EP3160704B1 - Induktionsbeheiztes werkzeug mit kern aus mehreren materialien und verfahren unter verwendung dieses werkzeuges - Google Patents

Induktionsbeheiztes werkzeug mit kern aus mehreren materialien und verfahren unter verwendung dieses werkzeuges Download PDF

Info

Publication number
EP3160704B1
EP3160704B1 EP15742098.5A EP15742098A EP3160704B1 EP 3160704 B1 EP3160704 B1 EP 3160704B1 EP 15742098 A EP15742098 A EP 15742098A EP 3160704 B1 EP3160704 B1 EP 3160704B1
Authority
EP
European Patent Office
Prior art keywords
core
cavity
equal
less
mold apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15742098.5A
Other languages
English (en)
French (fr)
Other versions
EP3160704A1 (de
Inventor
Craig Lawrence Milne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Global Technologies BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Global Technologies BV filed Critical SABIC Global Technologies BV
Publication of EP3160704A1 publication Critical patent/EP3160704A1/de
Application granted granted Critical
Publication of EP3160704B1 publication Critical patent/EP3160704B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0811Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using induction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7368Heating or cooling of the mould combining a heating or cooling fluid and non-fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/02Ceramics

Definitions

  • Disclosed herein are a method and apparatus for forming polymeric parts. More specifically, disclosed herein is a mold apparatus for compression and injection molding polymeric parts having complex geometries where the mass of the core significantly contributes to the heating and cooling rates of the mold apparatus.
  • Injection molding processes require heating a mold surface to temperatures near the injection temperature of the polymer. This is accomplished by conducting heat to the mold surfaces using an internal and/or external source of heat. This process involves surface temperatures of the polymer part that exceed ejection temperatures of the part. Thus, it is necessary to cool the mold and the molded part prior to ejecting the part. However, heating and cooling the mold lengthens the cycle time, which decreases production efficiency. In addition, due to the high pressure that can be required in some processes, high strength materials, such as steel, are used to form the body of the mold. Thus, the molding cycle is also limited by the heat transfer through the material of the mold body. Also, complex three dimensional mold surfaces can result in uneven or non-uniform surface temperatures. The temperature gradients create hot and cold spots on the mold surfaces, which can negatively impact the surface appearance of the molded polymeric part and contribute to a longer cycle time.
  • JP H04 173313 is directed to a mold for injection molding wherein the to raise the temperature of a surface of the mold and cool in a short time, skin layers composed of conductive material is adhered to the surface of the mold, wherein the skin layers are heated by high frequency induction by inductors.
  • JP 2001 113580 is directed to an injection molding machine including molds having optical molding surface opposed to a cavity for filling a molding material, a high frequency induction heating coil for heating the molds, temperature sensors for detecting the temperature of the molds, and a control means for controlling the heating states of the molds.
  • JP 2013 226810 is directed to the problem of shortening the time required in a continuous resin molding manufacturing cycle using an electromagnetic induction type mold. JP 2013 226810 solves the problem by starting induction heating simultaneously with mold opening, not after removal of a resin mold, such that the target temperature of the induction heating is temporarily kept at a temperature so as not to cause an operation failure when a mold is closed, and raising the temperature to a resin filling second temperature after the resin molding is removed and the mold is closed.
  • JP 2012 214040 is directed to the problem of uniformly heating a cavity surface on a mold, wherein the two molds have a magnetic metal part arranged in a part of the cavity surface, and an induction coil holding part made of an insulating resin and the non-magnetic metal part are arranged in order.
  • JP 214040 solves the problem by specifically designing the induction coils to be arranged so that the difference between the maximum and minimum distances from the cavity surface to the mold is within 5 mm, and when the diagonal center of the cavity is a reference, an outermost induction coil is arranged in a range of 30 mm from the outer periphery of the cavity.
  • the invention provides a mold apparatus as defined in claim 1 and a method for molding a polymeric product as defined in claim 10.
  • the mold apparatus described herein utilizes induction heating and is capable of rapid heating and cooling while providing uniform temperature distribution at the surfaces of the mold. It is believed that the favorable results obtained herein, e.g., rapid heating and cooling and uniform temperature distribution, can be achieved by removing steel mass in the core of the mold and replacing it with a low density, high strength material. The replacement material can provide the support within the mold to achieve high cavity pressures.
  • the mold includes a core portion and a cavity portion. Both the core portion and the cavity portion can include induction coils to heat the surfaces of the mold.
  • the core portion can include a core surface made from a metallic magnetic material, and an inner core including a low density, high strength, non-magnetic material that is capable of withstanding high mold pressures.
  • magnetic material refers to materials that have a saturation flux density of greater than or equal to 0.2 Tesla.
  • high strength includes materials that can withstand molding pressures of 100 pounds per square inch (psi) to 25,000 psi (7 bars to 1,724 bars).
  • the core surface can include steel, iron, steel, carbon, magnesium, and combinations comprising at least one of the foregoing.
  • the inner core can comprise a material having a saturation flux density that is less than 0.2 Tesla, specifically, less than or equal to 0.1 Tesla, and more specifically less than or equal to 0.05 Tesla.
  • the inner core can include ceramic.
  • the inner core can be zirconia, porcelain, forsterite, alumina, and combinations including at least one of the foregoing, such as lithia porcelain, alumina porcelain, zirconia porcelain.
  • the inner core can comprise zirconia.
  • Inner core 17 can include a material with a lower density than the material of core surface. Another induction coil can be located between the inner core and the core surface.
  • the core surface and/or cavity surface can include a complex geometry.
  • the core surface and/or cavity surface can include a cross sectional shape that includes curves, corners, depressions, protrusions, bends, and the like.
  • the cross sectional geometry of the mold surface can include trapezoidal shapes, sawtooth shapes, sinusoidal, lamellar, triangular abs(sin), cycloid-shaped configurations, and combinations featuring at least one of the foregoing.
  • the inner core can include a material with a lower density than the material of the core surface.
  • a reduction in the overall mass of core portion can be attained.
  • the ratio of the density of the material of the core surface to the density of the material of the inner core can be 3:2 or greater.
  • the density of the material forming the core surface can be greater than or equal to two times the density of the material of the inner core.
  • heating and cooling cycles can be reduced when the mass of the core and cavity portions are balanced.
  • the core and the cavity can have a mass that differs by less than 5%.
  • the core and the cavity can have a mass that differs by less than or equal to 3%.
  • the core and the cavity can include a mass that differs by less than or equal to 1%.
  • the core and cavity mold surfaces, as well as the polymer, can be cooled by passing a liquid cooling medium through at least one of the core and cavity portions of the mold.
  • a liquid cooling medium passed through at least one of the core and cavity portions of the mold.
  • the mold surfaces can include a uniform temperature.
  • the temperature at any point along the core surface and cavity surface can vary by less than or equal to 3 degrees Celsius (°C).
  • the temperature can vary at any point along the core surface and cavity surface by 2° C or less.
  • the temperature at any point along the core surface and cavity surface can vary by 1° C or less.
  • the temperature of the core surface and/or cavity surface can fluctuate by less than or equal to 5% across the entirety of the surface.
  • the temperature of the core surface and/or cavity surface can fluctuate by less than or equal to 3% across the entirety of the surface.
  • the temperature of the core surface and/or cavity surface can fluctuate by less than or equal to 1% across the entirety of the surface
  • the cooling and/or heating rates of the core surface and cavity can be substantially the same, which can reduce the overall cycle time.
  • the core portion and cavity portion can include surface cooling rates that differ by less than or equal to 5%.
  • the core portion and cavity portion can include surface cooling rates that differ by less than or equal to 3%.
  • the core portion and cavity portion can include surface cooling rates that differ by less than or equal to 1%.
  • the core portion and the cavity portion can include surface heating rates that differ by less than or equal to 5%.
  • the core portion and cavity portion can include surface heating rates that differ by less than or equal to 3%.
  • the core portion and cavity portion can include surface heating rates that differ by less than or equal to 1%.
  • thermoplastic material can include a polycarbonate, a polyester (such as poly(ethylene terephthalate), poly(butylene terephthalate), and poly(lactic acid)), a polyamide (such as aliphatic polyamides including nylon 6, semi-aromatic polyphthalamides, and aromatic polyamides), a polyimide (such as polyetherimide), a polyketone (such as poly(ether ether ketone) (PEEK), poly(ether ketone), and poly(aryl ether ketone)), a polysulfide (such as poly(phenylene sulfide)), a polysulfone (such as poly(ether sulfone)), a polyacrylate (such as poly(methyl methacrylate)), a polyacetal (such as poly(oxymethylene)), a polyacetate (such as poly(vinyl)), a polyacetate (such as poly(vinyl)), a poly(vinyl)), a poly(vinyl)),
  • the thermoplastic material can comprise a polycarbonate/ABS blend (CYCOLOYTM resins commercially available from SABIC's Innovative Plastics business), a copolycarbonate-polyester, acrylic-styrene-acrylonitrile (ASA) (GELOYTM resins commercially available from SABIC's Innovative Plastics business), a blend of polyphenylene ether/polyamide (NORYL GTXTM resins from SABIC's innovative Plastics business), a blend of polycarbonate/polyethylene terephthalate (PET)/polybutylene terephthalate (PBT), polybutylene terephthalate and impact modifier (XENOYTM resins commercially available from SABIC's innovative Plastics business), polycarbonate (LEXANTM and LEXANTM EXL resins commercially available from SABIC's innovative Plastics business), poly(methyl)meth acrylate (PMMA) capped polycarbonate, polyetherimide (ULTEMTM polyetherimide resin (UL
  • the polymeric material can include a filler.
  • fillers include silica powder, such as fused silica, crystalline silica, natural silica sand, and various silane-coated silicas; boron-nitride powder and boron-silicate powders; alumina and magnesium oxide (or magnesia); wollastonite including surface-treated wollastonite; calcium sulfate (as, for example, its anhydride, dihydrate or trihydrate); calcium carbonates including chalk, limestone, marble and synthetic, precipitated calcium carbonates, generally in the form of a ground particulate which often comprises greater than or equal to 98 wt% CaCO 3 with the remainder being other inorganics such as magnesium carbonate, iron oxide and aluminosilicates; surface-treated calcium carbonates; talc, including fibrous, modular, needle shaped, and lamellar talcs; glass spheres, both hollow and solid, and surface-treated glass spheres typically having coupling
  • the filler can have an aspect ratio greater than 1.
  • Such fillers can exist in the form of flakes, whiskers, fibers, needles, rods, tubes, strands, elongated platelets, lamellar platelets, ellipsoids, micro fibers, nanofibers, nanotubes, elongated fullerenes, and the like. Where such fillers exist in aggregate form, an aggregate having an aspect ratio greater than 1 will also suffice. Examples of such fillers well known in the art include those described in " Plastic Additives Handbook, 5th Edition" Hans Zweifel, Ed, Carl Hanser Verlag Publishers, Kunststoff, 2001 .
  • Non-limiting examples of flakes having an aspect ratio greater than 1 include glass flakes, flaked silicon carbide, aluminum diboride, aluminum flakes, and steel flakes.
  • Non-limiting examples of fibrous fillers include processed mineral fibers such as those derived from blends comprising at least one of aluminum silicates, aluminum oxides, magnesium oxides, calcium sulfate hemihydrate, boron fibers, ceramic fibers such as silicon carbide, and fibers from mixed oxides of aluminum, boron, and silicon sold under the trade name NEXTELTM by 3M Co., St.
  • Suitable synthetic fibers include polyester fibers such as poly(ethylene terephthalate) and poly(butylene terephthalate), poly(vinyl alcohol) fibers, polyarylates, polyethylene, aromatic polyamide fibers, polybenzimidazole fibers, poly(phenylene sulfide) fibers, poly(ether ether ketone) fibers, polytetrafluoroethylene fibers, acrylic resin fibers, high tenacity fibers with high thermal stability including aromatic polyamides, polyaramid fibers such as Kevlar (product of Du Pont), polyimide fibers such as polyimide 2080 and PBZ fiber (both products of Dow Chemical Company) and polyetherimide fibers; poly(ether ether ketone) fibers, polybenzoxazole fibers, and the like. Fibrous fillers such as basalt fibers, including textile glass fibers and quartz are also considered.
  • the filler can comprise glass fibers.
  • Useful glass fibers can be formed from any type of fiberizable glass composition known to those skilled in the art, and include those prepared from fiberizable glass compositions commonly known as "E-glass,” “A-glass,” “C-glass,” “D-glass,” “R-glass,” “S-glass,” as well as E-glass derivatives that are fluorine-free and/or boron-free. Such compositions and methods of making glass filaments therefrom are well known to those skilled in the art and a more detailed description is not necessary.
  • the filler can comprise a carbon fiber.
  • the carbon fibers can have an average diameter of 3.5 nanometers to 5 micrometers, specifically 4 to 100 nanometers, more specifically 5 to 10 nanometers.
  • the carbon fibers can be vapor-grown carbon fibers.
  • the carbon fiber can comprise carbon nanotubes.
  • the carbon nanotubes can have a length to diameter ratio of up to 132,000,000:1.
  • the carbon nanotubes can comprise single walled nanotubes and/or multi-walled nanotubes.
  • the filler can be used with various coatings, including, for example, metallic coatings and silane coating.
  • the amount of optional fibrous filler present in the thermoplastic composition can be up to 70 weight percent (wt%) (e.g., greater than 0 to 70 wt%) based on the total weight of the composition, specifically 10 to 60 wt%, and more specifically, 20 to 50 wt% thereof.
  • FIG. are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
  • FIG. 1 is a cross-sectional illustration of a mold apparatus 1 for heating a polymer.
  • the polymer may be an unfilled resin or it may contain reinforcement fibers and/or mineral reinforcement.
  • the mold apparatus 1 includes a cavity portion 20 and a core portion 10.
  • Cavity portion 20 includes a cavity surface 22 and induction coil 25.
  • Core portion 10 includes a core surface 12 and an inner core 17.
  • Induction coil 15 can be located between core surface 12 and inner core 17.
  • Cavity surface 22 and core surface 12 interface with a polymeric material that is introduced into the mold.
  • the polymeric material can be introduced in any suitable manner. For example, the polymeric material can be injected into the mold in a molten state.
  • Core portion 10 can include core surface 12, induction coil 15 and inner core 17.
  • Core surface 12 can include a magnetic material. Suitable materials for core surface 12 include iron, steel, carbon, magnesium, and combinations comprising at least one of the foregoing.
  • the material for core surface 12 can include a saturation flux density that is greater than or equal to 0.2 Tesla.
  • the material for core surface 12 can include a saturation flux density that is greater than or equal to 0.4 Tesla.
  • the material for core surface 12 can include a saturation flux density that ranges from 0.4 Tesla to 2.5 Tesla.
  • Inner core 17 can include a non-magnetic material that is capable of withstanding molding pressures of 100 psi to 30,000 psi (7 bar to 2,068 bar), for example 100 psi to 25,000 psi (7 bar to 1,724 bar), specifically, 500 psi to 20,000 psi (34 bar to 1,379 bar), more specifically 1,000 psi to 20,000 psi (69 bar to 1,379 bar), even more specifically 5,000 psi to 20,000 psi (345 bar to 1,379bar), or even withstand molding pressures of 30,000 psi (2,068 bar).
  • a non-magnetic material that is capable of withstanding molding pressures of 100 psi to 30,000 psi (7 bar to 2,068 bar), for example 100 psi to 25,000 psi (7 bar to 1,724 bar), specifically, 500 psi to 20,000 psi (34 bar to 1,379 bar), more specifically 1,000 psi to 20,000 ps
  • inner core 17 can include zirconia, porcelain, forsterite, alumina, and combinations including at least one of the foregoing, such as lithia porcelain, alumina porcelain, zirconia porcelain.
  • Inner core 17 can include a material with a lower density than the material of core surface 12.
  • the ratio of the density of the material forming the core surface 12 to the density of the material forming the inner core 17 can be 3:2 or greater.
  • the ratio of the density of the material forming the core surface 12 to the density of the material forming the inner core 17 can be 2:1 or greater.
  • the use of a lower density material in inner core 17 allows for the tailoring of the mass distribution of the core portion 10, which can enable an even mold temperature.
  • Inner core 17 can form the majority of core portion 10.
  • inner core 17 can include 75% or more of the total volume of core portion 10.
  • Inner core 17 can include greater than or equal to 85% of the total volume of core portion 10.
  • Inner core 17 can include greater than or equal to 90% of the total volume of core portion 10.
  • Cavity portion 20 includes a cavity surface 22 and induction coil 25.
  • Cavity surface can include the same material as core surface 12, or a different material. Possible materials for cavity surface 22 include steel, iron, steel, carbon, magnesium, and combinations comprising at least one of the foregoing.
  • the material for cavity surface 22 can include a saturation flux density that is greater than or equal to 0.2 Tesla.
  • the material for cavity surface 22 can include a saturation flux density that is greater than or equal to 0.4 Tesla.
  • the material for cavity surface 22 can include a saturation flux density that ranges from 0.4 Tesla to 2.5 Tesla.
  • the overall mass of the core portion 10 and the cavity portion 20 can be balanced, which allows for similarity in heating and cooling rates for the two portions.
  • the mass of core portion 10 and the mass of cavity portion 20 can differ by 20% or less.
  • the mass of core portion 10 and the mass of cavity portion 20 can differ by 10% or less.
  • the mass of core portion 10 and the mass of cavity portion 20 can differ by 5% or less.
  • Induction coils 15, 25 generate eddy currents within the core surface 12 and cavity surface 22 and resistance leads to heating of the surfaces.
  • Possible induction coils 15, 25, for example, are commercially available from Ambrell/Ameritherm, Inc. of Scottsville, NY.
  • Mold apparatus 1 can produce a uniform temperature distribution along core surface 12 and cavity surface 22.
  • the temperature at any point along the core surface 12 and cavity surface 22 can vary by less than 3 degrees Celsius (° C).
  • the temperature can vary at any point along the core surface 12 and cavity surface 22 can vary by 2° C or less.
  • the temperature at any point along the core surface 12 and cavity surface 22 can vary by 1° C or less.
  • the temperature of the core surface 12 and/or cavity surface 22 can fluctuate by less than or equal to 5% across the entirety of the core surface 12 and cavity surface 22.
  • the temperature of the core surface 12 and/or cavity surface 22 can fluctuate by less than or equal to 3% across the entirety of the surface.
  • the temperature of the core surface 12 and/or cavity surface 22 can fluctuate by less than or equal to 1% across the entirety of the surface.
  • a uniform or homogenous temperature along the mold surfaces prevents the occurrence of "hot spots" which can lead to longer mold cycles and flaws on the polymeric part.
  • the cooling and/or heating rates of the core surface and cavity can be substantially the same, which can reduce the overall cycle time.
  • the core portion 10 and cavity portion 20 can include surface cooling rates that differ by less than or equal to 5%.
  • the core portion 10 and cavity portion 20 can include surface cooling rates that differ by less than or equal to 3%.
  • the core portion 10 and cavity portion 20 can include surface cooling rates that differ by less than or equal to 1%.
  • the core portion 10 and cavity portion 20 can include surface heating rates that differ by less than or equal to 5%.
  • the core portion 10 and cavity portion 20 can include surface heating rates that differ by less than or equal to 3%.
  • the core portion 10 and cavity portion 20 can include surface heating rates that differ by less than or equal to 1%.
  • the core surface 12 and cavity surface 22 are heated through induction heating using induction coils 15 and 25, respectively.
  • a polymeric material is disposed into the area located between the core portion 10 and cavity portion 20.
  • the polymeric material can be introduced in any manner.
  • the polymeric material can be injected in a molten state into mold apparatus 1.
  • Mold apparatus 1 is closed and pressure is applied to the polymeric material to form a polymeric product.
  • the injection pressure can be 1,000 psi to 30,000 psi (69 bars to 2,068 bars).
  • Core surface 12 and the cavity surface 22 are cooled.
  • core surface 12 and cavity mold surface 22, as well as the polymer can be cooled by passing a liquid cooling medium through at least one of the core portion 10 and cavity portion 20 of mold apparatus 1.
  • mold apparatus 1 is opened and molded polymeric product is then ejected from mold apparatus 1
  • FIG. 2 illustrates some of the complex geometric configurations that core surface 12 and/or cavity surface 22 can include. Either or both of these surfaces can include three dimensional (e.g., non-flat) configurations.
  • the core surface 12 and/or cavity surface 22 can include trapezoidal-shaped configurations 120.
  • the core surface 12 and/or cavity surface 22 can include saw tooth-shaped configurations 130.
  • the core surface 12 and/or cavity surface 22 can include sinusoidal-shaped configurations 140.
  • the core surface 12 and/or cavity surface 22 can include lamellar-shaped configurations 150.
  • the core surface 12 and/or cavity surface 22 can include triangular-shaped configurations 160.
  • the core surface 12 and/or cavity surface 22 can include abs(sin)-shaped configurations 170.
  • the core surface 12 and/or cavity surface 22 can include cycloid-shaped configurations 180.
  • core surface 12 and/or cavity surface 22 can include combinations including at least one of the complex geometric configurations.
  • FIG. 3 illustrates a molded article having a complex geometry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Claims (15)

  1. Werkzeugvorrichtung (1), aufweisend einen Kernabschnitt (10) umfassend eine Kernoberfläche (12), eine erste Induktionsspule (15) sowie einen inneren Kern (17), und wobei der Kernabschnitt (10) eine Kernabschnittsmasse umfasst, wobei der innere Kern (17) vorzugsweise Keramik umfasst; und einen Kavitätsabschnitt (20) umfassend eine zweite Induktionsspule (25) und eine Kavitätsoberfläche (22), und wobei der Kavitätsabschnitt (20) eine Kavitätsabschnittsmasse umfasst;
    der innere Kern (17) ein nicht-magnetisches Material umfasst, die Kernoberfläche (12) ein magnetisches Material umfasst, und eine Dichte des nicht-magnetischen Materials geringer als eine Dichte des magnetischen Materials ist, wobei sich die Werkzeugvorrichtung (1) dadurch auszeichnet, dass die Kernabschnittsmasse und die Kavitätsabschnittsmasse sich um 5% oder weniger unterscheiden.
  2. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei das Verhältnis der Dichte des magnetischen Materials und der Dichte des nicht-magnetischen Materials größer oder gleich 3:2, vorzugsweise 3:2 bis 3:1, ist.
  3. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Kernabschnitt (10) die Kernoberfläche (12) die erste Induktionsspule (15) und den inneren Kern (17) hat, und wobei der Kernabschnitt (10) eine Kernabschnittsmasse hat;
    der Kavitätsabschnitt (20) die zweite Induktionsspule (25) und die Kavitätsoberfläche (22) hat; und
    der innere Kern (17) aus einem nicht-magnetischen Material gebildet ist und die Kernoberfläche (12) aus einem magnetischen Material gebildet ist, vorzugsweise ist das magnetische Material ausgewählt aus der Gruppe umfassend Stahl, Eisen, Kohlenstoff, Magnesium und Kombinationen aus wenigstens einem der Vorgenannten.
  4. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Kernabschnitt (10) und der Kavitätsabschnitt (20) Oberflächenkühlraten aufweisen, die sich um 5% oder weniger unterscheiden, vorzugsweise Oberflächenkühlraten aufweisen, die sich um 3% oder weniger unterscheiden, besonders vorzugsweise Oberflächenkühlraten aufweisen, die sich um 1% oder weniger unterscheiden.
  5. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Kavitätsoberfläche (22) Stahl, Eisen, Kohlenstoff, Magnesium und Kombinationen aus wenigstens einem der Vorgenannten umfasst.
  6. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Kernabschnitt (10) und der Kavitätsabschnitt (20) Oberflächenheizraten aufweisen, die sich um 5% oder weniger unterscheiden, vorzugsweise Oberflächenheizraten aufweisen, die sich um 3% oder weniger unterscheiden, besonders vorzugsweise Oberflächenheizraten aufweisen, die sich um 1% oder weniger unterscheiden.
  7. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Temperatur der Kernoberfläche (12) oder der Kavitätsoberfläche (22) oder sowohl der Kernoberfläche (12) als auch der Kavitätsoberfläche (22) über die gesamte Oberfläche um 1% oder weniger fluktuiert.
  8. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der innere Kern (17) eine Sättigungsflussdichte von 0,1 Tesla oder weniger aufweist.
  9. Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei der Kernabschnitt (10) ein Gesamtvolumen aufweist und wobei der innere Kern (17) größer als oder gleich 75% des Gesamtvolumens des Kernabschnitts (10) ist, vorzugsweise größer als oder gleich 85% des Gesamtvolumens des Kernabschnitts (10) ist, und besonders vorzugsweise größer als oder gleich 95% des Gesamtvolumens des Kernabschnitts (10) ist.
  10. Verfahren zum Gießen eines polymeren Produkts in einer Werkzeugvorrichtung (1) nach einem der vorhergehenden Ansprüche, umfassend:
    Heizen einer Kernoberfläche (12) und einer Kavitätsoberfläche (22) durch Induktionsheizen durch Leiten eines elektrischen Stroms durch die erste Induktionsspule (15) und die zweite Induktionsspule (25);
    Platzieren eines polymeren Materials zwischen die Kernoberfläche (12) und die Kavitätsoberfläche (22) zur Bildung eines polymeren Produkts;
    Kühlen der Kernoberfläche (12) und der Kavitätsoberfläche (22) durch Stoppen des Flusses des elektrischen Stroms durch die erste Induktionsspule (15) und die zweite Induktionsspule (25);
    Öffnen der Werkzeugvorrichtung (1); und
    Entnehmen des gegossenen Produkts.
  11. Verfahren nach Anspruch 10, wobei das Heizen des Kernabschnitts (10) und des Kavitätsabschnitts (20) eine gleichmäßige Temperaturverteilung entlang der Kernoberfläche (12) und der Kavitätsoberfläche (22) umfasst.
  12. Verfahren nach Anspruch 10 oder 11, wobei die Temperatur an einem jeden Punkt entlang der Kernoberfläche (12) und der Kavitätsoberfläche (22) um weniger als 3°C variiert, und wobei sich die Temperatur der Kernoberfläche (12) und/oder der Kavitätsoberfläche (22) vorzugsweise um weniger als 5% entlang der Gesamtheit der Kernoberfläche (12) und der Kavitätsoberfläche (22) unterscheidet.
  13. Verfahren nach einem der Ansprüche 10 bis 12, wobei das Kühlen der Kernoberfläche (12) und der Kavitätsoberfläche (22) das Einbringen eines Kühlfluids durch den Kernabschnitt (10) und den Kavitätsabschnitt (20) umfasst.
  14. Verfahren nach einem der Ansprüche 10 bis 13, wobei das polymere Material thermoplastische Materialien, duroplastische Materialien, oder eine Kombination aus thermoplastischen und duroplastischen Materialien umfasst.
  15. Verfahren nach einem der Ansprüche 10 bis 14, wobei das polymere Material Polycarbonat umfasst und wobei das polymere Material vorzugsweise ferner einen Füllstoff umfasst.
EP15742098.5A 2014-06-27 2015-06-26 Induktionsbeheiztes werkzeug mit kern aus mehreren materialien und verfahren unter verwendung dieses werkzeuges Not-in-force EP3160704B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462018064P 2014-06-27 2014-06-27
PCT/IB2015/054843 WO2015198288A1 (en) 2014-06-27 2015-06-26 Induction heated mold apparatus with multimaterial core and method of using the same

Publications (2)

Publication Number Publication Date
EP3160704A1 EP3160704A1 (de) 2017-05-03
EP3160704B1 true EP3160704B1 (de) 2018-07-18

Family

ID=53724399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15742098.5A Not-in-force EP3160704B1 (de) 2014-06-27 2015-06-26 Induktionsbeheiztes werkzeug mit kern aus mehreren materialien und verfahren unter verwendung dieses werkzeuges

Country Status (5)

Country Link
US (1) US10427329B2 (de)
EP (1) EP3160704B1 (de)
KR (1) KR101827463B1 (de)
CN (1) CN106457617A (de)
WO (1) WO2015198288A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6838865B2 (ja) * 2016-03-31 2021-03-03 宇部興産機械株式会社 射出成形装置および射出成形方法
ES2957790A1 (es) * 2022-06-20 2024-01-25 Diseno E Modelado De Superficies S A Molde de inyección y método para el moldeo por inyección de piezas con dicho molde de inyección
DE102022131109A1 (de) 2022-09-27 2024-03-28 Eli Lilly And Company Verfahren und Spritzgießvorrichtung zum Spritzgießen von Kunststoffteilen

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7326694U (de) 1973-12-13 Wilden Kg Kunststoffspritzform
US2393541A (en) 1943-05-21 1946-01-22 Induction Heating Corp Composition adapted for inductive heating and method for using same
US2454847A (en) 1944-04-29 1948-11-30 H D Justi & Son Inc Mold, mold charging, and molding process
US2508462A (en) 1945-03-17 1950-05-23 Union Carbide & Carbon Corp Method and apparatus for the manufacture of synthetic staple fibers
US2705342A (en) 1949-05-18 1955-04-05 Tube Turns Plastics Inc Injection molding machine
US2797179A (en) 1953-12-21 1957-06-25 Ibm Process of forming a molded laminate
US2984887A (en) 1958-01-30 1961-05-23 Gen Electric Apparatus for manufacturing ceramics
US2979773A (en) 1959-08-26 1961-04-18 Honeywell Regulator Co Molding apparatus
US3185432A (en) 1962-01-23 1965-05-25 Armstrong Cork Co Low-temperature, low-pressure mold
US3754852A (en) * 1965-08-24 1973-08-28 Dodds T Inc Apparatus for rotational casting
US3488411A (en) 1966-04-20 1970-01-06 Alumacraft Marine Products Cor Production of low density thin gauge plastic articles
US3600248A (en) 1966-07-13 1971-08-17 Mojonnier Inc Albert Method for heat sealing thermoplastic bodies
US3691339A (en) 1971-05-07 1972-09-12 Park Ohio Industries Inc Multi-phase induction heating device
US3671168A (en) 1971-06-09 1972-06-20 Bischoff Chemical Corp Low heat capacity mold for injection molding
US3763293A (en) 1971-06-09 1973-10-02 Bischoff Chemical Corp Process of molding giant articles of structured plastic
US4452943A (en) 1971-09-10 1984-06-05 Conrad Goldman Thermoforming of thermoplastic polymers
US3832433A (en) 1972-08-28 1974-08-27 Bethlehem Steel Corp Method of making plastic composite with wire reinforcements
US4044188A (en) 1972-10-02 1977-08-23 Allied Chemical Corporation Stampable thermoplastic sheet reinforced with multilength fiber
US3974250A (en) 1973-09-04 1976-08-10 The Carborundum Company Method for reducing crystalline orientation of para-oxybenzoyl polyesters
FR2322707A1 (fr) 1975-09-08 1977-04-01 Sifsa Machine pour le moulage, par chauffage haute frequence, d'objets en matiere plastique
US4012014A (en) * 1975-09-11 1977-03-15 Mcdonnell Douglas Corporation Aircraft flight controller
GB1536778A (en) * 1975-11-21 1978-12-20 Upjohn Co Bis(hydroxyalkyl)dialkylaminomethanephosphonates
US4201742A (en) 1976-07-09 1980-05-06 Ex-Cell-O Corporation Method and apparatus for injection molding foamed resin products having a smooth finish on their surface
JPS53143901A (en) 1977-05-23 1978-12-14 Hitachi Ltd Coil end support
DE2734346C2 (de) 1977-07-29 1982-03-04 Polygram Gmbh, 2000 Hamburg Preß- Spritzgieß- oder Spritzpreßform zur Herstellung plattenförmiger Informationsträger
US4406703A (en) 1980-02-04 1983-09-27 Permawood International Corporation Composite materials made from plant fibers bonded with portland cement and method of producing same
US4548773A (en) 1980-05-22 1985-10-22 Massachusetts Institute Of Technology Injection molding method
US4340551A (en) 1980-08-11 1982-07-20 Asahi-Dow Limited Injection molded articles with improved surface characteristics, production of same and apparatus therefor
US4439492A (en) 1980-08-11 1984-03-27 Asahi-Dow Limited Injection molded articles with improved surface characteristics
JPS5767031A (en) 1980-10-06 1982-04-23 Shin Etsu Chem Co Ltd Formation of quartz glass
US4486641A (en) 1981-12-21 1984-12-04 Ruffini Robert S Inductor, coating and method
US4390485A (en) 1982-01-07 1983-06-28 Yang Wen Jei Method of injection molding a foamed resin product having a smooth surface involving surface heating of the mold by applying high current low voltage electric power
JPS5926460A (ja) 1982-08-06 1984-02-10 東洋製罐株式会社 包装容器蓋用複合材料
GB2134839B (en) 1982-09-02 1987-05-28 Dunlop Ltd Manufacture of moulded articles
NL8304399A (nl) 1983-12-22 1985-07-16 Philips Nv Afwisselend verwarmbaar en koelbaar persblok.
US5654246A (en) 1985-02-04 1997-08-05 Lanxide Technology Company, Lp Methods of making composite ceramic articles having embedded filler
JPS6378720A (ja) 1986-09-24 1988-04-08 Sekisui Chem Co Ltd 成形金型
US4716072A (en) 1986-12-29 1987-12-29 General Electric Company Multilayer composite structure for smooth surfaces
US5047198A (en) 1988-03-30 1991-09-10 General Electric Company Compression molding of composite parts on hot mold surfaces with a short cycle time
US5064597A (en) 1988-03-30 1991-11-12 General Electric Company Method of compression molding on hot surfaces
US5324473A (en) 1988-05-06 1994-06-28 Baresich Frank J Method for molding stress free amorphous and crystalline thermoplastic resins
US5238627A (en) 1988-06-01 1993-08-24 Ngk Insulators, Ltd. Method for producing ceramics sintered article and molding method and molding apparatus to be used therefor
FI82412C (fi) 1988-07-14 1991-03-11 Neste Oy Plastform med metallyta och foerfarande foer framstaellning av denna.
US4969968A (en) 1988-07-22 1990-11-13 William C. Heller, Jr. Method of inductive heating with an integrated multiple particle agent
DE3832284A1 (de) 1988-09-22 1990-04-05 Krupp Corpoplast Masch Verfahren und vorrichtung zum thermischen umsteuern eines koerpers zwischen einer aufheiz- und einer abkuehlphase fuer das behandeln von kunststoffen
US4959189A (en) 1988-09-26 1990-09-25 E. I. Du Pont De Nemours And Company Process for forming a composite structure of thermoplastic polymer and sheet molding compound
US5041247A (en) 1988-09-29 1991-08-20 General Electric Company Method and apparatus for blow molding parts with smooth surfaces
WO1990003886A1 (en) 1988-10-12 1990-04-19 Toyo Seikan Kaisha, Ltd. Heat-sealable cap for polyester vessel and vessels capped with same
US5458846A (en) 1988-12-05 1995-10-17 Carroll; Robert E. Method of injection molding
US5062786A (en) 1988-12-12 1991-11-05 Canon Kabushiki Kaisha Molding device for molding optical elements
US5219642A (en) 1989-06-09 1993-06-15 Imperial Chemical Industries Plc Fibre reinforced stuctural thermoplastic composite materials
DE69023302T2 (de) 1989-08-29 1996-03-28 Yokohama Rubber Co Ltd Verfahren zum Herstellen von faserverstärkten thermoplastischen Hohlkörpern.
US5260017A (en) 1990-01-02 1993-11-09 General Electric Company Method for improved surface profile of composite structures
US5272720A (en) 1990-01-31 1993-12-21 Inductotherm Corp. Induction heating apparatus and method
IT1244146B (it) 1990-11-02 1994-07-08 Sviluppo Settori Impiego Srl Stampo a bassa inerzia termica e suo impiego nella nobilitazione superficiale di manufatti ottenuti per"blow molding"o termoformatura
JPH04173313A (ja) * 1990-11-07 1992-06-22 Sanshu Mold:Kk 射出成形用金型およびこの金型を使用する射出成形方法
US5160396A (en) 1991-02-11 1992-11-03 Engineering & Research Associates, Inc. Low thermal inertia heater
US5176839A (en) 1991-03-28 1993-01-05 General Electric Company Multilayered mold structure for hot surface molding in a short cycle time
US5645744A (en) 1991-04-05 1997-07-08 The Boeing Company Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals
US5410132A (en) 1991-10-15 1995-04-25 The Boeing Company Superplastic forming using induction heating
US5530227A (en) 1991-04-05 1996-06-25 The Boeing Company Method and apparatus for consolidating organic matrix composites using induction heating
US5591369A (en) 1991-04-05 1997-01-07 The Boeing Company Method and apparatus for consolidating organic matrix composites using induction heating
CA2114238C (en) 1991-08-05 2004-05-11 Richard A. Markle Thermally reversible isocyanate-based polymers
JP2673623B2 (ja) 1991-10-01 1997-11-05 旭化成工業株式会社 合成樹脂の成形法
EP0551692A1 (de) 1992-01-15 1993-07-21 General Electric Company Verfahren zur Verbesserung des Oberflächenprofils eines Verbundmaterialgegenstandes
US5338497A (en) 1992-04-03 1994-08-16 Ford Motor Company Induction heating method for forming composite articles
US5431367A (en) 1992-08-28 1995-07-11 General Electric Company Multilayer injection molds having improved surface properties
WO1994012390A2 (en) 1992-11-24 1994-06-09 United Technologies Corporation Coolable rotor blade structure
US5718863A (en) 1992-11-30 1998-02-17 Lockheed Idaho Technologies Company Spray forming process for producing molds, dies and related tooling
US5376317A (en) 1992-12-08 1994-12-27 Galic Maus Ventures Precision surface-replicating thermoplastic injection molding method and apparatus, using a heating phase and a cooling phase in each molding cycle
US5388803A (en) 1993-08-17 1995-02-14 General Electric Company Apparatus for producing textured articles
DE4337483C1 (de) 1993-11-03 1995-04-27 Buerkle Gmbh & Co Robert Verfahren zum dimensionsgenauen Laminieren von Mehrlagenleiterplatten und Vorrichtung hierzu
US5728474A (en) 1993-12-14 1998-03-17 General Electric Company Edge design for insulated mold
US5505492A (en) 1994-02-09 1996-04-09 Radius Engineering, Inc. Composite pole and manufacturing process for composite poles of varying non-circular cross-sections and curved center lines
US5416303A (en) 1994-07-07 1995-05-16 The Proctor & Gamble Company Method for induction sealing an inner bag to an outer container
CA2134424A1 (en) 1994-10-26 1996-04-27 Raymond T. Woodhams Injection molding process for the production of oriented thermoplastic and particulate matter composite articles
US5609922A (en) 1994-12-05 1997-03-11 Mcdonald; Robert R. Method of manufacturing molds, dies or forming tools having a cavity formed by thermal spraying
KR100199837B1 (ko) 1995-03-22 1999-06-15 전주범 사출성형 몰드 시스템
US5688426A (en) 1995-06-07 1997-11-18 The Boeing Company Hybrid metal webbed composite beam
US5770136A (en) 1995-08-07 1998-06-23 Huang; Xiaodi Method for consolidating powdered materials to near net shape and full density
DE69618338T2 (de) 1995-10-24 2002-08-14 Nippon Carbide Kogyo Kk Verfahren zum kontinuirlichen formen von optischen anordnungen und vorrichtung dazu
CN2239648Y (zh) 1995-12-25 1996-11-06 吴泗沧 一种立体标牌或徽章的成型装置
GB9604892D0 (en) 1996-03-07 1996-05-08 Euro Projects Ltd Thermoplastic and thermoplastic composite structures and methods of manufacturing them
JPH09239070A (ja) 1996-03-11 1997-09-16 Bridgestone Sports Co Ltd ゴルフボール成形方法及びゴルフボール成形用金型
TW429213B (en) 1996-09-03 2001-04-11 Asahi Chemical Ind Method for molding thermoplastic resin
FR2758533B3 (fr) 1997-01-17 1999-02-19 Mei Yi Zhu Conteneur inviolable, comportant un corps creux avec son dispositif de fermeture
EP0963400A1 (de) 1997-02-28 1999-12-15 JOHNSON, Robert Harlan Jr. Hochwirksame wärme-erzeugungs-agentien
US6939477B2 (en) 1997-06-06 2005-09-06 Ashland, Inc. Temperature-controlled induction heating of polymeric materials
DE19733838C2 (de) 1997-08-04 2001-06-13 Hmt Ag Vorrichtung zur Behandlung mit akustischen Stosswellen
WO1999065659A1 (fr) 1998-06-15 1999-12-23 Daikin Industries, Ltd. Procede de moulage de fluororesine et article moule
US6960860B1 (en) 1998-06-18 2005-11-01 Metglas, Inc. Amorphous metal stator for a radial-flux electric motor
US6461801B1 (en) 1999-05-27 2002-10-08 Matrix Integrated Systems, Inc. Rapid heating and cooling of workpiece chucks
JP2001113580A (ja) 1999-10-21 2001-04-24 Canon Inc 射出成形装置
US20030141609A1 (en) 2000-01-13 2003-07-31 Jia Yim Sook Method for momentarily heating the surface of a mold and system thereof
US6561118B2 (en) 2000-01-14 2003-05-13 Kirby J. Mead Flexible male/female mold for custom surfboard production
GB0017970D0 (en) 2000-07-22 2000-09-13 Biofibres Limited Fibre filled polymer composite
DE60137632D1 (de) 2000-08-18 2009-03-26 Teijin Chemicals Ltd Tuchformartige struktur mit attraktiver erscheinung sowie deren anwendung
FR2816237B1 (fr) 2000-11-08 2003-09-19 Roctool Moules pour la transformation des matieres plastiques et composites et procede de transformation associe
GB0109880D0 (en) 2001-04-23 2001-06-13 Nielsen Carl Eric Composite injection moulding and process for manufacturing the same
JP4041660B2 (ja) 2001-05-31 2008-01-30 ユーディナデバイス株式会社 半導体装置及びその製造方法
US20030006535A1 (en) 2001-06-26 2003-01-09 Michael Hennessey Method and apparatus for forming microstructures on polymeric substrates
EP1275491A1 (de) 2001-07-09 2003-01-15 Ecole Polytechnique Fédérale de Lausanne Formverfahren
JP2004536724A (ja) 2001-07-31 2004-12-09 エスケイ ケミカルズ カンパニー リミテッド 製品を鋳造するための方法及びそれに用いる鋳型
JP4089383B2 (ja) 2001-10-30 2008-05-28 ソニー株式会社 情報記録媒体の製造方法と製造装置
US20060065546A1 (en) 2001-11-19 2006-03-30 Alain Curodeau Electric discharge machining electrode and method
JP4173313B2 (ja) 2002-04-02 2008-10-29 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー バックライト装置およびバックライト生成方法
FR2841689B1 (fr) * 2002-07-01 2010-12-10 Dixi Microtechniques Connecteur a contacts multiples pour electrode par exemple a usage medical
US20040130057A1 (en) 2002-08-02 2004-07-08 Reza Mehrabi Process and apparatus for microreplication
US6846445B2 (en) 2002-09-04 2005-01-25 Byung Kim Method for rapid mold heating and cooling
EP1554328B1 (de) 2002-10-11 2011-02-23 The University of Connecticut Auf semikristalline thermoplastische polyurethane die nanostrukturierte hartsegmente aufweisen basierenden formgedächtnispolymere
ITGE20020104A1 (it) 2002-11-22 2004-05-23 Fabrizio Parodi Composizioni polimeriche rapidamente riscaldabili
US6759781B1 (en) 2003-02-14 2004-07-06 American Superconductor Corporation Rotor assembly
TWI223622B (en) 2003-03-24 2004-11-11 Chien Hui Chuan Built-in high frequency induction-heating module for injection molding and thereof applications
US20040212109A1 (en) 2003-04-28 2004-10-28 Hoya Corporation Press-molding apparatus, press-molding method and method of producing an optical element
JP4220309B2 (ja) 2003-05-30 2009-02-04 株式会社東芝 蒸気タービン
JP2007502733A (ja) 2003-06-11 2007-02-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 異なる熱可塑性ポリマーの接合
US6914225B2 (en) 2003-06-18 2005-07-05 The Boeing Company Apparatus and methods for single sheet forming using induction heating
DE602004008284T2 (de) 2003-06-27 2007-11-22 S.C. Johnson & Son, Inc., Racine Spenderbaugruppen und -systeme mit einer wärmespeichereinheit
US7034263B2 (en) 2003-07-02 2006-04-25 Itherm Technologies, Lp Apparatus and method for inductive heating
US6979807B2 (en) 2003-08-13 2005-12-27 The Boeing Company Forming apparatus and method
US7135653B2 (en) 2003-12-09 2006-11-14 Rutberg Alexander P Multi-phase alternating current plasma generator
TWI248863B (en) 2004-02-12 2006-02-11 Mitsubishi Heavy Ind Ltd Apparatus and method for mold temperature adjustment, and mold temperature control unit
FR2867359B1 (fr) 2004-03-11 2007-07-06 Roctool Enveloppe securisee constituee d'une coque et son procede de fabrication
FR2867414A1 (fr) 2004-03-11 2005-09-16 Roctool Procede de realisation d'une coque telle qu'une valise de securite et coque realisee avec le procede
FR2867939B1 (fr) 2004-03-18 2007-08-10 Roctool Procede pour chauffer des materiaux en vue de produire des objets et dispositif mettant en oeuvre de procede
WO2005118248A2 (en) 2004-06-04 2005-12-15 Cornerstone Research Group, Inc. High speed manufacturing using shape memory polymer composites
US8202465B2 (en) 2004-11-03 2012-06-19 Honeywell International Inc. Preferential curing technique in compression molding of fiber reinforced composites
CN101511557B (zh) 2006-09-21 2011-09-07 株式会社神户制钢所 加热单元、轮胎加热装置及轮胎模具的改造方法
EP1925421B1 (de) 2006-11-21 2011-05-11 Thermal Cyclic Technologies TCTech i Stockholm AB Spritzgiessform mit Induktionsheizung sowie Spritzgiessverfahren
US8021135B2 (en) 2007-06-08 2011-09-20 Sabic Innovative Plastics Ip B.V. Mold apparatus for forming polymer and method
JP5053007B2 (ja) 2007-09-13 2012-10-17 富士フイルム株式会社 インプリント用モールド構造体、及び該インプリント用モールド構造体を用いたインプリント方法、並びに、磁気記録媒体
CN101909839B (zh) 2007-10-26 2013-08-14 沙伯基础创新塑料知识产权有限公司 聚合物成形系统和方法
WO2011044059A2 (en) 2009-10-05 2011-04-14 Just Add Technology Solutions, Llc An insulated mold cavity assembly and method for golf ball manufacturing
WO2011104442A1 (fr) 2010-02-23 2011-09-01 Arcelormittal Investigación Y Desarrollo Sl Moule, procédé de fabrication d'un moule et procédé de fabrication d'un produit en matière plastique ou composite au moyen de ce moule
JP6040546B2 (ja) * 2011-03-29 2016-12-07 三菱化学株式会社 樹脂成形用電磁誘導加熱式金型装置
NL2006712C2 (en) 2011-05-04 2012-11-06 Tooling Holland B V Cavity insert for a preform injection mold.
DE102011119613B4 (de) 2011-11-29 2017-07-27 Airbus Defence and Space GmbH Formwerkzeug und Herstellvorrichtung zum Herstellen von Kunststoffbauteilen sowie Formwerkzeugherstellverfahren
JP2013226810A (ja) * 2012-03-29 2013-11-07 Mitsubishi Chemicals Corp 電磁誘導加熱式金型装置を用いた樹脂成形体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20170020919A (ko) 2017-02-24
US20170095944A1 (en) 2017-04-06
US10427329B2 (en) 2019-10-01
KR101827463B1 (ko) 2018-02-08
EP3160704A1 (de) 2017-05-03
WO2015198288A1 (en) 2015-12-30
CN106457617A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
EP3160704B1 (de) Induktionsbeheiztes werkzeug mit kern aus mehreren materialien und verfahren unter verwendung dieses werkzeuges
EP3292990B1 (de) 3d-drucker
TW574307B (en) Liquid crystal polyester resin composition
JP5242150B2 (ja) 複合成形体
US10011699B2 (en) Inductively curable composition
WO2009142291A1 (ja) 繊維強化熱可塑性樹脂成形体
WO2018056434A1 (ja) 電子機器筐体
CN111372987A (zh) 用于电子模组中的纤维增强聚合物组合物
KR20020073596A (ko) 에프알피 성형품 및 그 제조방법
WO1994025243A1 (en) Cylindrical body and method of injection molding of the same
EP3191367B1 (de) Polymerer massentransitserviertischarm und verfahren zur herstellung davon
KR20110110003A (ko) 액정 중합체 조성물 및 그의 성형품
JP7156031B2 (ja) 一体化成形体
JP7131390B2 (ja) 一体化成形体およびその製造方法
Hong et al. Preparation and characterization of carbon fiber reinforced plastics (CFRPs) incorporating through-plane-stitched carbon fibers
JP6593529B2 (ja) 黒鉛含有耐火物および黒鉛含有耐火物の製造方法
Wu et al. In situ preparation of carbon fiber fabric reinforced poly (lactic acid) composites by vacuum‐assisted resin transfer molding
JP6093131B2 (ja) プレス成形用熱可塑性樹脂系繊維強化複合材料の製造方法
CN106715995B (zh) 隔热材料及其制造方法
JPH0267326A (ja) 表面平滑性に優れた繊維補強熱可塑性樹脂組成物
KR20230098428A (ko) 유전물질의 유도발열을 활용한 고분자 복합재 성형용 몰드
EP3609166A1 (de) Tragbare elektronische vorrichtung mit verbundrückseite und verfahren zur herstellung davon
JPH07241878A (ja) 筒状体の射出成形方法およびそのための金型
EP3613551A1 (de) Verfahren zur herstellung einer tragbaren elektronischen vorrichtung mit geformter seitenwand
CN106947220A (zh) 高耐热bmc复合材料

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180124

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SABIC GLOBAL TECHNOLOGIES B.V.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1018865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015013767

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1018865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015013767

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190626

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190626

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200512

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015013767

Country of ref document: DE

Owner name: SHPP GLOBAL TECHNOLOGIES B.V., NL

Free format text: FORMER OWNER: SABIC GLOBAL TECHNOLOGIES B.V., BERGEN OP ZOOM, NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210602

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015013767

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103