EP3158198B1 - Flüssigkeitsring-verdichtungsmaschine - Google Patents

Flüssigkeitsring-verdichtungsmaschine Download PDF

Info

Publication number
EP3158198B1
EP3158198B1 EP15729826.6A EP15729826A EP3158198B1 EP 3158198 B1 EP3158198 B1 EP 3158198B1 EP 15729826 A EP15729826 A EP 15729826A EP 3158198 B1 EP3158198 B1 EP 3158198B1
Authority
EP
European Patent Office
Prior art keywords
compression stage
impeller
compression
pressure
compressor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15729826.6A
Other languages
English (en)
French (fr)
Other versions
EP3158198A1 (de
Inventor
Heiner KÖSTERS
Inke WRAGE
Jörg WICKBOLD
Stefan LÄHN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sterling Industry Consult GmbH
Original Assignee
Sterling Industry Consult GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sterling Industry Consult GmbH filed Critical Sterling Industry Consult GmbH
Publication of EP3158198A1 publication Critical patent/EP3158198A1/de
Application granted granted Critical
Publication of EP3158198B1 publication Critical patent/EP3158198B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/005Details concerning the admission or discharge
    • F04C19/007Port members in the form of side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/605Shaft sleeves or details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0078Fixing rotors on shafts, e.g. by clamping together hub and shaft

Definitions

  • the invention relates to a liquid ring compression machine with a first compression stage, which has a first impeller mounted eccentrically in a housing, and a second compression stage, which has a second impeller mounted eccentrically in a housing. Both compression levels are single-acting. A sealing gap separates the first compression stage from the second compression stage.
  • liquid ring compression machines In liquid ring compression machines, a liquid ring is kept in motion by the impeller, so that the chambers between the blades of the impeller are closed by the liquid ring. Since the impeller is mounted eccentrically in the housing, the liquid ring penetrates the chamber to different extents depending on the angular position of the impeller and thus acts as a piston that changes the volume of the chamber. In the angular range in which the volume of the chamber is small, the gas to be compressed enters the chamber. With the rotation of the impeller, the volume of the chamber decreases and the compressed gas emerges again at the end of the compression process in a different angular position of the impeller.
  • liquid ring compression machines with two compression stages are known, for example from the DE 89 06 100 U1 or from the DE 890 256 C .
  • the invention is based on the object of presenting a liquid ring compression machine with improved efficiency. Starting from the prior art mentioned, the object is achieved with the features of claim 1. Advantageous embodiments are specified in the subclaims.
  • the sealing gap is arranged between a suction section of the first compression stage and a suction section of the second compression stage.
  • sealing gap As a sealing gap, the transition area between two becomes relative components of the compaction machine moving towards one another.
  • the sealing gap is designed so that the transition of a medium is severely hindered through the sealing gap.
  • suction section refers to a peripheral section of the compacting machine.
  • a chamber of the impeller passes through the suction section, the volume of the chamber enclosed between the blades and the liquid ring increases.
  • the gas to be compressed is supplied to the chamber.
  • a single-acting compression stage only one compression process occurs during a complete rotation (360 °) of a chamber of the impeller.
  • the chamber therefore only runs through a suction section and a pressure section.
  • the compression process regularly extends over a circumferential angle of more than 180 °.
  • first a first suction section and a first pressure section and then a second suction section and a second pressure section are passed through during a complete revolution.
  • the individual compression process extends over less than 180 °.
  • the pressure difference that is present across the sealing gap is minimized.
  • the pressure difference is only as great as the pressure difference between the suction section and the pressure section of the first compression stage. Due to the low pressure difference, the leakage loss through the sealing gap is kept low, which has a positive effect on the efficiency of the compression machine.
  • both compression stages exert a force in the same direction on the shaft.
  • the invention thus stands in contrast to the usual procedure according to which machines are designed in such a way that the internal forces cancel each other out as far as possible.
  • the suction sections of the two compression stages would be arranged offset by 180 ° so that the forces are opposed to one another.
  • the invention has recognized, however, that it is possible to absorb the forces that occur by means of structural measures and that the additional effort that this entails is low compared to the advantage that results in terms of efficiency. If the two compression stages were rotated by 180 ° in relation to each other, essentially the complete pressure difference of two compression stages would be present across the sealing gap between the suction section of the first compression stage and the pressure section of the second compression stage. The reduction in efficiency would be considerable.
  • the two compression stages are preferably driven by a common shaft so that the blades of the two compression stages move at the same angular speed.
  • the compaction machine can comprise a first control disk, which is assigned to the first compression stage, and a second control disk, which is assigned to the second compression stage.
  • the control disks have suction slots through which the gas to be compressed enters the chambers of the impeller.
  • the control disks also have pressure slots through which through the compressed gas emerges again from the chambers of the impeller.
  • the suction slots are arranged in the suction section of the compaction machine, the pressure slots are arranged in the pressure section of the compaction machine.
  • the two compression stages are preferably arranged between the first control disk and the second control disk.
  • the impeller of the first compression stage can be provided at the end opposite the first control disc with a wall which closes the chambers in the axial direction and which rotates with the impeller.
  • the impeller of the second compression stage can be provided with a wall which closes off the chambers in the axial direction.
  • the wall preferably extends in the radial direction at least as far as the outer end of the wings.
  • the impeller of the first compression stage and the impeller of the second compression stage can be separated from one another, so that each of the two impellers has such a wall.
  • the impellers of the two compression stages are elements of a one-piece component.
  • the one-piece component can be provided with a central partition which at the same time closes off the chambers of both compression stages.
  • the chambers of the first compression stage can be arranged offset in the circumferential direction relative to the chambers of the second compression stage. Both compression stages can have the same number of chambers.
  • the sealing gap can be between a peripheral surface of the wall and an adjacent end surface of the housing be trained.
  • the radial distance between the peripheral surface of the wall and the end surface of the housing is preferably less than 1 mm, preferably less than 0.5 mm, at room temperature.
  • a sealing element made of a flexible material can be arranged which is flush with both surfaces.
  • the impeller of the first compression stage can have the same diameter as the impeller of the second compression stage.
  • the invention thus differs from conventional compression machines in which two compression stages connected in series are regularly equipped with two different diameters according to the different pressure levels and compression capacities.
  • the first compression stage is overdimensioned in comparison, which makes it possible to keep the outlet pressure constant even with a reduced intake pressure.
  • the impeller of the first compression stage and the impeller of the second compression stage rotate within an interior of the housing.
  • the eccentric arrangement relates to this interior space.
  • the diameter of the interior space can be just as large in the first compression stage as in the second compression stage.
  • the interior can have a uniform contour over the first compression stage and the second compression stage. For each angular position it then applies that the distance from the wall of the interior to the center of the shaft in the first compression stage is the same as in the second compression stage.
  • the housing of the compression machine can have a channel which extends from the output side of the first compression stage to the input side of the second compression stage. In the axial direction, the channel preferably extends from the first control disk over the impellers of the two compression stages to the second control disk.
  • the channel can further comprise a section which extends over a circumferential section of at least 90 °, preferably at least 120 °, of the compacting machine.
  • the compression machine can be designed such that an input opening of the compression machine is connected to the input side of the first compression stage.
  • the inlet opening can be formed on a connecting piece which is provided with a flange for connecting a pipe.
  • An outlet opening of the compression machine can be connected to the outlet side of the second compression stage, which outlet can also be formed on such a connector.
  • the outlet side of the second compression stage is followed by a third compression stage.
  • the third compression stage preferably also comprises an impeller arranged in a housing.
  • the impeller of the third compression stage can be driven with the same shaft as the impeller of the first compression stage and the impeller of the second compression stage.
  • the third compression stage can be designed double-acting, which means that each chamber during one complete cycle goes through two compression processes.
  • the third compression stage therefore preferably comprises two suction sections and two pressure sections which are each offset by 180 ° to one another.
  • a channel can be formed which extends from the pressure slot of the second compression stage to the suction slots of the first compression stage.
  • the impeller of the third compression stage can be enclosed between two control discs.
  • the suction slots can be formed in one of the control disks and the pressure slots in the other control disk.
  • the output opening of the compaction machine can connect to the output side of the third compression stage.
  • the pressure difference between the first compression stage and the second compression stage creates a considerable force in the axial direction.
  • the compression machine can be equipped with sufficiently stable main bearings to absorb these axial forces.
  • the impeller of the third compression stage comprises a relief piston which closes off a pressure compensation chamber in the axial direction.
  • the hub of the impeller can be designed as a relief piston.
  • the pressure can be lower than on the outlet side of the third compression stage, preferably lower than on the inlet side of the third compression stage.
  • the pressure compensation chamber can be connected to the inlet side of the first compression stage via a duct. The axial pressure on the shaft is considerably reduced by this measure.
  • the compaction machine according to the invention preferably comprises a continuous shaft which extends over all compaction stages.
  • the shaft can be supported by a first main bearing and a second main bearing.
  • the two main bearings can be arranged in such a way that they enclose all compression stages between them.
  • the shaft can be free of other bearings between the two main bearings.
  • One of the main bearings can be designed as a tapered roller bearing, the main bearing preferably having two tapered roller bearings which are oriented in opposite directions. Such a main bearing is well designed to absorb axial forces.
  • the main bearing on the output side of the compaction machine is preferably designed as such a tapered roller bearing.
  • a main bearing can be used on the input side of the compaction machine, which has a lower capacity for axial forces.
  • the shaft is preferably held by the main bearings in such a way that it is free of play in the axial direction.
  • the end of the shaft on the pressure side is preferably arranged within the housing. The suction-side end of the shaft can protrude from the housing so that a drive motor can be connected there.
  • the impellers Since the impellers are operated with a very small distance from the control discs, the impellers should have an exactly defined position on the shaft.
  • spacer sleeves are provided which are arranged between the shaft and the impellers and which define the radial position of the impellers.
  • the spacer sleeves can be made of a different material than the shaft.
  • the shaft can consist of simple steel and the spacer sleeve of stainless steel.
  • the spacer sleeves are preferably designed so that they fit the shaft, that is, they are free of play in the radial direction and can be moved in the axial direction relative to the shaft. Within the impellers, the spacer sleeves are also free of play in the radial direction and displaceable in the axial direction.
  • Each impeller component can be enclosed between two spacer sleeves.
  • the impeller components can have a shoulder for each spacer sleeve on which the spacer sleeve rests in the axial direction and which defines an exact axial position for the spacer sleeve. In this way, the impellers and the spacer sleeves can form a fixed unit in relation to forces in the axial direction, in which each element has a defined position.
  • the position of this unit relative to the shaft can be defined, for example, by two shaft nuts between which the unit is clamped.
  • the unit preferably comprises two outer spacer sleeves and a central spacer sleeve, the two impellers each being arranged between an outer spacer sleeve and the central spacer sleeve.
  • the spacer sleeves can be designed as shaft protection sleeves which, through suitable seals, prevent contact between the conveyed medium and the shaft.
  • one of the spacer sleeves can be provided with a weakening, so that the stresses lead to a deformation of the spacer sleeve in the area of the Lead to weakening.
  • the other spacer sleeves then do not deform, so that the impellers continue to be held in the defined position.
  • the weakening can be designed, for example, as one or more grooves that extend over the circumference of the spacer sleeve.
  • all spacer sleeves that are arranged between an impeller and the input side of the compression machine are free of any weakening.
  • a spacer sleeve which is arranged between the impeller and a pressure-side end of the shaft is preferably weakened.
  • the sealing gap between the first compression stage and the second compression stage is used specifically for the supply of the operating fluid which forms the liquid ring.
  • the second compression stage is provided with a feed for operating fluid. Part of the operating fluid passes through the sealing gap into the first compression stage in order to form the fluid ring there.
  • the first compression stage can (apart from the sealing gap) be free of a supply line for operating fluid.
  • the amount of operating fluid passing through the sealing gap regulates itself, since the pressure in the first compression stage drops if the amount of operating fluid is too small. In this embodiment, it is not necessary to keep the sealing gap as small as possible, but the sealing gap can be adjusted according to the desired flow of operating fluid become.
  • the increase in efficiency according to the invention results from the fact that the operating fluid is supplied at a higher pressure instead of being conveyed from the first compression stage to the second compression stage.
  • the operating fluid with the required pressure is regularly available through fluid separators arranged on the pressure side of the compression machine.
  • the third compression stage can also be provided with a feed for operating fluid.
  • the compression machine according to the invention can be designed as a liquid ring compressor which is designed to discharge the gas on the outlet side at a pressure well above atmospheric pressure.
  • the outlet pressure is preferably higher than 8 bar, for example between 10 bar and 15 bar.
  • the pressure on the outlet side of the first compression stage can be, for example, between 2 bar and 3 bar and the pressure on the outlet side of the second compression stage can be between 4 bar and 6 bar.
  • the compressor according to the invention has a high pumping speed, which is why it can also be operated with a slight throttling without the pressure on the outlet side dropping significantly.
  • the pressure on the inlet side can be between 200 mbar and 500 mbar without the pressure on the outlet side falling below 10 bar.
  • the invention also relates to a method in which the compressor according to the invention is used in these pressure ranges.
  • the compression machine according to the invention can also be designed as a liquid ring vacuum pump which is designed to discharge the gas at approximately atmospheric pressure.
  • the compacting machine according to the invention can be intended for use in large industrial plants, such as refineries, where high volume flows are to be processed.
  • the compression machine can for example be designed for a drive power between 500 kW and 2 MW.
  • the compression machine can also be designed to suck in a volume flow between 800 m 3 / h and 3000 m 3 / h at atmospheric pressure.
  • the diameter of the shaft can, for example, be between 15 cm and 30 cm.
  • the compression of the gas in the compression machine according to the invention takes place essentially isothermally, since the gas is in intensive contact with the liquid ring during compression.
  • the temperature of the exiting gas can be adjusted via the temperature of the liquid ring.
  • the isothermal efficiency is defined as the quotient of the thermodynamic power additionally contained in the gas flow on the output side and the drive power on the shaft of the compression machine, if the temperature of the gas flow on the output side corresponds to the temperature on the input side.
  • this isothermal efficiency is between 30% and 50%, preferably between 35% and 50%.
  • the isothermal efficiency of previous liquid ring compression machines is in the order of 25% to 30%.
  • the liquid ring compressor shown comprises a housing 14 which stands on the floor via four legs 15 and in which a shaft 16 is rotatably mounted.
  • the shaft 16 extends the entire length of the compressor.
  • the three compression stages 17, 18, 19 of the compressor are driven jointly by the shaft 16.
  • a shaft journal 20 protruding from the housing 14 is used to connect a drive motor (not shown).
  • the drive motor can for example have a power of 1 MW.
  • the opposite end of the shaft 16 is disposed within the housing 14.
  • the compressor comprises an inlet opening 21 which extends through a nozzle which is provided with a flange. The gas is sucked into the compressor through the inlet opening 21.
  • the compressor also includes a correspondingly designed outlet opening 22 through which the compressed gas is released again. The compression takes place through the three compression stages 17, 18, 19 through which the gas passes one after the other.
  • FIG. 4 A one-piece component is attached to the shaft 16, on which an impeller 23 of the first compression stage 17 and an impeller 24 of the second compression stage 18 are formed.
  • the two impellers 23, 24 are separated from one another by a central wall 26.
  • an impeller 25 of the third compression stage 19 is connected to the shaft 16.
  • the impellers 23, 24, 25 rotate in the housing 14 together with the shaft 16.
  • the sectional view in Fig. 3 shows that the impellers 23, 24 are mounted eccentrically in the housing 14.
  • the distance between the shaft 16 and the upper end of the interior space surrounding the impellers 23, 24 is smaller than the distance between the shaft 16 and the lower end of the interior space.
  • the interior has a uniform contour, so that the distance between the shaft 16 and the wall of the interior is the same in every angular position for the first compression stage 17 and the second compression stage 18.
  • the chambers of the first impeller 23 thus have their smallest volume in the same angular position as the chambers of the second impeller 24. The same applies to the largest volume and the intermediate positions.
  • the angular section in which the volume of the chambers increases is called the suction section.
  • the angular segment in which the volume of the chambers is reduced is called the pressure segment.
  • the area below the shaft 16 belongs to the suction section 271, 272 and the area above the shaft to the pressure section 281, 282 of a complete revolution, the impellers 23, 24 pass through exactly one suction section 271, 272 and exactly one pressure section 281, 282.
  • the first compression stage 17 and the second compression stage 18 are therefore single-acting.
  • the compression process extends over more than 180 °.
  • the chambers of the impellers 23, 24 are each delimited by a control disk 29, 30.
  • the control disks 29, 30 each have a suction slot in the suction section 271, 272 and a pressure slot in the pressure section 281, 282.
  • the suction slot of the control disk 29 is connected to the inlet opening 21 of the compressor. The gas sucked in through the inlet opening 21 enters the chambers of the impeller 23 through this suction slot. With the rotation of the impeller 23, the volume of the chamber decreases and the compressed gas emerges again from the chambers of the impeller 23 through the pressure slot of the control disk 29. The compression process of the first compression stage 17 is thus completed. If the gas was sucked in at an atmospheric pressure of 1 bar, the pressure at the outlet of the first compression stage can for example be between 2 bar and 3 bar.
  • the compressed gas is conducted from the pressure slot of the control disk 29 to the suction slot of the control disk 30 through a channel 31 formed in the housing 14.
  • the gas enters the chambers of the impeller 24 through the suction slot. As the impeller 24 rotates, the gas is compressed further.
  • the gas exits the second compression stage 18 again through the pressure slot of the control disk 30 at a pressure between, for example, 4 bar and 6 bar.
  • the third impeller 25, which forms the third compression stage 19, is enclosed between a third control disk 32 and a fourth control disk 33.
  • the control disk 32 comprises two suction slots offset by 180 ° to one another.
  • the control disk 33 comprises two pressure slots offset from one another by 180 °.
  • the interior of the housing surrounding the third impeller 25 is designed in such a way that it forms two suction sections and two pressure sections.
  • the impeller 25 runs through two suction sections and two pressure sections during a complete revolution and thus performs two compression processes. Each compression process extends over less than 180 °, the third compression stage is double-acting.
  • the suction slots in the control disk 32 are positioned so that they provide access to the suction sections.
  • the printing slots in the control disk 33 are positioned so that they offer access to the printing sections.
  • the gas is directed to the suction slots in the control disk 32 so that it can enter the chambers of the impeller 25.
  • the gas exits the third compression stage through the pressure slots of the control disk 33 at a pressure between, for example, 10 bar and 15 bar. From there, the gas is led out of the compressor through the outlet opening 22.
  • a leakage flow can develop between the chambers of the second impeller 24 and the chambers of the first impeller 23.
  • the leakage flow passes through a sealing gap 28 between the partition 26 of the impellers 23, 24 and the surrounding housing.
  • the radial distance between the partition wall 26 and the housing is kept as small as possible and a sealing ring is also arranged in the sealing gap 28.
  • the leakage flow cannot be completely avoided with these measures.
  • the suction sections 271, 272 and the pressure sections 281, 282 of the first compression stage 17 and the second compression stage 18 are each arranged in the same angular position contributes to reducing the leakage flow.
  • the pressure difference between the first compression stage 17 and the second compression stage 18 is thus approximately the same in all angular positions and is of the order of only 2 bar to 3 bar. This small pressure difference also counteracts the creation of a strong leakage flow.
  • the angular position of the suction sections 271, 272 and the pressure sections 281, 282, which coincide in the first two compression stages 17, 18, also means that large forces act on the shaft 16 in the radial direction. These forces are absorbed in that the shaft 16 is made very solid.
  • the shaft can for example consist of steel and have a diameter of 20 cm. This dimensioning has proven to be sufficient to prevent the shaft 16 from bending excessively under the forces exerted by the impellers 23, 24.
  • the main bearing 35 is designed as a tapered roller bearing which, in addition to the radial forces, can also absorb large axial forces.
  • the second main bearing 34 primarily absorbs radial forces.
  • the shaft 16 is no longer supported between the two main bearings 34, 35.
  • vanes of the impellers 23, 24, 25 move as close as possible to the control disks 29, 30, 32, 33. This in turn presupposes that the impellers 23, 24, 25 are held in a specific position on the shaft 16 with high precision. In the case of the compressor according to the invention, this takes place in that spacer sleeves 36, 37, 38 are arranged between the impellers and the shaft 16 and define an exact position in the radial direction.
  • the spacer sleeves 36, 37, 38 also define exact positions in the axial direction in that they bear against suitable projections of the impellers 23, 24, 25 in the axial direction. With two shaft nuts 39, 40, the unit of spacer sleeves 36, 37, 38 and impellers 23, 24, 25 is clamped against one another in the axial direction, so that all elements have an exactly defined position.
  • the spacer sleeves 36, 37, 38 are made of stainless steel and thus of a different material than the shaft 16. If the compressor heats up, stresses can occur due to the different coefficients of thermal expansion.
  • the spacer sleeve 38 is between the third impeller 25 and the pressure-side Main bearing 35 is arranged, provided with internal grooves 41, which in the enlarged view of the Fig. 6 are shown.
  • the grooves 41 form a weakening of the spacer sleeve 38, so that deformation takes place in this area due to thermal expansion. This targeted deformation ensures that the axial position of the impellers 23, 24, 25 shifts only very slightly when the compressor is heated.
  • the hub 42 of the impeller 25 is designed as a pressure relief piston in order to reduce the axial pressure on the shaft 16.
  • the hub 42 In the direction of the pressure side, the hub 42 is adjoined by a cylindrical cavity 43 which is sealed off from the hub 42 by a sealing gap 44.
  • the cavity 43 is connected via a line 45 to the suction side of the compressor, on which there is essentially atmospheric pressure. As the atmospheric pressure is passed to the outlet side of the third compression stage 19, the axial pressure is reduced and the shaft 16 is relieved.
  • the second compression stage 18 and the third compression stage 19 are each connected to a feed line (not shown) for operating fluid, which is fed by a fluid separator arranged on the pressure side of the compressor.
  • the first compression stage 17 has no direct supply for operating fluid. Rather, the first compression stage is supplied with operating fluid through the sealing gap 28. The diameter of the sealing gap is selected so that the desired flow of operating fluid is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Flüssigkeitsring-Verdichtungsmaschine mit einer ersten Verdichtungsstufe, die ein exzentrisch in einem Gehäuse gelagertes erstes Flügelrad aufweist, und einer zweiten Verdichtungsstufe, die ein exzentrisch in einem Gehäuse gelagertes zweites Flügelrad aufweist. Beide Verdichtungsstufen sind einfach wirkend. Ein Dichtspalt trennt die erste Verdichtungsstufe von der zweiten Verdichtungsstufe.
  • In Flüssigkeitsring-Verdichtungsmaschinen wird durch das Flügelrad ein Flüssigkeitsring in Bewegung gehalten, so dass die Kammern zwischen den Flügeln des Flügelrads durch den Flüssigkeitsring abgeschlossen werden. Da das Flügelrad exzentrisch in dem Gehäuse gelagert ist, dringt der Flüssigkeitsring je nach Winkelstellung des Flügelrads unterschiedlich weit in die Kammer ein und wirkt dadurch als Kolben, der das Volumen der Kammer verändert. In dem Winkelbereich, in dem das Volumen der Kammer klein ist, tritt das zu verdichtende Gas in die Kammer ein. Mit der Drehung des Flügelrads vermindert sich das Volumen der Kammer und das verdichtete Gas tritt am Ende des Verdichtungsvorgangs in einer anderen Winkelstellung des Flügelrads wieder aus.
  • Indem in einer Verdichtungsmaschine mehrere Verdichtungsstufen hintereinander geschaltet sind, lässt sich ein vergrößerter Druckunterschied zwischen der Eingangsseite und der Ausgangsseite der Verdichtungsmaschine erzeugen. Das auf der Eingangsseite angesaugte Gas wird mit der ersten Verdichtungsstufe verdichtet. Von der Ausgangsseite der ersten Verdichtungsstufe gelangt das Gas zur Eingangsseite der zweiten Verdichtungsstufe, um dort weiter verdichtet zu werden.
  • Indem die erste Verdichtungsstufe und die zweite Verdichtungsstufe lediglich durch einen Dichtspalt voneinander getrennt sind, wird eine kompakte Bauform der Flüssigkeitsring-Verdichtungsmaschine möglich. Bekannt sind solche Flüssigkeitsring-Verdichtungsmaschinen mit zwei Verdichtungsstufen beispielsweise aus der DE 89 06 100 U1 oder aus der DE 890 256 C .
  • Allerdings kann aufgrund des Druckunterschieds zwischen der ersten Verdichtungsstufe und der zweiten Vernichtungsstufe ein Leckfluss durch den Dichtspalt hindurch entstehen. Ein solcher Leckverlust wirkt sich negativ auf den Wirkungsgrad der Verdichtungsmaschine aus.
  • Der Erfindung liegt die Aufgabe zu Grunde, eine Flüssigkeitsring-Verdichtungsmaschine mit verbessertem Wirkungsgrad vorzustellen. Ausgehend vom genannten Stand der Technik wird die Aufgabe gelöst mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungsformen sind in den Unteransprüchen angegeben.
  • Erfindungsgemäß ist der Dichtspalt zwischen einem Saugabschnitt der ersten Verdichtungsstufe und einem Saugabschnitt der zweiten Verdichtungsstufe angeordnet.
  • Zunächst werden einige Begriffe erläutert. Als Dichtspalt wird der Übergangsbereich zwischen zwei sich relativ zueinander bewegenden Komponenten der Verdichtungsmaschine bezeichnet. Der Dichtspalt ist so gestaltet, dass der Übergang eines Mediums durch den Dichtspalt hindurch stark behindert ist.
  • Der Begriff Saugabschnitt bezeichnet einen Umfangsabschnitt der Verdichtungsmaschine. Wenn eine Kammer des Flügelrads den Saugabschnitt durchläuft, vergrößert sich das zwischen den Flügeln und dem Flüssigkeitsring eingeschlossene Volumen der Kammer. In dem Saugabschnitt wird das zu verdichtende Gas zu der Kammer zugeführt.
  • Bei einer einfach wirkenden Verdichtungsstufe kommt es während eines vollständigen Umlaufs (360°) einer Kammer des Flügelrads nur zu einem Verdichtungsvorgang. Die Kammer durchläuft also lediglich einen Saugabschnitt und einen Druckabschnitt. Der Verdichtungsvorgang erstreckt sich regelmäßig über einen Umfangswinkel von mehr als 180°. Im Unterschied dazu werden bei einer doppelt wirkenden Verdichtungsstufe während eines vollständigen Umlaufs zunächst ein erster Saugabschnitt und ein erster Druckabschnitt und dann ein zweiter Saugabschnitt und ein zweiter Druckabschnitt durchlaufen. Der einzelne Verdichtungsvorgang erstreckt sich über weniger als 180°.
  • Indem die Verdichtungsmaschine so gestaltet ist, dass die Saugabschnitte der beiden Verdichtungsstufen aneinandergrenzen, wird die Druckdifferenz minimiert, die über dem Dichtspalt anliegt. Die Druckdifferenz ist lediglich so groß wie die Druckdifferenz zwischen dem Saugabschnitt und dem Druckabschnitt der ersten Verdichtungsstufe. Aufgrund der geringen Druckdifferenz wird der Leckverlust durch den Dichtspalt hindurch gering gehalten, was sich positiv auf den Wirkungsgrad der Verdichtungsmaschine auswirkt.
  • Mit der Erfindung wird in Kauf genommen, dass in radialer Richtung starke Kräfte auf die Welle der Verdichtungsmaschine wirken. Indem bei beiden Verdichtungsstufen der Saugabschnitt in demselben Winkelabschnitt der Verdichtungsmaschine angeordnet ist, üben beide Verdichtungsstufen eine Kraft in derselben Richtung auf die Welle aus. Damit steht die Erfindung im Gegensatz zu der gängigen Vorgehensweise, gemäß der Maschinen so gestaltet werden, dass die internen Kräfte sich möglichst weitgehend gegenseitig aufheben. Danach würde man die Saugabschnitte der beiden Verdichtungsstufen um 180° versetzt anordnen, so dass die Kräfte einander entgegengesetzt sind. Die Erfindung hat aber erkannt, dass es möglich ist, die auftretenden Kräfte durch konstruktive Maßnahmen aufzufangen und dass der dadurch bedingte Mehraufwand gering ist verglichen mit dem Vorteil, der sich beim Wirkungsgrad ergibt. Wären die beiden Verdichtungsstufen um 180° gegeneinander verdreht, würde zwischen dem Saugabschnitt der ersten Verdichtungsstufe und dem Druckabschnitt der zweiten Verdichtungsstufe im Wesentlichen die komplette Druckdifferenz zweier Verdichtungsstufen über dem Dichtspalt anliegen. Die Verminderung des Wirkungsgrads wäre beträchtlich.
  • Die beiden Verdichtungsstufen sind vorzugsweise von einer gemeinsamen Welle angetrieben, so dass die Flügel der beiden Verdichtungsstufen sich mit derselben Winkelgeschwindigkeit bewegen. Die Verdichtungsmaschine kann eine erste Steuerscheibe umfassen, die der ersten Verdichtungsstufe zugeordnet ist, sowie eine zweite Steuerscheibe, die der zweiten Verdichtungsstufe zugeordnet ist. Die Steuerscheiben weisen Saugschlitze auf, durch die hindurch das zu verdichtende Gas in die Kammern des Flügelrads eintritt. Die Steuerscheiben weisen außerdem Druckschlitze auf, durch die hindurch das verdichtete Gas wieder aus den Kammern des Flügelrads austritt. Die Saugschlitze sind im Saugabschnitt der Verdichtungsmaschine, die Druckschlitze sind im Druckabschnitt der Verdichtungsmaschine angeordnet.
  • Die beiden Verdichtungsstufen sind vorzugsweise zwischen der ersten Steuerscheibe und der zweiten Steuerscheibe angeordnet. Das Flügelrad der ersten Verdichtungsstufe kann an dem der ersten Steuerscheibe gegenüberliegenden Ende mit einer Wand versehen sein, die die Kammern in axialer Richtung abschließt und die sich mit dem Flügelrad dreht. Das Flügelrad der zweiten Verdichtungsstufe kann an dem der zweiten Steuerscheibe gegenüberliegenden Ende mit einer Wand versehen sein, die die Kammern in axialer Richtung abschließt. Vorzugsweise erstreckt sich die Wand in radialer Richtung jeweils mindestens bis zum äußeren Ende der Flügel.
  • Das Flügelrad der ersten Verdichtungsstufe und das Flügelrad der zweiten Verdichtungsstufe können voneinander getrennt sein, so dass jedes der beiden Flügelräder eine solche Wand aufweist. In einer bevorzugten Ausführungsform sind die Flügelräder der beiden Verdichtungsstufen Elemente eines einstückigen Bauteils. Das einstückige Bauteil kann mit einer zentralen Trennwand versehen sein, die gleichzeitig die Kammern beider Verdichtungsstufen abschließt. Die Kammern der ersten Verdichtungsstufe können in Umfangsrichtung versetzt angeordnet sein zu den Kammern der zweiten Verdichtungsstufe. Beide Verdichtungsstufen können die gleiche Anzahl von Kammern aufweisen.
  • Der Dichtspalt kann zwischen einer Umfangsfläche der Wand und einer dazu benachbarten Abschlussfläche des Gehäuses ausgebildet sein. Der radiale Abstand zwischen der Umfangsfläche der Wand und der Abschlussfläche des Gehäuses ist bei Zimmertemperatur vorzugsweise kleiner als 1 mm, vorzugsweise kleiner als 0,5 mm. In dem Dichtspalt kann ein Dichtelement aus einem flexiblen Material angeordnet sein, das mit beiden Flächen abschließt.
  • Das Flügelrad der ersten Verdichtungsstufe kann denselben Durchmesser haben wie das Flügelrad der zweiten Verdichtungsstufe. Damit unterscheidet sich die Erfindung von herkömmlichen Verdichtungsmaschinen, bei denen zwei hintereinander geschaltete Verdichtungsstufen regelmäßig mit zwei verschiedenen Durchmessern ausgestattet sind entsprechend den verschiedenen Druckniveaus und Verdichtungsleistungen. Erfindungsgemäß ist die erste Verdichtungsstufe im Vergleich dazu überdimensioniert, wodurch es möglich wird, den Auslassdruck auch bei reduziertem Ansaugdruck konstant zu halten.
  • Das Flügelrad der ersten Verdichtungsstufe und das Flügelrad der zweiten Verdichtungsstufe drehen sich innerhalb eines Innenraums des Gehäuses. Die exzentrische Anordnung bezieht sich auf diesen Innenraum. Der Durchmesser des Innenraums kann in der ersten Verdichtungsstufe genauso groß sein wie in der zweiten Verdichtungsstufe. Der Innenraum kann über die erste Verdichtungsstufe und die zweite Verdichtungsstufe hinweg eine einheitliche Kontur aufweisen. Für jede Winkelposition gilt dann, dass der Abstand von der Wand des Innenraums bis zum Zentrum der Welle in der ersten Verdichtungsstufe genauso groß ist wie in der zweiten Verdichtungsstufe.
  • Das Gehäuse der Verdichtungsmaschine kann einen Kanal aufweisen, der sich von der Ausgangsseite der ersten Verdichtungsstufe bis zur Eingangsseite der zweiten Verdichtungsstufe erstreckt. In axialer Richtung erstreckt sich der Kanal vorzugsweise von der ersten Steuerscheibe über die Flügelräder der beiden Verdichtungsstufen hinweg bis zur zweiten Steuerscheibe. Der Kanal kann ferner einen Abschnitt umfassen, der sich über einen Umfangsabschnitt von wenigstens 90°, vorzugsweise wenigstens 120° der Verdichtungsmaschine erstreckt. Dadurch kann das Gas von dem Druckschlitz der ersten Verdichtungsstufe bis zu dem in einer anderen Winkelposition angeordneten Saugschlitz der zweiten Verdichtungsstufe geführt werden.
  • Die Verdichtungsmaschine kann so gestaltet sein, dass sich an die Eingangsseite der ersten Verdichtungsstufe eine Eingangsöffnung der Verdichtungsmaschine anschließt. Die Eingangsöffnung kann an einem Stutzen ausgebildet sein, der mit einem Flansch zum Anschluss eines Rohrs versehen ist. An die Ausgangsseite der zweiten Verdichtungsstufe kann sich eine Ausgangsöffnung der Verdichtungsmaschine anschließen, die ebenfalls an einem solchen Stutzen ausgebildet sein kann.
  • In einer bevorzugten Ausführungsform schließt sich an die Ausgangsseite der zweiten Verdichtungsstufe eine dritte Verdichtungsstufe an. Die dritte Verdichtungsstufe umfasst vorzugsweise ebenfalls ein in einem Gehäuse angeordnetes Flügelrad. Das Flügelrad der dritten Verdichtungsstufe kann mit derselben Welle angetrieben sein wie das Flügelrad der ersten Verdichtungsstufe und das Flügelrad der zweiten Verdichtungsstufe. Die dritte Verdichtungsstufe kann doppelt wirkend ausgelegt sein, was bedeutet, dass jede Kammer während eines vollständigen Umlaufs zwei Verdichtungsvorgänge durchläuft. Die dritte Verdichtungsstufe umfasst also bevorzugt zwei Saugabschnitte und zwei Druckabschnitte, die jeweils um 180° zueinander versetzt sind. In dem Gehäuse der Verdichtungsmaschine kann ein Kanal ausgebildet sein, der sich von dem Druckschlitz der zweiten Verdichtungsstufe bis zu den Saugschlitzen der ersten Verdichtungsstufe erstreckt.
  • Das Flügelrad der dritten Verdichtungsstufe kann zwischen zwei Steuerscheiben eingeschlossen sein. Dabei können die Saugschlitze in einer der Steuerscheiben und die Druckschlitze in der anderen Steuerscheibe ausgebildet sein. An die Ausgangsseite der dritten Verdichtungsstufe kann sich die Ausgangsöffnung der Verdichtungsmaschine anschließen.
  • Durch die Druckdifferenz zwischen der ersten Verdichtungsstufe und der zweiten Verdichtungsstufe entsteht eine beträchtliche Kraft in axialer Richtung. Die Verdichtungsmaschine kann mit hinreichend stabilen Hauptlagern ausgestattet sein, um diese Axialkräfte aufzunehmen. In einer bevorzugten Ausführungsform umfasst das Flügelrad der dritten Verdichtungsstufe einen Entlastungskolben, der einen Druckausgleichsraum in axialer Richtung abschließt. Insbesondere kann die Nabe des Flügelrads als Entlastungskolben ausgebildet sein. In dem Druckausgleichsraum kann der Druck niedriger sein als auf der Ausgangsseite der dritten Verdichtungsstufe, vorzugsweise niedriger sein als auf der Eingangsseite der dritten Verdichtungsstufe. Insbesondere kann der Druckausgleichsraum über einen Kanal an die Eingangsseite der ersten Verdichtungsstufe angeschlossen werden. Der axiale Druck auf die Welle wird durch diese Maßnahme beträchtlich vermindert.
  • Die erfindungsgemäße Verdichtungsmaschine umfasst vorzugsweise eine durchgehende Welle, die sich über alle Verdichtungsstufen hinweg erstreckt. Die Welle kann mit einem ersten Hauptlager und einem zweiten Hauptlager gelagert sein. Die beiden Hauptlager können so angeordnet sein, dass sie alle Verdichtungsstufen zwischen sich einschließen. Zwischen den beiden Hauptlagern kann die Welle frei von weiteren Lagern sein.
  • Eines der Hauptlager kann als Kegelrollenlager ausgebildet sein, wobei das Hauptlager vorzugsweise zwei Kegelrollenlager aufweist, die entgegengesetzt ausgerichtet sind. Ein solches Hauptlager ist gut für die Aufnahme axialer Kräfte ausgelegt. Vorzugsweise ist das Hauptlager auf der Ausgangsseite der Verdichtungsmaschine als solches Kegelrollenlager ausgebildet. Auf der Eingangsseite der Verdichtungsmaschine kann ein Hauptlager verwendet werden, das eine geringere Aufnahmefähigkeit für axiale Kräfte hat. Die Welle wird durch die Hauptlager vorzugsweise so gehalten, dass sie in axialer Richtung spielfrei ist. Das druckseitige Ende der Welle ist vorzugsweise innerhalb des Gehäuses angeordnet. Das saugseitige Ende der Welle kann aus dem Gehäuse herausragen, so dass dort ein Antriebsmotor angeschlossen werden kann.
  • Da die Flügelräder mit einem sehr geringen Abstand zu den Steuerscheiben betrieben werden, sollten die Flügelräder eine exakt definierte Position auf der Welle haben. Bevorzugt sind Distanzhülsen vorgesehen, die zwischen der Welle und den Flügelrädern angeordnet sind und die die radiale Position der Flügelräder definieren. Die Distanzhülsen können aus einem anderen Material bestehen als die Welle. Beispielsweise kann die Welle aus einfachem Stahl und die Distanzhülse aus Edelstahl bestehen.
  • Die Distanzhülsen sind vorzugsweise so gestaltet, dass sie zu der Welle passen, also in Radialrichtung spielfrei sind und sich in Axialrichtung relativ zu der Welle verschieben lassen. Innerhalb der Flügelräder sind die Distanzhülsen ebenfalls in Radialrichtung spielfrei und in Axialrichtung verschiebbar. Jedes Flügelrad-Bauteil kann zwischen zwei Distanzhülsen eingeschlossen sein. Die Flügelrad-Bauteile können für jede Distanzhülse einen Absatz aufweisen, an dem die Distanzhülse in axialer Richtung anliegt und der eine genaue axiale Position für die Distanzhülse definiert. Die Flügelräder und die Distanzhülsen können auf diese Weise gegenüber Kräften in Axialrichtung eine feste Einheit bilden, in der jedes Element eine definierte Position hat. Die Position dieser Einheit relativ zu der Welle kann beispielsweise durch zwei Wellenmuttern definiert werden, zwischen denen die Einheit eingespannt ist. Vorzugsweise umfasst die Einheit zwei äußere Distanzhülsen und eine zentrale Distanzhülse, wobei die beiden Flügelräder jeweils zwischen einer äußeren Distanzhülse und der zentralen Distanzhülse angeordnet sind. Die Distanzhülsen können als Wellenschutzhülsen ausgebildet sein, die durch geeignete Dichtungen einen Kontakt zwischen dem geförderten Medium und der Welle verhindern.
  • Wenn die Distanzhülsen aus einem anderen Material bestehen als die Welle, kann es aufgrund unterschiedlicher Wärmeausdehnungskoeffizienten zu Spannungen kommen. Um solche Spannungen kontrolliert aufzunehmen, kann eine der Distanzhülsen mit einer Schwächung versehen sein, so dass die Spannungen zu einer Verformung der Distanzhülse im Bereich der Schwächung führen. Die anderen Distanzhülsen verformen sich dann nicht, so dass die Flügelräder weiterhin der definierten Position gehalten werden. Die Schwächung kann beispielsweise ausgebildet sein als eine oder mehrere Nuten, die sich über den Umfang der Distanzhülse erstrecken. Eine Welle, bei der ein Flügelrad zwischen zwei Distanzhülsen eingespannt ist und bei der eine der Distanzhülsen eine solche Schwächung aufweist, bildet eine eigenständige Erfindung.
  • Bevorzugt sind alle Distanzhülsen, die zwischen einem Flügelrad und der Eingangsseite der Verdichtungsmaschine angeordnet sind, frei von einer Schwächung. Geschwächt ist vorzugsweise eine Distanzhülse, die zwischen Flügelrad und einem druckseitigen Ende der Welle angeordnet ist.
  • Bei einer Ausführungsform der Erfindung wird der Dichtspalt zwischen der ersten Verdichtungsstufe und der zweiten Verdichtungsstufe gezielt für die Versorgung mit der den Flüssigkeitsring bildenden Betriebsflüssigkeit genutzt. Dazu ist die zweite Verdichtungsstufe mit einer Zuführung für Betriebsflüssigkeit versehen. Durch den Dichtspalt tritt ein Teil der Betriebsflüssigkeit in die erste Verdichtungsstufe über, um dort den Flüssigkeitsring zu bilden. Die erste Verdichtungsstufe kann (abgesehen von dem Dichtspalt) frei von einer Zuleitung für Betriebsflüssigkeit sein. Die durch den Dichtspalt hindurchtretende Menge an Betriebsflüssigkeit reguliert sich von selbst, da der Druck in der ersten Verdichtungsstufe absinkt, wenn die Menge an Betriebsflüssigkeit zu gering ist. Bei dieser Ausführungsform ist es nicht erforderlich, den Dichtspalt so klein wie möglich zu halten, sondern der Dichtspalt kann entsprechend dem gewünschten Fluss von Betriebsflüssigkeit eingestellt werden. Die erfindungsgemäße Erhöhung des Wirkungsgrads ergibt sich daraus, dass die Betriebsflüssigkeit bei höherem Druck zugeführt wird, anstatt sie von der ersten Verdichtungsstufe zur zweiten Verdichtungsstufe zu fördern. Die Betriebsflüssigkeit mit dem erforderlichen Druck steht regelmäßig zur Verfügung durch auf der Druckseite der Verdichtungsmaschine angeordnete Flüssigkeitsabscheider.
  • Auch die dritte Verdichtungsstufe kann mit einer Zuführung für Betriebsflüssigkeit versehen sein.
  • Die erfindungsgemäße Verdichtungsmaschine kann als Flüssigkeitsring-Kompressor ausgebildet sein, der dazu ausgelegt ist, das Gas auf der Ausgangsseite mit einem Druck deutlich über Atmosphärendruck abzugeben. Bei einem Atmosphärendruck von etwa 1 bar ist der Ausgangsdruck vorzugsweise höher als 8 bar, beispielsweise zwischen 10 bar und 15 bar. Bei einer Ausführungsform mit drei Verdichtungsstufen kann der Druck auf der Ausgangsseite der ersten Verdichtungsstufe beispielsweise zwischen 2 bar und 3 bar liegen und der Druck auf der Ausgangsseite der zweiten Verdichtungsstufe zwischen 4 bar und 6 bar liegen. Der erfindungsgemäße Kompressor hat ein hohes Saugvermögen, weswegen er auch mit einer leichten Androsselung betrieben werden kann, ohne dass der Druck auf der Ausgangsseite wesentlich absinkt. Beispielsweise kann der Druck auf der Eingangsseite zwischen 200 mbar und 500 mbar liegen, ohne dass der Druck auf der Ausgangsseite unter 10 bar absinkt. Gegenstand der Erfindung ist außerdem ein Verfahren, bei dem der erfindungsgemäße Kompressor in diesen Druckbereichen verwendet wird. Alternativ kann die erfindungsgemäße Verdichtungsmaschine auch als Flüssigkeitsring-Vakuumpumpe ausgebildet sein, die dazu ausgelegt ist, das Gas bei etwa Atmosphärendruck abzugeben.
  • Die erfindungsgemäße Verdichtungsmaschine kann zur Verwendung in großen Industrieanlagen, wie beispielsweise Raffinerien, bestimmt sein, wo hohe Volumenströme zu verarbeiten sind. Die Verdichtungsmaschine kann beispielsweise für eine Antriebsleistung zwischen 500 kW und 2 MW ausgelegt sein. Die Verdichtungsmaschine kann ferner dazu ausgelegt sein, bei Atmosphärendruck einen Volumenstrom zwischen 800 m3/h und 3000 m3/h anzusaugen. Der Durchmesser der Welle kann beispielsweise zwischen 15 cm und 30 cm liegen.
  • Die Verdichtung des Gases erfolgt in der erfindungsgemäßen Verdichtungsmaschine im Wesentlichen isotherm, da das Gas während der Verdichtung in intensiven Kontakt zu dem Flüssigkeitsring steht. Über die Temperatur des Flüssigkeitsrings kann die Temperatur des austretenden Gases eingestellt werden. Der isotherme Wirkungsgrad ist definiert als Quotient aus der in dem Gasstrom auf der Ausgangsseite zusätzlich enthaltenen thermodynamischen Leistung und der Antriebsleistung an der Welle der Verdichtungsmaschine, wenn die Temperatur des Gasstroms auf der Ausgangsseite mit der Temperatur auf der Eingangsseite übereinstimmt. Dieser isotherme Wirkungsgrad liegt bei der erfindungsgemäßen Verdichtungsmaschine zwischen 30 % und 50 %, vorzugsweise zwischen 35 % und 50 %. Im Unterschied dazu liegt der isotherme Wirkungsgrad bei bisherigen Flüssigkeitsring-Verdichtungsmaschinen in der Größenordnung von 25 % bis 30%.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügten Zeichnungen anhand vorteilhafter Ausführungsformen beispielhaft beschrieben. Es zeigen:
  • Fig. 1:
    eine perspektivische Ansicht eines erfindungsgemäßen Kompressors;
    Fig. 2:
    eine teilweise weggebrochene Ansicht des Kompressors aus Fig. 1;
    Fig. 3:
    eine Schnittansicht des Kompressors aus Fig. 1;
    Fig. 4:
    eine Komponente des Kompressors aus Fig. 1;
    Fig. 5:
    eine Schnittansicht einer alternativen Ausführungsform eines erfindungsgemäßen Kompressors; und
    Fig. 6:
    einen vergrößerten Ausschnitt aus Fig. 5.
  • Ein in den Figuren 1 und 2 gezeigter Flüssigkeitsring-Kompressor umfasst ein Gehäuse 14, das über vier Beine 15 auf dem Boden steht und in dem eine Welle 16 drehbar gelagert ist. Die Welle 16 erstreckt sich über die gesamte Länge des Kompressors. Mit der Welle 16 werden die insgesamt drei Verdichtungsstufen 17, 18, 19 des Kompressors gemeinsam angetrieben.
  • Ein aus dem Gehäuse 14 herausragender Wellenzapfen 20 dient zum Anschluss eines nicht dargestellten Antriebsmotors. Der Antriebsmotor kann beispielsweise eine Leistung von 1 MW haben. Das gegenüberliegende Ende der Welle 16 ist innerhalb des Gehäuses 14 angeordnet.
  • Der Kompressor umfasst eine Eingangsöffnung 21, die sich durch einen Stutzen hindurch erstreckt, der mit einem Flansch versehen ist. Durch die Eingangsöffnung 21 hindurch wird das Gas in den Kompressor hinein angesaugt. Der Kompressor umfasst außerdem eine entsprechend ausgebildete Ausgangsöffnung 22, durch die hindurch das verdichtete Gas wieder abgegeben wird. Die Verdichtung erfolgt durch die drei Verdichtungsstufen 17, 18, 19, die das Gas nacheinander durchläuft.
  • Gemäß Fig. 4 ist auf der Welle 16 ein einstückiges Bauteil befestigt, an dem ein Flügelrad 23 der ersten Verdichtungsstufe 17 und ein Flügelrad 24 der zweiten Verdichtungsstufe 18 ausgebildet sind. Die beiden Flügelräder 23, 24 sind durch eine zentrale Wand 26 voneinander getrennt. Außerdem ist mit der Welle 16 ein Flügelrad 25 der dritten Verdichtungsstufe 19 verbunden. Zusammen mit der Welle 16 drehen sich die Flügelräder 23, 24, 25 in dem Gehäuse 14.
  • Die Schnittdarstellung in Fig. 3 zeigt, dass die Flügelräder 23, 24 exzentrisch in dem Gehäuse 14 gelagert sind. Der Abstand zwischen der Welle 16 und dem oberen Ende des die Flügelräder 23, 24 umgebenden Innenraums ist kleiner als der Abstand zwischen der Welle 16 und dem unteren Ende des Innenraums. Der Innenraum hat eine einheitliche Kontur, so dass der Abstand zwischen der Welle 16 und der Wand des Innenraums in jeder Winkelposition für die erste Verdichtungsstufe 17 und die zweite Verdichtungsstufe 18 gleich groß ist. Die Kammern des ersten Flügelrads 23 haben also in der gleichen Winkelposition ihr kleinstes Volumen wie die Kammern des zweiten Flügelrads 24. Entsprechendes gilt für das größte Volumen sowie die Zwischenpositionen.
  • Der Winkelabschnitt, in dem das Volumen der Kammern sich vergrößert, wird als Saugabschnitt bezeichnet. Der Winkelabschnitt, in dem das Volumen der Kammern sich verkleinert, wird als Druckabschnitt bezeichnet. In der Schnittdarstellung der Fig. 3 gehört der unterhalb der Welle 16 liegende Bereich zum Saugabschnitt 271, 272 und der oberhalb der Welle liegende Bereich zum Druckabschnitt 281, 282. Während eines vollständigen Umlaufs durchlaufen die Flügelräder 23, 24 genau einen Saugabschnitt 271, 272 und genau einen Druckabschnitt 281, 282. Die erste Verdichtungsstufe 17 und die zweite Verdichtungsstufe 18 sind also einfach wirkend. Der Verdichtungsvorgang erstreckt sich über mehr als 180°.
  • In axialer Richtung werden die Kammern der Flügelräder 23, 24 jeweils durch eine Steuerscheibe 29, 30 begrenzt. Die Steuerscheiben 29, 30 haben jeweils im Saugabschnitt 271, 272 einen Saugschlitz und im Druckabschnitt 281, 282 einen Druckschlitz. Der Saugschlitz der Steuerscheibe 29 ist an die Eingangsöffnung 21 des Kompressors angeschlossen. Das durch die Eingangsöffnung 21 hindurch angesaugte Gas tritt durch diesen Saugschlitz hindurch in die Kammern des Flügelrads 23 ein. Mit dem Umlauf des Flügelrads 23 vermindert sich das Volumen der Kammer und das verdichtete Gas tritt durch den Druckschlitz der Steuerscheibe 29 wieder aus den Kammern des Flügelrads 23 aus. Der Verdichtungsvorgang der ersten Verdichtungsstufe 17 ist damit abgeschlossen. Wurde das Gas bei einem Atmosphärendruck von 1 bar angesaugt, so kann der Druck am Ausgang der ersten Verdichtungsstufe beispielsweise zwischen 2 bar und 3 bar liegen.
  • Durch einen in dem Gehäuse 14 ausgebildeten Kanal 31 wird das verdichtete Gas von dem Druckschlitz der Steuerscheibe 29 zu dem Saugschlitz der Steuerscheibe 30 geleitet. Das Gas tritt durch den Saugschlitz hindurch in die Kammern des Flügelrads 24 ein. Mit dem Umlauf des Flügelrads 24 wird das Gas weiter verdichtet. Durch den Druckschlitz der Steuerscheibe 30 tritt das Gas mit einem Druck zwischen beispielsweise 4 bar und 6 bar aus der zweiten Verdichtungsstufe 18 wieder aus.
  • Das dritte Flügelrad 25, das die dritte Verdichtungsstufe 19 bildet, ist eingeschlossen zwischen einer dritten Steuerscheibe 32 und einer vierten Steuerscheibe 33. Die Steuerscheibe 32 umfasst zwei um 180° zueinander versetzte Saugschlitze. Die Steuerscheibe 33 umfasst zwei um 180° zueinander versetzte Druckschlitze. Der das dritte Flügelrad 25 umgebende Innenraum des Gehäuses ist so gestaltet, dass er zwei Saugabschnitte und zwei Druckabschnitt bildet. Das Flügelrad 25 durchläuft bei einem vollständigen Umlauf also zwei Saugabschnitte und zwei Druckabschnitte und führt damit zwei Verdichtungsvorgänge durch. Jeder Verdichtungsvorgang erstreckt sich über weniger als 180°, die dritte Verdichtungsstufe ist doppeltwirkend. Die Saugschlitze in der Steuerscheibe 32 sind so positioniert, dass sie Zugang zu den Saugabschnitten bieten. Entsprechend sind die Druckschlitze in der Steuerscheibe 33 so positioniert, dass sie Zugang zu den Druckabschnitten bieten.
  • Vom Ausgang der zweiten Verdichtungsstufe 18 wird das Gas zu den Saugschlitzen in der Steuerscheibe 32 geleitet, so dass es in die Kammern des Flügelrads 25 eintreten kann. Nach dem Verdichtungsvorgang tritt das Gas mit einem Druck zwischen beispielsweise 10 bar und 15 bar durch die Druckschlitze der Steuerscheibe 33 aus der dritten Verdichtungsstufe aus. Von dort wird das Gas durch die Austrittsöffnung 22 aus dem Kompressor herausgeführt.
  • Aufgrund der Druckdifferenz zwischen der ersten Verdichtungsstufe 17 und der zweiten Verdichtungsstufe 18 kann sich ein Leckfluss zwischen den Kammern des zweiten Flügelrads 24 und den Kammern des ersten Flügelrads 23 ausbilden. Der Leckfluss geht durch einen Dichtspalt 28 hindurch, der zwischen der Trennwand 26 der Flügelräder 23, 24 und dem umgebenden Gehäuse besteht. Um den Leckfluss gering zu halten, wird der radiale Abstand zwischen der Trennwand 26 und dem Gehäuse so gering wie möglich gehalten und zudem ein Dichtring in dem Dichtspalt 28 angeordnet. Ganz vermeiden lässt der Leckfluss sich mit diesen Maßnahmen jedoch nicht.
  • Erfindungsgemäß trägt zur Verminderung des Leckflusses weiterhin bei, dass die Saugabschnitte 271, 272 und die Druckabschnitte 281, 282 der ersten Verdichtungsstufe 17 und der zweiten Verdichtungsstufe 18 jeweils in derselben Winkelposition angeordnet sind. Die Druckdifferenz zwischen der ersten Verdichtungsstufe 17 und der zweiten Verdichtungsstufe 18 ist dadurch in allen Winkelpositionen ungefähr gleich und liegt in der Größenordnung von lediglich 2 bar bis 3 bar. Diese geringe Druckdifferenz wirkt ebenfalls der Entstehung eines starken Leckflusses entgegen.
  • Allerdings hat die in den ersten beiden Verdichtungsstufen 17, 18 übereinstimmende Winkelposition der Saugabschnitte 271, 272 und der Druckabschnitte 281, 282 auch zur Folge, dass große Kräfte in radialer Richtung auf die Welle 16 wirken. Diese Kräfte werden dadurch aufgefangen, dass die Welle 16 sehr massiv ausgeführt ist. Die Welle kann beispielsweise aus Stahl bestehen und einen Durchmesser von 20 cm haben. Diese Dimensionierung hat sich als ausreichend erwiesen, um zu verhindern, dass die Welle 16 sich unter den von den Flügelrädern 23, 24 ausgeübten Kräften übermäßig durchbiegt.
  • Aufgrund des Druckunterschieds zwischen den Kammern des Flügelrads 24 und den Kammern des Flügelrads 23 wirkt außerdem eine große Kraft in axialer Richtung auf die Welle 16, die in Fig. 3 nach links gerichtet ist. Diese Kräfte werden durch ein groß dimensioniertes Hauptlager 35 aufgefangen. Das Hauptlager 35 ist als Kegelrollenlager ausgebildet, das neben den radialen Kräften auch große axiale Kräfte aufnehmen kann. Das zweite Hauptlager 34 nimmt in erster Linie radiale Kräfte auf. Zwischen den beiden Hauptlagern 34, 35 ist die Welle 16 nicht weiter gelagert.
  • Um den Leckfluss innerhalb der jeweiligen Verdichtungsstufen 17, 18, 19 gering zu halten, ist es außerdem erwünscht, dass die Flügel der Flügelräder 23, 24, 25 sich mit möglichst geringem Abstand zu den Steuerscheiben 29, 30, 32, 33 bewegen. Dies setzt wiederum voraus, dass die Flügelräder 23, 24, 25 mit hoher Präzision in einer bestimmten Position auf der Welle 16 gehalten werden. Dies geschieht bei dem erfindungsgemäßen Kompressor dadurch, dass zwischen den Flügelrädern und der Welle 16 Distanzhülsen 36, 37, 38 angeordnet sind, die eine exakte Position in Radialrichtung definieren.
  • Die Distanzhülsen 36, 37, 38 definieren außerdem exakte Positionen in Axialrichtung, indem sie in Axialrichtung an geeigneten Vorsprüngen der Flügelräder 23, 24, 25 anliegen. Mit zwei Wellenmuttern 39, 40 wird die Einheit aus Distanzhülsen 36, 37, 38 und Flügelrädern 23, 24, 25 in axialer Richtung gegeneinander gespannt, so dass alle Elemente eine exakt definierte Position haben.
  • Die Distanzhülsen 36, 37, 38 bestehen aus Edelstahl und damit aus einem anderen Material als die Welle 16. Erwärmt sich der Kompressor, können aufgrund der unterschiedlichen Wärmeausdehnungskoeffizienten Spannungen auftreten. Um diese kontrolliert aufzunehmen, ist die Distanzhülse 38, die zwischen dem dritten Flügelrad 25 und dem druckseitigen Hauptlager 35 angeordnet ist, mit innen liegenden Nuten 41 versehen, die in der vergrößerten Darstellung der Fig. 6 gezeigt sind. Die Nuten 41 bilden eine Schwächung der Distanzhülse 38, so dass eine Verformung durch Wärmeausdehnung in diesem Bereich stattfindet. Durch diese gezielte Verformung wird erreicht, dass die axiale Position der Flügelräder 23, 24, 25 sich bei einer Erwärmung des Kompressors nur sehr geringfügig verschiebt.
  • Bei der in Fig. 5 gezeigten alternativen Ausführungsform ist die Nabe 42 des Flügelrads 25 als Druckentlastungskolben gestaltet, um den axialen Druck auf die Welle 16 zu vermindern. In Richtung Druckseite schließt sich an die Nabe 42 ein zylindrischer Hohlraum 43 an, der durch einen Dichtspalt 44 gegenüber der Nabe 42 abgedichtet ist. Der Hohlraum 43 ist über eine Leitung 45 an die Saugseite des Kompressors angeschlossen, auf der im Wesentlichen Atmosphärendruck anliegt. Indem der Atmosphärendruck auf die Ausgangsseite der dritten Verdichtungsstufe 19 geleitet wird, vermindert sich der axiale Druck und die Welle 16 wird entlastet.
  • Die zweite Verdichtungsstufe 18 sowie die dritte Verdichtungsstufe 19 sind jeweils an eine nicht dargestellte Zuleitung für Betriebsflüssigkeit angeschlossen, die von einem auf der Druckseite des Kompressors angeordneten Flüssigkeitsabscheider gespeist werden. Die erste Verdichtungsstufe 17 hat keine direkte Zuführung für Betriebsflüssigkeit. Vielmehr erfolgt die Versorgung der ersten Verdichtungsstufe mit Betriebsflüssigkeit durch den Dichtspalt 28 hindurch. Der Durchmesser des Dichtspalts ist so gewählt, dass sich der gewünschte Fluss von Betriebsflüssigkeit einstellt.

Claims (14)

  1. Flüssigkeitsring-Verdichtungsmaschine mit einer ersten einfach wirkenden Verdichtungsstufe (17), die ein exzentrisch in einem Gehäuse (14) gelagertes erstes Flügelrad (23) aufweist, und mit einer zweiten einfach wirkenden Verdichtungsstufe (18), die ein exzentrisch in einem Gehäuse gelagertes zweites Flügelrad (24) aufweist, wobei die erste Verdichtungsstufe (17) und die zweite Verdichtungsstufe (18) durch einen Dichtspalt (28) voneinander getrennt sind, dadurch gekennzeichnet, dass der Dichtspalt (28) zwischen einem Saugabschnitt (271) der ersten Verdichtungsstufe (17) und einem Saugabschnitt (272) der zweiten Verdichtungsstufe (18) angeordnet ist.
  2. Flüssigkeitsring-Verdichtungsmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die erste Verdichtungsstufe (17) eine erste Steuerscheibe (29) aufweist, dass die zweite Verdichtungsstufe (18) eine zweite Steuerscheibe (30) aufweist, wobei das erste Flügelrad (23) und dass zweite Flügelrad (24) zwischen der ersten Steuerscheibe (29) und der zweiten Steuerscheibe (30) angeordnet sind.
  3. Flüssigkeitsring-Verdichtungsmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen den Kammern des ersten Flügelrads (23) und den Kammern des zweiten Flügelrads (24) eine Wand (26) ausgebildet ist, die sich mit den Flügelrädern (23, 24) dreht.
  4. Flüssigkeitsring-Verdichtungsmaschine nach Anspruch 3, dadurch gekennzeichnet, dass der Dichtspalt (28) zwischen einer Umfangsfläche der Wand (26) und einer Abschlussfläche des Gehäuses (14) angeordnet ist.
  5. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Gehäuse (14) einen Kanal (31) aufweist, der sich von einer Ausgangsseite der ersten Verdichtungsstufe (17) bis zu einem Eingangsseite der zweiten Verdichtungsstufe (18) erstreckt.
  6. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich an eine Ausgangsseite der zweiten Verdichtungsstufe (18) eine dritte Verdichtungsstufe (19) anschließt, wobei ein Flügelrad (25) der dritten Verdichtungsstufe (19) mit derselben Welle (16) angetrieben wird wie das erste Flügelrad (23) und das zweite Flügelrad (24).
  7. Flüssigkeitsring-Verdichtungsmaschine nach Anspruch 6, dadurch gekennzeichnet, dass die dritte Verdichtungsstufe (19) doppelt wirkend ausgelegt ist.
  8. Flüssigkeitsring-Verdichtungsmaschine nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass das Flügelrad (25) der dritten Verdichtungsstufe (19) zwischen einer ersten Steuerscheibe (32) und einer zweiten Steuerscheibe (33) angeordnet ist und dass in der ersten Steuerscheibe (32) Saugschlitze und in der zweiten Steuerscheibe (33) Druckschlitze ausgebildet sind.
  9. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das Flügelrad (25) der dritten Verdichtungsstufe (19) einen Entlastungskolben (42) aufweist, der einen Druckausgleichsraum (43) in axialer Richtung abschließt, wobei der Druck in dem Druckausgleichsraum (43) niedriger ist als auf der Ausgangsseite der dritten Verdichtungsstufe (19).
  10. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass jedes Flügelrad-Bauteil (23, 24, 25) in axialer Richtung zwischen zwei Distanzhülsen (36, 37, 38) eingeschlossen ist.
  11. Flüssigkeitsring-Verdichtungsmaschine nach Anspruch 10, dadurch gekennzeichnet, dass eine der Distanzhülsen (38) mit einer Schwächung (41) versehen ist.
  12. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die zweite Verdichtungsstufe (18) mit einer Zuführung für Betriebsflüssigkeit ausgestattet ist und dass die erste Verdichtungsstufe (17) frei von einer Zuleitung für Betriebsflüssigkeit ist.
  13. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die dritte Verdichtungsstufe (19) mit einer Zuführung für Betriebsflüssigkeit ausgestattet ist.
  14. Flüssigkeitsring-Verdichtungsmaschine nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sie für eine Antriebsleistung zwischen 500 kW und 2 MW ausgelegt ist.
EP15729826.6A 2014-06-18 2015-06-16 Flüssigkeitsring-verdichtungsmaschine Active EP3158198B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14173028 2014-06-18
PCT/EP2015/063481 WO2015193318A1 (de) 2014-06-18 2015-06-16 Flüssigkeitsring-verdichtungsmaschine

Publications (2)

Publication Number Publication Date
EP3158198A1 EP3158198A1 (de) 2017-04-26
EP3158198B1 true EP3158198B1 (de) 2020-09-09

Family

ID=51032935

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15729826.6A Active EP3158198B1 (de) 2014-06-18 2015-06-16 Flüssigkeitsring-verdichtungsmaschine

Country Status (4)

Country Link
US (1) US10590932B2 (de)
EP (1) EP3158198B1 (de)
CN (1) CN106536936B (de)
WO (1) WO2015193318A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571969B (en) 2018-03-14 2020-10-07 Edwards Tech Vacuum Engineering Qingdao Co Ltd A liquid ring pump manifold with an integrated spray nozzle
GB2571970B (en) * 2018-03-14 2020-09-16 Edwards Tech Vacuum Engineering (Qingdao) Co Ltd A liquid ring pump manifold with integrated non-return valve
CN109026737A (zh) * 2018-08-02 2018-12-18 广州市能动机电设备有限公司 一种离心式水泵

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE890256C (de) 1943-05-07 1953-09-17 Siemens Ag Fluessigkeitsring-Verdichter
DE923571C (de) * 1951-10-14 1955-02-17 Amag Hilpert Pegnitzhuette Ag Einrichtung zum Verdichten von Gasen und Daempfen
FR1113561A (fr) 1954-04-06 1956-03-30 Siemens Ag Pompe à anneau liquide pour refoulement de gaz
DE1004334B (de) 1956-03-28 1957-03-14 Siemens Ag Fluessigkeitsringpumpe
FI46204C (fi) 1962-11-27 1973-01-10 Nash Engineering Co Suurtyhjönesterengas.
US4323334A (en) * 1980-01-25 1982-04-06 The Nash Engineering Company Two stage liquid ring pump
DE8906100U1 (de) * 1989-05-17 1989-06-29 Siemens AG, 1000 Berlin und 8000 München Flüssigkeitsringpumpe
FI103604B (fi) * 1996-08-05 1999-07-30 Rotatek Finland Oy Nesterengaskone ja menetelmä fluidin siirtämiseksi
DE19847681C1 (de) * 1998-10-15 2000-06-15 Siemens Ag Flüssigkeitsringpumpe
DE102005043434A1 (de) * 2005-09-13 2007-03-15 Gardner Denver Elmo Technology Gmbh Einrichtung zur Leistungsanpassung einer Flüssigkeitsringpumpe
CN101251125B (zh) * 2008-04-03 2010-10-27 湖北同方高科泵业有限公司 一种耐腐蚀水环真空泵
US8740575B2 (en) * 2009-02-05 2014-06-03 Gardner Denver Nash, Llc Liquid ring pump with liner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10590932B2 (en) 2020-03-17
WO2015193318A1 (de) 2015-12-23
CN106536936B (zh) 2019-07-16
US20170130718A1 (en) 2017-05-11
CN106536936A (zh) 2017-03-22
EP3158198A1 (de) 2017-04-26

Similar Documents

Publication Publication Date Title
EP3187736B1 (de) Mehrstufige horizontale zentrifugalpumpe zum fördern eines fluids sowie verfahren zum instandsetzen einer solchen
WO2001094791A1 (de) Pumpe
EP3158198B1 (de) Flüssigkeitsring-verdichtungsmaschine
EP3805570A1 (de) Kreiselpumpe zum fördern eines fluids
EP1801418A1 (de) Planeten-Zahnradpumpe
EP0363503B1 (de) Pumpenstufe für eine Hochvakuumpumpe
DE60316243T2 (de) Zentrifugalverdichter mit Einlassleitschaufeln
DE102015217169A1 (de) Hydrauliksystem für ein Automatikgetriebe
WO2002081913A2 (de) Hydraulisches pumpenaggregat
EP3507495A1 (de) Schraubenvakuumpumpe
WO2003067032A1 (de) Druckluftmotor
DE1528717B2 (de) Vorrichtung zum ausgleich des axialschubes bei mehrstufigen kreiselpumpen
WO2017021117A1 (de) Verdrängerpumpe zur förderung eines fluides für einen verbraucher eines kraftfahrzeuges
EP2119869A2 (de) Hydromaschine
EP2101934A1 (de) Treibrolle insbesondere für besäumscheren
DE102009048479A1 (de) Wärmekraftmaschine in Form eines Flügelzellenexpanders
EP3827170A1 (de) Fluidfördereinrichtung
EP3623634B1 (de) Vakuumpumpe umfassend eine holweckpumpstufe und zwei seitenkanalpumpstufen
DE202006004842U1 (de) Dampfbetriebener Motor
DE102014010149B3 (de) Verfahren zum Verdichten eines Dampfes und Dampfverdichter
EP3913187B1 (de) Schraubenspindelpumpe
WO2000017523A1 (de) Gehäuseaufbau zur aufnahme einer mikrozahnringpumpe
DE102018105802B4 (de) Flügelzellen-Vakuumpumpe
DE102007030199A1 (de) Getriebe für eine Schraubenspindelpumpe
WO2022058350A1 (de) Zweistufiger gerotormotor

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311911

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013419

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013419

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311911

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230626

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240627

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240619

Year of fee payment: 10