a water-soluble divalent tin compound as metal sources, a sulfur-containing compound represented by formula (1):
R-(CHAi-S-(CHArn-S-(CHAn-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3, as a complexing agent, and a hydroxyl group-containing aromatic compound.
The copper-tin alloy plating bath of the present invention comprises an aqueous solution containing a water-soluble copper compound and a water-soluble divalent tin compound as metal sources, a sulfur-containing compound represented by formula (1):
R-(CHAi-S-(CHArn-S-(CHAn-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3, as a complexing agent, and a hydroxyl group-containing aromatic compound.
[0014]
The water-soluble copper compound, which is a copper ion source, is not particularly limited as long as it is a water-soluble compound containing divalent copper as a copper component.
Specific examples of water-soluble copper compounds include copper(II) chloride, copper(II) sulfate, copper(II) nitrate, copper(II) carbonate, copper(II) oxide, copper(II) acetate, copper(II) methanesulfonate, copper(II) sulfamate, copper(II) fluoride, copper(II) 2-hydroxyethanesulfonate, copper(II) 2-hydroxypropanesulfonate, copper(II) pyrophosphate, and the like.
Among these copper compounds, copper(II) sulfate is preferable.
These water-soluble copper compounds can generally be used singly, or in a combination of two or more. The concentration of the water-soluble copper compound is, for example, such that the copper ion concentration is about 1 to 60 g/L, and preferably about 10 to 40 g/L.
The water-soluble copper compound, which is a copper ion source, is not particularly limited as long as it is a water-soluble compound containing divalent copper as a copper component.
Specific examples of water-soluble copper compounds include copper(II) chloride, copper(II) sulfate, copper(II) nitrate, copper(II) carbonate, copper(II) oxide, copper(II) acetate, copper(II) methanesulfonate, copper(II) sulfamate, copper(II) fluoride, copper(II) 2-hydroxyethanesulfonate, copper(II) 2-hydroxypropanesulfonate, copper(II) pyrophosphate, and the like.
Among these copper compounds, copper(II) sulfate is preferable.
These water-soluble copper compounds can generally be used singly, or in a combination of two or more. The concentration of the water-soluble copper compound is, for example, such that the copper ion concentration is about 1 to 60 g/L, and preferably about 10 to 40 g/L.
[0015]
The water-soluble divalent tin compound, which is a tin ion source, is not particularly limited as long as it is a water-soluble compound containing divalent tin as a tin component.
Specific examples of water-soluble divalent tin compounds include stannous chloride, stannous sulfate, stannous acetate, stannous pyrophosphate, stannous methanesulfonate, stannous sulfamate, stannous gluconate, stannous tartrate, stannous oxide, stannous fluoroborate, stannous 2-hydroxyethanesulfonate, stannous 2-hydroxypropanesulfonate, and the like. Among these tin compounds, stannous sulfate is preferable. These water-soluble divalent tin compounds can generally be used singly, or in a combination of two or more. The concentration of the water-soluble divalent tin compound is, for example, such that the divalent tin ion concentration is about 5 to 40 g/L, and preferably about 5 to 25 g/L.
The water-soluble divalent tin compound, which is a tin ion source, is not particularly limited as long as it is a water-soluble compound containing divalent tin as a tin component.
Specific examples of water-soluble divalent tin compounds include stannous chloride, stannous sulfate, stannous acetate, stannous pyrophosphate, stannous methanesulfonate, stannous sulfamate, stannous gluconate, stannous tartrate, stannous oxide, stannous fluoroborate, stannous 2-hydroxyethanesulfonate, stannous 2-hydroxypropanesulfonate, and the like. Among these tin compounds, stannous sulfate is preferable. These water-soluble divalent tin compounds can generally be used singly, or in a combination of two or more. The concentration of the water-soluble divalent tin compound is, for example, such that the divalent tin ion concentration is about 5 to 40 g/L, and preferably about 5 to 25 g/L.
[0016]
The proportions of the water-soluble copper compound and the water-soluble divalent tin compound are preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.6, and more preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.3.
The proportions of the water-soluble copper compound and the water-soluble divalent tin compound are preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.6, and more preferably such that the copper:tin ratio (metal component molar ratio) is 1:0.1 to 0.3.
[0017]
A significant feature of the present invention is that a sulfur-containing compound represented by foimula (1):
R-(CH2)I-S-(CH2)ra-S-(CH2)n-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3 is used as a complexing agent. Specific examples of sulfur-containing compounds represented by formula (1) include methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, bis-(sodium sulfopropy1)-disulfide, and the like. Among these compounds, for example, 3,6-dithia-1,8-octanediol and bis-(sodium sulfopropy1)-disulfide, both of which have little odor, are preferable from the viewpoint of the work environment, and 3,6-dithia-1,8-octanediol is more preferable.
These sulfur-containing compounds can generally be used singly, or in a combination of two or more. The concentration of the complexing agent is, for example, about 5 to 500 g/L, and preferably about 80 to 320 g/L.
A significant feature of the present invention is that a sulfur-containing compound represented by foimula (1):
R-(CH2)I-S-(CH2)ra-S-(CH2)n-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3 is used as a complexing agent. Specific examples of sulfur-containing compounds represented by formula (1) include methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, bis-(sodium sulfopropy1)-disulfide, and the like. Among these compounds, for example, 3,6-dithia-1,8-octanediol and bis-(sodium sulfopropy1)-disulfide, both of which have little odor, are preferable from the viewpoint of the work environment, and 3,6-dithia-1,8-octanediol is more preferable.
These sulfur-containing compounds can generally be used singly, or in a combination of two or more. The concentration of the complexing agent is, for example, about 5 to 500 g/L, and preferably about 80 to 320 g/L.
[0018]
In the present invention, a hydroxyl group-containing aromatic compound is used. Examples of hydroxyl group-containing aromatic compounds include compounds in which a benzene ring or a furan ring is substituted with one or more hydroxyl groups.
Compounds having a benzene ring are preferable from the viewpoint of the work environment and solution stability. Specific examples of hydroxyl group-containing aromatic compounds include phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, ascorbic acid, erythorbic acid; alkali metal salts thereof;
and the like. Examples of alkali metals include sodium, potassium, and the like. Preferred hydroxyl group-containing aromatic compounds are phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate. These hydroxyl group-containing aromatic compounds are considered to have the action of reducing divalent copper ions (Cu2) to monovalent copper ions (Cul), and are considered to aid copper ions and the complexing agent in foiming a complex.
These hydroxyl group-containing aromatic compounds can generally be used singly, or in a combination of two or more. The concentration of the hydroxyl group-containing aromatic compound is, for example, about 1 to 50 g/L, and preferably about 5 to 30 g/L.
In the present invention, a hydroxyl group-containing aromatic compound is used. Examples of hydroxyl group-containing aromatic compounds include compounds in which a benzene ring or a furan ring is substituted with one or more hydroxyl groups.
Compounds having a benzene ring are preferable from the viewpoint of the work environment and solution stability. Specific examples of hydroxyl group-containing aromatic compounds include phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, ascorbic acid, erythorbic acid; alkali metal salts thereof;
and the like. Examples of alkali metals include sodium, potassium, and the like. Preferred hydroxyl group-containing aromatic compounds are phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate. These hydroxyl group-containing aromatic compounds are considered to have the action of reducing divalent copper ions (Cu2) to monovalent copper ions (Cul), and are considered to aid copper ions and the complexing agent in foiming a complex.
These hydroxyl group-containing aromatic compounds can generally be used singly, or in a combination of two or more. The concentration of the hydroxyl group-containing aromatic compound is, for example, about 1 to 50 g/L, and preferably about 5 to 30 g/L.
[0019]
The amounts of the complexing agent and the hydroxyl group-containing aromatic compound are such that relative to 1 mol/L of copper, the amount of the complexing agent is preferably 2 mol/L or more, and the amount of the hydroxyl group-containing aromatic compound is preferably 1 mol/L or more.
The amounts of the complexing agent and the hydroxyl group-containing aromatic compound are such that relative to 1 mol/L of copper, the amount of the complexing agent is preferably 2 mol/L or more, and the amount of the hydroxyl group-containing aromatic compound is preferably 1 mol/L or more.
[0020]
Examples of acids constituting the base of the copper-tin alloy plating bath include a wide variety of known organic acids and inorganic acids. Specific examples of organic acids include methanesulfonic acid, ethanesulfonic acid, 2-propanolsulfonic acid, 2-sulfoacetic acid, 2-sulfopropionic acid, 3-sulfopropionic acid, sulfosuccinic acid, sulfomethylsuccinic acid, sulfofumaric acid, sulfomaleic acid, 2-sulfobenzoic acid, 3-sulfobenzoic acid, 4-sulfobenzoic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, phenolsulfonic acid, and the like.
Specific examples of inorganic acids include sulfuric acid, hydrochloric acid, sulfamic acid, and the like. Among these, sulfuric acid, methanesulfonic acid, sulfosuccinic acid, and the like are preferable. These acids can generally be used singly, or in a combination of two or more. The concentration of the acid is about 10 to 400 g/L, and preferably about 150 to 200 g/L.
Examples of acids constituting the base of the copper-tin alloy plating bath include a wide variety of known organic acids and inorganic acids. Specific examples of organic acids include methanesulfonic acid, ethanesulfonic acid, 2-propanolsulfonic acid, 2-sulfoacetic acid, 2-sulfopropionic acid, 3-sulfopropionic acid, sulfosuccinic acid, sulfomethylsuccinic acid, sulfofumaric acid, sulfomaleic acid, 2-sulfobenzoic acid, 3-sulfobenzoic acid, 4-sulfobenzoic acid, 5-sulfosalicylic acid, 4-sulfophthalic acid, 5-sulfoisophthalic acid, 2-sulfoterephthalic acid, phenolsulfonic acid, and the like.
Specific examples of inorganic acids include sulfuric acid, hydrochloric acid, sulfamic acid, and the like. Among these, sulfuric acid, methanesulfonic acid, sulfosuccinic acid, and the like are preferable. These acids can generally be used singly, or in a combination of two or more. The concentration of the acid is about 10 to 400 g/L, and preferably about 150 to 200 g/L.
[0021]
The copper-tin alloy plating bath is generally in a weakly acidic to strongly acidic pH range. More specifically, the pH of the solution of the plating bath is adjusted to 4.5 or less.
An overly high pH is not preferable because if the pH is overly high, the obtained plating film will have insufficient smoothness.
Examples of usable pH adjusting agents include various acids, such as hydrochloric acid and sulfuric acid; various bases, such as ammonium hydroxide, sodium hydroxide, and potassium hydroxide;
and the like. In addition, a pH buffer may be added to reduce variation in the pH of the plating bath. As the pH buffer, a known pH buffer can be used. Examples of pH buffers include sodium or potassium acetate, sodium, potassium, or ammonium borate, sodium or potassium formate, sodium or potassium tartrate, sodium, potassium, or ammonium dihydrogen phosphate, and the like.
These pH adjusting agents and pH buffers can generally be used singly, or in a combination of two or more.
The copper-tin alloy plating bath is generally in a weakly acidic to strongly acidic pH range. More specifically, the pH of the solution of the plating bath is adjusted to 4.5 or less.
An overly high pH is not preferable because if the pH is overly high, the obtained plating film will have insufficient smoothness.
Examples of usable pH adjusting agents include various acids, such as hydrochloric acid and sulfuric acid; various bases, such as ammonium hydroxide, sodium hydroxide, and potassium hydroxide;
and the like. In addition, a pH buffer may be added to reduce variation in the pH of the plating bath. As the pH buffer, a known pH buffer can be used. Examples of pH buffers include sodium or potassium acetate, sodium, potassium, or ammonium borate, sodium or potassium formate, sodium or potassium tartrate, sodium, potassium, or ammonium dihydrogen phosphate, and the like.
These pH adjusting agents and pH buffers can generally be used singly, or in a combination of two or more.
[0022]
The plating bath may contain additives, such as high molecular compounds, surfactants, and levelers, if necessary.
The plating bath may contain additives, such as high molecular compounds, surfactants, and levelers, if necessary.
[0023]
Examples of high molecular compounds include polyethylene glycol and the like.
Examples of high molecular compounds include polyethylene glycol and the like.
[0024]
Examples of usable surfactants include known nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. These surfactants can be used singly, or in a combination of two or more. It is preferable that at least one nonionic surfactant be contained.
Examples of usable surfactants include known nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. These surfactants can be used singly, or in a combination of two or more. It is preferable that at least one nonionic surfactant be contained.
[0025]
Examples of nonionic surfactants include polyoxyalkylene alkyl ethers, polyoxyalkylene phenyl ethers, polyoxyalkylene naphthyl ethers, polyoxyalkylene alkyl esters, polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbit fatty acid esters, polyethylene glycol fatty acid esters, polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene alkylamines, and the like. Among these, polyoxyalkylene alkylamines are preferable, and polyoxyethylene alkylamines are more preferable. Examples of cationic surfactants include tetra-lower-alkylammonium halides, alkyltrimethylammonium halides, alkylamine hydrochlorides, alkylamine oleates, alkylaminoethylglycines, and the like. Examples of anionic surfactants include alkyl--naphthalenesulfonic acids, fatty acid soap-based surfactants, alkyl sulfonic acid salts, alkyl sulfuric acid ester salts, polyoxyethylene alkylphenol ether sulfuric acid ester salts, and the like. Examples of amphoteric surfactants include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaines, dimethylalkylbetaines, sulfobetaines, N-alkyl-p-aminopropionic acids, and the like.
Examples of nonionic surfactants include polyoxyalkylene alkyl ethers, polyoxyalkylene phenyl ethers, polyoxyalkylene naphthyl ethers, polyoxyalkylene alkyl esters, polyoxyalkylene sorbitan fatty acid esters, polyoxyalkylene sorbit fatty acid esters, polyethylene glycol fatty acid esters, polyoxyalkylene glycerin fatty acid esters, polyoxyalkylene alkylamines, and the like. Among these, polyoxyalkylene alkylamines are preferable, and polyoxyethylene alkylamines are more preferable. Examples of cationic surfactants include tetra-lower-alkylammonium halides, alkyltrimethylammonium halides, alkylamine hydrochlorides, alkylamine oleates, alkylaminoethylglycines, and the like. Examples of anionic surfactants include alkyl--naphthalenesulfonic acids, fatty acid soap-based surfactants, alkyl sulfonic acid salts, alkyl sulfuric acid ester salts, polyoxyethylene alkylphenol ether sulfuric acid ester salts, and the like. Examples of amphoteric surfactants include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaines, dimethylalkylbetaines, sulfobetaines, N-alkyl-p-aminopropionic acids, and the like.
[0026]
When a high molecular compound or a surfactant is added to the plating bath, the concentration of the high molecular compound or the surfactant can be in the range of about 0.01 to 100 g/L, and preferably about 0.1 to 40 g/L.
When a high molecular compound or a surfactant is added to the plating bath, the concentration of the high molecular compound or the surfactant can be in the range of about 0.01 to 100 g/L, and preferably about 0.1 to 40 g/L.
[0027]
Levelers are additives that improve smoothness and brightness. Examples of usable levelers include ketone compounds and aldehyde compounds. As ketone compounds, a wide variety of known aromatic ketones and aliphatic ketones can be used.
Examples of aromatic ketones include acetophenone, benzophenone, benzalacetone, and the like. Examples of aliphatic ketones include acetone, diethyl ketone, and the like. As aldehyde compounds, a wide variety of known aromatic aldehydes and aliphatic aldehydes can be used. Examples of aromatic aldehydes include cinnamaldehyde, a-methylcinnamaldehyde, a-amylcinnamaldehyde, a-hexylcinnamaldehyde, cuminaldehyde, benzaldehyde, anisaldehyde, and the like. Examples of aliphatic aldehydes include formaldehyde, acetaldehyde, propionaldehyde, and the like. Among these, aromatic ketones and aromatic aldehydes are preferable. These levelers can be used singly, or in a combination of two or more.
Levelers are additives that improve smoothness and brightness. Examples of usable levelers include ketone compounds and aldehyde compounds. As ketone compounds, a wide variety of known aromatic ketones and aliphatic ketones can be used.
Examples of aromatic ketones include acetophenone, benzophenone, benzalacetone, and the like. Examples of aliphatic ketones include acetone, diethyl ketone, and the like. As aldehyde compounds, a wide variety of known aromatic aldehydes and aliphatic aldehydes can be used. Examples of aromatic aldehydes include cinnamaldehyde, a-methylcinnamaldehyde, a-amylcinnamaldehyde, a-hexylcinnamaldehyde, cuminaldehyde, benzaldehyde, anisaldehyde, and the like. Examples of aliphatic aldehydes include formaldehyde, acetaldehyde, propionaldehyde, and the like. Among these, aromatic ketones and aromatic aldehydes are preferable. These levelers can be used singly, or in a combination of two or more.
[0028]
When a leveler is added to the plating bath, the concentration of the leveler can be in the range of about 0.01 to 30 g/L, and preferably about 0.01 to 10 g/L.
When a leveler is added to the plating bath, the concentration of the leveler can be in the range of about 0.01 to 30 g/L, and preferably about 0.01 to 10 g/L.
[0029]
As additives, a surfactant and a leveler are preferably used in combination. A combined use of a surfactant and a leveler can expand the current-density region in which a bright plating film is obtained. This enables a plating film obtained from the plating bath of the present invention to have more excellent smoothness and higher brightness. As a combination of a surfactant and a leveler, a combination of a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde is preferable. The nonionic surfactant is preferably a polyoxyethylene alkylamine. A
plating film having excellent bright appearance can be obtained by further adding a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde to the plating bath.
As additives, a surfactant and a leveler are preferably used in combination. A combined use of a surfactant and a leveler can expand the current-density region in which a bright plating film is obtained. This enables a plating film obtained from the plating bath of the present invention to have more excellent smoothness and higher brightness. As a combination of a surfactant and a leveler, a combination of a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde is preferable. The nonionic surfactant is preferably a polyoxyethylene alkylamine. A
plating film having excellent bright appearance can be obtained by further adding a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde to the plating bath.
[0030]
When a surfactant and a leveler are used in combination, the concentration of the surfactant is preferably about 0.1 to 40 g/L, the concentration of the leveler is preferably about 0.01 to 10 g/L, and the surfactant:leveler ratio is preferably about 1:1 to 100:1.
When a surfactant and a leveler are used in combination, the concentration of the surfactant is preferably about 0.1 to 40 g/L, the concentration of the leveler is preferably about 0.01 to 10 g/L, and the surfactant:leveler ratio is preferably about 1:1 to 100:1.
[0031]
Additives other than the additives mentioned above, such as stress-reducing agents, conductive auxiliary agents, antifoaming agents, and brighteners, may be suitably selected and added to the plating bath, if necessary.
Additives other than the additives mentioned above, such as stress-reducing agents, conductive auxiliary agents, antifoaming agents, and brighteners, may be suitably selected and added to the plating bath, if necessary.
[0032]
Examples of stress-reducing agents include naphtholsulfonic acid, saccharin, sodium 1,5-naphthalenedisulfonate, and the like. These can be used singly, or in a combination of two or more. Examples of conductive auxiliary agents include hydrochloric acid, sulfuric acid, acetic acid, nitric acid, sulfamic acid, pyrophosphoric acid, boric acid, and like acids; ammonium salts, sodium salts, potassium salts, and organic amine salts thereof; and the like. These can be used singly, or in a combination of two or more. As antifoaming agents and brighteners, commercially available antifoaming agents and brighteners for copper plating, tin plating, copper-tin alloy plating, and general plating can be suitably selected and used.
Examples of stress-reducing agents include naphtholsulfonic acid, saccharin, sodium 1,5-naphthalenedisulfonate, and the like. These can be used singly, or in a combination of two or more. Examples of conductive auxiliary agents include hydrochloric acid, sulfuric acid, acetic acid, nitric acid, sulfamic acid, pyrophosphoric acid, boric acid, and like acids; ammonium salts, sodium salts, potassium salts, and organic amine salts thereof; and the like. These can be used singly, or in a combination of two or more. As antifoaming agents and brighteners, commercially available antifoaming agents and brighteners for copper plating, tin plating, copper-tin alloy plating, and general plating can be suitably selected and used.
[0033]
The bath preparation method for the plating bath of the present invention is not particularly limited. For example, the target plating solution can be obtained by dissolving a water-soluble copper compound and a water-soluble divalent tin compound in an aqueous solution in which an acid such as sulfuric acid is dissolved; adding a complexing agent and a reducing agent thereto; adding, if necessary, other additives thereto; and, finally, adjusting the pH to a predetermined pH.
The bath preparation method for the plating bath of the present invention is not particularly limited. For example, the target plating solution can be obtained by dissolving a water-soluble copper compound and a water-soluble divalent tin compound in an aqueous solution in which an acid such as sulfuric acid is dissolved; adding a complexing agent and a reducing agent thereto; adding, if necessary, other additives thereto; and, finally, adjusting the pH to a predetermined pH.
[0034]
There is no particular limitation on the plating method in which the plating bath of the present invention is used. The plating bath of the present invention can be used in known plating methods, and can also be applied to barrel plating, in which the variation in current density is large.
There is no particular limitation on the plating method in which the plating bath of the present invention is used. The plating bath of the present invention can be used in known plating methods, and can also be applied to barrel plating, in which the variation in current density is large.
[0035]
When the bath temperature during plating is low, throwing power increases, but the film formation speed tends to decrease. Conversely, when the bath temperature is high, the film formation speed increases, but throwing power onto low-current-density regions tends to decrease. Taking this point into consideration, an appropriate bath temperature can be deteLmined.
The bath temperature is preferably in the range of about 5 to 40 C.
When the bath temperature during plating is low, throwing power increases, but the film formation speed tends to decrease. Conversely, when the bath temperature is high, the film formation speed increases, but throwing power onto low-current-density regions tends to decrease. Taking this point into consideration, an appropriate bath temperature can be deteLmined.
The bath temperature is preferably in the range of about 5 to 40 C.
[0036]
The cathode current density can also be appropriately deteLmined according to the plating solution used, type of object to be plated, etc. A cathode current density of about 0.1 to 3 A/dm2 is preferable.
The cathode current density can also be appropriately deteLmined according to the plating solution used, type of object to be plated, etc. A cathode current density of about 0.1 to 3 A/dm2 is preferable.
[0037]
The anode may be any known anode that can be used for copper-tin alloy plating, such as a soluble anode (e.g., a tin anode, a phosphorus-containing copper anode, an oxygen-free copper anode, or a copper-tin alloy anode) or an insoluble anode (e.g., a stainless anode, a carbon anode, a lead anode, a lead-tin alloy anode, a lead-antimony alloy anode, a platinum anode, a titanium anode, a titanium-platinum anode, or an oxide coated anode, such as an iridium-oxide-coated titanium electrode). The cathode is an object to be plated that is described below. Thus, it can be said that the method for copper-tin alloy plating of the present invention is a method in which electrolysis is performed using an object to be plated as a cathode in the copper-tin alloy plating bath described above.
The anode may be any known anode that can be used for copper-tin alloy plating, such as a soluble anode (e.g., a tin anode, a phosphorus-containing copper anode, an oxygen-free copper anode, or a copper-tin alloy anode) or an insoluble anode (e.g., a stainless anode, a carbon anode, a lead anode, a lead-tin alloy anode, a lead-antimony alloy anode, a platinum anode, a titanium anode, a titanium-platinum anode, or an oxide coated anode, such as an iridium-oxide-coated titanium electrode). The cathode is an object to be plated that is described below. Thus, it can be said that the method for copper-tin alloy plating of the present invention is a method in which electrolysis is performed using an object to be plated as a cathode in the copper-tin alloy plating bath described above.
[0038]
The copper-tin alloy plating film described above is formed on the surface of an article to be plated by the above plating method. The alloy composition of the obtained film is such that the Cu:Sn weight ratio is 95:5 to 5:95, and the alloy composition can be easily changed by varying the Cu concentration or the Sn concentration in the plating solution. The article to be plated is not particularly limited as long as the surface is conductive and smooth. Examples of such articles include home appliances, faucet fittings, sundry articles, decorations, clothing accessories, and the like.
The copper-tin alloy plating film described above is formed on the surface of an article to be plated by the above plating method. The alloy composition of the obtained film is such that the Cu:Sn weight ratio is 95:5 to 5:95, and the alloy composition can be easily changed by varying the Cu concentration or the Sn concentration in the plating solution. The article to be plated is not particularly limited as long as the surface is conductive and smooth. Examples of such articles include home appliances, faucet fittings, sundry articles, decorations, clothing accessories, and the like.
[0039]
The copper-tin alloy plating bath of the present invention can be suitably used for plating for clothing accessories or decorations; and plating for, for example, electronic or electric components. However, this does not limit applications to other purposes.
Examples
The copper-tin alloy plating bath of the present invention can be suitably used for plating for clothing accessories or decorations; and plating for, for example, electronic or electric components. However, this does not limit applications to other purposes.
Examples
[0040]
The present invention is described below in more detail with reference to Examples and Comparative Examples.
The present invention is described below in more detail with reference to Examples and Comparative Examples.
[0041]
Plating treatment was performed using plating baths having the compositions shown in Tables 1 to 6 below under the following conditions to individually form plating films on objects to be plated.
Object to be plated: iron plate (5 cm x 5 cm) Plating method:
Anode: pure tin plate (10 cm x 5 cm, two plates) Amount of solution: 1.5 L (a plastic container having a size of 14 cm x 8 cm x 18 cm was used) Stirring: shaking with a cathode rocker Plating conditions:
Temperature: 18 to 20 C
Current density: 1 A/dm2 Electrolytic time: 25 minutes
Plating treatment was performed using plating baths having the compositions shown in Tables 1 to 6 below under the following conditions to individually form plating films on objects to be plated.
Object to be plated: iron plate (5 cm x 5 cm) Plating method:
Anode: pure tin plate (10 cm x 5 cm, two plates) Amount of solution: 1.5 L (a plastic container having a size of 14 cm x 8 cm x 18 cm was used) Stirring: shaking with a cathode rocker Plating conditions:
Temperature: 18 to 20 C
Current density: 1 A/dm2 Electrolytic time: 25 minutes
[0042]
Tables 1 to 6 show the state of each plating solution, and the properties of each of the plating films formed as described above. The evaluation methods for the properties are as follows.
Solution state: The state of each solution was visually confi/med.
Solution stability: After being allowed to stand for 24 hours, each plating solution was visually confimed.
Plating appearance and occurrence of cracking: Plating appearance and occurrence of cracking were observed with a digital microscope.
Cu:Sn ratio: The Cu:Sn ratio was evaluated with a fluorescent X-ray film thickness measurement apparatus.
Tables 1 to 6 show the state of each plating solution, and the properties of each of the plating films formed as described above. The evaluation methods for the properties are as follows.
Solution state: The state of each solution was visually confi/med.
Solution stability: After being allowed to stand for 24 hours, each plating solution was visually confimed.
Plating appearance and occurrence of cracking: Plating appearance and occurrence of cracking were observed with a digital microscope.
Cu:Sn ratio: The Cu:Sn ratio was evaluated with a fluorescent X-ray film thickness measurement apparatus.
[0043]
In addition, in the plating baths of Example 3 and Comparative Examples 11 and 12, plating treatment was perfoLmed at current densities of 0.01, 0.1, 0.5, 1, 2, and 3 A/dm2, and the copper content of the formed plating films was determined. Fig. 1 shows the results.
..
[ 0 04 4 ]
Table 1 Example 1 Example 2 Example] Example 4 Example 5 Example 6 , Example 7 Ex ample B Ex areal 9 Cermatalive Example, Conearalwe Ex envie 2 Cemparalne Exanle 3 Conparakve Exanple 4 Conaralrve Example 5 98% sulfuric acid (g/L) 185 185 185 185 185 Methanesulbnic acid (q/L) - - - 150 -- - - - - -Sulbsoccinic add (q/L) - - - 150 - -- - - - -Copper sults& penlahydrab (q/L) 30 45 60 60 60 60 60 Slannous sultab (g/L) 10 10 10 10 10 10 10 ID 10 3,6-d0iia-1,8-ockinediol (g/L) 60 90 120 , 120 120 , 120 - -Bis-(sodiumsul6propy1)-disulide (g/L) -- - 180 - - - - - -.. .
Melhanedibiol (g/L) 50 .
..
1,2-ehanedibiol (g/L) - - - , - 60 -- - - - -1,3-propanedaliol (g/L) - - - - .. T _ 70 - - - - -Thiourea (g/L) - - - - - -- 50 , - -Sodium 3-mercaph-l-propsnesulionale (g/L) - -Thioglycolic acid (g/L) - - - -Calechol (q/L) 7 10 15 15 15 15 15 15 15 15 - 15 15 15 o ' no pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.2 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less .
Ln Solulion slab No precipikalss No preepitets No precipilses No preciplats No predpilales No predpitales Bad odor Bad odor Bad odor Precipasts No precipitales Precipaabs Bad odor Precipilabs ....1 Ln Solution Mania Good Good Good Good Good Poor , Poor Poor _ Poor Poor Poor Poor Poor Poor co Gray VVnits While VVhits Visas Vtiti Gray Gray Gray ....1 Pksing appearance (1 A/de) Dull Dui Dull Dull Dull Dull Dull Dull Dull i no Presence or absence &cracks No cracks No cracks No cracks No cracks No cracks Na cracks No cracks No cracks No cracks Plaing was not performed. 01---` r CuSn ralio (wr%) 43:57 51:49 64:36 63: 37 66: 34 59.41 6535 61 39 66:34 (..n....1 i -o no ....1 , ' ' =
=
' ' , , , '.
, , , ' [0045]
Table 2 Ex ample 10 Ex ample 11 Example 12 Ex ample 13 Example 14 Ex ample 15 Ex ample 16 Co npareOve Example 6 Comparative Ex arrple 7 Comparatve Example 8 Conparative Ex arm le 9 Conparalive Example la 98% sulfuric acid (g/L) 185 185 185 185 185 185 185 185 185 , 185 185 185 Copper sullat penthydrale (g/L) 60 60 60 60 60 60 Stannous sulfat (g/L) 10 10 10 10 10 10 10 10 10 10 10 10 .
3,6-ditia-1,8-ocianediol (g/L) 120 120 120 120 120 120 Hydroquinone (g/L) 15 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
, Resorcinol (g/L) ¨ 15 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
Phenol (g/L) ¨ ¨ 15 ¨ ¨ ¨ ¨ ¨
¨ ¨
p-cresolsulbnic acid (g/L) ¨ ¨ ¨ 30 ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨
Pyrogalol (g/L) ¨ ¨ ¨ ¨ 20 ' Sodium ascorbat (g/L) ¨ ¨ ¨ ¨ 30¨ ¨
¨ ¨ ¨ ¨
Sodium eryborbale (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 30 ¨
¨ ¨ ¨ ¨
P
Sodium hypophosphit (q/L) ¨ ¨ ¨ - ¨ ¨ -15 ¨ ¨ ¨ ¨
o Sodium sutit (g/L) ¨ ¨ ¨¨ ¨ ¨ ¨
20 ¨ ¨ ¨ np .
up Sodium hydrogen suite (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 20 ¨ ¨ ul ...1 Ammonium Wile (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 20 ¨ ul op Sodium biosultat (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ 25 ...1 I
IV
pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less , 0.2 or less 0.1 or less 0.1 or less 0.1 or less Solution stit No precipitate No precipitin No prectitsts No predpitales No predpitales No prectilats No predpilats No predpitts Bad odor Bad odor Bad odor Precipitin r Solution sabiliN Good Good Good Good Good Good Good Poor Good Good Good Poor O .
np Gray Gray Gray Whit Black Wet Gray Gray oi Plating appearance (1 A/dm2) Dull Dull Dull Dull Dull Dull Dull Dull ...1 Plating was not perbrmed. =
Presence or absence of cracks , No cracks No cracks No cracks No cracks No cracks No cracks No cracks Cracks Cu:Sn ratio (wr/o) 62:38 61:39 65:35 5941 61:39 62:38 _ 63:37 62:38 =
, =
, =
.=
[ 0046]
Table 3 &envie 17 Example 18 Example 19 Example 20 Exanple 21 Exanple 22 Example 23 Example 24 Example 25 Bantle 26 Exempt 27 Examine 28 98% sultric acid (g/L) 185 185 185 185 185 185 185 Copper sulfat pentahydrat (g/L) 60 60 60 60 60 60 Stannous sulfate (g/L) 10 10 10 10 10 10 10 3,6-d8ria-1,8-oclanediol (g/L) 120 120 120 120 120 120 Polyoxyetylene alkylamine (q/L) 10 ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨
Polyelwiene glycol (g/L) ¨ 5 ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨
Polyoxyalkylene phenyl ether (g/L) ¨ ¨ 20 ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨
Polyoxyalkylene naphtwi ether (g/L) ¨ ¨ ¨ 10 ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨
Tetra-lower-alkylarwronium horde (q/L) ¨ ¨ ¨ ¨ 0.5 ¨ ¨ ¨ ¨ ¨ ¨ ¨
Alkylamne hydrochloride (g/L) ¨ ¨ ¨ ¨ ¨
1 ¨ ¨ ¨ ¨ ¨
Alkylarninoebylg(cine (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨
P
, Alkyl-p-naphlhalenesulbnic acid (WO. ¨ ¨ ¨ ¨ ¨
¨ ¨ 30 ¨ ¨ ¨ ¨ 0 _ Fatty acid soap-based surfactant (gIL) ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ 10 ¨ ¨ ¨ iv nn Phenol ether sulfuric acid ester sett (g/L) ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 5 ¨ ¨ ui ...1 Sultbetine (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ 5 ¨ ui on Dimetylalkylbetaine (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 10 ...1 pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0,1 or less 0.1 or less 0.1 or less , 0.1 or less 0.1 or less 0,1 or less 0.1 or less I iv I----' r Solukn stale No precipitats No precipitts No precipitts No precipilats No precipitates No precipibts No precipitates No predpitats , No preclpilats No predpilats No precipibts No precApitats i Sobion stability Good Good Good Good Good Good Good Good Good Good Good Good 1 0 iv Wnit Wilt Wnit Wit Mit Wit Mile Whit VVnile Mit Mit Wnile i Plaine appearance (1 A/dm2) o Serni-bright Semi-bright Serni-bright Serrti-brighl Seri-bright Semi-bright _ Serri-bright , Serri-bright Send-bright Serri-bright , Serni-bright Semi-bright ...1 Presence or absence of cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks _ No cracks No cracks No cracks Cu:Sn fait (wt%) 61:39 58:42 63:37 59:41 60:40 57:43 63:37 53:37 58:42 59:41 56:44 63:37 ' , =
, =
' ' =
..
=
' , , , ,.
, .=
=
=
.;
, =
=
..
, =
r i ..
[0047]
Table 4 .
Example 29 Example 30 Example 31 Example 32 Example 33 , Example 34 Example 35 Example 36 Example 37 Example 38 Example 39 98% sulfuric acid (g/L) 185 185 185 185 185 185 Copper sulfab bentahydrat (g/L) 60 60 60 60 60 60 Stannous sulfab (g/L) 10 10 10 10 10 10 10 10 3,6-di1ria-1,8-octenediol (g/L) 120 120 120 120 120 Benzalacebne (g/L) 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
Cinnarreldehyde (g/L) 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
a-methylcinnarnaklehyde (g/L)¨ 3 ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
.
.
a-hexylcinnamakiehyde (g/L) ¨ ¨ 5 ¨ ¨ ¨ ¨
¨ ¨ ¨
a-amylcinnamaldehyde (g/L) ¨ ¨ ¨ ¨ 5 ¨ ¨
¨ ¨ ¨ ¨
Cuminaklehyde (g/L) ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨
Benzaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ 0 np Anisaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 3 ¨ - ¨ ¨ .
up ...1 Propionaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
3 ¨ ¨ up op Acetaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨_ ¨
¨ 0.5 ¨ ...1 I
IV
Formaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ 0.5 0 pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less _ 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less Solution stab No precipitates No precipitates No precipitats No precipitabs No precipitabs No precipitats No precipitates No precipitats No precipitats No precipitats No precipitates 0 np =
Solulion stability Good Good Good Poor Poor-Good ., Good Good Good Good Good i Mb Writ Writ Writs ViAmb Mit, Writs Writs VVnitis Writs Abib ...1 Plating appearance (1 A/de) =
Semi-bright Senti-bright Serri-bright Semi-bright Serni-bright _ Serd-bright , Semi-bright Semi-bright Serri-bright Semi-bright Semi-bright Presence or absence of cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks , No cracks No cracks No cracks No cracks Cu:Sn ratio (wt%) 57:43 58:42 60:40 58:42 57:43 _ 61:39 58:42 61:39 59:41 63:37 64:36 =
=
, , , , =
' =
..
..
=
, , , , , , , i , , , , .
,.
.,.
..
, , [0048]
Table 5 Example 40 Example 41 Example 42 Example 43 Example 44 Example 45 Exarrple 46 Example 47 Example 48 Example 49 Example 50 98% sulfuric acid (gIL) 185 185 185 185 185 185 185 185 185 185 185 .
Copper sulfat penbhydrat (g/L) 60 60 60 60 60 60 Stannous suble (g/L) 10 10 10 10 10 10 10 10 3,6-dibia-1,8-octanediol (g/L) 120 120 120 120 120 120 Polyoxyebylene alkylamine (g/L) 10 10 10 10 10 10 =
Benzalacebne (g/L) 1 ¨ ¨¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
.
.
Cinnamaldehyde (g/L) ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ =
mmebylcinnamaldehyde (g/L) ¨ ¨ 3 ¨ ¨ ¨
¨ ¨ ¨ ¨ .
mhexylcinnamaldehyde (g/L) ¨ ¨ ¨ 5 ¨ ¨
¨ ¨ ¨ ¨ =
mamylcinnarreklehyde (g/L) ¨ ¨ ¨ ¨ 5 ¨
¨ ¨ ¨ ¨ P .
Curninaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ o iv Benzaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ to ut Anisaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ 3 ¨ ¨ ¨ ...1 _ Ul Propbnaldehyde (g/L) ¨ ¨ ¨ ¨ ¨¨ ¨ ¨
3 ¨ ¨ oo , ...1 Acetaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 0.5 ¨ I iv o Formaldehyde (g/L) ¨ ¨ ¨ ¨ ¨¨ ¨ ¨
¨ ¨ 0.5 _ , ...1 pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or bss , 0.1 or less 0.1 or less 0.1 or less 0.1 or less l.0 oI
Solution stale No predpitates Na precipibbs No precipitates No precipitates _ No precipilabs , No predpiblas No precipitates _ No_precipitabs No precipitabs No predpitabs No precipitates iv oi Soluton slability Good Good Good _ Poor Poor Good Good Good Good Good Good ...1 .
Mile While Mb (Mute Write Mile NA*
Oh* Mile Mile wni .
Pbting appearance (1 A/dm2) Bright Bright Bright Bright , Bright Bright Brig(t Bright Bright Bright Bright Presence or absence of cracks No cracks Na cracks Na cracks No cracks No cracks No cracks _ No cracks No cracks Na cracks No cracks No cracks Cu:Sn rain (wt%) 59:41 58:42 61:39 57:43 62:38 58:42 58:42 62:38 59:41 59:41 62:38 ¨
.
=
, , , ..
, , ,.
'1 ,.
, õ.
, ' ., :
, t r f t , , , "
õ
[0049]
Table 6 Comparative Comparative Example 11 Example 12 Potassium pyrophosphate (g/L) 200 Copper pyrophosphate (g/L) 20 Stannous sulfate (g/L) 10 Organic sulfonic acid (g/L) Stannous sulfate (g/L) Copper sulfate pentahydrate (g/L) 12 Brightener Appropriate Appropriate amount amount pH 7 to 8 0.5 Solution state No precipitates No precipitates Solution stability Good Poor Plating appearance (1 A/dm2) White White Presence or absence of cracks Cracks No cracks Cu:Sn ratio (wt%) 58:42 53:47 [0050]
The results of Tables 1 to 5 reveal that no precipitates were formed in the plating baths of Examples 1 to 50; that the solution state was stable, especially in the plating baths of Examples 1 to 5, 10 to 31, 34 to 42, and 45 to 50; and that crack-free plating films were obtained by plating. As is clear from the results of Examples 1 to 5 in Table 1, a copper-tin alloy plating film having any ratio can be obtained by adjusting the metal concentration in the plating solution. The results of Tables 3 to 5 show that adding a surfactant or a leveler to the plating solution improves brightness of a plating appearance, and that a plating appearance having excellent brightness can be obtained by adding both a surfactant and a leveler to the plating solution. In addition, Fig. 1 shows that in the plating bath of the present invention, the current density has a small influence on the alloy ratio as compared with the case of a hitherto known acidic bath (Comparative Example 12).
In addition, in the plating baths of Example 3 and Comparative Examples 11 and 12, plating treatment was perfoLmed at current densities of 0.01, 0.1, 0.5, 1, 2, and 3 A/dm2, and the copper content of the formed plating films was determined. Fig. 1 shows the results.
..
[ 0 04 4 ]
Table 1 Example 1 Example 2 Example] Example 4 Example 5 Example 6 , Example 7 Ex ample B Ex areal 9 Cermatalive Example, Conearalwe Ex envie 2 Cemparalne Exanle 3 Conparakve Exanple 4 Conaralrve Example 5 98% sulfuric acid (g/L) 185 185 185 185 185 Methanesulbnic acid (q/L) - - - 150 -- - - - - -Sulbsoccinic add (q/L) - - - 150 - -- - - - -Copper sults& penlahydrab (q/L) 30 45 60 60 60 60 60 Slannous sultab (g/L) 10 10 10 10 10 10 10 ID 10 3,6-d0iia-1,8-ockinediol (g/L) 60 90 120 , 120 120 , 120 - -Bis-(sodiumsul6propy1)-disulide (g/L) -- - 180 - - - - - -.. .
Melhanedibiol (g/L) 50 .
..
1,2-ehanedibiol (g/L) - - - , - 60 -- - - - -1,3-propanedaliol (g/L) - - - - .. T _ 70 - - - - -Thiourea (g/L) - - - - - -- 50 , - -Sodium 3-mercaph-l-propsnesulionale (g/L) - -Thioglycolic acid (g/L) - - - -Calechol (q/L) 7 10 15 15 15 15 15 15 15 15 - 15 15 15 o ' no pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.2 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less .
Ln Solulion slab No precipikalss No preepitets No precipilses No preciplats No predpilales No predpitales Bad odor Bad odor Bad odor Precipasts No precipitales Precipaabs Bad odor Precipilabs ....1 Ln Solution Mania Good Good Good Good Good Poor , Poor Poor _ Poor Poor Poor Poor Poor Poor co Gray VVnits While VVhits Visas Vtiti Gray Gray Gray ....1 Pksing appearance (1 A/de) Dull Dui Dull Dull Dull Dull Dull Dull Dull i no Presence or absence &cracks No cracks No cracks No cracks No cracks No cracks Na cracks No cracks No cracks No cracks Plaing was not performed. 01---` r CuSn ralio (wr%) 43:57 51:49 64:36 63: 37 66: 34 59.41 6535 61 39 66:34 (..n....1 i -o no ....1 , ' ' =
=
' ' , , , '.
, , , ' [0045]
Table 2 Ex ample 10 Ex ample 11 Example 12 Ex ample 13 Example 14 Ex ample 15 Ex ample 16 Co npareOve Example 6 Comparative Ex arrple 7 Comparatve Example 8 Conparative Ex arm le 9 Conparalive Example la 98% sulfuric acid (g/L) 185 185 185 185 185 185 185 185 185 , 185 185 185 Copper sullat penthydrale (g/L) 60 60 60 60 60 60 Stannous sulfat (g/L) 10 10 10 10 10 10 10 10 10 10 10 10 .
3,6-ditia-1,8-ocianediol (g/L) 120 120 120 120 120 120 Hydroquinone (g/L) 15 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
, Resorcinol (g/L) ¨ 15 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
Phenol (g/L) ¨ ¨ 15 ¨ ¨ ¨ ¨ ¨
¨ ¨
p-cresolsulbnic acid (g/L) ¨ ¨ ¨ 30 ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨
Pyrogalol (g/L) ¨ ¨ ¨ ¨ 20 ' Sodium ascorbat (g/L) ¨ ¨ ¨ ¨ 30¨ ¨
¨ ¨ ¨ ¨
Sodium eryborbale (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 30 ¨
¨ ¨ ¨ ¨
P
Sodium hypophosphit (q/L) ¨ ¨ ¨ - ¨ ¨ -15 ¨ ¨ ¨ ¨
o Sodium sutit (g/L) ¨ ¨ ¨¨ ¨ ¨ ¨
20 ¨ ¨ ¨ np .
up Sodium hydrogen suite (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 20 ¨ ¨ ul ...1 Ammonium Wile (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 20 ¨ ul op Sodium biosultat (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ 25 ...1 I
IV
pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less , 0.2 or less 0.1 or less 0.1 or less 0.1 or less Solution stit No precipitate No precipitin No prectitsts No predpitales No predpitales No prectilats No predpilats No predpitts Bad odor Bad odor Bad odor Precipitin r Solution sabiliN Good Good Good Good Good Good Good Poor Good Good Good Poor O .
np Gray Gray Gray Whit Black Wet Gray Gray oi Plating appearance (1 A/dm2) Dull Dull Dull Dull Dull Dull Dull Dull ...1 Plating was not perbrmed. =
Presence or absence of cracks , No cracks No cracks No cracks No cracks No cracks No cracks No cracks Cracks Cu:Sn ratio (wr/o) 62:38 61:39 65:35 5941 61:39 62:38 _ 63:37 62:38 =
, =
, =
.=
[ 0046]
Table 3 &envie 17 Example 18 Example 19 Example 20 Exanple 21 Exanple 22 Example 23 Example 24 Example 25 Bantle 26 Exempt 27 Examine 28 98% sultric acid (g/L) 185 185 185 185 185 185 185 Copper sulfat pentahydrat (g/L) 60 60 60 60 60 60 Stannous sulfate (g/L) 10 10 10 10 10 10 10 3,6-d8ria-1,8-oclanediol (g/L) 120 120 120 120 120 120 Polyoxyetylene alkylamine (q/L) 10 ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨
Polyelwiene glycol (g/L) ¨ 5 ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨
Polyoxyalkylene phenyl ether (g/L) ¨ ¨ 20 ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨
Polyoxyalkylene naphtwi ether (g/L) ¨ ¨ ¨ 10 ¨ ¨
¨ ¨ ¨ ¨ ¨ ¨
Tetra-lower-alkylarwronium horde (q/L) ¨ ¨ ¨ ¨ 0.5 ¨ ¨ ¨ ¨ ¨ ¨ ¨
Alkylamne hydrochloride (g/L) ¨ ¨ ¨ ¨ ¨
1 ¨ ¨ ¨ ¨ ¨
Alkylarninoebylg(cine (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨ ¨ ¨ ¨
P
, Alkyl-p-naphlhalenesulbnic acid (WO. ¨ ¨ ¨ ¨ ¨
¨ ¨ 30 ¨ ¨ ¨ ¨ 0 _ Fatty acid soap-based surfactant (gIL) ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ 10 ¨ ¨ ¨ iv nn Phenol ether sulfuric acid ester sett (g/L) ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ ¨ 5 ¨ ¨ ui ...1 Sultbetine (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ 5 ¨ ui on Dimetylalkylbetaine (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ ¨ 10 ...1 pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0,1 or less 0.1 or less 0.1 or less , 0.1 or less 0.1 or less 0,1 or less 0.1 or less I iv I----' r Solukn stale No precipitats No precipitts No precipitts No precipilats No precipitates No precipibts No precipitates No predpitats , No preclpilats No predpilats No precipibts No precApitats i Sobion stability Good Good Good Good Good Good Good Good Good Good Good Good 1 0 iv Wnit Wilt Wnit Wit Mit Wit Mile Whit VVnile Mit Mit Wnile i Plaine appearance (1 A/dm2) o Serni-bright Semi-bright Serni-bright Serrti-brighl Seri-bright Semi-bright _ Serri-bright , Serri-bright Send-bright Serri-bright , Serni-bright Semi-bright ...1 Presence or absence of cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks _ No cracks No cracks No cracks Cu:Sn fait (wt%) 61:39 58:42 63:37 59:41 60:40 57:43 63:37 53:37 58:42 59:41 56:44 63:37 ' , =
, =
' ' =
..
=
' , , , ,.
, .=
=
=
.;
, =
=
..
, =
r i ..
[0047]
Table 4 .
Example 29 Example 30 Example 31 Example 32 Example 33 , Example 34 Example 35 Example 36 Example 37 Example 38 Example 39 98% sulfuric acid (g/L) 185 185 185 185 185 185 Copper sulfab bentahydrat (g/L) 60 60 60 60 60 60 Stannous sulfab (g/L) 10 10 10 10 10 10 10 10 3,6-di1ria-1,8-octenediol (g/L) 120 120 120 120 120 Benzalacebne (g/L) 1 ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
Cinnarreldehyde (g/L) 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
a-methylcinnarnaklehyde (g/L)¨ 3 ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
.
.
a-hexylcinnamakiehyde (g/L) ¨ ¨ 5 ¨ ¨ ¨ ¨
¨ ¨ ¨
a-amylcinnamaldehyde (g/L) ¨ ¨ ¨ ¨ 5 ¨ ¨
¨ ¨ ¨ ¨
Cuminaklehyde (g/L) ¨ ¨ ¨ ¨ ¨ 1 ¨ ¨
¨
Benzaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ 0 np Anisaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 3 ¨ - ¨ ¨ .
up ...1 Propionaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
3 ¨ ¨ up op Acetaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨_ ¨
¨ 0.5 ¨ ...1 I
IV
Formaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ 0.5 0 pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less _ 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less Solution stab No precipitates No precipitates No precipitats No precipitabs No precipitabs No precipitats No precipitates No precipitats No precipitats No precipitats No precipitates 0 np =
Solulion stability Good Good Good Poor Poor-Good ., Good Good Good Good Good i Mb Writ Writ Writs ViAmb Mit, Writs Writs VVnitis Writs Abib ...1 Plating appearance (1 A/de) =
Semi-bright Senti-bright Serri-bright Semi-bright Serni-bright _ Serd-bright , Semi-bright Semi-bright Serri-bright Semi-bright Semi-bright Presence or absence of cracks No cracks No cracks No cracks No cracks No cracks No cracks No cracks , No cracks No cracks No cracks No cracks Cu:Sn ratio (wt%) 57:43 58:42 60:40 58:42 57:43 _ 61:39 58:42 61:39 59:41 63:37 64:36 =
=
, , , , =
' =
..
..
=
, , , , , , , i , , , , .
,.
.,.
..
, , [0048]
Table 5 Example 40 Example 41 Example 42 Example 43 Example 44 Example 45 Exarrple 46 Example 47 Example 48 Example 49 Example 50 98% sulfuric acid (gIL) 185 185 185 185 185 185 185 185 185 185 185 .
Copper sulfat penbhydrat (g/L) 60 60 60 60 60 60 Stannous suble (g/L) 10 10 10 10 10 10 10 10 3,6-dibia-1,8-octanediol (g/L) 120 120 120 120 120 120 Polyoxyebylene alkylamine (g/L) 10 10 10 10 10 10 =
Benzalacebne (g/L) 1 ¨ ¨¨ ¨ ¨ ¨ ¨
¨ ¨ ¨
.
.
Cinnamaldehyde (g/L) ¨ 1 ¨ ¨ ¨ ¨ ¨ ¨
¨ ¨ ¨ =
mmebylcinnamaldehyde (g/L) ¨ ¨ 3 ¨ ¨ ¨
¨ ¨ ¨ ¨ .
mhexylcinnamaldehyde (g/L) ¨ ¨ ¨ 5 ¨ ¨
¨ ¨ ¨ ¨ =
mamylcinnarreklehyde (g/L) ¨ ¨ ¨ ¨ 5 ¨
¨ ¨ ¨ ¨ P .
Curninaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ o iv Benzaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ 1 ¨
¨ ¨ ¨ to ut Anisaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ 3 ¨ ¨ ¨ ...1 _ Ul Propbnaldehyde (g/L) ¨ ¨ ¨ ¨ ¨¨ ¨ ¨
3 ¨ ¨ oo , ...1 Acetaldehyde (g/L) ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
¨ 0.5 ¨ I iv o Formaldehyde (g/L) ¨ ¨ ¨ ¨ ¨¨ ¨ ¨
¨ ¨ 0.5 _ , ...1 pH 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or less 0.1 or bss , 0.1 or less 0.1 or less 0.1 or less 0.1 or less l.0 oI
Solution stale No predpitates Na precipibbs No precipitates No precipitates _ No precipilabs , No predpiblas No precipitates _ No_precipitabs No precipitabs No predpitabs No precipitates iv oi Soluton slability Good Good Good _ Poor Poor Good Good Good Good Good Good ...1 .
Mile While Mb (Mute Write Mile NA*
Oh* Mile Mile wni .
Pbting appearance (1 A/dm2) Bright Bright Bright Bright , Bright Bright Brig(t Bright Bright Bright Bright Presence or absence of cracks No cracks Na cracks Na cracks No cracks No cracks No cracks _ No cracks No cracks Na cracks No cracks No cracks Cu:Sn rain (wt%) 59:41 58:42 61:39 57:43 62:38 58:42 58:42 62:38 59:41 59:41 62:38 ¨
.
=
, , , ..
, , ,.
'1 ,.
, õ.
, ' ., :
, t r f t , , , "
õ
[0049]
Table 6 Comparative Comparative Example 11 Example 12 Potassium pyrophosphate (g/L) 200 Copper pyrophosphate (g/L) 20 Stannous sulfate (g/L) 10 Organic sulfonic acid (g/L) Stannous sulfate (g/L) Copper sulfate pentahydrate (g/L) 12 Brightener Appropriate Appropriate amount amount pH 7 to 8 0.5 Solution state No precipitates No precipitates Solution stability Good Poor Plating appearance (1 A/dm2) White White Presence or absence of cracks Cracks No cracks Cu:Sn ratio (wt%) 58:42 53:47 [0050]
The results of Tables 1 to 5 reveal that no precipitates were formed in the plating baths of Examples 1 to 50; that the solution state was stable, especially in the plating baths of Examples 1 to 5, 10 to 31, 34 to 42, and 45 to 50; and that crack-free plating films were obtained by plating. As is clear from the results of Examples 1 to 5 in Table 1, a copper-tin alloy plating film having any ratio can be obtained by adjusting the metal concentration in the plating solution. The results of Tables 3 to 5 show that adding a surfactant or a leveler to the plating solution improves brightness of a plating appearance, and that a plating appearance having excellent brightness can be obtained by adding both a surfactant and a leveler to the plating solution. In addition, Fig. 1 shows that in the plating bath of the present invention, the current density has a small influence on the alloy ratio as compared with the case of a hitherto known acidic bath (Comparative Example 12).
Claims (7)
- [Claim 1]
A copper-tin alloy plating bath comprising an aqueous solution containing a water-soluble copper compound, a water-soluble divalent tin compound, a sulfur-containing compound represented by formula (1):
R-(CH2)1-S-(CH2)m-S-(CH2)n-R (1), wherein R is H, OH, or SO3Na, and 1, m, and n are each independently an integer of 0 to 3, and a hydroxyl group-containing aromatic compound. - [Claim 2]
The copper-tin alloy plating bath according to claim 1, wherein the water-soluble copper compound is present in an amount such that the amount of copper ions is 1 to 60 g/L, the water-soluble divalent tin compound is present in an amount such that the amount of divalent tin ions is 5 to 40 g/L, the sulfur-containing compound is present in an amount of 5 to 500 g/L, and the hydroxyl group-containing aromatic compound is present in an amount of 1 to 50 g/L. - [Claim 3]
The copper-tin alloy plating bath according to claim 1 or 2, wherein the sulfur-containing compound is at least one member selected from the group consisting of methanedithiol, 1,2-ethanedithiol, 1,3-propanedithiol, 3,6-dithia-1,8-octanediol, and bis-(sodium sulfopropyl)-disulfide. - [Claim 4]
The copper-tin alloy plating bath according to any one of claims 1 to 3, wherein the hydroxyl group-containing aromatic compound is at least one member selected from the group consisting of phenol, catechol, hydroquinone, resorcinol, pyrogallol, p-cresolsulfonic acid, sodium ascorbate, and sodium erythorbate. - [Claim 5]
The copper-tin alloy plating bath according to any one of claims 1 to 4, wherein the aqueous solution further contains a nonionic surfactant, and an aromatic ketone or an aromatic aldehyde. - [Claim 6]
A method for copper-tin alloy plating, the method comprising performing electrolysis using an object to be plated as a cathode in the copper-tin alloy plating bath according to any one of claims 1 to 5. - [Claim 7]
An article comprising a copper-tin alloy plating film formed by the method according to claim 6.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014162294 | 2014-08-08 | ||
JP2014-162294 | 2014-08-08 | ||
PCT/JP2015/071330 WO2016021439A1 (en) | 2014-08-08 | 2015-07-28 | Copper-tin alloy plating bath |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2957587A1 true CA2957587A1 (en) | 2016-02-11 |
CA2957587C CA2957587C (en) | 2019-03-05 |
Family
ID=55263710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2957587A Active CA2957587C (en) | 2014-08-08 | 2015-07-28 | Copper-tin alloy plating bath |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170204528A1 (en) |
EP (1) | EP3178969B1 (en) |
JP (1) | JP6048712B2 (en) |
CN (1) | CN106661752B (en) |
CA (1) | CA2957587C (en) |
HK (1) | HK1232261A1 (en) |
TW (1) | TWI641729B (en) |
WO (1) | WO2016021439A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019052355A (en) * | 2017-09-15 | 2019-04-04 | 上村工業株式会社 | Tin electroplating or tin-alloy plating solution, and production method of tin or tin-alloy plated material |
JP6645609B2 (en) * | 2018-07-27 | 2020-02-14 | 三菱マテリアル株式会社 | Tin alloy plating solution |
CN110205659B (en) * | 2019-07-17 | 2020-06-16 | 广州三孚新材料科技股份有限公司 | Electrotinning additive and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3871013B2 (en) * | 1998-11-05 | 2007-01-24 | 上村工業株式会社 | Tin-copper alloy electroplating bath and plating method using the same |
DE50106133D1 (en) * | 2000-09-20 | 2005-06-09 | Schloetter Fa Dr Ing Max | ELECTROLYTE AND METHOD OF DEPOSITING TIN COPPER ALLOY LAYERS |
EP1408141B1 (en) * | 2002-10-11 | 2014-12-17 | Enthone Inc. | Process and electrolyte for the galvanic deposition of bronze |
JP4441726B2 (en) * | 2003-01-24 | 2010-03-31 | 石原薬品株式会社 | Method for producing tin or tin alloy aliphatic sulfonic acid plating bath |
US20060260948A2 (en) * | 2005-04-14 | 2006-11-23 | Enthone Inc. | Method for electrodeposition of bronzes |
WO2010055825A1 (en) * | 2008-11-11 | 2010-05-20 | ユケン工業株式会社 | Zincate zinc plating bath |
EP2221396A1 (en) * | 2008-12-31 | 2010-08-25 | Rohm and Haas Electronic Materials LLC | Lead-Free Tin Alloy Electroplating Compositions and Methods |
JP5313773B2 (en) * | 2009-06-04 | 2013-10-09 | 三菱伸銅株式会社 | Plated copper strip and method for producing the same |
JP6133056B2 (en) * | 2012-12-27 | 2017-05-24 | ローム・アンド・ハース電子材料株式会社 | Tin or tin alloy plating solution |
-
2015
- 2015-07-28 CN CN201580038971.8A patent/CN106661752B/en not_active Expired - Fee Related
- 2015-07-28 US US15/326,328 patent/US20170204528A1/en not_active Abandoned
- 2015-07-28 CA CA2957587A patent/CA2957587C/en active Active
- 2015-07-28 JP JP2015559750A patent/JP6048712B2/en active Active
- 2015-07-28 WO PCT/JP2015/071330 patent/WO2016021439A1/en active Application Filing
- 2015-07-28 EP EP15829133.6A patent/EP3178969B1/en active Active
- 2015-08-04 TW TW104125247A patent/TWI641729B/en active
-
2017
- 2017-06-12 HK HK17105769.9A patent/HK1232261A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN106661752B (en) | 2021-08-10 |
TWI641729B (en) | 2018-11-21 |
EP3178969B1 (en) | 2020-01-01 |
EP3178969A4 (en) | 2017-12-27 |
TW201612362A (en) | 2016-04-01 |
EP3178969A1 (en) | 2017-06-14 |
CA2957587C (en) | 2019-03-05 |
JPWO2016021439A1 (en) | 2017-04-27 |
WO2016021439A1 (en) | 2016-02-11 |
JP6048712B2 (en) | 2016-12-21 |
CN106661752A (en) | 2017-05-10 |
HK1232261A1 (en) | 2018-01-05 |
US20170204528A1 (en) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150284864A1 (en) | High temperature resistant silver coated substrates | |
EP1874982B1 (en) | Method for electrodeposition of bronzes | |
JP4249438B2 (en) | Pyrophosphate bath for copper-tin alloy plating | |
TW201250065A (en) | Electroplating bath and method for producing dark chromium layers | |
JP6054676B2 (en) | Adhesion promotion of cyanide-free white bronze | |
JP6047702B2 (en) | Zinc-nickel alloy plating solution and plating method | |
CN104109885B (en) | Weak-alkalinity pyrophosphate solution and technology for electroplating bright tin | |
CA2957587C (en) | Copper-tin alloy plating bath | |
JP2012126951A (en) | Nickel plating liquid and nickel plating method | |
TW201518557A (en) | Trivalent chromium plating bath | |
JP5517164B2 (en) | Trivalent chromium plating method by barrel plating | |
US20090159453A1 (en) | Method for silver plating | |
TWI417429B (en) | An electroplating bath using the electroplating bath, and a substrate deposited by the electrolytic plating | |
CN104164686A (en) | Acidic electrolytic zinc plating solution additive and application method thereof | |
CN103695977A (en) | Electroplating method capable of enabling tin coating to be level and preventing tin whisker from growing | |
KR20190061170A (en) | Zn-Ni alloy electroplating agent, and Electroplating method using the same | |
JPH02301588A (en) | Tin, lead or tin-lead alloy electroplating bath and electroplating method | |
CN112680756A (en) | Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods | |
CN111485262A (en) | Indium electroplating compositions and methods for electroplating indium on nickel | |
JP7508077B2 (en) | Bi-Sb alloy plating solution for electroplating | |
JPWO2010101212A1 (en) | Copper-zinc alloy electroplating bath and plating method using the same | |
KR102215209B1 (en) | Nickel electroplating compositions with copolymers of arginine and bisepoxides and methods of electroplating nickel | |
JP2023507017A (en) | Electroplating composition and method for depositing a chromium coating on a substrate | |
CN106894064A (en) | A kind of special acid electroplated zinc nickel alloy electrolyte of transformer case casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20170207 |